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Abstract: This report proposes two electricity pricing strategies for the Major of an American town of
16,000 people. An implementation with the AIMMS software is presented along with an interface that was
built to be used by people not familiar with optimization. This work was awarded second place in the 6th

AIMMS-MOPTA Optimization Modeling Competition in 2014.

Résumé : Ce rapport propose deux stratégies de fixation des prix de l’électricité pour un maire d’une petite
ville américaine de 16 000 habitants. Une implémentation avec le logiciel AIMMS est présentée, ainsi qu’une
interface graphique simple d’utilisation à l’usage de personnes non expertes en optimisation. Ce travail a
remporté la deuxième place à la 6e compétition d’optimisation et de modélisation AIMMS-MOPTA en 2014.
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1 Problem 1: Determining price based on available data

This section will examine our approach for the problem presented in Section 1.1 of the AIMMS Competition

Outline. The objective of this problem is to determine a pricing strategy for the Major to use that satisfies the

constraints he has laid out. The basic idea of our approach is to estimate the price-consumption relationship

with a piecewise linear function for each time period and each class. The piecewise linear interpolation is

calculated in AIMMS for each class of customer and each hour of the day using an optimization problem.

After that, the consumption for each customer is generated with a normal distribution from the approximate

consumption of the class it belongs to. The result is the price that the Major should charge each customer

for each time of the day and the estimated consumption level (also for each customer and each time of the

day) that he can expect.

The remaining of this section is divided as follows: Section 1.1 will describe the assumptions and modeling

decisions we made; Section 1.2 describes the process we use to solve the problem including the two types of

optimization models solved; Section 1.3 presents the solution we found and Section 1.4 presents an analysis

of both our process and solutions.

1.1 Modeling decisions and assumptions

Certain assumptions and modeling decisions have been made to the model presented in the AIMMS Compe-

tition Outline. These assumptions/changes are: varying individual customer consumption around the class

consumption average, constructing a piecewise linear relationship between consumption and price, bounding

price and discretizing price. These modeling decisions are discussed in depth in the sections that follow.

1.1.1 Customer classes and individual consumptions

Five classes of customers have been defined by the Major. Let Φ be a mapping function which returns the

class Φ(i) of each customer i. In addition, we assume that all customers within a customer class follow a

class consumption profile and we assume that the consumption of a customer in a class is a random variable

following a normal distribution around this class consumption profile. Thus, the consumption of the customer

i belonging to the class Φ(i) at the time period tj can be decomposed on the following form:

C̃pi,tj = ĈpΦ(i),tj
+Xi,tj

where p is the price, C̃pi,tj is an estimation of the consumption of a customer i at the time period tj when

the price is p, ĈpΦ(i),tj
is the approximation of the consumption for the class Φ(i) at the time period tj

when the price is p, and Xi,tj is a random variable which represents the deviation in kWh from the class

consumption average. This random variable Xi,tj follows a truncated normal distribution N (0, σ(Φ(i), j)))

such that ĈpΦ(i),tj
+ Xi,tj ≥ 0 . The standard deviation σ(c, j) is equal to 30% of the consumption at the

price of $0.20/kWh. This value of 0.30% is the one observed for small residence customer in [4]. As we did

not find reliable informations about the other classes we took the same value for each class, but it could be

improved.

In the preprocessing done prior to solving the model we define the consumption ĈpΦ(i),tj
of each class at

each time period and then add the random part which will individualize each customer.

At each time period tj the price (pc,tj ) is the same for every customer in a class c. We denote S as the set

of customer classes (|S| = 5). The following implications result from the assumption that the consumption

of each customer is under the form ĈpΦ(i),tj
+Xi,tj and that the prices pi,tj are equal for all customers within

a class:

• The variable ĈpΦ(i),tj
and pi,tj only need to be included once for each customer class.

• As opposed to summing over all customers in the objective function we can sum over each customer class

and multiply this by the number of customers in that class. Let N be the total number of customers
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in all classes and Ic := {i | Φ(i) = c} be the subset of customers that are in class c. Hence, |Ic| is the

number of customers in class c, and we then have:

N∑
i=1

m∑
j=1

C̃pi,tjpΦ(i),tj =

∑
c∈S

m∑
j=1

|Ic|Ĉpc,tjpc,tj

+

 N∑
i=1

m∑
j=1

Xi,tjpΦ(i),tj


Figure 1 shows an example of how the consumption of small residence customers is distributed at 6:00 a.m.

and 8:00 p.m. We randomly generated the deviation using the process described above and the normal

function in AIMMS. The bars show the number of customers that have a consumption within each range.

