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Abstract: Credit spreads and CDS premiums are investigated before, during and after the financial crisis
with a flexible credit risk model. The latter is designed to capture empirical facts: a regime-switching
framework adjusts its behaviour to the financial cycles and the negative relationship between recovery rates
and default probabilities appears endogenously.

Using a firm-by-firm estimation of 225 companies, notorious empirical questions are revisited, including
the famous credit spread puzzle. The proportion of the spread explained by credit risk decreases during the
crisis. Liquidity plays a significant role in explaining this gap throughout the financial turmoil and persists
thereafter.
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1 Introduction

The so-called Global Financial Crisis of 2008 is considered by various economists as the worst crisis since the
Great Depression. It is now clear that the 2008 crisis was primarily caused, among other things, by a decline
in the United States’ housing market (see Acharya et al. (2009)). This led to increased levels of mortage
defaults and induced a steep decrease in the value of mortgage-backed securities. At some point, investors
began avoiding all risks, liquidity dried up and turmoil hit financial markets.

Worldwide, 101 corporate issuers rated by Moody’s defaulted on a total of $281.2 billion of debt in 2008
(Moody’s, 2009). For the sake of comparison, only 18 issuers defaulted in 2007 on a total of $6.7 billion of
debt. The year 2008 witnessed the largest defaulter in history: Lehman Brothers Holdings Inc. Other large
financial institutions, including Washington Mutual and three large Icelandic banks (Landsbanki, Kaupthing
and Glitnir) also defaulted. The situation was so dire in the United States that the federal government
implemented a program (Troubled Asset Relief Program, or TARP) in October 2008 to purchase assets and
equity from financial institutions to strengthen the financial sector. Unsurprisingly, the panic that struck the
marketplace had a major impact on the credit market. Therefore, corporate credit spreads and credit default
swap (CDS) premiums rose significantly. However, it is not clear whether these increases were caused by
increased risk of default or other factors. For instance, recovery rate risk, liquidity risk, risk aversion, market
risk and macroeconomic risk could also have an impact on credit spreads and CDS premiums.

Understanding what proportion of credits spreads can be explained by credit risk and finding other factors
of interest are two main research concerns found in the recent financial literature. These questions have been
addressed by many: Elton et al. (2001), Collin-Dufresne et al. (2001), Lando and Skødeberg (2002), Driessen
(2005), Chen et al. (2009), Dionne et al. (2010) and Huang and Huang (2012) among others. Two general
conclusions arise from these studies. First, the proportion of the credit spreads explained by credit risk
depends on the model, the estimation methodology and the dataset used. Second, the other risks mentioned
above could be priced in corporate bonds, and again, the findings depend on the model, the estimation
procedure and the data.

The determinants of credit default swap premiums are somewhat less exhaustive than those of corporate
bond spreads. For instance, according to Ericsson et al. (2009), leverage, asset volatility and the risk-free rate
are important determinants of credit default swap premiums, as predicted by theory. Moreover, applying a
principal component analysis on the residuals, the authors find only weak evidence for a residual common
factor.

In this paper, the main objective is to analyze the determinants of credit spreads and CDS premiums.
The focus is placed on three different periods: pre-crisis era, crisis era, and post-crisis era. According to the
literature, conclusions are sensitive to the characteristics of the model, which needs to be constructed carefully
to capture the desired empirical facts. Our model includes a regime-switching variable that accommodates
behavioural changes during financial turmoils. As in Boudreault et al. (2013), the negative relationship
between credit ratings and recovery rates is modelled with an endogenous random recovery rate that depends
on a firm’s financial health; this empirical observation was highlighted by Altman et al. (2004) and Altman
(2006), among others.

The estimation method must be tailored for the issue at hand: two latent variables shall be filtered
simultaneously, i.e. the hidden regime and the firm’s leverage, in addition to the model’s parameters, which
need to be estimated. The proposed filter has numerous advantages. First, it allows for multiple data
sources that help disentangle some effects1 that cannot be separated using a single product. Second, using
time series of derivatives captures the dynamics under both objective and risk-neutral probability measures
simultaneously. Third, the estimation of parameters is performed through the quasi-maximum likelihood
function. Finally, the numerical implementation is fast and efficient. The model is estimated using different
tenors from the term structure of CDS premiums for more than 200 firms on a firm-by-firm basis.

One in-sample and two out-of-sample analyses show that the model outperforms three others benchmarks.
The relative pricing errors are also analyzed: the errors are regressed against different market-wide, interest
rate, liquidity and firm-specific factors. The coefficient of determination of such regressions are rather small,

1For instance, liquidity issues in some tenors, recovery rate uncertainty, default risk, etc.
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ranging between 2.6% and 13.2%, implying that the model captures most of the variation in the CDS
premiums.

The effects of stochastic recovery and the presence of regimes on the yield spread curve are investigated.
Recovery uncertainty has a major impact on mid- and long-term credit spreads. While the presence of
regimes has a second-order effect on average credit spread curves, it affects the long-term credit spread of
high rated firms in the pre- and post-crisis periods. During the financial crisis, the short-term shape of the
average credit spread curves is modified in the presence of regimes, especially for well-rated firms.

Theoretical spot spreads obtained through the credit risk model are compared with corporate bond
benchmark spot spreads. In the pre-crisis period, the proportions of credit spread explained by credit risk
found by our computations are much larger than those obtained by Huang and Huang (2012) and Elton et al.
(2001), among others. However, the crisis seems to have had an impact on these figures: for the proposed
model, the explained proportion of 15-year BBB spot spreads decreases from 67% in the pre-crisis era to
42% during the crisis, on average. Recovery rate risk and its dependence with default risk partly accounts
for the high proportion of the empirical spreads explained by credit risk. For instance, applying a constant
exogenous recovery rate decreases the proportion of credit spread explained by the model for 15-year spreads
by an average of 14.2%.

Since credit risk does not fully explain the credit spreads, liquidity risk is investigated in the bond market.
In the spirit of Dick-Nielsen et al. (2012), a liquidity proxy is computed. To control for credit risk, bond
yield-to-maturity spreads implied by the regime-switching model are employed. Using regression analyses,
the liquidity proxy terms are statistically different from zero for most ratings and periods. Moreover, the
liquidity component generally tends to increase during the crisis; for B-rated firms, it is about 37.8 basis
points (bps) during the pre-crisis era, 118.6 bps during the crisis, and 83.1 bps during the post-crisis era.
The spread fraction also rises during the crisis: for B-rated firms, the fraction increases by 7.7%.

Last but not least, other regressors are added to previous liquidity regressions: two market-wide factors,
one variable related to the interest rate market, and two firm-specific factors. In the three periods, the
theoretical spreads explain a significant part of the observed credit spread’s variation with an R-squared of
65%. When liquitidy is taken into account, the R-squared reaches 67%. All additional variables brings the
R-squared to 72%, implying that most of the variation presents in the observed CDS premiums are mainly
explained by the model and the liquidity proxies.

The rest of this paper is organized as follows. The joint default and loss model is presented in Section 2.
Section 3 explains the model estimation approach and discusses the estimation results. In Section 4, the
impact of two important features of the model (i.e. endogenous random recovery and regime-switching risks)
are analyzed in a comparison study. An assessment of the proportion of the corporate credit spread explained
by credit risk is described in Section 5. Section 6 discusses the issue of liquidity in the corporate bond market.
Other factors are analyzed in Section 7. Finally, Section 8 concludes.

2 Joint default and loss model

According to Ericsson et al. (2009), the three main determinants of default are leverage, asset volatility and
interest rates. By considering Markov-switching dynamics for the firm’s assets and liabilities, the proposed
model can handle, at least partially, two of the three main determinants of default. However, even when
accounting for these three variables, a large proportion of spreads remain unexplained (Ericsson et al., 2009);
in the empirical literature, this issue is referred to as the credit spread puzzle. In addition, continuous-path
structural models have failed to appropriately represent short term credit spreads, mainly because the default
is a predictable stopping time. To solve these issues, structural models with incomplete information were
proposed; the presence of a surprise element that adds randomness to the default trigger is an important
feature of these models. They are part of the so-called hybrid approach in credit risk modelling. For instance,
Duffie and Lando (2001) suppose that bond investors cannot observe the issuer’s assets directly and receive
periodic and imperfect accounting reports instead. Jarrow and Protter (2004) show that the incomplete
knowledge of the firm’s assets and liabilities leads to an inaccessible default time.
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Other frameworks combine ideas from both structural and reduced-form approaches to obtain hybrid
models: firms’ liabilities and assets are modelled as stochastic processes and the default time is given by the
first jump of a Cox process for which the intensity depends on the firm’s fundamentals (e.g. Madan and Unal
(2000), Bakshi et al. (2006b), and Boudreault et al. (2013)).

Moreover, as documented by various authors, CDS premium dynamics and credit spreads change during
financial crises. Indeed, Dionne et al. (2011) estimate the default risk component of corporate yield spreads
using a reduced-form model based on observed macroeconomic factors (consumption and inflation) with the
possibility of regime changes. Their factors are linked to sharp increases in default spreads in two out of
three NBER economic recessions over the 1987–2008 period.

During the last financial crisis, the dynamics of credit default swap premiums is investigated by Huang
and Hu (2012). Applying a smooth transition autoregressive model, the authors provide clear evidence
for transitions between low-price and high-price regimes in CDS spreads of 28 firms from 2007 to 2009.
Maalaoui Chun et al. (2013) apply a regime-detection technique distinguishing between level and volatility
regimes in credit spreads. They show that most breakpoints occur around economic downturns, thus linking
the statistical regimes to the financial crises.

In this paper, the shell approach of Boudreault et al. (2013) is extended to capture the time-varying
nature of the volatility.2 The shell is essentially an intensity process that depends on the firm’s leverage,
which is modelled by Markov-switching dynamics. This flexible approach allows for an endogenous recovery
rate that is both stochastic and negatively correlated with the firm’s probability of default. The negative
correlation between these two quantities is of paramount importance: as the firm’s financial health becomes
precarious (i.e. the firm’s leverage raises), its default probability increases, but the recovery rate decreases
accordingly.

According to Altman et al. (2005) and Acharya et al. (2007), a negative correlation between default
probabilities and recovery rates exists, and both variables seem to be driven by the same factor. Using data
from 1982 to 2002, Altman et al. (2005) show that losses are vastly understated if one assumes that default
probabilities and recovery rates are uncorrelated.

Other contributions show the importance of the negative relationship between default probabilities and
recovery rates. Using BBB-rated corporate bonds, regression analyses, and the information on all companies
that have defaulted between 1981 and 1999, Bakshi et al. (2006a) find that, on average, a 4% increase in the
risk-neutral hazard rate is associated with a 1% decline in risk-neutral recovery rates. Gaspar and Slinko
(2008) explain empirically observed features, such as the negative correlation between the default probabilities
and recovery rates through a reduced-form approach. An econometric model is developed by Bruche and
González-Aguado (2010) which tries to assess by how much one underestimates credit risk if ignoring the
negative relationship between default probabilities and recovery rates. Using a simple structural model, Bade
et al. (2011) find that default and recovery are highly negatively correlated; the recovery is modelled as a
stochastic quantity that depends on observable risk factors and a systematic random variable. Das and
Hanouna (2009) use stock prices and CDS premiums to calibrate a hybrid model for default probabilities
and recovery rates using 3,130 different firms from 2000 to 2002. The use of both markets helps identify the
recovery rates.

2.1 Model

Let Lt and At be the time t market value of the firm’s liabilities and assets respectively. The leverage ratio
is defined as the quotient of these two values.3 Because the dataset overlaps the financial crisis, the model
should be flexible enough to capture the changes in the state variable dynamics before, during, and after
the financial turmoil. Hence, the market value of the firm’s log-leverage is characterized by the following

2Zhang et al. (2009) show that volatility risk predicts 48% of the variation in the CDS spreads using a Merton-type structural
model and a calibration approach.

3The leverage ratio Lt/At is not constrained to lie within the unit interval since Lt is the liabilities value and not the risky
debt value. The liabilities value Lt could thus be larger than At.
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regime-switching dynamics:

log
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where ht is the regime prevailling during the time interval ((t − 1)∆t, t∆t], ∆t is the time step between
two consecutive observations, {εPt }∞t=1 is a sequence of independent standardized Gaussian random variables
under the statistical probability measure P, and µP

1,. . . , µP
K , σ1, . . . , σK are parameters that drive the leverage

dynamics under the K possible regimes. The information structure is captured with the filtration {Gt}∞t=0

generated by the noise series {εPt }∞t=1 and the regimes {ht}∞t=0.

Because the leverage ratio is one of the potential drivers of default, it is incorporated in an intensity
process {It}∞t=0 that characterizes the potential default:

It = β +

(
Lt/At
θ

)α
(2)

where α, β, and θ are positive constants. The default intensity increases with the leverage ratio, making
the default more likely to happen. As usual in intensity-based models, the default time arises as soon as the
intensity accumulation reaches a random level determined by an exponentially distributed random variable
E1 of mean 1 independent of {Gt}∞t=0:

τ = inf

{
t ∈ {1, 2, . . .} :

t−1∑
u=0

Iu∆t > E1

}
. (3)

The recovery rate at default time is proxied by

Rτ = min

(
(1− κ)

Aτ
Lτ

; 1

)
= min

(
(1− κ)e−xτ ; 1

)
, (4)

where κ represents the legal and restructuration fees, expressed as a proportion of the asset value at default
time. Consequently, an endogenous random recovery rate negatively correlated to default probabilities is
implied by Equation (4).

