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du Fonds de recherche du Québec – Nature et technologies.
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nologies.
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Abstract: In this paper, we introduce the randomized Condorcet voting system. Our main contribution
is to present it as a natural extension of Condorcet’s ideas, hence giving it solid philosophical grounds.
Namely, the randomized Condorcet voting system elects the essentially unique Condorcet winner of lotteries
of candidates. Moreover, we prove three major results regarding Condorcet compatibility, that is, the fact that
a voting system elects Condorcet winners when they exist and is incentive-compatible. First, we show that
there is no strongly Condorcet-compatible voting system. Second, we show that the randomized Condorcet
voting system is the unique dominant-strategy Condorcet-compatible voting system, in a large class of voting
systems. Third, we prove that, as opposed to other known methods, the randomized Condorcet voting system
is strongly incentive-compatible when alternatives range on a left-right axis. Eventually, these fundamental
properties of the randomized Condorcet voting system lead us to strongly recommend its use in practice,
especially when deterministic Condorcet winners are likely to exist.

Key Words: Voting system, social choice, Condorcet winner, incentive-compatibility.

Résumé : Dans cet article, nous introduisons le scrutin de Condorcet randomisé. Notre principale contri-
bution est de le présenter en tant qu’extension naturelle des idées de Condorcet, ce qui permet de justifier
sa légitimité d’un point de vue philosophique. En effet, le scrutin de Condorcet randomisé élit le vain-
queur de Condorcet des loteries des candidats, dont l’existence et l’unicité sont garanties en pratique. De
plus, nous prouvons trois résultats majeurs concernant la Condorcet-compatibilité. De façon grossière, un
scrutin est Condorcet-compatible s’il élit les vainqueurs de Condorcet lorsqu’ils existent, et si les électeurs
ont alors intérêt à voter conformément à leurs vraies préférences. Premièrement, nous montrons qu’il n’existe
pas de scrutin fortement Condorcet-compatible. Ensuite, nous prouvons que le scrutin de Condorcet ran-
domisé est l’unique scrutin Condorcet-compatible à stratégies dominantes, parmi une large classe de scrutins.
Enfin, nous montrons que, contrairement à d’autres méthodes connues, le scrutin de Condorcet randomisé
est fortement compatible avec les incitatifs lorsque les alternatives se placent sur un axe gauche-droite. Au
final, toutes ces propriétés fondamentales du scrutin de Condorcet randomisé nous amènent à fortement
recommander son utilisation en pratique, surtout lorsqu’il y a de bonnes chances qu’il existe un vainqueur
de Condorcet déterministe.

Acknowledgments: I am greatly grateful to Rémi Peyre without whom this paper would not have been
possible. First, he is the one who proposed the randomized Condorcet voting system in his series of popu-
larized articles (Peyre, 2012a,b,c). Second, he proved or sketched the proofs of many of the theorems of this
article, especially Theorems 6 and 7. Finally, and most importantly, our discussions gave me great insights
into the wonderful theory of voting systems.
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“Qu’importe que tout soit bien, pourvu que nous fassions en sorte que tout soit mieux qu’il n’était

avant nous.” Marquis de Condorcet

1 Introduction

Social choice theory consists in choosing an alternative for a group of people whose individual preferences

may greatly differ from one another. The first mathematician to address this question was Condorcet (1785).

Condorcet introduced the idea that an alternative which is preferred to any other by the majority should be

the one chosen for the group. Such an alternative is now known as a Condorcet winner.

Unfortunately, Condorcet went on proving that a Condorcet winner does not necessarily exist. Indeed, if

a third of the people prefers x to y to z, another third prefers y to z to x, and the last third prefers z to x

to y, then a majority of 2/3 prefers x to y, while another one of 2/3 prefers y to z, and a third majority still

of 2/3 prefers z to x. This example is now known as a Condorcet paradox. It has been the essence of many

impossibility theorems in more recent years. For instance, Arrow (1951) famously derived the impossibility

of a ”fair” aggregation of the preferences of the individuals into a preference of the group.

Much progress has been made in the understanding of the Condorcet paradox. Mainly, McGarvey (1953)

introduced the concept of tournament, which can be regarded as a directed graph of alternatives. More

precisely, an arc is drawn from alternative x to alternative y if the majority prefers x to y. By assuming no

draw between alternatives, the tournament is then a complete antisymmetric directed graph. A Condorcet

winner is a node with no incoming arc. It is easy to see that, if it exists, the Condorcet winner is unique.

When no Condorcet winner exists, several sets have been defined to consider all the nearly Condorcet winners

of the tournament. For instance, the top cycle contains all alternatives from which a path leads to any other

alternative. This top cycle has strong connections with binary agendas, which consist in sequentially removing

one of two alternatives. A more exhaustive survey of these sets, including the uncovered set and the Banks

set, appears in Myerson (1996).

The main contribution of this paper is notice that there is a natural way to extend Condorcet’s ideas to

cases where no Condorcet winner exists. To do so, we need to think in terms of probability distributions over

alternatives, known as lotteries. For instance, electing x with probability 2/3, y with probability 1/6 and

z with probability 1/6 is a lottery. Now, the preferences of the majority over alternatives can be naturally

extended to preferences over lotteries. Interestingly, when there is no draw between alternatives, these

preferences over lotteries always yield a unique Condorcet winner, that is, there is one and only one lottery

that the majority prefers to any other. It is this Condorcet winner that we propose to elect through the

randomized Condorcet voting system. While this voting system is hinted at in Myerson (1996) and studied

by Peyre (2012c), we are the first to present it as a natural extension of Condorcet’s ideas, hence providing

firm ground for its legitimacy. We give its formal definition in Section 2.

Historically, de Borda (1781) proposed a voting system which consisted in having voters marking the

alternatives. Condorcet criticized this method. He claimed that it gave incentives to voters not to reveal their

preferences truthfully. In modern terms, the Borda voting system is not incentive-compatible. The trouble

with non-incentive-compatible voting systems is that we have no reason to trust the meaningfulness of the

ballots of the people. As a result, we may end up making decisions which are completely irrelevant as they

are based on erroneous intelligence. For this reason, incentive-compatibility, which is sometimes also called

strategy-proofness, has been an essential concept of social choice theory and mechanism design. Loosely,

it corresponds to truthfulness being people’s best strategy. The famous Gibbard (1973) - Satterthwaite

(1975) impossibility theorem and the Gibbard (1978) theorem have shown how restrictive the impossibility

requirements are, as they assert that the only incentive-compatible voting systems are mixtures of referendums

and (stochastic) dictatorships.

In addition to its naturalness, the randomized Condorcet voting system also benefits from enviable

incentive-compatibility properties. Now, the Gibbard (1978) theorem immediate proves that the randomized

Condorcet voting system is not incentive-compatible in Gibbard’s sense. But it is noteworthy that his the-
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orem assumes preferences to satisfy the axioms by Von Neumann and Morgenstern (1945).1 These axioms

make incentive-compatibility very constraining. For this reason, in this paper, we will restrict ourselves to

a simpler extension of preferences over alternatives to preferences over lotteries. Namely, we will consider

that a lottery x̃ is preferred to ỹ if the choice of x̃ is more often preferred to that of ỹ rather than the

other way around. Interestingly, as a result, preferences over lotteries are fully determined by the ordering

of alternatives.

In Section 3, using these preferences over lotteries, we define the concept of Condorcet compatibility.

Namely, a voting system is Condorcet-compatible if, when a unique Condorcet winner exists, it elects this

Condorcet winner and is incentive-compatible. In our analysis, incentive-compatibility comes in two flavors.

First is the strong incentive-compatibility, which requires truthfulness to be a strong Nash equilibrium. This

property is often also known as coalitional strategy-proofness as it asserts that no coalition has incentive

to deviate altogether from truthfulness. However, strong incentive-compatibility is often regarded as too

constraining, and we will confirm this by proving that there is no strongly Condorcet-compatible voting

system.

One way to overcome this new impossibility theorem is to weaken the concept of incentive-compatibility.

A classical approach to do so is to require truthfulness to be a Nash equilibrium. However, because deviations

from truthfulness by a single voter usually does not affect the status of Condorcet winner of an alternative,

most ballots are in fact Nash equilibria. Another more restrictive approach widely used in social choice theory

is dominant strategy incentive-compatibility. This is the one we shall use, albeit we will slightly adapt it to

our setting. Namely, a voting system shall be called dominant strategy incentive-compatible if no group of

similarly minded conspirators ever has incentive to deviate from truthfulness. This leads us to define the

dominant strategy Condorcet compatibility (DSCC). Importantly, the randomized Condorcet voting system

is DSCC.

In fact, in Section 4, we show a near-uniqueness of the DSCC voting system. Obviously, whenever the

ballots yield a Condorcet winner, any Condorcet-compatible voting system elects it. But in addition, we show

that if the pairwise comparisons of the alternatives by the majority are close to equality, any DSCC voting

system which is defined based on these pairwise comparisons must agree with the randomized Condorcet

voting system. A major corollary is that the randomized Condorcet voting system is the only DSCC voting

system that is defined on the tournament of the ballots.