The unobserved regime is modelled as a time-homogenous Markov chain with transition probabilities

pPij = P(ht = j|ht−1 = i), i, j ∈ {1, 2, . . . ,K}. (5)

The market model is incomplete, implying that there are an infinite number of pricing measures. Among
these measures, we restrict the choices to those preserving the model structure:

xt = xt−1 +

(
µQ
ht
− 1

2
σ2
ht

)
∆t + σht

√
∆tε

Q
t (6)

and
pQij = Q(ht = j|ht−1 = i), i, j ∈ {1, 2, . . . ,K} (7)

where {εQt }∞t=1 is an sequence of independent standardized Gaussian random variables under Q.

2.2 Bond and credit default swap pricing

The derivative securities priced within this model take into consideration default, recovery, and regime risks.
However, stochastic recovery rates and regime-switching dynamics prevent us from using closed-form solutions
for CDS premiums and corporate coupon bond prices. An extension of Yuen and Yang (2010)’s trinomial
lattice is used in this paper. Details about the pricing scheme are provided in Appendix A.
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3 Estimation

The model is estimated on a firm-by-firm basis by filtering out the unobservable firm leverages, the hidden
regime probabilities and all P- and Q-parameters from time series of CDS premiums of various tenors.

The question of whether CDS premiums include liquidity effects or counterparty risk is controversial.
Based on CDS premiums from March 2008 to January 2009 on firms of widely followed CDX indices and
regression analyses, Arora et al. (2012) show that even though counterparty credit risk is significantly priced
in the CDS market, the magnitude of the effect is relatively modest.4 Based on CDS data from 2001 to 2007
(when the CDS market was still young), Bühler and Trapp (2009) find that the default component accounts
for 95% of the CDS premiums on average. The nature of this dataset is nonetheless very different from ours.5

Using pre-crisis data and regression analyses, Tang and Yan (2007) show that liquidity could have a mild
positive impact on CDS spreads, mainly due to search frictions and adverse selection. Using a number of
quote providers as a measure of CDS market depth and a similar dataset to ours, Qiu and Yu (2012) explore
the behaviour of CDS liquidity across 732 firms over 2001–2008. Large firms and firms near the “IG/HY
boundary” tend to be the most liquid ones.

On a different note, Longstaff et al. (2005) argue that CDSs are of a contractual nature that affords
relative ease of transacting large notional amounts compared to the corporate bond market. Moreover, an
investor can liquidate a position by entering into a new swap in the opposite direction instead of selling
his current position. Therefore, liquidity is less relevant given the ability to replicate swap cash flows using
another CDS. Thus, CDS premiums may not be significantly affected by liquidity and reflect, in a way, pure
measures of credit risk. This assumption is commonly used in the recent literature. For instance, Mahanti
et al. (2008), Han and Zhou (2008), Dionne and Maalaoui Chun (2013), and Guarin et al. (2014) used CDS
premiums as pure measures of credit risk.

In light of these investigations, it is assumed that CDS premiums are mainly driven by credit risk. It is
believed that even if credit risk is not the only risk involved in CDS, it is the main one and, ergo, a good proxy
to understand a firm’s credit risk. Moreover, the filtering approach adopted in this paper allows for potential
lack of liquidity in specific tenors to be absorbed by the noise terms. Thus, the selected methodology would
help to reduce the impact of illiquidity in our dataset, if ever there is any. To minimize the impact of such
risk, the study also focuses on firms that are part of the widely-followed CDX indices.

3.1 Data

The investigations were performed on 225 firms of the CDX North American IG and HY indices
(CDS.NA.IG.21.V1 and CDS.NA.HY.21.V1) provided by the Markit Group on September 20, 2013. The
indices span multiple credit ratings and sectors. The weekly6 term structure of CDS premiums from January
5, 2005, to December 25, 2013, is also provided by Markit for a maximum of 469 weeks. CDS premiums up
to the end of 2012 are used in the estimation; the last year of data (i.e. 2013) is kept for an out-of-sample
analysis. We use Wednesday CDS premiums.7 Prices for maturities of 1, 2, 3, 5, 7 and 10 years are available
for most firms (125 IG and 100 HY). However, 15 firms (4 IG and 11 HY) were removed from the sample
since there were not enough observations for the estimation procedure (i.e. less than 100 observations per
maturity). This yields a grand total of 487,796 observations in our final sample of CDS premiums. Markit
acquires closing premiums from dealers’ books. After filtering out stale premiums and outliers, they use the
adequate pricing information from the contributors to compute a daily composite term structure of CDS
premiums for each reference entity. The “No Restructuring” clause is selected to capture only the credit
risk of the firm. By using other clauses, premiums would include margins for possible restructuring event
(that are not related to default). According to Markit (2013), this clause is mainly traded in North America.

4The credit spread of CDS dealer would have to increase by nearly 645 basis points to result in a one basis point decline in
the price of credit protection.

5They use CDS bid and ask premiums; this study’s CDS dataset undergoes a rigorous cleaning process which is achieved by
the data provider.

6Weekly credit default swap observations means ∆t = 1/52.
7We focus on Wednesday CDSs because it is the least likely day to be a holiday and it is least likely to be affected by weekend

effects. For more details on the advantages of using Wednesday data, see Dumas et al. (1998).
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The data provider also argues that its “selection methodology ensures that the indices represent the most
liquid segment of the market” (Markit, 2013). Hence, liquidity issues shall be somewhat reduced when using
single-name CDS present in CDX.NA.IG and CDX.NA.HY indices.

To illustrate how CDS premiums move over time, the first panel of Figure 1 shows the evolution of the
mean 5-year CDS premium taken across firms for both IG and HY portfolios. Premiums were more or less
stable during the pre-crisis era. They increased during the financial crisis: the mean 5-year premiums jumped
to a high of 321 bps for IG firms and 1,422 bps for HY firms. In the post-crisis era, the premiums decreased,
but did not reach their pre-crisis levels.

The second panel of Figure 1 shows the evolution of the difference between mean 10-year CDS premiums
and 1-year CDS premiums taken across firms for both IG and HY portfolios. The slope of the CDS premiums’
term structure became negative during the crisis for IG and HY firms on average. According to Figure 1,
both the level and the slope of the CDS premiums change during the financial crisis and the aftermath of the
crisis. The regime-switching component of the proposed framework is required to capture these important
changes in behaviour.
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Figure 1: Evolution of the mean 5-year CDS premiums (across firms) and of the
difference between mean 10-year CDS premiums and 1-year CDS premiums
(across firms).
The CDS premiums were taken from both CDX.NA.IG.21.V1 and CDS.NA.HY.21.V1 portfolios, between
January 2005 and December 2012. The grey surface corresponds to the financial crisis (July 2007 to
March 2009).
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Figure 1: Evolution of the mean 5-year CDS premiums (across firms) and of the difference between mean
10-year CDS premiums and 1-year CDS premiums (across firms).
The CDS premiums were taken from both CDX.NA.IG.21.V1 and CDS.NA.HY.21.V1 portfolios, between January 2005 and
December 2012. The grey surface corresponds to the financial crisis (July 2007 to March 2009).

In all experiments and unless stated otherwise, the three-month Treasury constant maturity rate serves
as a good proxy for the short rate.8

Saunders and Allen (2010) decompose the recent financial crisis in three periods. The first period cor-
responds to the credit crisis in the mortgage market (June 2006 to June 2007), the second one covers the
period of the liquidity crisis (July 2007 to August 2008), and the third period covers the default crisis period
(September 2008 to March 2009). This study focuses on the second and the third periods; thus, the financial
crisis started in July 2007 and finished in March 2009 throughout this paper.

8These rates are provided by the Federal Reserve of St. Louis website via FRED (Federal Reserve Economic Data). The
Treasury constant maturity rate series ID is DGS3MO.
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3.2 Estimation results

The log-leverage model used hereafter is a simplified version of (1); we only consider two regimes. Consid-
ering more regimes is theoretically feasible; however, the number of parameters increase drastically and the
numerical optimization of the log-likelihood function becomes unmanageable. We also consider the same drift
parameter across both regimes (µP = µP

1 = µP
2 and µQ = µQ

1 = µQ
2 ). Indeed, the drift parameter estimators of

the latent variable is rather inaccurate and create numerical instability due to the short span of the time series
used.9 Besides this caveat, the regime-switching framework still captures the variation of volatility across the
different regimes. The estimation is performed using the detection-estimation algorithm of Tugnait (1982)
coupled with the unscented Kalman filter (see Appendices B and C).

Table 1 shows descriptive statistics on estimated parameters. All the firms have a positive intensity process
since β is always positive. The parameter α is always greater than 1.59, confirming the convex relationship
between the intensity process and the leverage ratio as in Boudreault et al. (2013). The volatility parameters
σ1 and σ2 are very different one from another. The low-volatility regimes correspond normally with the
end of the pre-crisis era and the post-crisis period; its average value is around 12%. For most of the firms,
the high-volatility regimes correspond to the financial crisis. Its volatility is roughly 36% on average. The
regimes are persistent since both P- and Q-transition probability matrices are concentrated over the main
diagonal.

Noise term standard errors for mid- and long-term tenors are small on average: for instance, around 13%
for 2-year maturity and 3.5% for 5-year. It is the highest for the 1-year CDS on average. Two reasons can
explain this result: elements not necessarily related to the entity’s true default and recovery risks, and fitting
error due to model misspecification. Credit default swaps with a maturity of 5 years are the ones with the
smallest noise standard errors on average. This makes sense empirically: 5-year is known to be the most
liquid maturity for CDS.

The regime-switching hybrid credit risk model is compared to three benchmarks: the “one-regime” equiv-
alent of our model (i.e. the one presented in Boudreault et al. (2013)), a regime-switching structural version10

of the proposed framework, and a regime-switching reduced-form model.11 A comparion of the models’ per-
formances is presented in Appendix D. In summary, the results of these in- and out-of-sample tests show that
the full model outperforms the benchmarks.

3.3 Analysis of pricing errors

To verify if the credit risk model captures most of the information present in the CDS premiums, relative
pricing errors are regressed against one liquidity proxy, two market-wide factors, one variable related to the
risk-free interest rate market, and two firm-specific factors.

For each tenor, the following dummy variable regression is estimated:

ν
∗(i)
jt = γ0 + γ1(Observed CDS premium)

(i)
jt + γ2(Cont)jt + γ3(VIX)t + γ4(S&P)t +

γ5(Slope)t + γ6Rjt + γ7σ
R
jt + γ8ICrisis(t) + γ9IPost(t) + γ10IHY(j) + ε

(i)
jt , (8)

where ν
∗(i)
jt is the relative pricing error12 on the i-year CDS premiums at time t of the jth reference entity

and (Observed CDS premium)
(i)
jt is the time t observed i-year CDS premium of the jth reference entity.

As in Jacoby et al. (2009) and Qiu and Yu (2012), the number of distinct contributors to generate the
5-year CDS spread, (Cont)jt, serves as a proxy for the liquidity in the credit default swap market. It shall

9Even in a “one-regime” framework where the log-leverage is assumed to be observed, the precision of the drift parameter
estimate is proportional to the square root of the sampling period length. Hence, long time series are required to pin down these
parameters.

10It is accomplished by using β = 0 and α→∞. The intensity process jumps from 0 to infinity inducing the default as soon
as the leverage ratio reaches 1.

11The intensity is a regime-switching geometric Brownian motion which is totally independent of the leverage ratio. The
recovery rate is an estimated parameter that remains constant in this framework.

12Observed premium minus the theoretical one divided by the observed premium.
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Table 1: Descriptive statistics on the distribution of parameters and noise terms across the portfolio of firms
of the CDX indices.

Panel A: Descriptive statistics on leverage dynamics parameters (under P) and fees κ.

µP pP12 pP21 σ1 σ2 κ Obs.

Mean 0.0200 0.0127 0.0223 0.1167 0.3570 0.6153 210
SD 0.0499 0.0182 0.0701 0.0392 0.0791 0.1713

10% -0.0074 0.0033 0.0058 0.0752 0.2611 0.4096
25% -0.0005 0.0041 0.0080 0.0942 0.3175 0.5002
50% 0.0004 0.0089 0.0121 0.1123 0.3542 0.6014
75% 0.0217 0.0138 0.0209 0.1360 0.3747 0.7007
90% 0.0756 0.0265 0.0336 0.1634 0.4441 0.8609

IG 0.0131 0.0122 0.0253 0.1111 0.3738 0.5949 121
HY 0.0292 0.0134 0.0184 0.1244 0.3341 0.6431 89

Panel B: Descriptive statistics on leverage dynamics parameters (under Q) and intensity.

µQ pQ12 pQ21 α θ β Obs.

Mean 0.0163 0.0059 0.0381 11.3930 1.4354 0.0086 210
SD 0.0297 0.0060 0.0257 8.3380 0.3268 0.0235

10% -0.0058 0.0014 0.0093 5.6210 1.0525 0.0002
25% 0.0000 0.0026 0.0150 7.6341 1.2962 0.0008
50% 0.0099 0.0046 0.0370 9.8976 1.4695 0.0026
75% 0.0262 0.0074 0.0560 11.7433 1.5111 0.0086
90% 0.0439 0.0124 0.0692 15.4900 1.7424 0.0196

IG 0.0033 0.0059 0.0517 12.2205 1.3551 0.0064 121
HY 0.0340 0.0061 0.0197 10.2679 1.5445 0.0117 89

Panel C: Descriptive statistics on error terms.

δ(1) δ(2) δ(3) δ(5) δ(7) δ(10) Obs.

Mean 0.2488 0.1320 0.0807 0.0345 0.0479 0.0781 210
SD 0.0647 0.0371 0.0298 0.0266 0.0408 0.0475

10% 0.1739 0.0853 0.0404 0.0004 0.0001 0.0292
25% 0.2007 0.1058 0.0669 0.0136 0.0101 0.0380
50% 0.2416 0.1328 0.0823 0.0354 0.0462 0.0694
75% 0.2971 0.1572 0.1013 0.0465 0.0675 0.1015
90% 0.3410 0.1786 0.1163 0.0729 0.1068 0.1455

IG 0.2299 0.1254 0.0767 0.0339 0.0663 0.0982 121
HY 0.2745 0.1409 0.0861 0.0353 0.0228 0.0507 89

[1] For each of the 210 firms, the parameters of the model are estimated using weekly CDS premiums of
maturities 1-, 2-, 3-, 5-, 7-, and 10-year, using the DEA-UKF filtering technique. The mean, standard
deviation (SD) and quantiles are computed across firms. The last two rows compute the mean across
firms of CDX.NA.IG.21.V1 and CDX.NA.HY.21.V1 portfolios.

[2] The δ’s represent the standard deviation of the noise terms present in the observation equation of the filter.

explain the depth of the CDS market and is available for every reference entity and every day in our sample
through the Markit dataset.

The first market-wide factor is the CBOE Volatility Index VIX (denoted by (VIX)t) which is a popular
measure of the implied volatility of S&P 500 index options. It is extracted from the Federal Reserve of
St. Louis website via FRED.13 Weekly averages are considered from January 2005 to December 2012 to be
consistent with the CDS dataset. The Standard and Poor’s 500 market index return, (S&P)t, is the second

13The series ID is VIXCLS.
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market-wide variable. It is provided by FRED14 from January 2005 to December 2012. The returns are
summed over each week.

The slope of the term structure15 (denoted by (Slope)t) is included in the regression. This time series
is also acquired via FRED.16 Other studies generally include the three-month constant maturity Treasury
rate as a regressor. However, a negative correlation of -88% is found between the three-month Treasury
rate and the slope of the term structure during the considered sampling period. Hence, to diminish possible
collinearity effects between the two variables, only the slope of the term structure is considered.

Stock returns Rjt
17 are obtained via the Center for Research in Security Prices (CRSP) available in

WRDS. The firm’s tickers are manually matched to obtain the proper returns’ time series. These returns are
aggregated to obtain weekly values: we sum the daily returns over each week from 2005 to 2012. A proxy
for the stock returns’ volatility (denoted by σRjt) is also computed: the standard deviations on daily returns
using one-year rolling windows are calculated (as in Doshi et al. (2013)). Collinearity could be a concern
for these time series; however, the sample correlation between each couple of time series is rather small (an
average of -3%). The rolling window methodology could explain this conclusion. Hence, both time series are
added to the regression analyses.

To take into account fixed effects related to the risk groups (IG and HY) and the periods (pre-crisis, crisis,
and post-crisis), three indicator functions are added to the regression equation, as it is common in dummy
variable regression analyses.

Note that we winsorize the 0.5% highest and lowest values of all pricing errors and observed CDS premiums
for each tenor. Regression coefficient variances are estimated using Thompson (2011) allowing for estimators
that are robust to simultaneous correlation along two dimensions (i.e. firm and time).

Table 2 shows the results of the regression for each tenor. Even if many coefficients are statistically
significant, it is mainly a consequence of the sample’s large size: any small departure from zero makes the
coefficients significant. Hence, the focus should be put on R-squareds that are very low, ranging form 2.6%
to 13.2%, indicating that all these factors do not explain linearly the variations in the pricing errors.

Based on R-squared estimates for different specifications of Equation (8)18 (for which some γi are set to
zero), it is possible to determine that the liquidity proxy used do not linearly explain the relative pricing error
on CDS premiums. Furthermore, when considering only the slope of the term structure in the regression (in
addition to the dummy variables), the R-squareds are almost equivalent to the one given in Table 2, meaning
that the slope of the term structure accounts for most of the pricing error.

As a robustness test, we also used innovations of the VIX and of the equity volatility as regressors (instead
of the levels). Results were similar to what is obtained in this subsection.

3.4 Most likely regimes through time

The approach of Viterbi (1967) is adapted to the context of a hidden regime and a latent variable to extract
the most probable regime path. The regime path that maximizes the likelihood function given the estimated
parameters is constructed recursively.

Figure 2 shows the proportion of firms considered in the high-volatility regime for each week and for each
risk class. In our context, being in the second (high-volatility) regime is synonymous with more uncertainty
in the firm’s leverage. The fast transition from the first (low-volatility) regime to the second (high-volatility)
regime during 2007 and 2008 is obviously very natural due to the financial conditions at that time. At the
beginning of the sample, many HY firms are in the high-volatility regime. This means that the filtered
leverage is more uncertain at the beginning of the sample. To understand this effect, we compare the slope of
the term structure of CDS premiums (i.e. 10-year minus 1-year CDS premiums) during the pre-crisis era.19

14The S&P 500 series ID is SP500.
15The difference between the 10-year and three-month constant maturity Treasury rate.
16This series ID is T10Y3M respectively.
17Rjt is the weekly return of the stock associated to the jth reference entity at time t.
18Not reported here, but available on request.
19Not reported here, but available on request.
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Table 2: Dummy variable regression results on relative pricing errors.

1-year 2-year 3-year 5-year 7-year 10-year

Intercept -0.103 -0.050 -0.050 0.017 0.024 0.026
Obs. CDS premium -0.005 0.001 0.003 -0.003 0.023 0.055
Number of contributors 0.002 0.001 0.001 0.000 -0.001 -0.001
VIX 0.003 0.001 0.000 -0.001 -0.001 -0.001
S&P 500 returns 0.414 0.274 0.160 -0.042 -0.174 -0.275
Slope 0.053 0.020 0.013 0.004 -0.022 -0.030
Equity return 0.013 0.001 0.012 0.005 -0.014 -0.020
Equity volatility 0.014 -0.005 -0.001 -0.006 0.006 0.004

Crisis dummy -0.043 -0.047 -0.007 0.001 0.009 0.014
Post-crisis dummy -0.102 -0.061 -0.036 -0.003 0.036 0.054

HY dummy -0.017 -0.012 -0.010 0.011 -0.001 -0.014

R2 0.065 0.026 0.035 0.037 0.132 0.107
Number of observations 75,628 75,628 75,628 75,628 75,628 75,628

[1] For each of the 210 firms, the regression

ν
∗(i)
jt = γ0 + γ1(Observed CDS premium)

(i)
jt + γ2(Cont)jt + γ3(VIX)t + γ4(S&P)t+

γ5(Slope)t + γ6Rjt + γ7σR
jt + γ8ICrisis(t) + γ9IPost(t) + γ10IHY(j) + ε

(i)
jt ,

is estimated for each tenor.

[2] The conclusions of the statistical test H0 : γi = 0 against H1 : γi 6= 0, i = 0, . . . , 10, are reported. Estimates
in bold are significant at a confidence level of 95%.

[3] Obs. CDS premium means the observed CDS premium times 1,000.

Table 2: Dummy variable regression results on relative pricing errors.

1-year 2-year 3-year 5-year 7-year 10-year

Intercept -0.103 -0.050 -0.050 0.017 0.024 0.026
Obs. CDS premium -0.005 0.001 0.003 -0.003 0.023 0.055
Number of contributors 0.002 0.001 0.001 0.000 -0.001 -0.001
VIX 0.003 0.001 0.000 -0.001 -0.001 -0.001
S&P 500 returns 0.414 0.274 0.160 -0.042 -0.174 -0.275
Slope 0.053 0.020 0.013 0.004 -0.022 -0.030
Equity return 0.013 0.001 0.012 0.005 -0.014 -0.020
Equity volatility 0.014 -0.005 -0.001 -0.006 0.006 0.004

Crisis dummy -0.043 -0.047 -0.007 0.001 0.009 0.014
Post-crisis dummy -0.102 -0.061 -0.036 -0.003 0.036 0.054

HY dummy -0.017 -0.012 -0.010 0.011 -0.001 -0.014

R2 0.065 0.026 0.035 0.037 0.132 0.107
Number of observations 75,628 75,628 75,628 75,628 75,628 75,628

[1] For each of the 210 firms, the regression

ν
∗(i)
jt = γ0 + γ1(Observed CDS premium)(i)

jt + γ2(Cont)jt + γ3(VIX)t + γ4(S&P)t+

γ5(Slope)t + γ6Rjt + γ7σ
R
jt + γ8ICrisis(t) + γ9IPost(t) + γ10IHY(j) + ε

(i)
jt ,

is estimated for each tenor.
[2] The conclusions of the statistical test H0 : γi = 0 against H1 : γi 6= 0, i = 0, ..., 10, are reported.
Estimates in bold are significant at a confidence level of 95%.
[3] Obs. CDS premium means the observed CDS premium times 1,000.
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Figure 2: Proportion of firms in the high-volatility regime.
Each week, the proportion of firms considered in the second regime is computed for the 121 IG and the
89 HY ones. The grey surface corresponds to the financial crisis (July 2007 to March 2009).
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Figure 2: Proportion of firms in the high-volatility regime.
Each week, the proportion of firms considered in the second regime is computed for the 121 IG and the 89 HY ones. The grey
surface corresponds to the financial crisis (July 2007 to March 2009).

In a non-reported quantitative analysis, the second regime is strongly associated with smaller slopes, which
is the case of many firms in the early stage of our sample.

For HY firms, the moment of transition between regime 1 and 2 corresponds to the beginning of the
financial crisis (i.e. July 2007). During the first six months of the crisis, the proportion of firms in the
high-volatility regime goes from 8% to almost 60%. For IG firms, the transition happens a little later and is
consistent with the beginning of the NBER economic recession in the United States (i.e. December 2007).
At the end of the financial crisis (or the recession), both IG and HY firms remain in the high-volatility
regime for several weeks. These results are in line with the recent literature. Indeed, using a different
approach, Maalaoui Chun et al. (2013) detect some persistence in the volatility regimes of credit spreads.
These observations are also consistent with those of Garzarelli (2009) and Mueller (2008). These authors
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document that credit spread levels increase before the onset of the NBER recession and somehow persist
until long after the recession is over.

4 Recovery rate versus regime-switching: term structure comparison

This section asseses the relative importance of recovery rate and regime-switching risks in credit spread
curves. Essentially, we compare the difference between risky and riskless zero-coupon yields for various
model specifications.

The time t value of risky zero-coupon bond (see Appendix A.3) is given by V (t, T, x̂t, ĥt;Rτ , 0) where x̂t
is the time t filtered log-leverage, and ĥt is the most probable regime20 at time t.

To compare the relative importance of recovery-rate risk and regime-switching risk, four different formu-
lations of the model are estimated. The first one (RS-ENDR) is described in Section 2. The second model
(RS-EXOR) is a variation of the full model: instead of using endogenous recovery rates, a constant exogenous
recovery rate Rt = R ∈ [0, 1] is incorporated into the set of parameters to be estimated. The third model
is the “one-regime” equivalent with endogenous recovery rates (1R-ENDR) presented in Boudreault et al.
(2013). The last model (1R-EXOR) is a “one-regime” equivalent of the full model with a constant exogenous
recovery rate to be estimated.

In this and the following sections, some of the results are broken down by credit rating. These ratings
are attributed by Standard and Poor’s between January 31, 2005, and December 31, 2012, and are available
from Compustat in WRDS. The rating used is identified as “S&P Domestic Long Term Issuer Credit Rating”
(SPLTICRM) in the database. The firm’s ticker symbol is matched to the data in Compustat. For 2 firms,
no rating is available, leaving a sample of 208 firms (121 IG and 87 HY) whenever results are presented by
credit rating.

Table 3 and Figure 3 show average credit spreads across credit ratings and models. Curves obtained from
AAA- and AA-rated firms are not shown in the figure since the number of firms with such rating is too small
to be representative.

There has been an important rise in average credit spreads during the financial turmoil that affects mainly
the short and mid terms. According to any of the tested models, the 2-year average credit spread of A-rated
firms is about 10 times larger during the crisis period than before. For riskier firms rated BBB, BB and B,
the average credit spread is about 4 times larger. When considering the 5-year credit spread, it is 4 times
larger for the A-rated firms and about 2.5 times larger for the credit ratings BBB, BB and B. There is a
reduction of the credit spread in the post-crisis period, yet it never reaches the pre-crisis levels.

Recovery uncertainty and its negative relationship with default probability have a major impact on mid-
and long-term credit spreads. Indeed, in a regime-switching environment, the 5-year credit spread increases
by a factor of 13% to 31% with the endogenous recovery assumption when compared to an equivalent model
with a constant recovery rate during the crisis. On a longer horizon, the effect is even more significant,
ranging between 12% and 73% depending on the credit rating or the period considered. The dependence
between default probabilities and recovery rates have been documented empirically (i.e. lower-rated firms
have lower recovery rates), but most modelling approaches neglect the accrued risk associated with this
negative relation. Thus, assuming constant recovery rates seriously impacts credit spread curves, especially
over the long run.