One reason why we find Condorcet-compatibility very relevant is the existence of Condorcet winners in

practice in many cases. An explanation for this is the one-dimensionality of alternatives. Typically, in politics,

candidates usually range on a left-right axis, which is reflected by the preferences the people may have. Two

distinct characterizations of this phenomenon have appeared in the literature. First is single-peakedness,

introduced by Black (1958), which asserts that each voter has a preferred alternative, and that, the further

an alternative is from the preferred alternative, the less it is appreciated by the voter. However, Roberts

(1977) argues that the popularity of an alternative does not only depend on its positioning on the left-right

line. Typically, an unknown centered alternative may not be popular among voters, despite its privileged

positioning. This has led him to introduce single-crossing, which is based on a left-right line-up of the voters

as well. Then, if a left voter prefers the right alternative to a left alternative, a right voter must then agree

with the left voter.

In any of these two cases, it has been shown (Black (1958); Roberts (1977); Rothstein (1990, 1991); Gans

and Smart (1996)), that a Condorcet winner exists, and is the median voter’s favorite. This led Moulin (1980)

to design the median social rule, which consists in choosing the median voter’s favorite alternative. He shows

that this is a dominant strategy incentive-compatible when preferences are single-peaked. This voting system

has been generalized by Saporiti (2009) who also prove that any deterministic strongly incentive-compatible

voting system for single-crossing preferences must have a similar form. However, these median social choice

rules require taking advantage of a known left-right line on which alternatives range. In practice though, in

many cases such as politics, while the left-right structure exists informally, it is not official and can therefore

not be used to design the voting system. Plus, in these settings (Moulin (1980); Saporiti (2009)), voters are

1These axioms assume that preferences over lotteries are complete, continuous, independent and transitive.
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constrained to choose ballots which only belong to a subset of all orderings. In fact, Penn et al. (2011) proved

that, when preferences are single-peaked but ballots are not restricted to such single-peaked orderings of the

alternatives, a deterministic strongly incentive-compatible voting system must be dictatorial.

In Section 5, we detail single-peakedness and single-crossing, and we prove that, when preferences satisfy

one of these criteria, the randomized Condorcet voting system is strongly incentive-compatible, without any

restriction on the ballots voters are allowed to choose. Finally, Section 6 will conclude.

2 The randomized Condorcet voting system

We consider an election with a set X of alternatives. We denote O the set of total order relations2 on X.

We consider that each voter has a preference θ ∈ O which is such an ordering of alternatives. We denote

θ : x � y the fact that θ ranks x ahead of y. The relation θ : x � y then corresponds to θ : x � y or x = y.

A preference is fully defined by the ordering of all alternatives. For instance, if X = {x, y, z}, an example of

preference is θ : y � x � z.

To determine an outcome from a vote, we first need to aggregate votes. This can be done by computing

the preference profile (θ1, . . . , θn) ∈ On. However, if we require the voting system to be anonymous (that is,

independent from players’ labeling), then it suffices to count the frequencies of each preference of O. These

frequencies are equivalently described by a probability distribution θ̃ ∈ ∆(O). The fact that we can restrict

ourselves to focusing on θ̃ rather than the preference profile is guaranteed by the following theorem, which

we merely loosely state for the sake of exposition.

Theorem 1 Anonymous voting systems are restrictions of voting systems with inputs in ∆(O).

Proof. See appendix for the proof, as well as for a more formal statement of the theorem.

Importantly, because of this theorem, we will consider that the only information retrieved by the prefer-

ences (or the ballots) of the people is the probability distribution θ̃ ∈ ∆(O). Note that this modeling can

also describe ballots where some voters are given greater weights than others.

Remark 1 We identify canonically ∆(O) with the simplex of the vector space RO. In particular, this defines

convex combinations over ∆(O). Plus, for simplicity of notations, the canonical injection O → ∆(O), which

maps a preference θ ∈ O to the Dirac distribution δθ that chooses θ with probability 1, leads us to identify

each preference θ ∈ O with its image δθ ∈ ∆(O). Thus, O ⊂ ∆(O).

2.1 Tournaments

For preferences θ̃ ∈ ∆(O), we define the relative surplus referendum(θ̃, x, y) of voters who prefer x to y by

referendum(θ̃, x, y) = Pθ̃
[
θ̃ : x � y

]
− Pθ̃

[
θ̃ : x ≺ y

]
, (1)

where we assimilated the probability distribution θ̃ with a corresponding random variable. Note that the

probability operators should rather be read as the ratios of citizens who prefer x to y, and y to x. Now, the fact

that a majority of the people prefers alternative x to y then corresponds to the inequality referendum(θ̃, x, y) >

0. In other words, referendum(θ̃, x, y) precisely describes the result of a referendum between x and y.

This remark leads us to map any preferences θ̃ ∈ ∆(O) of the people to a weighted directed graph. The

nodes are the alternatives x ∈ X, and the graph has an arc x� y if referendum(θ̃, x, y) > 0. This arc is then

given the weight referendum(θ̃, x, y). An arc from x to y is thus to be read as the fact that x beats y in a

2A relation � on X is a total order if it satisfies all following properties:
Antisymmetry: If x � y and y � x, then x = y.
Transitivity: If x � y and y � z, then x � z.
Totality: We have x � y or y � x.
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referendum. Note that the weighted directed graph we obtained is antisymmetric. This means that if there

is an arc x� y, then y � x is not an arc.

Weighted directed antisymmetric graphs are called weighted tournaments. We denote WT the set of

weighted tournaments. The construction above yields a natural mapping WT : ∆(O)→WT , which defines

the weighted tournament WT (θ̃) of the preferences θ̃ ∈ ∆(O) of the people.

Example 1 Consider X = {x, y, z} and preferences θ̃ ∈ ∆(O) of the following form:

Pθ̃
[
θ̃ : x � y � z

]
= 27/100, Pθ̃

[
θ̃ : y � z � x

]
= 21/100, Pθ̃

[
θ̃ : z � x � y

]
= 20/100,

Pθ̃
[
θ̃ : x � z � y

]
= 8/100, Pθ̃

[
θ̃ : y � x � z

]
= 14/100, Pθ̃

[
θ̃ : z � y � x

]
= 10/100,

Given these preferences, we have the following surplus:

100 referendum(θ̃, x, y) = 27 + 8− 21− 14 + 20− 10 = 10 > 0, (2)

100 referendum(θ̃, y, z) = 27− 8 + 21 + 14− 20− 10 = 24 > 0, (3)

100 referendum(θ̃, z, x) = −27− 8 + 21− 14 + 20 + 10 = 2 > 0. (4)

The corresponding tournaments are depicted in Figure 1.

Figure 1: Tournaments illustrating a Condorcet paradox

If we drop the weights on the arcs, we obtain a merely asymmetric graph. Such a graph is called a

tournament.3 The dropping of weights gives us a canonical surjection WT → T . This creates a natural map

T : ∆(O)→ T that defines the tournament T (θ̃) of the preferences θ̃ ∈ ∆(O) of the people. In this setting,

referendum(θ̃, x, y) > 0 if and only if x� y is an arc in T (θ̃), which we denote T (θ̃) : x� y.

Given a tournament T ∈ T , we denote T : x� y the fact that y � x is not an arc of T . In other words,

we have T : x� y when y does not beat x in T . Naturally, if T is a complete tournament, then T : x� y is

equivalent to T : x� y or x = y. However, this equivalence no longer holds for incomplete tournaments.

This leads us to the well-known concept of Condorcet winner, which we slightly adapted for our purposes.4

Definition 1 A Condorcet winner of a tournament T ∈ T is an alternative x ∈ X that no other alternative

beats, i.e. T : x � y for all y ∈ X. Moreover, a Condorcet winner of the preferences θ̃ ∈ ∆(O) is an

alternative that is Condorcet winner of the tournament T (θ̃).

As Condorcet asserted it himself, a good voting system must elect the Condorcet winner if it exists and

is unique. After all, what better alternative is there than the one that is preferred to any other alternative

by the majority? Another argument to defend Condorcet’s ideas is to note that if another alternative were

to be elected, then the majority of the people would want to have him replaced by the Condorcet winner.

A well-known result is the uniqueness of a Condorcet winner in complete tournaments. Unfortunately

though, the Condorcet paradox (see Figure 1) shows that a Condorcet winner does not necessarily exist.

3In the literature, tournaments are usually rather defined as complete antisymmetric graphs, for which we also know that
x� y or y � x is an arc. However, we will show the relevancy of including incomplete graphs as we will introduce randomized
tournaments.

4The literature often defines a Condorcet winner as an alternative that beats all other alternatives. Evidently, for complete
tournaments, the two definitions coincide. But, for incomplete tournaments, they do not.
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This is due to the fact that a tournament T (θ̃) ∈ T of the preferences θ̃ ∈ ∆(O) is no longer necessarily a

transitive graph. In particular, the relation � on X is not an order relation.

Interestingly, in politics, there usually is a Condorcet winner. The explanation lies in the fact that

alternatives often range on a one-dimensional left-right line. In such a setting, the median voter theorems

(Black (1958), Roberts (1977)) ensure that there always is a Condorcet winner. We shall discuss this case

in more details in Section 5. Still, even then, while the preferences of the people usually yield a Condorcet

winner, voters may still have incentives not to reveal their preferences truthfully. Recall that this is the

essence of the issues underlined by the Gibbard (1973) - Satterthwaite (1975) theorem. Thus, ballots may

well not have a Condorcet winner even though preferences do, which means that we still have to address the

case where a Condorcet winner does not exist, even when alternatives yield a left-right structure.

2.2 Randomized tournaments

To face the case where ballots do not yield a Condorcet winner, similarly to Gibbard (1978), we introduce

randomization on the set of alternatives. In particular, we extend the relation � defined on the set X

of alternatives by a tournament T to the set ∆(X) of lotteries. The extended relation will be called the

randomized tournament.

To define this randomized tournament, let us introduce the quantity gain(T, x̃, ỹ) that counts the frequency

at which x̃ beats rather than is beaten by ỹ in tournament T , i.e.

gain(T, x̃, ỹ) = Px̃,ỹ [T : x̃� ỹ]− Px̃,ỹ [T : x̃� ỹ] . (5)

We can now define the randomized tournament.

Definition 2 The randomized tournament Rand(T ) of a tournament T ∈ T is the tournament whose nodes

are lotteries and where Rand(T ) : x̃� ỹ is an arc if and only if the majority more often prefers the choice of

x̃ to that of ỹ than the other way around. Equivalently, Rand(T ) : x̃� ỹ if and only if gain(T, x̃, ỹ) > 0. Plus,

a Condorcet winner of the randomized tournament Rand(T ) shall be called a randomized Condorcet winner

of tournament T .

It is immediate to see that the tournament T is an induced subgraph of the randomized tournament

Rand(T ). Now, instead of choosing a Condorcet winner of T that may not exist, the voting system we shall

propose consists of choosing a randomized Condorcet winner. Crucially, this randomized Condorcet winner

does exist and will be unique in practice. Plus, naturally, if T does yield a unique Condorcet winner, then

this Condorcet winner will also be the unique randomized Condorcet winner.

Now, the existence and uniqueness of the Condorcet winner of the randomized tournament are asserted

by the following theorem. This theorem can be regarded as the main contribution of this paper, as it is key

to the definition of the randomized Condorcet voting system.

Theorem 2 Any finite tournament T ∈ T has a randomized Condorcet winner. Plus, if T is complete, then

the randomized Condorcet winner is unique.

To prove Theorem 2, we shall reformulate it as a known theorem of existence and uniqueness of a Nash

equilibrium of a game. This game is the so-called tournament game. It is a 2-player zero-sum symmetric

game, where actions are alternatives and where player 1 wins 1 if his action is preferred to player 2’s by T .

More explicitly, this gain is defined by  +1 if T : x� y,
−1 if T : y � x,

0 otherwise.
(6)

It is straightforward that the payment matrix is antisymmetric. In fact, this matrix payment is gain(T ) =

{gain(T, x, y)}(x,y)∈X2 . We then have the following immediate lemma:
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Lemma 1 The expected gain of player 1 with strategy x̃ against player 2 with strategy ỹ in the tournament

game of tournament T equals gain(T, x̃, ỹ).

Proof. This expected gain is computed by

Ex̃,ỹ [1T :x̃�ỹ − 1T :ỹ�x̃] = Ex̃,ỹ [1T :x̃�ỹ] − Ex̃,ỹ [1T :ỹ�x̃] = Px̃,ỹ [T : x̃� ỹ] − Px̃,ỹ [T : ỹ � x̃] , (7)

which is exactly the expression of gain(T, x̃, ỹ) and proves the lemma.

Importantly, the lemma implies the following corollary which connects randomized Condorcet winners to

Nash equilibria of the tournament game.

Corollary 1 A lottery is a randomized Condorcet winner of a tournament if and only if it is a Nash equilibrium

of the tournament game.

Proof. Because of the minimax theorem (von Neumann (1928)) and symmetry, the value of the tournament

game is necessarily 0. Thus, x̃ is a Nash equilibrium if and only if x̃ does not lose to any strategy ỹ.

According to Lemma 1, this corresponds to gain(T, x̃, ỹ) ≥ 0. By definition of the randomized tournament,

this is equivalent to Rand(T ) : x̃� ỹ for all ỹ ∈ ∆(O). Yet, this is equivalent to saying that x̃ is a Condorcet

winner of the randomized tournament.

It is easy to see that the tournament game of a finite tournament is a finite game. Therefore, von

Neumann (1928)’s minimax theorem and the Nash (1951) theorem ensure that a Nash equilibrium exists in

mixed strategies. Using the previous corollary, we thus know that every finite tournament T has a randomized

Condorcet winner. This proves the first part of Theorem 2. The second part is given by the following theorem

from the literature.

Theorem 3 (Fisher and Ryan (1992); Laffond et al. (1993)) Assume the tournament T ∈ T complete. Then,

its tournament game has a unique equilibrium. Plus, every best-reply to the equilibrium is played with a pos-

itive probability by the equilibrium.

We refer to the original papers and to Myerson (1996) for a proof of the theorem. What is important

for our purpose is that the theorem guarantees the uniqueness of a randomized Condorcet winner when T is

complete. Now, a better understanding of this equilibrium is given by the following corollary.

Corollary 2 Assume the tournament T ∈ T complete. If a probability distribution x̃ is the randomized

Condorcet winner, then, for any x ∈ X, we either have Px̃ [T : x̃� x] = Px̃ [T : x̃� x] or Px̃ [x̃ = x] = 0.

Proof. If x̃ is a Condorcet winner of the randomized tournament, then it beats any alternative x ∈ X. This

means that gain(T, x̃, x) ≥ 0, which corresponds to Px̃ [T : x̃� x] ≥ Px̃ [T : x̃� x]. Yet, Theorem 3 ensures

that all best-reply to x̃ are played with positive probability, which means that Px̃ [T : x̃� x] = Px̃ [T : x̃� x]

if and only if Px̃ [x̃ = x] > 0. This concludes the proof.

It can be shown that the reciprocal is not true. Indeed, if x, y, z ∈ X form a cycle, as well as w, y, z,

and if T : x � w, then the uniform distribution on w, y, z satisfy the properties of the corollary but is not

Condorcet winner, as it is beaten by x. Now, in the case where T is not complete, we do not necessarily have

the uniqueness of the randomized Condorcet winner. This is a degenerate case, for which we still have the

following theorem.

Theorem 4 The set of randomized Condorcet winners is a non-empty polyhedron.
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Proof. A randomized Condorcet winner is a lottery x̃ ∈ ∆(X) described by a vector p = (P[x̃ = x])x∈X ∈ RX
satisfying the three following linear constraints:

gain(T )p ≥ 0 and eT p = 1 and p ≥ 0, (8)

where e = (1, . . . , 1)T ∈ RX . Therefore, the set of randomized Condorcet winners is a polyhedron. Plus,

Theorem 2 implies that this polyhedron is not empty.

In practice though, when there is an odd number of voters, or when the number of voters is sufficiently

large, then T is complete and we do not have to involve the case where there are draws between alternatives.

2.3 The randomized Condorcet voting system

Finally, we can introduce the main contribution of this paper, which is the randomized Condorcet voting

system. This voting system strongly relies on Theorem 2. It requires voters to choose ballots a ∈ O that

order all alternatives. Similarly to preferences, we then define the ballots ã ∈ ∆(O) of the people as the

probability distribution that maps total orders to the ratio of people who voted these orders. The tournament

T (ã) is then the tournament of the ballots. If it is complete, then it has a unique randomized Condorcet

winner, which the randomized Condorcet voting system will elect.

While this tournament is almost always complete, let us propose a single tractable procedure that always

yields a randomized Condorcet winner of T (ã), even when it is not unique. To do so, we draw a direction

ζ ∈ RX from a standard normal distribution (or, equivalently, any isotropic distribution5). The choice of the

randomized Condorcet voting system is then the optimal solution of the following linear program:

Maximize
p∈RX

ζT p

Subject to : gain(T (ã))p ≥ 0,
eT p = 1,
p ≥ 0.

(9)

Interestingly, this is a simple linear program with O(|X|) of variables and constraints. It can thus be solved

efficiently. Let p∗(ζ, T (ã)) its optimum. It is uniquely defined with probability 1. In particular, Eζ [p∗(ζ, T (ã))]

is well-defined and belongs to the simplex of RO. Finally, we can define the randomized Condorcet voting

system.

Definition 3 The randomized Condorcet voting system C : ∆(O)→ ∆(X) elects the lottery Eζ [p∗(ζ, T (ã))] ∈
∆(O) when given the ballots ã ∈ ∆(O) of the people.

Importantly, the randomized Condorcet voting system satisfies the following property. We state it as a

proposition for its importance, even though it is immediate.

Proposition 1 For all preferences θ̃ ∈ ∆(O) and any lottery x̃ ∈ ∆(X), the majority likes the alternative

drawn by C (θ̃) at least more often to the one drawn by x̃ than the other way around. In other words, we

always have Rand(T (θ̃)) : C (θ̃)� x̃, or, equivalently, gain(T (θ̃),C (θ̃), x̃) ≥ 0.

Proof. This is by the definition of the randomized Condorcet voting system and of the randomized Condorcet

winner, combined with Lemma 1.

Finally, we conclude this section by highlighting tricky aspects of the function gain.