The presence of regimes has a second-order effect on average credit spread curves and is mainly attributed
to how these averages are constructed. The parameters of the “one-regime” model capture the behaviour
during good and bad times. Unlike the previous approach, the two-regime model allows for a distinct set
of parameters for each state. However, the curves presented in Figure 3 are constructed by averaging all

20Normally, we would need to take a weighted average of the different prices, given the regime at t; the weights correspond to
Q(ht = h|Ft), the risk-neutral probability of being in regime h at time t conditional on Ft. Though, these probabilities cannot
be computed readily, and this is why we use the most probable regime at time t as a proxy. We could also use the probability
under the physical measure as a proxy; however, this shall lead to the same estimate since the probability of being in a regime
is most of the time in the neighbourhood of 1 or 0.
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Table 3: Average credit spreads (in basis points) across credit ratings and models.

Pre-crisis Crisis Post-crisis

2-y 5-y 15-y 30-y Obs. 2-y 5-y 15-y 30-y Obs. 2-y 5-y 15-y 30-y Obs.

AAA RS-ENDR 5 12 29 33 3 133 140 111 79 3 - - - - 0
1R-ENDR 6 12 25 23 120 140 108 70 - - - -
RS-EXOR 5 12 25 21 101 75 43 25 - - - -
1R-EXOR 5 11 24 24 112 112 83 55 - - - -

AA RS-ENDR 10 20 39 40 4 208 174 119 82 2 88 121 121 89 3
1R-ENDR 11 20 33 28 168 176 127 79 87 122 107 71
RS-EXOR 9 20 39 41 175 135 97 73 75 85 48 27
1R-EXOR 10 20 32 25 137 115 75 47 85 109 88 58

A RS-ENDR 10 25 53 55 55 131 119 101 76 48 91 114 110 81 35
1R-ENDR 10 25 48 43 114 124 103 70 93 119 108 74
RS-EXOR 10 25 48 44 101 91 72 51 90 109 92 64
1R-EXOR 10 25 46 39 86 93 73 48 83 103 82 53

BBB RS-ENDR 23 52 87 77 100 134 144 128 95 88 78 121 132 99 87
1R-ENDR 23 51 79 66 114 149 130 88 76 119 119 83
RS-EXOR 23 51 71 56 115 113 84 57 71 102 86 57
1R-EXOR 24 51 67 52 104 122 91 59 70 102 85 55

BB RS-ENDR 106 189 233 191 40 445 448 336 232 47 258 364 317 221 48
1R-ENDR 102 185 225 180 395 452 329 216 266 357 282 187
RS-EXOR 103 180 197 149 395 371 244 159 236 322 242 157
1R-EXOR 102 178 207 166 364 390 270 180 238 319 242 162

B RS-ENDR 203 340 329 234 16 894 823 508 320 29 514 636 458 296 36
1R-ENDR 191 340 335 240 857 834 536 345 524 612 432 284
RS-EXOR 196 323 274 179 827 728 417 254 466 550 355 220
1R-EXOR 190 335 314 225 814 777 489 315 455 521 368 248

[1] For each of the 208 firms, the parameters of the model are estimated using weekly CDS premiums of maturities 1-, 2-,
3-, 5-, 7- and 10-year, using the DEA-UKF filtering technique. The data is available for January 2005 to December
2012.

[2] The credit spreads (in basis points) are averaged across the models, the credit ratings, and the periods.

[3] In the table, Obs. means the average number of observations (firms) per rating-period, 2-y stands for 2-year, 5-y
corresponds to 5-year and so on.

weekly curves on a given period and correspond to a mix of various firms and regime weights. Even then,
the presence of regimes affects the long-term credit spread of highly rated firms in the pre- and post-crisis
periods. During the financial turmoil, the presence of regimes modifies the short-term shape of the average
credit spread curves, especially for highly rated firms.

To further assess the importance of the negative correlation between default probabilities and recovery
rates, additional tests are performed. Figure 4 exhibits the implied probability of default (under the objective
measure) and the expected recovery rate given default for each week considered in our sample, and for three
different time horizons: 1, 5, and 10 years. The two variables seem to be highly negatively correlated: as the
implied default probability increases, the expected recovery rate given default decreases. Indeed, the average
correlation21 between the two variables is -77.5% for a time horizon of 1 year, -87.8% for 5 years and -88.6%
for 10 years.

21The correlation is computed on a firm-by-firm basis, and then averaged across firms.
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Figure 4: Implied default probability and expected recovery as a function of
the date.
For each of the 208 firms and using the regime-switching model with endogenous recovery, the parameters
of the model have been estimated using weekly CDS and the DEA-UKF technique. The data is available
for January 2005 to December 2012. The left axis corresponds to the implied probability of default (under
the real measure) and the right axis shows the expected recovery rate given default, both computed each
week using three different time horizons: 1, 5, and 10 years. Then, the two quantities are averaged across
firms.
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Figure 4: Implied default probability and expected recovery as a function of the date.
For each of the 208 firms and using the regime-switching model with endogenous recovery, the parameters of the model have
been estimated using weekly CDS and the DEA-UKF technique. The data is available for January 2005 to December 2012.
The left axis corresponds to the implied probability of default (under the real measure) and the right axis shows the expected
recovery rate given default, both computed each week using three different time horizons: 1, 5, and 10 years. Then, the two
quantities are averaged across firms.

5 How much of the credit spread is explained by the model?

Many have tried over the past fifteen years to provide insights on the contribution of credit risk in corporate
bond spreads. This question is obviously important to credit risk modellers. Moreover, the puzzle’s resolution
could help us grasp the factors contributing to the so-called yield spreads.

Some studies measure the empirical zero-coupon bond yield spreads using a Nelson and Siegel (1987)
approach on Warga (1998)’s dataset.22 The theoretical zero-coupon yield spreads are computed by some
credit risk models, and these studies differ in the choice of this model and by the estimation method used.

For instance, Elton et al. (2001) claim that only a small fraction of corporate spreads can be attributed
to expected default loss. Using a reduced-form model calibrated on Moody’s credit rating transition matrix
and using a constant recovery rate available from other empirical studies, the authors conclude that no more
than 25% of the credit spread can be explained by default risk. Dionne et al. (2010) show that the proportion
of empirical spreads explained by default risk is responsive to the data used. Indeed, the sampling period,
the estimation approach and the data filtering procedure impact significantly on theoretical credit spread
measures. According to this study, the proportion of credit spread attributed to default risk varies from 12%
to 49%; when variations in recovery rate are considered, this proportion reaches 54%.

22This dataset, also called Lehman Brothers via the Fixed Income Database, contains information on all investment-grade
corporate and government bonds before March 1998; they also eliminate all bond with special features.
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Using linear regression analyses, Collin-Dufresne et al. (2001) show that variables that should in theory
determine credit spread changes have limited explanatory power: about 25% of the variation is explained
by factors suggested by traditional models. The authors use equity returns, Treasury rate levels, changes in
the slope of the yield curve, firm leverage changes, VIX index changes, and changes in the slope of implied
volatilities of options on S&P 500 futures.

Using structural models,23 Huang and Huang (2012) find that credit risk accounts for only a small
portion of observed spreads on IG bonds over the period 1973–1998. More precisely, the credit component
is about 30% for 10-year BBB-rated bonds and about 20% for riskier bonds. The parameters are calibrated
using proxies for each credit rating. Eom et al. (2004) show that it is possible to obtain higher spreads
than those seen in the bond market using several structural models.24 One of their conclusions is that
more sophisticated models tend to overestimate the spreads. This conclusion is obviously dependent on the
parameters and proxies used by the authors. Cremers et al. (2008) develop a structural model where the
firm value is exposed to correlated diffusion shocks, common jumps and firm-specific jumps. The authors
allow for risk premiums on both diffusion and common jumps. According to them, this model could explain
a significant part of observed credit spread levels and jump risk embedded in corporate bonds and in equity
options that are close to each other.

5.1 Data and methodology

In the spirit of Dionne et al. (2010) and Elton et al. (2001), we compare spot spreads obtained by the credit
risk model with corporate bond benchmark spot spreads. This exercise is performed “out-of-sample” since
no corporate bonds were used in the estimation step. The empirical spot curves are proxied by the Bank of
America (BofA) Merrill Lynch bond indices. The option-adjusted spreads (OAS) are selected for A-, BBB-,
BB- and B-rated bonds. These spreads are also available for different maturities (e.g. 1–3 years, 3–5 years,
5–7 years, 7–10 years, 10–15 years and 15+ years). The benchmarks are available through the Bloomberg
Terminal in BofA Merrill Lynch Bond Indices page. These empirical curves are compared to the yield curves
derived from the proposed model. Each week, we only consider A-, BBB-, BB- and B-rated firms. For many
weeks during the considered period, no AAA- and AA-rated firms are available in our sample to construct
the model-implied yield curve.

5.2 Results

Figure 5 shows the evolution of 15-year theoretical and observed spreads. Theoretical spreads are computed
for each week using the parameters estimated in Section 3 on a firm-by-firm basis and data from January
2005 to December 2012. Then, the weekly spreads across credit ratings are averaged to obtain one time series
of spreads per rating. Observed spreads are computed using the benchmarks: using daily spread, we compute
a weekly average for each rating category. For each week, the ratio of theoretical to observed weekly spreads
is also computed and reported on Figure 5.

In the pre-crisis era, the observed spreads are similar to the one given by the model on average, except for
B-rated firms. For the latter firms, the theoretical spreads are sometimes higher than the observed spreads.
One reason comes to mind: the firms in our subsample might be less risky B-rated firms than the average
B-rated firms in the economy.

During the crisis, the observed spreads are much more important than those given by the model: this is
true for every rating considered in this study. In the post-crisis period, the 15-year spreads remain higher than
those given by the model. However, for shorter maturities, the model’s post-crisis spreads are in accordance
with the observed spreads.

Figure 6 shows the average proportions of credit spread explained by the full model and a variation of
the latter. The first model (RS-EXOR) is a regime-switching model with a constant exogenous recovery rate

23Huang and Huang (2012) use Longstaff and Schwartz (1995), Leland and Toft (1996), Anderson et al. (1996), Anderson and
Sundaresan (2000), Mella-Barral and Perraudin (1997) and Collin-Dufresne and Goldstein (2001).

24They use those of Merton (1974), Geske (1977), Longstaff and Schwartz (1995) Leland and Toft (1996) and Collin-Dufresne
and Goldstein (2001).
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Figure 5: Evolution of the 15-year theoretical spreads, observed spreads, and
quotient of observed and theoretical spreads (so-called proportion).
Every week, we average 15-year spreads implied by the model for each rating. The observed spreads are
assumed to be the “10-15 years” BofA Merrill Lynch benchmark option-adjusted spread also available
by rating. Averages of the “10-15 years” BofA Merrill Lynch benchmark option-adjusted spreads are
calculated to obtain one spread per week. The left axis corresponds to the average spread and the right
axis shows the proportion of observed to theoretical spreads.
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Figure 5: Evolution of the 15-year theoretical spreads, observed spreads, and quotient of observed and
theoretical spreads (so-called proportion).
Every week, we average 15-year spreads implied by the model for each rating. The observed spreads are assumed to be the
“10–15 years” BofA Merrill Lynch benchmark option-adjusted spread also available by rating. Averages of the “10–15 years”
BofA Merrill Lynch benchmark option-adjusted spreads are calculated to obtain one spread per week. The left axis corresponds
to the average spread and the right axis shows the proportion of observed to theoretical spreads.

as exposed in the previous section; the second model (RS-ENDR) is the full model described in Section 2.
The average of these ratios is reported by credit rating and for different eras. In general, the proportion of
the empirical spreads explained by credit risk for the full model is high. It is virtually more than 50% across
ratings and periods. Recovery rate risk and its dependence with default risk could partly explain these high
figures. When considering a constant exogenous recovery rate, the proportion of credit spread explained by
the model decreases by 14.2% on average. For instance, the proportion decreases by 8.4% for A-rated bonds
and 17.4% for B-rated bonds.

For all ratings, a decrease in the proportion of the spread explained by credit risk is observed during the
financial crisis, going from around 83% to 60% for 15-year spreads when using the full model. Specifically,
the explained proportion of 15-year BBB spot spreads decreases from 67% in the pre-crisis era to 42% during
the crisis on average. These proportions go up during the post-crisis period (i.e. 52%), but do not reach
pre-crisis levels in general. Some other risks could explain this decrease. For instance, more liquidity risk in
the corporate bond market is a plausible idea: the next section will be devoted to this thought.
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Figure 6: Average proportions of credit spread explained by two regime-
switching models for 15-year spreads.
The first model (RS-EXOR) is a regime-switching model with a constant exogenous recovery rate; the
second model (RS-ENDR) is the full model described in Section 2. Average spreads implied by the model
are computed for each rating and each week. Then, averages of the “10-15 years” BofA Merrill Lynch
benchmark option-adjusted spreads are also calculated to obtain one spread per week. Both quantities
are divided, averaged, and reported in the bar charts. Results are divided in four periods: whole sample,
pre-crisis era, crisis era, and post-crisis era.
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Figure 6: Average proportions of credit spread explained by two regime-switching models for 15-year spreads.
The first model (RS-EXOR) is a regime-switching model with a constant exogenous recovery rate; the second model (RS-ENDR)
is the full model described in Section 2. Average spreads implied by the model are computed for each rating and each week.
Then, averages of the “10–15 years” BofA Merrill Lynch benchmark option-adjusted spreads are also calculated to obtain one
spread per week. Both quantities are divided, averaged, and reported in the bar charts. Results are divided in four periods:
whole sample, pre-crisis era, crisis era, and post-crisis era.

The majority of market spreads before the crisis seems to be explained by credit risk. Two interesting
things emerge from this observation. First, additional risks priced in corporate bonds during the crisis seem
to be persistent in the aftermath of the crisis. Second, A-, BBB-, and BB-rated firms seem to be the ones
for which credit risk explains a smaller proportion of the spread during and after the crisis.

6 Bond market liquidity risk

Since a proportion of credit spreads are unexplained by credit risk, it would be interesting to see what
proportion could be attributed to liquidity risk. Using the model introduced above, theoretical yield spreads
for corporate bonds can readily be obtained. Then, using these theoretical values and liquidity proxies, it
is possible to regress these factors on observed spreads to assess their relative importance in the pricing of
corporate bonds.

In opposition with the previous section, YTM spreads are utilized (i.e. the difference between a yield-to-
maturity of the corporate bond and the linearly interpolated maturity-matched Treasury rate calculated on
the same day). Indeed, since it is impossible to recover the spot rate for a given issue on a given day, we
base our computations on YTM instead, as did Dick-Nielsen et al. (2012).

Many recent papers focus on liquidity issues in the bond market. Using a reduced-form approach, Longstaff
et al. (2005) use credit default swap premiums to measure the size of the default component in corporate
spreads. The authors find that the majority of the spread is due to default risk and that the non-default
component is time varying and strongly related to measures of bond-specific illiquidity. Dick-Nielsen et al.
(2012) analyze corporate bond spreads during 2005–2009 using a new robust illiquidity measure based on
four different proxies. They show that the spread contribution from illiquidity increases dramatically with
the onset of the subprime crisis. This effect is slow and persistent for investment-grade bonds while it is
stronger but more short-lived for speculative-grade bonds. In He and Xiong (2012), the authors show that
deterioration in debt market liquidity leads to an increase in not only liquidity premium of corporate bonds,
but also credit risk. They argue that the latter effect is due to firms’ debt rollovers. According to De Jong
and Driessen (2012), corporate bond returns have significant exposures to fluctuations in equity market and
Treasury bond liquidity. This price factor seems to help explain the credit risk puzzle. The authors find that
the total estimated liquidity risk premium is 0.6% for IG bonds, and 1.5% for HY bonds. Friewald et al.
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(2012) use a unique dataset of 20,000 bonds traded between October 2004 and December 2008 to analyze
whether liquidity is an important price factor in the US bond market. The authors employ a wide range of
liquidity measures and find that liquidity can account for approximately 14% of the market-wide corporate
yield spread changes. In addition, the economic impact of liquidity seems to be larger in periods of crisis and
for HY bonds. Using a random non-parametric regime shift technique, Dionne and Maalaoui Chun (2013)
identify two different regimes in the dynamics of credit spreads during 2002–2012: a liquidity regime and
a default regime. The liquidity regime seems to explain the predictive power of credit risk on the 2007–
2009 recession, whereas the default regime drives the persistence of credit spreads over the same recession.
The authors use the non-parametric technique of Maalaoui Chun et al. (2013), which has the advantage of
detecting possible break points in real time or when new data arrives.

Liquidity is usually vaguely defined as the degree to which an asset or security can be bought or sold in
the market quickly without affecting the asset’s price (Tang and Yan, 2007). However, it has multiple facets
and cannot be defined efficiently by a single statistic. There are three oft-cited dimensions of the liquidity
risk. The first one is tightness: if the bid-ask spread is small, it is assumed that the market is liquid. The
second dimension is depth: it is related to the amount of security that can be traded without affecting the
price. Finally, the third dimension is called resiliency: a market is liquid in this specific dimension if price
recovers quickly after a demand or supply shock. By controlling for credit risk, the effect captured by the
liquidity proxies are really related to liquidity issues (and not to residual credit risk in the spreads).

The trading data were acquired by the Trade Reporting And Compliance Engine (TRACE). The selected
bonds are senior, non-callable, non-putable bullet bonds with fixed coupon rates. In addition, they are active
at the end of 2012; to be considered, the issues need to have at least 100 trades during the period considered
(2005 to 2012). Moreover, bonds issued after April 2009 are discarded because bond issues should preferably
be active in at least two of the three periods considered in this paper.

Since many firms issue only callable bonds, our final bond sub-sample contains 395 issues from 77 firms
(52 IG and 25 HY), for a grand total of 2,420,193 observations. Dick-Nielsen (2009)’s algorithm is used to
filter out the errors in TRACE data. Omitting this error filter step might result in high liquidity biases: if
TRACE data are not cleaned up before use, the number of transactions will be too high. The filter is divided
into three steps. First, true duplicates are deleted (i.e. intra-day trades with the same unique message
sequence number). Then, reversals25 are also deleted. Finally, same-day corrections are deleted. These are
identified using the report’s trade status.

To obtain spreads from our bond sample, Treasury constant maturity rate is used again. We use 1-, 2-,
3-, 5-, 7-, 10-, 20- and 30-year rates. We linearly interpolate the different rates to obtain the corresponding
rate.26 These rates are provided by the Federal Reserve of St. Louis website via FRED.

6.1 Regressions

To assess whether or not liquidity has an impact on corporate bond pricing, observed YTM spreads are
regressed with respect to Dick-Nielsen et al. (2012)’s λ measure. It is a construction made of four different
liquidity proxies: the Amihud (2002) measure, the Amihud risk, the imputed roundtrip cost (IRC), and the
IRC risk. To be precise, each proxy is normalized and then summed to create the new λ measure. Note that
the proxy is computed on a monthly basis.

To be certain that this measure is robust, seven different liquidity proxies used in Dick-Nielsen et al.
(2012)27 are computed and a principal component analysis is applied on these variables. The first component
explains 73% of the variation and is strongly correlated with Dick-Nielsen et al. (2012)’s λ measure (i.e.
65%). Therefore, it seems fair to use this variable as a liquidity proxy.28

25A trade cancellation for a trade report that was originally submitted to TRACE on a previous date.
26The rate that matches the product’s maturity.
27The Amihud (2002) measure, the Amihud risk, the imputed roundtrip cost (IRC), the IRC risk, the Roll (1984) measure,

the turnover rate of a bond, and the proportion of zero trading days. For more details on these variables, see Dick-Nielsen et al.
(2012).

28As a robustness test, the analysis has been performed using other liquidity proxies and the results were about the same.
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Bond yields-to-maturity are computed on clean prices from which the corresponding maturity-matched
Treasury rate is removed. Then, the daily spreads are averaged over each month to be compared with
the monthly liquidity proxy. Note that we winsorize the 0.5% highest and lowest values of every observed
YTM spread. To control for credit risk, theoretical YTM spreads are obtained using the regime-switching
hybrid credit risk model. One spread is computed for every week (since the time step of our estimation
method was ∆t = 1/52) and the monthly theoretical spread is the average of the weekly ones. Like CDS
premiums, theoretical bond prices are numerically computed using Yuen and Yang (2010)’s trinomial lattice
with Schönbucher (2002)’s additional branch to account for possible default (see Appendix A).

We run a dummy variable regression using monthly observations. AAA- and AA-rated firms are removed
since they correspond to a handful of firms29 and no serious inference could be done for these credit ratings.
We are thus able to have bond issues for four different ratings (A, BBB, BB and B). The liquidity regressions
are based on the following equation:

(Observed YTM spread)it

= γ0 + γ1(Theoretical YTM spread)it + γ2λit + ICrisis(t)(γ3 + γ4λit) +

IPost(t)(γ5 + γ6λit) + IBBB(i)(γ7 + γ8λit) +

IBB(i)(γ9 + γ10λit) + IB(i)(γ11 + γ12λit) + εit, (9)

where (Observed YTM spread)it is the observed YTM spread on the market, the model YTM spread is given
by (Theoretical YTM spread)it, and λit is the itth liquidity proxy. The 0.5% highest values of the liquidity
proxy are winsorized. The dummy variables ICrisis(t) and IPost(t) account for the different periods in our
sample, and IBBB(t), IBB(t) and IB(t) for the different ratings.

Regression coefficient variances are again estimated using Thompson (2011) allowing for estimators that
are robust to simultaneous correlation along two dimensions (i.e. bond issues and time). Although this
method is an improvement when compared to OLS standard deviations, the inference surrounding the point
estimators shall be handled with care.

6.2 Liquidity pricing

The composite λ measure has a zero mean by construction; however, its distribution seems highly asymmet-
rical. The first percentile is around -3.5 and the 99th percentile is at 12.9. The same asymmetric behaviour
is true for the four constituents of the λ measure. Figure 7 shows the average value of the liquidity proxy and
the average value of the theoretical spread through time. The dependence between both variables appears
to be important.

Figure 8 shows the relationship between the theoretical and observed YTM spreads. The relation between
both variables seems linear, with a great amount of noise.

Specific cases of Equation (9) have been estimated to measure how much of the observed yield-to-spread
bond spreads are explained by the model. The first one (i.e. Regression (1) of Table 4) considers the
theoretical YTM spread as the only regressor: this regression yields an R-squared of 65%. Another specific
case of Equation (9) is estimated. In the latter, the liquidity components are ignored (i.e. Regression (2)):

(Observed YTM spread)it = γ0 + γ1(Theoretical YTM spread)it + ICrisis(t)γ3 +

IPost(t)γ5 + IBBB(i)γ7 + IBB(i)γ9 + IB(i)γ11 + εit.

The theoretical YTM spreads taken with dummies controlling for rating and period effects explain about
66.2% of the observed YTM spreads. Moreover, the theoretical YTM spread is statistically different from
zero and economically significant. The coefficient associated with the theoretical YTM is not statistically
different from 1: the model yields unbiased YTM spreads on average. In Regression (3), the liquidity proxy
and the theoretical YTM spread are used as regressors. Both are statistically significant and the R-squared
is about 67%, which is an increase of 2.3% from the base case. Table 4 also shows the coefficients when we
perform the full regression. Again, the coefficient associated with the theoretical YTM is not statistically

29This affected five firms in the pre-crisis era, five in the crisis period, and four during the post-crisis era.
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Figure 7: Time series of the average composite λ measure and the average
YTM spread in percent.
For each month, the average over each variable is computed across our dataset of 395 bond issues (paying
no attention to the maturity of the bonds). The liquidity proxy is computed on a monthly basis from
January 2005 to December 2012. Moreover, bond yields-to-maturity are computed on clean prices from
which the corresponding maturity-matched Treasury rate is removed. The daily spreads are averaged
over each month to be compared with the monthly liquidity proxy.

Figure 8 shows the relationship between the theoretical and observed YTM spreads.
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Figure 7: Time series of the average composite λ measure and the average YTM spread in percent.
For each month, the average over each variable is computed across our dataset of 395 bond issues (paying no attention to the
maturity of the bonds). The liquidity proxy is computed on a monthly basis from January 2005 to December 2012. Moreover,
bond yields-to-maturity are computed on clean prices from which the corresponding maturity-matched Treasury rate is removed.
The daily spreads are averaged over each month to be compared with the monthly liquidity proxy.
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Figure 8: Observed versus theoretical yield-to-maturity spreads for each rating.
The spreads are computed in percentage.
Observed bond YTM are computed on clean prices from which the corresponding maturity-matched
Treasury rate is removed. Then, the daily spreads are averaged over each month to be compared with
the monthly liquidity proxy. Theoretical YTM spreads are obtained using the regime-switching hybrid
credit risk model on a weekly basis and are averaged over each month to be compared with the monthly
liquidity proxy. The figure contains spreads from our dataset of 395 bond issues.
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the R-squared is about 67%, which is an increase of 2.3% from the base case. Table 4

also shows the coefficients when we perform the full regression. Again, the coefficient

associated with the theoretical YTM is not statistically different from 1. The impact of

the liquidity variable varies through time: moreover, the dummies related to liquidity in

the crisis and post-crisis eras are statistically significant. The R-squared of this regression
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Figure 8: Observed versus theoretical yield-to-maturity spreads for each rating. The spreads are computed
in percentage.
Observed bond YTM are computed on clean prices from which the corresponding maturity-matched Treasury rate is removed.
Then, the daily spreads are averaged over each month to be compared with the monthly liquidity proxy. Theoretical YTM
spreads are obtained using the regime-switching hybrid credit risk model on a weekly basis and are averaged over each month
to be compared with the monthly liquidity proxy. The figure contains spreads from our dataset of 395 bond issues.

different from 1. The impact of the liquidity variable varies through time: moreover, the dummies related
to liquidity in the crisis and post-crisis eras are statistically significant. The R-squared of this regression is
69.6%.



Les Cahiers du GERAD G–2014–77 21

Table 4: Liquidity regressions’ results.