Remark 2 The quantity gain(T (θ̃), x̃, ỹ) is not to be confused with the difference of the probabilities that a

voter chosen randomly will prefer a random choice of x̃ to a random choice of ỹ rather than the other way

5By isotropic, we mean invariant by rotations of RX .
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around. Nor should it be confused with the difference of probabilities that a voter chosen randomly will prefer

the probability x̃ to ỹ. In other words, in general, the following quantities are not equal:

gain(T (θ̃), x̃, ỹ) 6= Pθ̃,x̃,ỹ
[
θ̃ : x̃ � ỹ

]
− Pθ̃,x̃,ỹ

[
θ̃ : x̃ ≺ ỹ

]
= Ex̃,ỹ

[
referendum(θ̃, x̃, ỹ)

]
, (10)

gain(T (θ̃), x̃, ỹ) 6= Pθ̃
[
Rand(T (θ̃)) : x̃� ỹ

]
− Pθ̃

[
Rand(T (θ̃)) : x̃� ỹ

]
. (11)

What gain(T (θ̃), x̃, ỹ) counts is rather the surpluses of times that the choice of x̃ will be preferred to that of

ỹ by the majority of the people. In other words, it really represents the phrase “majority rule”.

3 Incentive and Condorcet-compatibility

The revelation principle is a well-known result of mechanism design. Loosely, it asserts that, when we

aim at designing a decision procedure with players’ preferences that we do not know, we can, without

loss of generality, restrict ourselves to procedures that ask players to reveal their preferences to make a

decision. Such decision procedures are called direct mechanisms. More precisely, in our case, the revelation

principle guarantees that any voting system is perfectly equivalent to a direct mechanism. This means that

we can merely focus on voting systems where a ballot is a ranking a ∈ O. Accordingly to definitions of

Section 2.3, we also define the ballots ã ∈ ∆(O) of the people. A (randomized) voting system is then a

function V : ∆(O)→ ∆(X).

Now, an important concept of mechanism design and social choice theory is incentive-compatibility.

Roughly, incentive-compatibility requires truthfulness to be voters’ best strategies. In this section, we will

formalize this concept. Section 3.1 introduce further modelings necessary to define incentive-compatibility.

Then, Section 3.2 defines strong Condorcet-compatibility, which is a variant of incentive-compatibility com-

bined with a property related to Condorcet winners. We prove that there exists no strongly Condorcet-

compatible voting system. Finally, Section 3.3 introduces dominant strategy Condorcet-compatibility (DSCC)

and proves that the randomized Condorcet voting system is DSCC.

3.1 Preferences and strategies

To still be able to talk about incentive-compatibility in a randomized setting, we now need to extend the

definition domain of preferences θ ∈ O to compare independent lotteries x̃ and ỹ ∈ ∆(X). To do so, we will

consider θ : x̃ � ỹ when θ more often prefers the alternative drawn from x̃ to the one drawn from ỹ than the
other way around, i.e.

Px̃,ỹ(θ : x̃ � ỹ) ≥ Px̃,ỹ(θ : ỹ � x̃). (12)

When the inequality is strict, we denote θ : x̃ � ỹ.

Remark 3 This extension to probability distribution is not compatible with Von Neumann and Morgenstern

(1945) preferences. In particular, while θ is transitive on X, it is no longer transitive on ∆(X), as illustrated

by the examples of nontransitive dices (see Grime (2010)). However, it has the advantage of giving a canonical

ordering over ∆(X) given an ordering over X.

Intuitively, Von Neumann and Morgenstern (1945) preferences are richer than the order relation we have

here as they also describe by how much more x is preferred to y, than v is preferred to z. More precisely, there

are many Von Neumann and Morgenstern (1945) preferences that match a certain ordering of alternatives.

This indicates that using our order relation for lotteries leaves more room for incentive-compatible voting

system. In particular, the Gibbard (1978) theorem no longer applies to our setting.

Next, to define incentive-compatibility, we need to introduce strategies. A strategy is a mapping s : O →
∆(O), where s(θ) ∈ ∆(O) is the mix of ballots chosen by voters of preference θ. A more relevant way to

interpret this mix of ballots is to regard it as the way these voters spread their votes among the different

possible ballots. We denote S the set of strategies. What is more, we extend the domain of s to the set ∆(O)
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by s(θ̃) = E[s(θ̃)]. Then, if θ̃ are the preferences of the people, then s(θ̃) are the ballots of the people when

they follow strategy s.

Given a strategy s ∈ S, we define the two subsets Truthful(s) and Conspirator(s) of O defined by

Truthful(s) = {θ ∈ O | s(θ) = θ} and Conspirator(s) = {θ ∈ O | s(θ) 6= θ} (13)

The two sets Truthful(s) and Conspirator(s) obviously form a partition of the set O of preferences. Now, the

truthful strategy struth is defined as the identity function of O, i.e. struth(θ) = θ for all θ ∈ O. Equivalently,

a strategy s is truthful if Truthful(s) = O.

Also, we denote S∗ = S −{struth} the set of untruthful strategies. Equivalently, it is the set of strategies

s such that Conspirator(s) is not empty.

Lemma 2 Let the preferences θ̃ ∈ ∆(O), the ballots ã ∈ ∆(O) and a subset ⊂O of conspirators. Then, there

exists a strategy s ∈ S such that s(θ̃) = ã and Conspirator(s) = C if and only if Pθ̃[D] ≤ Pã[D] for all supset

D ⊃ O − C. In particular, if X is finite, this condition amounts to Pθ̃(θ̃ = a) ≤ Pã(ã = a) for all a /∈ C.

The proof is given in the appendix. The idea is that inequalities hold if and only if we can distribute the

ballots of conspirators so that we can obtain the probability distribution ã.

3.2 Strong Condorcet-compatibility

Now, note that, in general, each voter’s individual action does not affect the outcome at all. Thus, nearly

all ballots of the people is a Nash equilibrium. This leads us to modify the usual concept of incentive-

compatibility to adapt it for masses of voters rather than each of them individually. This idea is quite

realistic, as guidelines given by leaders to their followers yield such a deviation of a mass of voters.

One incentive-compatibility concept we define for the setting of voting systems rely on the notion of strong

Nash equilibrium.

Definition 4 A voting system V is strongly incentive-compatible if no set of conspirators has strict incen-

tives to deviate collectively from truthfulness. This means that if a set of conspirators deviate, at least one

conspirator does not gain strictly, i.e.

∀θ̃ ∈ ∆(O),∀s ∈ S∗,∃θ ∈ Conspirator(s), θ : V (s(θ̃)) � V (θ̃). (14)

Strong incentive-compatibility is equivalent to saying that truthfulness is always a strong Nash equilibrium.

Strong incentive-compatibility is called coalitional strategy-proofness in Penn et al. (2011) and group

strategy-proofness in Saporiti (2009). They introduced this concept by defining its opposite, which is what

they called coalitional manipulability. This corresponds to saying that V is not strongly incentive-compatible

if

∃θ̃ ∈ ∆(O),∃s ∈ S∗,∀θ ∈ Conspirator(s), θ : V (s(θ̃)) � V (θ̃). (15)

This concept leads us to define the strong Condorcet-compatibility.

Definition 5 A voting system V is strongly Condorcet-compatible if, for all the preferences θ̃ of the people

that yield a Condorcet winner x, V is strongly incentive-compatible and elects x.

Strong incentive-compatibility is often regarded as too strong. We prove this point with the following

theorem, which is one of the main contributions of this paper.

Theorem 5 There is no strongly Condorcet-compatible voting system.

Proof. The proof only requires 4 alternatives and 7 voters, among whom only 2 need to be assumed to be

conspirators. Let X = {w, x, y, z} and the ballots:
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a1 : x � y � z � w, a2 : z � x � y � w (16)

a3 : x � w � y � z, a4 : y � w � z � x, a5 : z � w � x � y. (17)

We define the ballots of the people by

7ã = a1 + a2 + a3 + 2a4 + 2a5. (18)

The weighted tournament WT (ã) is pictured in Figure 2, where weights have to be divided by 7.

Figure 2: Weighted tournament WT (ã)

Let V a strongly Condorcet-compatible voting system. We will show that no choice of V (ã) ∈ ∆(X) can

be made without leading to the possibility that ã is the ballot produced by conspirators who had incentives

not to reveal their preferences truthfully. This will show that V cannot exist. To do so, let us denote

pv = PV (ã)[V (ã) = v] for all v ∈ X.

Now, consider θy : z � w � y � x, and the preferences θ̃y ∈ ∆(O) of the people defined by

7θ̃y = a1 + a2 + a3 + 2a4 + 2θy. (19)

In other words, we are investigating the case, where the two θy were conspirators and voted a5 instead of θy.

We have 7referendum(θ̃y, y, x) = 1 > 0, yielding T (θ̃y) : y � x. Plus, as for ã, we have T (θ̃y) : y � z and

T (θ̃y) : y � w. Thus, y is Condorcet winner of θ̃y. To make sure that the two θy do not have incentives to

conspire, we cannot allow to have θy : V (ã)� y. This means that gain(T (θy),V (ã), y) ≤ 0, and corresponds

to PV (ã)[V (ã) ∈ {w, z}] ≤ PV (ã)[V (ã) = x]. This can be written pw + pz ≤ px.

We then investigate a similar manipulation by θz : x � w � z � y when the preferences of the people are

θ̃z defined by

7θ̃z = a1 + a2 + θz + 2a4 + 2a5. (20)

Similarly to above, we verify that z is the Condorcet winner of θ̃z. The strong incentive-compatibility of V
then implies that pw + px ≤ py.

Now consider θx : y � x � w � z and θ̃x defined by

7θ̃x = a1 + a2 + a3 + 2θx + 2a5. (21)

Alternative x is the Condorcet winner of θ̃x, implying py ≤ pw + pz.