(1) (2) (3) (4)

Intercept 0.625 -0.169 0.675 -0.097
Theoretical YTM spread 1.013 1.052 0.988 1.007
Liquidity proxy - - 0.141 -0.001

Crisis dummy - 1.024 - 0.876
Crisis liquidity dummy - - - 0.158
Post-crisis dummy - 0.637 - 0.637
Post-crisis liquidity dummy - - - 0.068

BBB dummy - 0.493 - 0.480
BBB liquidity dummy - - - -0.007
BB dummy - -0.177 - 0.003
BB liquidity dummy - - - 0.090
B dummy - -0.484 - -0.225
B liquidity dummy - - - 0.455

R2 0.647 0.662 0.670 0.696
Number of observations 25,755 25,755 21,873 21,873

[1] Using our dataset of bond issues, the regression
(Observed YTM spread)it

= γ0 + γ1(Theoretical YTM spread)it + γ2λit + ICrisis(t)(γ3 + γ4λit) +
IPost(t)(γ5 + γ6λit) + IBBB(i)(γ7 + γ8λit) +
IBB(i)(γ9 + γ10λit) + IB(i)(γ11 + γ12λit) + εit,

is estimated. The conclusions of the statistical test H0 : γi = 0 against H1 : γi 6= 0, i = 0, 1, . . . , 12, are
reported. Estimates in bold are significant at a confidence level of 95%.

[2] The regressions called (1), (2) and (3) correspond to specific cases of the full regression equation in Equa-
tion (9) where some γi are set to zero.

[3] Regressions (3) and (4) have a lower number of observations since the composite liquidity measure could
not be computed for some months in the sample.

6.3 Size of the liquidity component

To compute the impact of corporate bond illiquidity on observed spreads, we proceed as follows: using the
previous regression results, a liquidity score is defined for a bond in a given month as (γ2 + γp + γr)λit,
where p and r are the appropriate indices.30 Then, these scores are divided by ratings and periods (i.e.
pre-crisis, crisis and post-crisis). The liquidity component of an average bond is the difference between the
50th percentile and the 5th percentile of each segment. Broadly speaking, this is the difference between the
median liquidity contribution and the liquidity contribution of a very liquid bond.

Table 5 shows the liquidity component in basis points for the three periods. The results are given by
ratings. In the pre-crisis era, liquidity contributions are rather small. For A- and BBB-rated bonds, the
contribution is negative; however, the regression coefficients related to these values are not statistically
different from zero at a confidence level of 95%. For all the ratings, the liquidity component increases during
the crisis and this phenomenon is even more important for B-rated firms. Indeed, for A-rated bonds, the
increase of the liquidity component during the crisis is 51 bps. For B-rated bonds, it goes from 38 to 119 bps.
In the post-crisis era, the liquidity components decreased, but do not return to their original levels: there is
some persistence in the liquidity component during the post-crisis era.

The fraction of the liquidity component to the total spread is also computed. For each bond, the liquidity
component is defined for each month as (γ2 + γp + γr)(λit − λ5), where λ5 is the 5th percentile of the
liquidity measure. The liquidity component is divided by the observed YTM spread, and then the median
of this fraction is presented in Table 5 for each rating category during each period. According to our metric,
liquidity explains 8.7% of the observed YTM spreads on average. During the crisis, this proportion reaches
levels ranging from 10% to 21%, depending on the credit rating. Finally, in the post-crisis era, the proportion

30The index p corresponds to the period and r to the rating. For instance, for a BB-bond during the crisis, γp + γr = γ4 + γ8.
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Table 5: Liquidity component in basis point and liquidity component fraction of the YTM spread.

Average Pre-crisis Crisis Post-crisis

A Liquidity component (in basis point) 21.747 -0.139 50.800 14.579
Fraction of the spread (in percent) 9.566 -0.123 20.954 7.866
Number of observations 4,529 1,010 1,058 2,461

BBB Liquidity component (in basis point) 19.652 -1.441 46.532 13.864
Fraction of the spread (in percent) 6.931 -0.811 15.297 6.308
Number of observations 8,054 2,029 1,409 4,616

BB Liquidity component (in basis point) 32.922 14.928 58.015 25.822
Fraction of the spread (in percent) 6.629 3.936 10.251 5.699
Number of observations 2,417 675 285 1,457

B Liquidity component (in basis point) 79.847 37.775 118.622 83.145
Fraction of the spread (in percent) 11.576 6.934 14.658 13.135
Number of observations 1,644 280 424 940

[1] The liquidity component in each period is defined by (γ2 + γp + γr)(λ50 − λ5) where λ50 is the median
liquidity measure and λ5 is the 5th percentile.

[2] The fraction of the total spread is defined as (γ2 + γp + γr)(λit − λ5)/(Observed YTM spread)it for each
month. Then, median for each credit rating is taken.

of observed YTM spreads explained by liquidity varies between 6% and 13%. These results contrast with
those of Dick-Nielsen et al. (2012): their increases are much more severe. This difference can be attributed
to the fact that both studies used a different sample of bond issues. Moreover, different methods to control
credit risk were used. One could also argue that our selection of bonds is very liquid as CDS contracts are
traded for firms issuing these bonds.

7 Other risks in the bond market

Since liquidity risk cannot entirely account for the unexplained part of the yield-to-maturity spreads, it
could be interesting to see whether other factors would. Using a similar methodology to that introduced in
Equation (9), interest rate, market-wide, and firm-specific variables are added to the regressions.

Collin-Dufresne et al. (2001) considers the slope of the risk-free term structure in their analyses. Since this
variable could have some impact on the results (especially during the crisis), it is also included in this section’s
regressions even though they find that this factor is not very significant either statistically or economically.

According to Collin-Dufresne et al. (2001), the changes in the CBOE Volatility Index VIX are statistically
significant. Ericsson et al. (2006) also use the VIX to explain residual bond spreads (i.e. the difference between
the market spread and the level given by some structural models31). They find that VIX is statistically
significant for residual bond spreads for Leland and Toft (1996) model.

The S&P 500 returns is another factor which tries to capture the market-wide risk in the regressions.
This variable is justified by the work of Campbell and Taksler (2003) and Ericsson et al. (2006),32 among
others. Campbell and Taksler (2003) show that the excess returns on an index is statistically significant when
the bond yield spreads are regressed against this variable. They use data between 1995 and 1999. The same
authors also consider the excess stock returns. Therefore, monthly stock returns are added to this section’s
regressions.

Finally, the annualized stock volatility is also considered. Under credit risk structural models, this variable
makes considerable sense. It will be related to the volatility of the firm’s assets, and is expected to explain
credit spreads. Normally, we would expect a positive relationship between stock volatility and credit spreads.

31Three models are used in this study: Leland (1994), Leland and Toft (1996) and Fan and Sundaresan (2000).
32Ericsson et al. (2006) find that the S&P 500 returns are statistically significant in bond spread residuals in general.
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The variable is considered by Chen et al. (2007) and Campbell and Taksler (2003), among others. It is again
computed as the historical volatility based on daily returns using a one-year rolling window.

Using our dataset of bond issues, the following dummy variable regression is run:

(Observed YTM spread)it =

γ0 + γ1(Theoretical YTM spread)it + γ2λit + γ3(VIX)t + γ4(S&P)t +

γ5(Slope)t + γ6Rit + γ7σ
R
it + γ8ICrisis(t) + γ9IPost(t) +

γ10IBBB(i) + γ11IBB(i) + γ12IB(i) + εit. (10)

Note that we winsorize the 0.5% highest and lowest values of every observed and theoretical YTM spread.
Also, the 0.5% highest values of Dick-Nielsen et al. (2012)s λ measure are winsorized.

Table 6 shows the regression results using different specifications. The liquidity proxy and the theoretical
YTM spreads are statistically significant. The R-squared obtained with the full regression is 72%, about 4%
more than Regression (2). Therefore, additional variables explain mildly the observed YTM spreads when
theoretical YTM spreads and bond liquidity is accounted for. Based on the coefficients of determination
of Table 6, firm-specific variables (and more specifically, equity volatility) are the variables that explain the
most important part of the YTM spreads after the theoretical YTM spreads. The coefficient related to equity
volatility is statistically significant and its sign is positive, meaning that an increase in the equity volatility
will result in a rise in the spreads.

In the full regression, the post-crisis dummy is statistically significant and the coefficient is positive,
meaning that YTM spreads are higher in the post-crisis period than in the pre-crisis era. During the crisis,
the coefficient is positive but not statistically significant at a confidence level of 95%. However, this does
not mean that the YTM spreads do not increase during the crisis: other variables positively related with the
spreads have sharply increased during the crisis resulting in higher predicted spreads in the crisis era.

Overall, the theoretical YTM spreads explain an important part of the observed spreads. However,
based on these regressions, the model does not capture every risk present in corporate bond spreads. Besides

Table 6: Regressions on other factors.

(1) (2) (3) (4) (5) (6) (7)

Intercept -0.169 -0.053 -0.606 -0.070 -0.526 -0.526 -0.740
Theoretical YTM spread 1.052 1.021 0.961 1.016 0.813 0.799 0.783
Liquidity proxy - 0.121 0.096 0.118 0.098 0.095 0.088
VIX - - 0.046 - - - 0.024
S&P 500 returns - - 2.265 - - - -2.596
Slope - - - 0.084 - - -0.223
Equity returns - - - - - 1.760 2.364
Equity volatility - - - - 3.362 3.377 3.360

Crisis dummy 1.024 0.872 0.220 0.747 0.008 0.153 0.010
Post-crisis dummy 0.637 0.565 0.147 0.367 0.288 0.262 0.576

BBB dummy 0.493 0.488 0.469 0.486 0.427 0.413 0.410
BB dummy -0.177 -0.048 0.140 -0.032 0.119 0.167 0.212
B dummy -0.484 -0.328 0.046 -0.298 0.175 0.210 0.316

R2 0.662 0.681 0.690 0.681 0.711 0.715 0.720
Number of observations 25,755 21,873 21,873 21,873 20,850 20,850 20,850

[1] Using our dataset of bond issues, the dummy variable regression
(Observed YTM spread)it =

γ0 + γ1(Theoretical YTM spread)it + γ2λit + γ3(VIX)t + γ4(S&P)t +
γ5(Slope)t + γ6Rit + γ7σR

it + γ8ICrisis(t) + γ9IPost(t) +
γ10IBBB(i) + γ11IBB(i) + γ12IB(i) + εit,

is estimated. The conclusion of the statistical test H0 : γi = 0 against H1 : γi 6= 0, i = 0, 1, . . . , 12, is
reported. Estimates in bold are significant at a confidence level of 95%.
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liquidity, the firm’s equity volatility is also linearly related to the observed spreads. Even though the liquidity
proxy is significant, its average contribution is moderate. Market-wide factors (and more specifically, VIX)
do have an impact on the observed spreads during these periods.

As a robustness test, we also used innovations of the VIX and of the equity volatility as regressors (instead
of the levels). Results were similar to what is obtained in this section.

8 Concluding remarks

The determinants of credit spreads and CDS premiums are investigated throughout the paper, paying par-
ticular attention to three different periods: before, during, and after the financial crisis of 2008. The fact
that conclusions are sensitive to the model’s characteristics prompted us to design a flexible credit risk model
that captures the empirical evidence gathered in the last decade. A regime-switching variable is included to
accommodate behavioural changes during the financial crisis. A negative dependence between endogenous
recovery rates and the firm’s default probability is addressed in Altman et al. (2005)’s empirical findings.

A firm-by-firm estimation procedure based on a filtering procedure deals with latent variables and noise.
The in-sample performance of the model reveals that it is flexible enough to adjust to various firms and
financial cycles. An out-of-sample study concludes that the model is reliable and outperforms other considered
benchmarks.

Recovery uncertainty and its negative relationship with default probability have a major impact on mid-
and long-term credit spreads. The presence of regimes affects the long-term credit spread of highly rated
firms during the pre- and post-crisis periods. During the financial turmoil, the presence of regimes modifies
the short-term shape of the average credit spread curves, especially for highly rated firms.

In the pre-crisis era, the observed spot spreads are almost fully explained by credit risk measured through
the proposed framework. For instance, 67% of the BBB spot spreads are explained by the model. This is
somewhat higher than figures obtained by older studies such as Elton et al. (2001) and Huang and Huang
(2012), but consistent with recent literature. During the crisis, this proportion decreases to 42% and increases
in the post-crisis period, but does not reach pre-crisis levels. The endogenous recovery rate and its dependence
with default risk clarifies in part the high proportion of empirical spreads explained by the model.

Illiquidity in the bond market may explain part of these gaps. For all ratings, the liquidity component
increases during the crisis and explains about 15.3% of the observed yield-to-maturity spreads. This is
consistent with Dionne and Maalaoui Chun (2013)’s results. However, these results contrast with those
of Dick-Nielsen et al. (2012): their increases are much sharper for every rating. This dichotomy could be
attributed to the fact that both studies used a different sample of bond issues and different methods to
control credit risk.

Since liquidity risk cannot entirely account for the unexplained part of the yield-to-maturity spreads, other
factors such as interest rate, market-wide and firm-specific variables are added to the regressions. Overall,
credit risk (proxied as the theoretical YTM spread) explains a large proportion of the observed YTM spreads.
Firm-specific variables (and more specifically equity volatility) are statistically significant and increase the
coefficient of determination from 68.1% to 71.5%. The VIX variable is also statistically significant.

A Derivative pricing

This appendix describes the numerical method inspired by Yuen and Yang (2010) used to price credit-sensitive
derivatives.

A.1 Trinomial lattice approach

Yuen and Yang (2010) propose a trinomial lattice approach for Markov-switching dynamics. The authors
use the same trinomial lattice for every regime, but change the risk-neutral weights if the regime state
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changes so that the trinomial tree is a recombining one. Their method works for many kinds of options, but
credit-sensitive derivatives require an adaptation of the algorithm.

A “up-across-down” branching structure is chosen with xu = xeσ
√

∆t , xm = x, and xd = xe−σ
√

∆t where
x is the actual value of the log-leverage process at a typical node. Moreover, when the number of regimes is
K, the value of σ is given by

σ = max
1≤i≤K

σi + (
√

1.5− 1)σ̄ (11)

where σ̄ is the arithmetic mean of σi. This suggestion is based on the values used in the binomial and
trinomial trees in the literature.

The weights for the ith regime are
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,

where λi = σ
σi

. These weights are different for each regime. The Schönbucher (2002) lattice that deals with
credit-sensitive instruments is adapted in the trinomial lattice approach for Markov-switching dynamics by
adding an “artificial” branch at each node. According to Equations (2) and (3), the default probability is

p = 1− exp

(
−
(
β +

(
ex

θ

)α)
∆t

)
,

if the log-leverage value at this typical node is x.

Figure 9 shows the different branches to be considered to use this numerical scheme when K = 2. Note
that even if the figure contains two different trees, these trees represent the same lattice: only the weights
change across the different regimes.
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Figure 9: The branching to default at a typical node in the tree when the
number of regimes is set to two.

A.2 Credit default swap premiums

A CDS is a credit derivative that compensates the buyer in the event of a default

(or other credit events). In the most basic type of CDS, the protection seller provides

a payment of par-minus-recovery (settled in cash) on default. This shall cover the loss

incurred by a typical bondholder. In exchange, the protection buyer pays a periodic

premium that ceases if a default occurs. Normally, these premiums are paid four times

per year. The premium of such a contract is fixed by setting the expected present value

of losses equals to the expected present value of the premiums.

The endogenous recovery rate defined in Subsection 2.1 introduces a negative relation

between recovery and default risks.

Given that the CDS matures at time T and that the T -year risk-free rate r is constant,

48

Figure 9: The branching to default at a typical node in the tree when the number of regimes is set to two.
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A.2 Credit default swap premiums

A CDS is a credit derivative that compensates the buyer in the event of a default (or other credit events). In
the most basic type of CDS, the protection seller provides a payment of par-minus-recovery (settled in cash)
on default. This shall cover the loss incurred by a typical bondholder. In exchange, the protection buyer
pays a periodic premium that ceases if a default occurs. Normally, these premiums are paid four times per
year. The premium of such a contract is fixed by setting the expected present value of losses equals to the
expected present value of the premiums.

The endogenous recovery rate defined in Subsection 2.1 introduces a negative relation between recovery
and default risks.

Given that the CDS matures at time T and that the T -year risk-free rate r is constant, the protection
leg (expected present value of the losses) is

EQ
[
e−r(τ−t)(1−Rτ )I{t<τ≤T} | Ft

]
= EQ

[ ∑
t≤k<T

(1−Rk)e−r(k−t)

exp

(
−
∑
t≤u<k

Iu∆t

)
(1− exp (−Ik∆t))

∣∣∣∣∣Gt
]
I{τ>t}, (12)

where the filtration {Ft}∞t=1 is defined as Ft = σ(Gt,Ht) and Ht = σ(I{τ≤s} : s ≤ t).

To simplify the presentation, assume that a premium of 1 is paid. In this case, the premium leg (expected
present value of the premiums) is given by

EQ

[∑
t∗i

e−r(t
∗
i−t)I{t≤t∗i<τ}

∣∣∣∣∣Ft
]

= EQ

[∑
t∗i

δ∗i e
−r(t∗i−t) exp

(
−

∑
t≤u<t∗i

Iu∆t

)∣∣∣∣∣Gt
]
I{τ>t} (13)

where t∗i are premium payment dates and δ∗i = t∗i − t∗i−1. The periodic premium is the ratio of (12) over (13).

The numerical scheme explained in Subsection A.1 shall come in handy to compute credit default swap
premiums in the proposed framework. To price credit default swaps, a time step of 1 week (i.e. ∆t = 1/52)
is used in the trinomial tree.

A.3 Coupon bond prices

To price coupon bonds on a single firm, recovery specifications are crucial. Again, the endogenous recovery
of Subsection 2.1 is utilized. Bond investors will recover a fraction Rτ of an equivalent Treasury bond at
default time τ .

Given a coupon rate of c, a T -year constant risk-free rate r, a maturity T , an initial log-leverage of xt,
an initial regime of ht, and a face value of 1, the coupon bond price is given by

V (t, T, xt, ht;Rτ , c)

=EQ

 c
2

∑
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where P (τ, T ) is the time τ value of a risk-free zero-coupon bond maturing at T and t∗i are coupon payment
dates. Note that a zero-coupon bond can be computed by replacing the coupon rate c by zero in Equation (14).

B Unscented Kalman filter-based method

Filtering techniques are useful when the state variables cannot be observed. In credit risk modelling, only a
handful of individuals worked with the possibility of noise. Duan and Fulop (2009) propose a structural model
estimation technique that allows for trading noise in observed equity prices. The estimation is carried out
by using a particle filter and conducting a maximum likelihood estimation (MLE). It is argued that ignoring
noise could non-trivially inflate one’s estimate for the asset volatility. Huang and Yu (2010) introduce an
alternative estimation method based on Markov-chain Monte Carlo methods for Merton (1974)’s model with
independent and identically distributed noise. Using daily closing stock prices over 2003–2004 from emerging
markets, they show that noises are positively correlated with firms’ values. This method can be generalized
to other structural models. Using the unscented Kalman filter, Boudreault et al. (2013) allow for noises in a
hybrid credit risk model. Their estimation, like ours, is based on CDS premiums.

In the proposed model, leverage ratios and regimes are unobservable and should be inferred from observed
quantities. Moreover, the filter must allow quasi-likelihood function computation in a somewhat direct
manner.

A state space representation is commonly used to define a model for which the state is a Markov process
and observed quantities (i.e. credit default swap premiums) are related to the state variable. The log-leverage
dynamics is given by Equation (1). The dynamics under the martingale measure are similar to (1), except
that the drift parameters would be µQ

i instead of µP
i , and the transition probabilities would be pQij instead of

pPij .

To reduce the number of parameters to be estimated, independence in the pricing error between each CDS
has been assumed. Moreover, 1-, 2-, 3-, 5-, 7- and 10-year credit default swaps are used in the estimation.
Thus, the measurement equation becomes

y
(i)
t = h(i)(xt, ht) + ν

(i)
t = log

(
g(i) (xt, ht)

)
+ ν

(i)
t , i = 1, 2, 3, 5, 7, 10, (15)

with y
(i)
t the observed i-year credit default swap log-premium, ν

(i)
t being a Gaussian random variable (having

a standard deviation δ(i)) independent across maturities and g(i) the theoretical premium of an i-year credit
default swap (in basis points). Note that the CDS pricing formula (i.e. function g(i)) is a nonlinear function
of the log-leverage. To maintain positive premiums, a logarithmic transformation is applied; though, this
tranformaton implies a small bias in CDS premiums. Note that the bias is negligible in most cases.

The short rate is not modelled explicitly, and once fixed, does not change: it remains at its initial level
during the pricing for a given day. However, the rate changes over time in the physical measure (from one
week to another). This assumption takes into account differences in the interest rate over time without having
to explicitly model the variable.

A filtering method that simultaneously estimates both latent quantities is needed. An extension of
Tugnait (1982)’s detection-estimation algorithm (DEA) is designed to filter both of our unobserved variables
(see Appendix C for details on the DEA). To allow for our nonlinear state space representation, the DEA
must be extended: instead of running M Kalman filters in parallel, we propose the use of M unscented
Kalman filters in parallel33 (UKF). To the best of our knowledge, this study is the first of using the DEA
coupled with the UKF.

In the hybrid credit risk model, the state propagation equation is Gaussian and linear given the regime
path, but the measurement equation is not. The UKF handles the nonlinearity and approximates the
posterior state density using a set of deterministically chosen sample points (called sigma points). These
points capture the mean and covariance of the Gaussian state variable, and when propagated through the
measurement equation, it captures the posterior mean and covariance of the CDS premiums accurately up to

33The parameters of the UKF technique have been assumed to be κUKF = 2, αUKF = 0.1, and βUKF = 0.
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the second order. According to Christoffersen et al. (2013), the unscented Kalman filter may prove to be a
good approach for a variety of problems in fixed-income pricing. Moreover, for some applications in finance, it
seems to significantly outperform the extended Kalman filter (EKF) and performs well when compared to the
much more computationally intensive particle filter. The parameters are estimated using a quasi-maximum
likelihood estimation34 on a firm-by-firm basis.

It is important to note that the dynamics of the log-leverage ratio implied by the pricing of function g(i)

have to be under the risk-neutral measure Q while the transition of Equation (1) captures the parameters
under the real measure P.

The variance of the initial log-leverage35 P0|0 has been assumed to be around 0.05; different choices of
initial variance do not seem to impact the filtering. Overall, the parameters to be estimated for each firm
are µQ, µP, σ1, σ2, pQ12, pP12, pQ12, pP12, α, β, θ, κ, δ(1), δ(2), δ(3), δ(5), δ(7), and δ(10). Thus, a single set
of parameters is used for each firm to explain the default risk and loss given default; this contrast with
calibration techniques where the credit default swap term structure is fitted at every available period.

C Tugnait (1982)’s detection-estimation algorithm

Tugnait (1982) considers the problem of state estimation and system structure detection for discrete stochastic
systems with parameters that may change among a finite set of values.

Assume the state space representation given by Equations (1) and (15):

xt = xt−1 +

(
µP
ht −

1

2
σ2
ht

)
∆t + σht

√
∆tε

P
t ,

y
(i)
t = log

(
g(i) (xt, ht)

)
+ ν

(i)
t , i = 1, 2, 3, 5, 7, 10,

where y
(i)
t the observed i-year credit default swap log-premium and g(i) the theoretical premium of an i-year

credit default swap.

Tugnait (1982) consists of running M = Kd Kalman (1960) filters in parallel at any stage t where K is
the number of possible regimes in the model and d is determined by computation and storage capabilities.
However, since the state space representation is nonlinear, the method cannot be applied directly. Thus,
instead, the unscented Kalman filter is used.

Suppose that at stage t − 1, M/K regime paths have been chosen. At stage t, all possible extensions of
these regime sequences shall be considered. By an extention h∗0:t ≡ {h∗0, h∗1, . . . , h∗t } of hj0:t−1, one means

h∗0:t = {hj0:t−1, r(t)}, r(t) ∈ {1, 2, . . . ,K}.

This shall create M new regime paths. Then, using Kalman filters, it is possible to compute the filtered value
of xt based on the first t observations and the regime path h∗0:t:

x∗t|t ≡ E(xt|y1:t, h
∗
0:t)

where y1:t ≡ {y1, y2, . . . , yt} and yt = {y(1)
t , y

(2)
t , y

(3)
t , y

(5)
t , y

(7)
t , y

(10)
t }. Moreover, the a posteriori probability

of observing this specific regime path based on the first t observations is

P(hj0:t|y1:t) =
P(y1:t|hj0:t)P(hj0:t)∑M
i=1 P(y1:t|hi0:t)P(hi0:t)

34Quasi-likelihood means here that the first two moments of the posterior distribution have a second-order precision and a
posterior Gaussian distribution has to be assumed.

35Initial leverages are approximated using their book values. More precisely, total liabilities divided by total assets is taken.
Both quantities are acquired by Compustat, which is available from Wharton Research Data Services (WRDS). The fourth
quarter of 2004’s accounting data is selected to compute the proxy since Q4 of 2004 predates January 2005 (the beginning of
our sampling period). In the database, the total liabilities is identified by LTQ and the total assets by ATQ. In addition, the
firm’s ticker symbol is matched to that of Markit’s CDS premiums through the reference entity’s name to ensure that the right
information for each firm is used. For one firm, no data is available; this firm is thus removed from the sample.
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where P(hj0:t) can be computed using pPij of Equation (5). In addition,

P(y1:t|hj0:t) = exp

(
−1

2

t∑
i=1

log(detV ji )− 1

2

t∑
i=1

(eji )
>(V ji )−1(eji )−

6t

2
log(2π) +

t∑
i=1

log
(
pP
hji−1h

j
i

))
,

eji = yi − yji|i−1 is the difference between the observations and the forecasted value of the observations at

stage i, and V ji = E
[
(eji )(e

j
i )
>|hj0:i, y1:i−1

]
. The third term is multiplied by 6, as six tenors are used in this

study.

This leads to the state estimate

xt|t =

M∑
j=1

xjt|tP(hj0:t|y1:t).

Then, Tugnait (1982)’s idea is to collapse from M to M/K regime paths by keeping the paths that yield
the most likely sequences in terms of a posteriori probabilities. This leads to minimum probability of error
according to Van Trees (1968).

This method is similar to the one proposed by Kim (1994). The main difference between Kim (1994) and
Tugnait (1982)’s DEA is the collapsing scheme. Kim (1994) proposes to take averages across the different
regime paths to reduce the number of sequences instead of keeping the most likely ones.

The efficiency of the method is assessed by a simulation study (not reported here, but available on request).
According to the study, the DEA-UKF technique yields virtually no bias on the parameter estimates for our
application, in addition to being analytical and fast.36

In this paper, the number of regimes is set to K = 2, and d = 5 is used. This choice appears to be a good
compromise between accuracy and efficiency. Moreover, the results seem to be robust to different choices of
d greater than 4.