Before going further, let us find out the implication of the three inequalities we have seen so far. Using

successively the second, third and first inequalities yields:

pw + px ≤ py ≤ pw + pz ≤ px. (22)
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This leads to pw ≤ 0, and, since probabilities are non-negative, pw = 0. It then follows that px = py = pz =

1/3. This is a condition V (ã) must satisfy to guarantee DSIC (which we shall define soon). Interestingly,

this is precisely the lottery prescribed by the randomized Condorcet voting system.

Back to the proof, let us now consider θ1w : x � y � w � z and θ2w : z � x � w � y and θ̃w defined by

7θ̃w = θ1w + θ2w + a3 + 2a4 + 2a5. (23)

Now, w is the Condorcet winner of θ̃w. Conspirators θ1w and θ2w both have incentive to conspire if px+py > pz
and px + pz > py. Since both do hold, we have a contradiction. This proves that a strongly Condorcet-

compatible voting system cannot exist.

3.3 Dominant-strategy Condorcet-compatibility

This impossibility theorem leads us to restrict ourselves to a weaker concept of incentive-compatibility. We

will use the well-known concept of dominant-strategy incentive-compatibility, albeit we slightly adapt it to

our setting.

Definition 6 A voting system V is dominant-strategy incentive-compatible (DSIC) if the group of voters of

preference θ ∈ Θ never have incentives to conspire, i.e.

∀θ̃ ∈ ∆(O),∀θ ∈ Θ,∀s ∈ S, Conspirator(s) = {θ} =⇒ θ : V (s(θ̃)) � V (θ̃). (24)

Plus, we say that a voting system is dominant-strategy Condorcet-compatible (DSCC) if, whenever the pref-

erences of the people yield a Condorcet winner, it elects it and is DSIC.

Note that DSIC corresponds to the strong incentive-compatibility when sets Conspirator(s) of conspirators

are reduced to singletons. Therefore, a strongly incentive-compatible voting system is DSIC. Similarly, strong

Condorcet compatibility implies DSCC.

In the literature, the usual definition of DSIC differs with ours, in the sense that it only applies to one

individual rather than a group of like-minded conspirators. However, as we have already pointed it out

through the issue with Nash equilibria, deviations of a single person usually have no effect on the outcome

of the vote. This is why the usual concept of DSIC is not relevant in our setting.

Another way to interpret our definition of DSIC is to consider the case where there is merely a small

number of voters, but these voters are given weights in their votes. This can happen, for instance, in a

European Union vote where Germany’s ballot counts more than Luxembourg’s, because its population is of

much greater size. In such a case, it is not hard to see that the usual concept of DSIC coincides with ours.

A major result regarding the randomized Condorcet voting system is the following result.

Theorem 6 (Peyre (2012c)) The randomized Condorcet voting system C is DSCC.

Proof. Evidently, C elects the Condorcet winner when it exists. Let now θ̃ ∈ ∆(O) the preferences of the

people, which we assume to yield a Condorcet winner x ∈ X. Let θ ∈ Θ the preference of conspirators, and

s their strategy. Let s(θ̃) = ã. We will show that θ must in fact prefer x to C(ã), which will prove that

conspirators did not have incentive to conspire.

By definition of the voting system C , we must have T (ã) : C (ã)� x. Using Lemma 1, this corresponds

to gain(T (ã),C (ã), x) ≥ 0. Yet, for any y ∈ X, we know that T (θ̃) : x� y, since x is the Condorcet winner.

Thus, if y beats x in the ballots, it must be because some conspirators inverted x and y in the ballots, hence

favoring y over x. More precisely, if T (ã) : y � x, then θ : x � y. Thus,

{y ∈ X | T (ã) : y � x} ⊂ {y ∈ X | θ : x � y}. (25)

As a result, we obtain the following inequality:

0 ≤ gain(T (ã),C (ã), x) ≤ gain(T (θ), x,C (ã)). (26)
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This shows that θ : x � C (ã), and proves that conspirators did not have incentive to deviate from truthfulness.

This is what we had to prove.

4 Uniqueness

Interestingly, the randomized Condorcet voting system is nearly the unique DSCC voting system. Before

better formalizing and proving this idea, let us start by providing the intuitive argument for uniqueness.

4.1 Intuition

The intuition of the uniqueness was given to me by Rémi Peyre in informal discussions. The idea is that,

provided there are enough of them, conspirators can invert arcs of the tournament of preferences they agree

with. Indeed, if θ : x � y, we have referendum(s(θ), y, x) ≥ −1 = referendum(θ, y, x) for any strategies s ∈ S.

So, by conspiring, θ may increase the ratios of ballots favoring y over x and invert an arc T (θ̃) : x � y to

T (s(θ̃)) : x� y. However, if T (θ̃) : y � x, a conspirator θ cannot invert the arrow he does not agree with.

Now, imagine that a voting system V differs with the randomized Condorcet voting system for certain

ballots ã of the people. Then, there must be some alternative x ∈ X such that gain(T (ã),V (ã), x) < 0, i.e.

PV (ã) [T (ã) : V (ã)� x] < PV (ã) [T (ã) : V (ã)� x] . (27)

Let us take an example to refine our intuition. Consider X = {v, w, x, y, z} and the tournament T (ã) depicted

in Figure 3. Equation (27) can be restated in this example as

PV (ã) [V (ã) ∈ {y, z}] < PV (ã) [V (ã) ∈ {v, w}] . (28)

Figure 3: Inversion of arcs

Now, consider θ : v � w � x � y � z. The key idea of our proof of uniqueness lies in the idea that the arcs

T (ã) : v � x and T (ã) : w � x have been inverted by the conspiring strategy of θ, from a tournament T (θ̃)

where x was the Condorcet winner. Plus, equation (28) proves that θ : V (ã) � x, as θ more often prefers

the alternative picked by V (ã) to x than the other way around. This shows that θ indeed has incentive to

deviate from truthfulness to find itself in the case of V (ã).

The difficulty though is to guarantee that there indeed exist some initial preferences θ̃ ∈ ∆(O) for which

x is Condorcet winner and such that conspirators θ are sufficiently numerous such that they can invert arcs

from x to v and w and reach exactly the ballots ã. In the sequel, we show that when ã is in a neighborhood

of the uniform distribution ũ, and if the voting system is defined on the weighted graph, then a DSCC voting

system must coincide with the randomized Condorcet voting system.
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4.2 Preliminaries

To better formalize this idea and to prove it, we need to better understand the source of non-transitivity in

tournaments of preferences of the people. This is provided by the following lemma and its two corollaries.

In essence, they prove that all tournaments can be written T (θ̃) for some preferences θ̃ ∈ ∆(O).

The mapping referendum : ∆(O)×∆(X)×∆(X)→ R can be regarded as a function ∆(O)→ RX×X that

maps preferences of the people to square matrices of entries referendum(θ̃, x, y), for x, y ∈ X. Now, recall

that ∆(O) can be regarded as the simplex of the vector space RO. Therefore, the function referendum can

be uniquely extended to a linear map R : RO → RX×X .

Lemma 3 The image of R coincides with the space of antisymmetric matrices.6

Proof. It is straightforwards to see that the image of referendum is included in the space of antisymmetric

matrices. Reciprocally, to show the equality, we need only show that any element of the canonical basis of

antisymmetric matrices is in the image of referendum. Such an element R ∈ RX×X is of the form Rxy =

−Ryx = 1 for some two different alternatives x, y ∈ X, and Rvw = 0 in any other case. Denote v1, . . . , vn the

other alternatives. We define θ̃ ∈ RO by θ̃ = (θ1 + θ2)/2, where

θ1 : y � x � v1 � . . . � vn and θ2 : vn � . . . � v1 � y � x. (29)

We then have referendum(θ̃, v, w) = 0 if (v, w) /∈ {(x, y), (y, x)} and referendum(θ̃, x, y) = −referendum(θ̃, y, x) =

−1, which proves that R = R(θ̃).

We define the taxicab norm of a matrix as the sum of the absolute values of its entries.

Corollary 3 All weighted tournaments with a sum of all weights of at most 1 are obtained from some ballots

ã ∈ ∆(O).

Proof. In the proof of Lemma 3, we showed that each element of the canonical basis is the image referendum(θ̃)

of some preferences θ̃ ∈ ∆(O) of the people. Yet, such elements of the canonical basis are of taxicab norm

2. Since R is linear and ∆(O) convex, referendum(∆(O)) therefore contains all convex combinations of the

elements of the canonical basis of antisymmetric matrices. In particular, all antisymmetric matrices of taxicab

norm 2 are images by referendum of some preferences of ∆(O). Plus, the uniform distribution ũ ∈ ∆(O) on

all ballots is trivially in the kernel of referendum. A convex combination involving ũ then enables to obtain
any antisymmetric matrix of taxicab norm at most 2. Such antisymmetric matrices correspond to weighted

directed antisymmetric graphs whose sum of weights is at most 1. This proves the corollary.

Corollary 4 All directed graphs can be generated by some ballots ã ∈ ∆(O).

Proof. It suffices to put weights
2

|X|(|X| − 1)
on all arcs and apply the previous theorem.

The two corollaries enable us to exhibit ballots which produce certain kinds of weighted tournaments.

4.3 Proof of near uniqueness

This enables us to prove the uniqueness of the DSCC voting system for a large class of voting systems, and

for an important type of ballots.

Theorem 7 A DSCC voting system based on weighted tournaments must agree with the randomized Condorcet

voting system whenever the weighted tournament has a sum of weights less than 1.

6An antisymmetric matrix R is a matrix whose transposition RT equals its opposite −R, i.e. RT = −R.
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Proof. By contradiction, assume that V disagrees with the randomized Condorcet voting system C for some

weighted tournament WT whose sum of weights is at most 1. We denote T the tournament derived from

WT . Let us consider ballots a+vw, a
−
vw ∈ O defined by

a+vw : v � w � x1 � . . . � xn and a−vw : xn � . . . � x1 � v � w. (30)

Like in the proof of Lemma 3, the choices of x1, . . . , xn are irrelevant. Denoting λvw = gain(T, v, w), the

weighted tournament WT is generated by ballots ã (that is, WT = WT (ã)), where

ã =
1

2

∑
T :v�w

λvwa
+
vw +

1

2

∑
T :v�w

λvwa
−
vw + δũ, (31)

where δ = 1−
∑

T :v�w
λvw is 1 minus the sum of all weights of arcs of WT . By assumption on WT , we have

δ > 0.

Since V disagrees with C , there must be some alternative x ∈ X which beats V (ã) in the tournament.

Denoting Z = {z1, . . . , zn} and Y = {y1, . . . , ym} the sets of alternatives which respectively are beaten and

beat x, this means that P [V (ã) ∈ Z] > P [V (ã) ∈ Y ]. Evidently, by definitions of sets Y and Z, we have

λyx > 0 and λxz > 0 for all y ∈ Y and z ∈ Z.

We then define the preference θ ∈ O of conspirators by

θ : z1 � . . . � zn � x � y1 � . . . � ym. (32)

Notice that we have θ : V (ã) � x. We can now define the preferences θ̃ ∈ ∆(O) of the people by

θ̃ =
1

2

∑
T :v�w

(v,w)/∈Y×{x}

λvw(a+vw + a−vw) +
1

2

∑
y∈Y

λyxa
+
yx +

ε+
1

2

∑
y∈Y

λyx

 θ + (δ − ε)ũ, (33)

with 0 < ε < δ. Importantly, any ballot a ∈ O except θ is more frequent in ã than in θ̃. Thus, by Lemma 2,

conspirators θ can have produced the ballots ã. Moreover, we have:

∀z ∈ Z, referendum(θ̃, x, z) = λxz+
1

2

∑
y∈Y

λyx −ε− 1

2

∑
y∈Y

λyx = λxz −ε,

∀y′ ∈ Y, referendum(θ̃, x, y′) = −1

2

∑
y∈Y

λyx +ε+
1

2

∑
y∈Y

λyx = +ε.

Recall that λxz > 0 for all z ∈ Z, hence we can choose ε smaller than all λxz. By doing so, we guarantee

that referendum(θ̃, x, z) and referendum(θ̃, x, y) are positive for all z ∈ Z and y ∈ Y . Thus, x is a Condorcet

winner for θ̃. Yet, by creating ballots ã, conspirators θ have obtained strictly better, as we have seen that

θ : V (ã) � x. This shows that V is not DSIC, and concludes the proof.

Corollary 5 The randomized Condorcet voting system is the only DSCC voting system based on the tourna-

ment of the ballots.

Proof. This is immediately deduced from the previous theorem, by adding weights of 2/|X|2 to the arcs of

the graph of the tournament.

While the theorems here indicate that a sort of uniqueness of DSCC voting systems, at least in a neigh-

borhood of the uniform distribution, I have not succeeded in characterizing these DSCC voting systems.

I suspect them not to be unique though. My intuition is that some ballots are so extreme that there are not

many preferences that could have led to them, which makes incentive-compatibility not restrictive enough to

impose uniqueness.
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5 Median voter

In practice, alternatives and voters in politics range on a left-right line. This structure has led to many median

voter theorem (Black (1958); Roberts (1977); Rothstein (1990, 1991); Gans and Smart (1996)). Formally,

there are two unrelated structures which fit the median voter theorem. In both cases, a total left-right order

relation on alternatives is given. We denote x < y the fact that alternative x is strictly on the left of y. Plus,

accordingly to classical notations for integers, we denote intervals of alternatives as follows:

(x,∞) = {y ∈ X | x < y}, [x, y] = {z ∈ X | x ≤ z ≤ y}. (34)

Similarly, we define intervals (−∞, x), (x, y), [x, y). . .

5.1 Single-peakedness and single-crossing

Denote x∗(θ) ∈ X the preferred alternative of θ ∈ O, also known as its ideal point. The set OSP of single-

peaked preferences is the set of preferences θ ∈ O which prefer alternatives closer to their ideal point x∗(θ)

to extreme alternatives. Formally, single-peakedness requires that if y < x < x∗(θ) or x∗(θ) > x > y, then

θ : x∗(θ) � x � y. In other words, the further away an alternative is from θ’s ideal point, the less it is

appreciated by θ. A partial order of preferences θ ∈ OSP can then be defined accordingly to their ideal

points. A median voter is then a voter whose ideal point is a median of the ideal points of all voters. In fact,

in this setting, the concept of median voter rather refers to the median of ideal points. While the existence of

a median voter is not guaranteed a priori, it is satisfied whenever there is an odd number of voters or nearly

always when the number of voters is large enough.

In contrast, single-crossing requires the existence of a subset OSC ⊂ O all preferences belong to, and on

which another total left-right order relation is defined. Similarly to the left-right order of alternatives, we

denote θ1 < θ2 for θ1, θ2 ∈ OSC the fact that θ1 is on the left of θ2. Plus, single-crossing requires that, if

x < y and θ1 < θ2, we have(
θ1 : y � x⇒ θ2 : y � x

)
and

(
θ2 : x � y ⇒ θ1 : x � y

)
. (35)

This criterion means that all voters preferring x to y are on the left of the others. Once again, if there is an

odd number of voters, or in most cases when there is a large number of voters, the preferences θ̃ ∈ ∆(OSC)

of the people yield a median voter.

Single-crossing and single-peakedness are two unrelated assumptions. Neither is implied by the other.
Also, note that, while the set OSP of single-peaked preferences is uniquely defined, the set OSC of single-

crossing preferences is not. Here are examples to better understand what is meant by these concepts.

Example 2 Consider w < x < y < z four alternatives. The set OSP of single-peaked preferences is given by

OSP =

{
w � x � y � z, x � w � y � z, x � y � w � z, x � y � z � w,
y � x � w � z, y � x � z � w, y � z � x � w, z � y � x � w

}
. (36)

Let us show that OSP is not single-crossing. Denote θ1 : x � y � z � w and θ2 : y � x � w � z. Since

x < y, θ1 : x � y and θ2 : y � x, we must have θ1 < θ2. However, since w < z, θ2 : w � z and θ1 : z � w,

we must also have θ2 < θ1. Thus, it is not possible to order preferences of OSP . In particular, θ1 and θ2 are

not single-crossing.

By opposition, imagine that the alternative y, despite being at the center, is not very attractive to voters,

while w is more charismatic than x. We may then obtain the following set OSC of single-crossing preferences:

OSC = {w � x � z � y, w � z � x � y, z � w � x � y, z � x � w � y, z � x � y � w}. (37)

The preferences of OSC are related to one another by swaps of two alternatives which are consistent with the

left-right orders of the alternatives. It is noteworthy that several of these preferences are not single-peaked.
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Also, note that, because the order relation on single-crossing preferences is total, any single-crossing

subset of preferences has a smallest and a largest elements. These correspond to the most leftist and the

most rightist preferences of the subset. This remark will be useful for Theorem 9.

Now, the well-known median voter which works in both cases is the following result.

Theorem 8 (Black (1958); Roberts (1977); Rothstein (1990, 1991); Gans and Smart (1996)) If prefer-

ences are single-peaked or single-crossing and yield a median voter, then the median voter’s favorite alterna-

tive is the Condorcet winner.

We refer to original papers or Myerson (1996) for a proof of this theorem. Importantly, this theorem

shows that the left-right line assumption greatly simplifies the setting, and that ballots in practice are in fact

much simpler than the general setting we have been dealing with so far.

5.2 Manipulable voting systems

However, as pointed out by Penn et al. (2011), this apparent simplicity vanishes as we involve incentive-

compatibility. In particular, Penn et al. (2011) prove that a deterministic strongly incentive-compatible

voting system must be dictatorial even when preferences are assumed single-peaked.

In the last decades, Schulze (2011) introduced a seductive deterministic voting system which elects Con-

dorcet winners when they exist. When they do not, Schulze proposes to remove the arcs of the weighted

tournament which have the smallest weights until the tournament yields a Condorcet winner. Unfortunately,

we show that the Schulze method fails to be incentive-compatible even in the simplified setting of preferences

assumed both single-crossing and single-peaked, and with the weaker version of incentive-compatibility.

Proposition 2 Even for preferences both single-peaked and single-crossing with a unique median voter, the

Schulze method is not DSIC.