D In- and out-of-sample performances

D.1 Benchmarks and model comparisons

The new regime-switching hybrid default model (RS) is compared to three other models: the “one-regime”
(1R) equivalent of our model (i.e. the one presented in Boudreault et al. (2013)), a regime-switching structural
version (SA) of the proposed framework, and a regime-switching reduced-form model (RFA).

The so-called 1R model is the one introduced in Boudreault et al. (2013); the main difference between
this model and ours is that we use regime-switching dynamics to model the firm’s leverage.

Letting β = 0 and α → ∞, the hybrid approach leads to a pure structural framework in which the
log-leverage ratio is modelled by a regime-switching discretized version of a geometric Brownian motion. The
structural model is nested in the hybrid framework; thus, its overall in-sample performance is expected to be
weaker than the full model. However, it is possible that local performances dominate those of the full model.

The pure reduced-form version of the model (i.e. θ → ∞) is not the one used in this paper since this
model would have constant intensity and this is obviously too restrictive. Instead, the intensity process is
modelled by a regime-switching discretized version of a geometric Brownian motion:

It =

 It−1 +
(
µQ
S −

1
2σ

2
S,1

)
∆t + σS,1

√
∆tε

Q
t if ht = 1

It−1 +
(
µQ
S −

1
2σ

2
S,2

)
∆t + σS,2

√
∆tε

Q
t if ht = 2

36However, the DEA-UKF technique could have some problems with more general filtering applications. In that case, one
could use the bias-free method of Fearnhead and Clifford (2003), even though this change could slow down the estimation
procedure.
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where µQ
S is the drift parameter and σS,1 and σS,2 are volatility parameters for regime 1 and 2, respectively.

Moreover, {εQt }∞t=1 is a sequence of independent standardized Gaussian random variables under Q. Since
endogenous recoveries no longer make sense in the context of this model, we opt for a constant exogenous
recovery rate Rt = R ∈ [0, 1]. This new parameter is estimated among all other parameters in the filtering
procedure.

The models’ performances are compared using the sum of squared errors:

SSE =

t2∑
t=t1

Nt∑
i=1

(mt,i − ot,i)2 (16)

where mt,i is the theoretical i-year CDS premium at time t, ot,i is the observed i-year CDS premium at time
t, and Nt is the number of CDSs considered at time t. The parameters estimates are obtained using the
entire sample and are kept fixed at any point in time. To standardize these fitting performances, the SSE is
divided by the total variation of the observed CDS premiums:

SST =

t2∑
t=t1

Nt∑
i=1

(ot,i − ō)2 where ō =
1∑t2

t=t1
Nt

t2∑
t=t1

Nt∑
i=1

ot,i. (17)

Consequently, the performance measure is the ratio SSE/SST. The closer it is to zero, the better the model
is.

We also apply a very loose criterion to eliminate outliers: if the absolute difference between the model
premium and the observed premium is more than 5 times the observed premium, it is is considered an outlier:

| mt,i − ot,i |> 5ot,i. (18)

D.2 In-sample performance

The in-sample study is performed over 417 weeks, starting in January 2005 and ending in December 2012.
Two hundred and ten firms were considered in this analysis.

Table 7 provides details about outliers. For the in-sample analysis, seven observations out of 489,796
observations were removed because the absolute value of the error on the premium was greater than five in
at least one of the four models. Thus, we removed 0.0014% of our initial CDS sample.

Table 7: Number of outliers: in-sample study.

RS 1R SA RFA Total

Number of outliers 2 4 1 2 7

[1] The initial sample size is 489,796 CDS premiums.

Figure 10 shows the evolution of the SSE/SST ratio calculated by week. The measure used in these
figures combines the six tenors. The in-sample performance of the full model is very good, with an average
SSE/SST of 3.33%. It dominates the three benchmarks by a factor of 1.83 for the reduced-form approach,
2.05 for the structural model, and 3.45 for the “one-regime” equivalent. When considering IG firms only, the
SSE/SST measure is about 1.52% for the full model on average; it outperforms the other models by factors
of 1.97, 2.08, and 2.71 for RFA, SA and 1R, respectively. For HY firms, the average measures are higher:
4.28% for the full model. It is higher for the other benchmarks: the SSE/SSTs are 1.82 times larger for the
reduced-form model, 2.06 for the structural approach, and 3.48 for Boudreault et al. (2013).

During the financial crisis of 2008, the SSE/SST ratio spikes when we consider the benchmark models.
However, the full model seems to do well, even during these turbulent times. On September 17, 2008, the
four models seem to yield large pricing errors on IG firms. This is mainly due to errors on AIG’s credit



Les Cahiers du GERAD G–2014–77 31

the full model outperforms the other ones. For IG firms, the performance is adequate,

even for 1-year CDS premiums. For HY firms, the SSE/SST ratio seems to be larger for

1-year credit default swaps; however, SSE/SST ratios for the full model are always lower

than the other models’ ratios.
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Figure 10: SSE/SST: evolution of the in-sample performance for IG and HY.
These figures show the evolution of the SSE/SST ratio calculated by week. For each firm, a single set of
parameters is estimated using CDS premiums with maturities 1, 2, 3, 5, 7, and 10 years between January
2005 and December 2012.

D.3 Out-of-sample performance: CDS subsample

In the first out-of-sample study, the parameters are estimated one more time. How-

ever, this time, we only use 2-, 5- and 10-year CDS premiums observed from January

2005 to December 2012. The model premiums are thus computed using different sets
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Figure 10: SSE/SST: evolution of the in-sample performance for IG and HY.
These figures show the evolution of the SSE/SST ratio calculated by week. For each firm, a single set of parameters is estimated
using CDS premiums with maturities 1, 2, 3, 5, 7, and 10 years between January 2005 and December 2012.

default swap premiums. On September 15, 2008, AIG’s credit rating was downgraded from AA- to A-; the
downgrade had an important impact on CDS premiums.

Figure 11 shows the ratio calculated by maturity and by period. The performance of our model remains
quite good, even during the crisis era (i.e. 2007–2009). Systematically, the full model outperforms the other
ones. For IG firms, the performance is adequate, even for 1-year CDS premiums. For HY firms, the SSE/SST
ratio seems to be larger for 1-year credit default swaps; however, SSE/SST ratios for the full model are always
lower than the other models’ ratios.

D.3 Out-of-sample performance: CDS subsample

In the first out-of-sample study, the parameters are estimated one more time. However, this time, we only
use 2-, 5- and 10-year CDS premiums observed from January 2005 to December 2012. The model premiums
are thus computed using different sets of parameters in comparison with those of the previous subsection.
The out-of-sample measures are performed on 1-, 3- and 7-year CDS premiums.

Table 8 shows how many observations were removed from our analysis. In total, 75 observations were
removed (0.015% of our initial sample).

Figure 12 shows the out-of-sample performance of the four models considered. For every maturity and
every period, RS outperforms the three other models. For both IG and HY firms, the average SSE/SST is
about 2.66% across the three unused tenors. This ratio is higher by factors of 2.06, 2.67 and 2.20 for reduced-
form, structural, and “one-regime” models respectively. The “one-regime” equivalent and the structural
model seem to have the worst out-of-sample performances according to this test; however, the performance
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Figure 11: SSE/SST: in-sample performance for IG and HY.
These figures show the SSE/SST ratio calculated by maturity and period (i.e. pre-crisis, crisis, post-
crisis). For each firm, a single set of parameters is estimated using CDS premiums with maturities of 1,
2, 3, 5, 7 and 10 years between January 2005 and December 2012.

of parameters in comparison with those of the previous subsection. The out-of-sample

measures are performed on 1-, 3- and 7-year CDS premiums.

Table 8 shows how many observations were removed from our analysis. In total, 75

observations were removed (0.015% of our initial sample).

Table 8: Number of outliers: first out-of-sample study.

RS 1R SA RFA Total

Number of outliers 8 33 47 6 75
[1] The initial sample size is 489,796 CDS premiums. There are 244,896 observations that are truly
out-of-sample, and 244,900 observations used in the estimation.

Figure 12 shows the out-of-sample performance of the four models considered. For

every maturity and every period, RS outperforms the three other models. For both IG

and HY firms, the average SSE/SST is about 2.66% across the three unused tenors.

This ratio is higher by factors of 2.06, 2.67 and 2.20 for reduced-form, structural, and

“one-regime” models respectively. The “one-regime” equivalent and the structural model
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Figure 11: SSE/SST: in-sample performance for IG and HY.
These figures show the SSE/SST ratio calculated by maturity and period (i.e. pre-crisis, crisis, post-crisis). For each firm, a
single set of parameters is estimated using CDS premiums with maturities of 1, 2, 3, 5, 7 and 10 years between January 2005
and December 2012.

Table 8: Number of outliers: first out-of-sample study.

RS 1R SA RFA Total

Number of outliers 8 33 47 6 75

[1] The initial sample size is 489,796 CDS premiums. There are 244,896 observations that
are truly out-of-sample, and 244,900 observations used in the estimation.

of these models is not so dramatic. The reduced-form model performs very well in general. Performances
seem to be somewhat constant within both risk classes.

Even for 1-year CDS premiums (which were not included in our estimation sample, and are known for
being hard to price), the full model outperforms the other models and yields small SSE/SST ratios.

D.4 Forecasting 2013

In a second out-of-sample study, the parameters are estimated, again using 1-, 2-, 3-, 5-, 7- and 10-year
CDS premiums from January 2005 to December 2012. Then, CDS premiums observed in 2013 are used
to evaluate the out-of-sample fit of the model. The out-of-sample measures are calculated for every CDS
premium observed in 2013.

As before, observations satisfying the rejection criterion of (18) are removed from the analysis. The
number of these outliers is reported in Table 9. Overall, 41 out of 67,373 observations are discarded since
they are considered to be outliers by at least one of the four models.

Figure 13 shows that our new model produces adequate one-week-ahead forecasts when compared to the
benchmarks. The full model’s curves seem to be lower than the other ones for almost every maturity and
risk class, which is good.

For IG, SSE/SST ratios seem to be higher for short maturities. The main reason for this behaviour is
that 1-year SST is much smaller than the other SSTs, even though the 1-year SSE is somewhat smaller than
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seem to have the worst out-of-sample performances according to this test; however, the

performance of these models is not so dramatic. The reduced-form model performs very

well in general. Performances seem to be somewhat constant within both risk classes.

Even for 1-year CDS premiums (which were not included in our estimation sample,

and are known for being hard to price), the full model outperforms the other models and

yields small SSE/SST ratios.
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Figure 12: SSE/SST: out-of-sample performance for IG and HY.
These figures show the SEE/SST calculated by maturity and by period (pre-crisis, crisis, and post-crisis).
For each firm, a single set of parameters is estimated using CDS premiums with maturities 2, 5 and 10
years between January 2005 and December 2012.

D.4 Forecasting 2013

In a second out-of-sample study, the parameters are estimated, again using 1-, 2-, 3-,

5-, 7- and 10-year CDS premiums from January 2005 to December 2012. Then, CDS

premiums observed in 2013 are used to evaluate the out-of-sample fit of the model. The

out-of-sample measures are calculated for every CDS premium observed in 2013.

As before, observations satisfying the rejection criterion of (18) are removed from the
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Figure 12: SSE/SST: out-of-sample performance for IG and HY.
These figures show the SEE/SST calculated by maturity and by period (pre-crisis, crisis, and post-crisis). For each firm, a single
set of parameters is estimated using CDS premiums with maturities 2, 5 and 10 years between January 2005 and December
2012.

Table 9: Number of outliers: second out-of-sample study.

RS 1R SA RFA Total

Number of outliers 4 13 29 16 41

[1] The initial sample size is 67,373 CDS premiums.

analysis. The number of these outliers is reported in Table 9. Overall, 41 out of 67,373

observations are discarded since they are considered to be outliers by at least one of the

four models.

Figure 13 shows that our new model produces adequate one-week-ahead forecasts

when compared to the benchmarks. The full model’s curves seem to be lower than the

other ones for almost every maturity and risk class, which is good.

For IG, SSE/SST ratios seem to be higher for short maturities. The main reason for

this behaviour is that 1-year SST is much smaller than the other SSTs, even though the

1-year SSE is somewhat smaller than those computed for other maturities. Therefore, it

is natural to observe high SSE/SSTs for 1-year credit default swaps in 2013.

Table 9: Number of outliers: second out-of-sample study.

RS 1R SA RFA Total

Number of outliers 4 13 29 16 41
[1] The initial sample size is 67,373 CDS premiums.
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Figure 13: SSE/SST: out-of-sample performance for forecasted premiums in
2013.
For each firm, a single set of parameters is estimated using CDS premiums with maturities 1, 2, 3, 5, 7
and 10 years between January 2005 and December 2012. Keeping the parameters constant, a one-week-
ahead forecast of the CDS premium is compared to the realized premium for each firm, each maturity
and each week of 2013.
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Figure 13: SSE/SST: out-of-sample performance for forecasted premiums in 2013.
For each firm, a single set of parameters is estimated using CDS premiums with maturities 1, 2, 3, 5, 7 and 10 years between
January 2005 and December 2012. Keeping the parameters constant, a one-week-ahead forecast of the CDS premium is compared
to the realized premium for each firm, each maturity and each week of 2013.

those computed for other maturities. Therefore, it is natural to observe high SSE/SSTs for 1-year credit
default swaps in 2013.
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