Proof. Let x < y < z three alternatives and preferences both single-crossing and single-peaked defined by

θ1 : x � y � z, θ2 : y � x � z, θ3 : y � z � x, θ4 : z � y � x. (38)

Consider 15 voters whose preferences θ̃ ∈ ∆(O) are

15 θ̃ = 7θ1 + 3θ2 + 3θ3 + 2θ4. (39)

Then, 15 referendum(θ̃, y, x) = −7 + 3 + 3 + 2 = 1 > 0 and 15 referendum(θ̃, y, z) = 7 + 3 + 3−2 = 11. Thus, y

is the Condorcet winner of θ̃, and the one that the Schulze method elects. But now consider that conspirators

θ1 choose ballot s(θ1) = a : x � z � y, and that other voters are truthful (i.e. Conspriator(s) = {θ1}). Then,

15 s(θ̃) = 7a+ 3θ2 + 3θ3 + 2θ4. (40)

We still have 15 referendum(s(θ̃), y, x) = 1 and 15 referendum(s(θ̃), x, z) = 7 + 3 − 3 − 2 = 5. But now,

15 referendum(s(θ̃), z, y) = 7−3−3+2 = 3. Thus, we now have a Condorcet paradox T (s(θ̃)) : y � x� z � y.

This is illustrated in Figure 4.

Figure 4: On the left is the tournament T (θ̃), where y is Condorcet winner, while on the right is the tournament
T (s(θ̃)) for which the Schulze method elects x
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At this point, the Schulze method consists in removing the arc with the lowest weight, which is T (s(θ̃)) :

y � x, leading to the election of x. Since conspirators θ1 indeed prefer x to y, they benefit from conspiring,

which proves that the Schulze method is not DSIC.

Another recently proposed voting system is majority judgment introduced by Balinski and Laraki (2010).

In this setting, voters are assumed to have more cardinal-like preferences. They are asked to note each

alternative on a certain scale. Then, for each alternative, we compute the median of his notes. The elected

alternative is then the one with the highest median note. Unfortunately, once again, this voting system is

still not incentive-compatible. For instance, the median voter can easily manipulate the notes. Granted,

this sounds unlikely that this unknown median voter does so in practice, notably because he cannot possibly

know that a priori. However, by considering a collective deviation, this sounds more likely.

Proposition 3 Even for preferences both single-peaked and single-crossing with a unique median voter, the

majority judgment is not DSIC.

Proof. The proof uses a similar example to the previous proof. Consider the preferences of Table 1.

Table 1: Example of majority judgment

Population Preference x y z
7 θ1 4 3 0
3 θ2 2 4 0
3 θ3 0 4 2
2 θ4 0 1 4

As proved earlier, the preferences are both single-peaked and single-crossing with a unique median voter.

The median notes are 2 for x, 3 for y and 0 for z. The winner is thus the Condorcet winner y. However, if

conspirators θ1 vote (4, 1, 0) for x, y and z, then x becomes the winner.

These propositions confirm the indications given by Penn et al. (2011) of the limits of the known voting

systems. Now, Moulin (1980) proposed a dominant-strategy incentive compatible voting system for single-

peaked preferences. Saporiti (2009) goes on proving its strong incentive-compatibility for single-crossing

preferences. This method is based on the median rule and its variants, which consist in electing the winner

accordingly to the median voter. However, this method requires the knowledge of the position of alternatives

on the left-right line, and uses this knowledge to restrict the set of ballots voters can choose from. Yet,

although the left-right line structure may well exist informally, it may not be official, and hence it may be

unacceptable to use it to design the voting system. This would prevent us from using the left-right line

structure to define the voting system, which make the approaches by Moulin (1980) and Saporiti (2009)

inapplicable in practice.

5.3 Median voter and the randomized Condorcet voting system

Before studying how the randomized Condorcet voting system handles single-peaked or single-crossing pref-

erences, let us prove a general fact about the conspirators in this left-right line setting.

Lemma 4 When preferences are single-peaked or single-crossing with a unique median voter, conspirators

must either be all strictly on the left or all strictly on the right of the median voter.

Proof. Let V a voting system. Denote x the Condorcet winner of the single-peaked preferences θ̃ ∈ ∆(O).

Denote Z = (−∞, x) and Y = (x,∞). Now, consider a strategy s. We denote s(θ̃) = ã. The strict incentive

to conspire means that

∀θ ∈ Conspirator(s), θ : V (ã) � x. (41)

If preferences are single-peaked or single-crossing and θ ∈ Conspirator(s) is on the right of the median voter,

we know that θ : x � z for all z ∈ Z. Indeed, if preferences are single-peaked, this is due to θ’s ideal point
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being on the right of x. And if preferences are single-crossing, this is because x cannot be switched with a

left alternative as we look preferences on the right of the median voter. Since the median voter ranked x

better than any z ∈ Z, all voters on its right must do so too.

Now that we know that {z ∈ X | θ : x � z} ⊃ Z, we necessarily have

0 < gain(θ,V (ã), x) = PV (ã) [θ : V (ã) � x]− PV (ã) [θ : V (ã) ≺ x] ≤ PV (ã)[Y ]− PV (ã)[Z]. (42)

Therefore, we have PV (ã)[Y ] > PV (ã)[Z]. But if θ ∈ Conspirator(s) is on the left of the median voter, we must

have the opposite inequality. Both cases cannot occur simultaneously, which proves that all conspirators must

be on the same side of the left-right spectrum with regards to the median voter. This proves the lemma.

Finally, we show that the randomized Condorcet voting system behaves very well in the left-right line

setting. More precisely, whether preferences are single-peaked or single-crossing, the randomized Condorcet

voting system is strongly incentive-compatible.

Theorem 9 The randomized Condorcet voting system is strongly incentive-compatible when preferences are

single-peaked or single-crossing with a unique median voter.

Proof. The proofs in the two cases of single-peakedness and single-crossing are slightly different, and are

given in the appendix. To avoid confusion, we wrote them in two different blocks.

This theorem ensures that in many practical applications, the randomized Condorcet voting system

behaves exactly as Condorcet would have wanted voting systems to behave. Namely, it guarantees the

election of Condorcet winners when they exist, even when voters try to conspire.

6 Conclusion

In this article, we have introduced the randomized Condorcet voting system. By defining it as the choice

of the Condorcet winner of the randomized tournament, we have shown that it is a natural generalization

of Condorcet’s insights to preferences which yield a Condorcet paradox. As often in mathematics, natural

structures have mesmerizing properties, and this is the case of the randomized Condorcet voting system. Most

importantly, it is DSCC, and we have given strong indications that it is essentially unique. In addition, in

many cases in practice, the structure of the preferences of the people, which often corresponds to a mixture of
single-peakedness and single-crossing, even guarantees the strong incentive-compatibility. These fascinating

mathematical properties of the randomized Condorcet voting system lead us to strongly recommend its

implementation in practice.

This is why we end this article with remarks on this implementation. First, note that if voters do not

want to bother ranking all the alternatives they do not need to. In fact, any partial (and not even necessarily

transitive!) ordering of the candidates will do, as what we need for the randomized Condorcet voting system

is pairwise comparisons of alternatives. Typically, a voter may rank his three favorite alternatives, leaves a

blank and add his least favorite one at the bottom of his ballot. Now, evidently, if ballots are to be read by

hand, it may take a while to add up all the pairwise comparisons. But since no more than |X|(|X| − 1)/2

pairwise comparisons need to be tracked, these can be easily computed using computers. The linear program

proposed in equation (9) then only features about |X| variables and constraints. It can thus be solved nearly

instantaneously for reasonable sizes of X. Plus, interestingly, because the result of the vote only depends

on the tournament, a graphical representation of the induced subgraph of the main alternatives can then

be displayed to explain and analyze the outcome of the votes. For these reasons, we end this paper by

recommending the use of the randomized Condorcet voting system in practice.
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Appendices

A Proof and formal statement of Theorem 1

Let Σn the set permutations of {1, . . . , n}. Any permutation σ ∈ Σn acts onOn by (σ·(θ1, . . . , θn))k = θσ−1(k).

In other words, σ permutes the labels of voters. We also define the equivalence relation ∼ on On by θ ∼ θ′

if there exists σ ∈ Σn such that σ · θ = θ′. In other words, two preference profiles are equivalent if they are

the same up to labeling.

Lemma 5 For all integers n ≥ 1, there is a canonical injection ιn : (On/ ∼)→ ∆(O) that counts frequencies

of preferences.

Proof. We define the function ιn by Pιn(a)[ιn(a) = θ] =
1

n
|{k | ak = θ}| for all θ ∈ O. It is straightforward

to see that if σ · a = b, then Pιn(b)[ιn(b) = θ] = Pιn(a)[ιn(a) = θ] for all θ ∈ O. In other words, if a ∼ b, then

ιn(b) = ιn(a), which proves that ιn is well-defined.

Finally, we need to prove that ιn is injective. But this follows from the fact that two sets {k | ak = θ} and

{k | bk = θ} are in bijection if and only if they have the same cardinals. So, if ιn(a) 6= ιn(b), there cannot be

a permutation σ ∈ Σn such that σ · a = b.

Now, formally, what we meant in Theorem 1 was that, for all integers n ≥ 1, there is a canonical surjection

from the set of functions ∆(O)→ Z onto the set of anonymous functions On → Z.

Proof. We first notice the trivial bijection f between the set of functions (On/ ∼) → Z and the set of

anonymous functions On → Z. Indeed, the fact that the anonymity of a function On → Z is exactly the

fact that the function (On/ ∼)→ Z is well-defined. We can then use the canonical injection ιn to define the

canonical surjection required for Theorem 1. Let V : ∆(O)→ Z. Then, we define κn(V ) : (On/ ∼)→ Z by

κn(V )(a) = V (ιn(a)). It is straightforward to see that κn is a surjection. Composing the bijection f with

the surjection κn yields the surjection f ◦ κn from the set of functions ∆(O)→ Z onto the set of anonymous

functions On → Z.

B Proof of Lemma 2

Proof. First notice that θ̃ could have produced ã with a set C of conspirators if and only if there exists a

strategy s such that Conspirator(s) = C and s(θ̃) = ã. Consider that we indeed have s(θ̃) = ã, and let us

prove the direct implication of the lemma. Let D ⊂ O − C. Then,

Pã[D] = Eθ̃
[
Ps(θ̃)[D]

]
= Eθ̃

[
Ps(θ̃)[D]

∣∣∣θ̃ ∈ D]Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ D]Pθ̃[O −D]. (43)

But since D ∩ C = ∅, for all θ ∈ D, we have θ /∈ C. Thus, s(θ) = struth(θ) = θ. Thus, Ps(θ)[D] = 1. Thus, the

expression above simplifies to

Pã[D] = Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ D]Pθ̃[O −D]. (44)

Therefore, Pã[D] ≥ Pθ̃[θ̃ ∈ D], hence proving the direct implication.

Reciprocally, if Pθ̃[C] = 0, then the inequality Pθ̃[D] ≥ Pã[D] implies θ̃ = ã. Thus, struth(θ̃) = ã, which

proves that θ̃ could have produced ã with the set C of conspirators. Otherwise, Pθ̃[C] 6= 0. We define

s : C → ∆(O) by Ps(θ)[C − {θ}] = 0,

1. ∀E ⊂ C,Ps(θ)[E ] = Pã[E ]/Pθ̃[C].
2. ∀D ⊂ O − C,Ps(θ)[D] =

(
Pã[D]− Pθ̃[D]

)
/Pθ̃[C].
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Assuming Pθ̃[D] ≤ Pã[D] for all supsets D ⊃ O−C, the probabilities we have defined here are all non-negative.

It is straightforward to see that the additivity of the probability is satisfied. Plus,

Pθ̃[O] = Pθ̃[C] + Pθ̃[O − C) =
Pã[C]
Pθ̃[C]

+
Pã[O − C)− Pθ̃[O − C]

Pθ̃[C]
= 1. (45)

Therefore, s(θ) is a well-defined probability, and s a well-defined strategy of support C. Plus, for D ⊂ O−C,

Ps(θ̃)[D] = Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ ∈ C]Pθ̃[C] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ C ∪ D]Pθ̃[O − C ∪ D] (46)

= Pθ̃[D] +
Pã[D]− Pθ̃[D]

Pθ̃[C]
Pθ̃[C] = Pã[D], (47)

and, similarly for any E ⊂ C, we have

Ps(θ̃)[E ] = Eθ̃
[
Ps(θ̃)[E ]

∣∣∣θ̃ ∈ C]Pθ̃[C] =
Pã[E ]

Pθ̃[C]
Pθ̃[C] = Pã[E ]. (48)

These two equalities prove that s(θ̃) = ã, which is what we had to prove.

C Proof of Theorem 9 for single-peakedness

Proof. Let C the randomized Condorcet voting system. We use the same notations x, θ̃, Y, Z, s and ã as in

the proof of Lemma 4. Without loss of generality, we can assume that conspirators are all strictly on the

right of the median voter.

Let z ∈ Z. As we have seen in the previous proof, we have θ : x � z for all θ ∈ Conspirator(s). Since all

conspirators agree with arrows T (θ̃) : x � z for z ∈ Z, they cannot invert these. Therefore, T (ã) : x � z.

Yet, for conspirators to gain by conspiring, C (ã) must differ from x, which means that there must be some

y ∈ Y such that T (ã) : y � x. Let y∗ the most leftist alternative which beats x, i.e.

y∗ = min{y ∈ Y | T (ã) : y � x}. (49)

We denote Y− = (x, y∗) and Y+ = [y∗,∞).

Since x is Condorcet winner of θ̃, we know that T (θ̃) : x � y∗. Thus, conspirators must have inverted

the arc from x to y∗. Since conspirators can only invert arcs they agree with, this means that there must be

a conspirator θ ∈ Conspirator(s) who agrees with arc T (θ̃) : x� y∗. This conspirator thus thinks θ : x � y∗.
We will show that assuming that he had incentive to conspire leads to a contradiction.

Now, by definition of y∗, we have T (ã) : x� y for all y ∈ Y−, i.e.

Y− ⊂
{
w ∈ X | T (ã) : x� w

}
and {w ∈ X | T (ã) : w � x} ⊂ Z ∪ Y+. (50)

Combining this with the property T (ã) : C (ã) � x satisfied by the randomized Condorcet voting system

yields

PC (ã)[C (ã) ∈ Y−] ≤ PC (ã) [T (ã) : x� C (ã)] ≤ PC (ã) [T (ã) : C (ã)� x] ≤ PC (ã) [C (ã) ∈ Z ∪ Y+] . (51)

Now, strict incentives to conspire for θ imply that

PC (ã) [θ : C (ã) � x] > PC (ã) [θ : x � C (ã)] . (52)

Since θ : x � y∗, we know that the ideal point of θ is necessarily on the left of y∗. As a result, for y ∈ Y+,

we have θ : x � y∗ � y. Therefore,

Y− ⊃
{
w ∈ X | θ : w � x

}
and

{
w ∈ X | θ : x � w

}
⊃ Z ∪ Y+. (53)

which leads to PC (ã)[C (ã) ∈ Y−] > PC (ã) [C (ã) ∈ Z ∪ Y+]. This contradicts equation (51), and proves the

theorem for single-peaked preferences.
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D Proof of Theorem 9 for single-crossing

Proof. We reuse the same notations x, θ̃, Y, Z, s and ã as in the proof of Theorem 9, except that we now

consider θ̃ single-crossing. Let θm the median voter. Lemma 4 allows us to assume without loss of generality

that Conspirator(s) ⊂ (θm,∞). Then, we have, once again, T (ã) : x� z for all z ∈ Z.

Let now θ = min Conspirator(s) the most leftist conspirator. Denote Y + and Y − defined by

Y + = {y ∈ Y | θ : y � x} and Y − = {y ∈ Y | θ : x � y}. (54)

Contrary to the proof of Theorem 9, Y + now corresponds to the alternatives some conspirators prefer to x,

as the sign ” + ” now refers to θ’s preference rather than the left-right line of alternatives.

Let y+ ∈ Y +. Since for any θ′ ∈ Conspirator(s), we have θ < θ′, single-crossing implies that θ′ : y+ � x.

Therefore, conspirators all disagree with arcs T (θ̃) : x � y+, and hence cannot invert them. Therefore,

T (ã) : x� y+. Since this holds for all y+ ∈ Y +, we have

Y + ⊂ {w ∈ X | T (ã) : x� w} and {w ∈ X | T (ã) : w � x} ⊂ Z ∪ Y −. (55)

Yet, the fundamental property of the randomized Condorcet voting system applied to x then implies

PC (ã)[C (ã) ∈ Y +] ≤ PC (ã) [T (ã) : x� C (ã)] ≤ PC (ã) [T (ã) : C (ã)� x] ≤ PC (ã)

[
C (ã) ∈ Z ∪ Y −

]
. (56)

This contradicts the strict incentives for θ to conspire, i.e.

PC (ã)[C (ã) ∈ Y +] > PC (ã)

[
C (ã) ∈ Z ∪ Y −

]
. (57)

Thus, we reach the same conclusion for single-crossing preferences.
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D.C. Fisher and J. Ryan. Optimal strategies for a generalized ”scissors, paper, and stone” game. The American
Mathematical Monthly, 99(10):935–942, 1992.

J.S. Gans and M. Smart. Majority voting with single-crossing preferences. Journal of Public Economics, 59(2):
219–237, 1996.

A. Gibbard. Manipulation of voting schemes: a general result. Econometrica: Journal of the Econometric Society,
pages 587–601, 1973.

A. Gibbard. Straightforwardness of game forms with lotteries as outcomes. Econometrica: Journal of the Econometric
Society, pages 595–614, 1978.

J. Grime. Non-transitive dice, 2010. http://singingbanana.com/dice/article.htm.

G. Laffond, J.-F. Laslier, and M. Le Breton. The bipartisan set of a tournament game. Games and Economic Behavior,
5(1):182–201, 1993.

D.C. McGarvey. A theorem on the construction of voting paradoxes. Econometrica: Journal of the Econometric
Society, pages 608–610, 1953.

H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437–455, 1980.

R.B. Myerson. Fundamentals of social choice theory. Center for Mathematical Studies in Economics and Management
Science, Northwestern University, 1996. http://home.uchicago.edu/rmyerson/research/schch1.pdf.

J. Nash. Non-cooperative games. Annals of Mathematics, pages 286–295, 1951.

E.M. Penn, J.W. Patty, and S. Gailmard. Manipulation and single-peakedness: A general result. American Journal
of Political Science, 55(2):436–449, 2011.

http://singingbanana.com/dice/article.htm
http://home.uchicago.edu/rmyerson/research/schch1.pdf


22 G–2014–74 Les Cahiers du GERAD
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cnrs.fr/Et-le-vainqueur-du-second-tour-est.html.

R. Peyre. La quête du graal électoral. Images des Mathématiques, CNRS, 2012c. http://images.math.cnrs.fr/La-
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