Figure 1: Example of individual small residence consumption at 6:00 a.m. and 8:00 p.m. for problem 1

1.1.2 Consumption-price relation

The relationship between consumption and price is complicated. Our decision was to model the relationship

of consumption vs price with piecewise linear functions. The consumption-price data was provided in five

spreadsheets. Figure 2 shows the consumption at each price for a standard small residential customer with

each curve represents one of the 24 time periods.

Figure 2: Relationship between price and consumption for small residents

Examining the data provided we observed one half of a near quadratic relationship between consumption

and price, however, AIMMS was unable to find feasible solutions to this non-linear problem (specifically the

program status was ‘locally infeasible’). As a result we further simplified the model and assumed a piecewise

linear relationship. We then decided to approximate the consumption-price curves by using a piecewise linear

function. We decide that each piecewise function will have 4 pieces meaning that for each customer class at
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each time period we are approximating the consumption-price data by 4 linear functions. The 4 pieces are

defined by the ranges: p ∈ [0.1, 0.15]; p ∈ [0.15, 0.225]; p ∈ [0.225, 0.325] and p ∈ [0.325, 0.4].

Figure 3 shows two specific curves (price-consumption data from small residence at 6:00 a.m. and 8:00 p.m.)

and their respective piecewise approximation.

Figure 3: Piecewise estimation for small residence at 6:00 a.m. (j = 6) and 8:00 p.m. (j = 20)

Note that the curves for all customer classes in S and all time periods tj , ∀j = 1, . . . ,m follow a similar

pattern, therefore we apply the piecewise linear relationship to all 5*24=120 curves. The piecewise linear

relationship is a linear relationship on each portion b, and is modeled as follows:

If pi,tj ∈ Pb, then αbi,tjpi,tj + βi,btj = Ĉ
pΦ(i),tj

Φ(i),tj
∀c ∈ S,∀j = 1, . . . ,m

where pΦ(i),tj is the price for the class Φ(i) at time tj . Appropriate values of αbi,tj and βi,btj are found by

solving an optimization model that minimizes the total absolute error between the piecewise function and

the real data. The details are discussed in Section 1.2.1.

1.1.3 Price bounds

Bounds were added to the price because the further the price deviates from the range used in the provide

data the less valid the piecewise approximation becomes. Specifically since the data provided only varied in

price from $0.10 to $0.40 our piecewise functions are only valid within that range. Outside this range we have

no data to describe how price and consumption relate. For example when the price approaches 0 there would

likely be very strange behaviour in the actual level of consumption the Major could expect. In addition,

since price and consumption are inversely related at some point the piecewise function would conclude that
consumption becomes 0. This is also not practical as energy consumption is in integral part of our society

at the moment and unlikely to disappear.

1.1.4 Discretization of price

As opposed to allowing the price that the Major will charge to be continuous we consider a finite number of

potential prices. We discrete price between the minimum and maximum price provided with a step size of

$.005/kWh. We chose these values to balance the accuracy of the model with computational time. Increasing

the number of potential prices increases the computational complexity (and therefore the run time), however

having too few price options limits the accuracy of the result and may limit the Majors’ revenue. In addition,

this discretization will be easy for the customers to understand. Having a price with many decimals will

be inconvenient during the billing process. We believe 3 decimals is much more manageable, especially for

the residential consumers. It may be possible to change the step size (possibly to $.001/kWh) as software

improves or if the Major is willing to invest more computational time.

1.2 Process

This section will describe the algorithm we used to solve the problem. The basic idea of our method is to

approximate the relationship between consumption and price with a piecewise regression model and then use

this as parameters within the main model. The following outlines the steps within the process:
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1. Define the relationship between price and consumption for each customer class and for each time period

by solving an optimization problem. We assume a piecewise linear relationship See Section 1.1.2 for

details.

2. Discretize price and for each price find the approximate consumption using the piecewise functions

found above. Approximate consumption is found for each customer class at each time period for each

price. See Section 1.1.2 for details.

3. The consumptions found in the previous step are considered averages as they are approximations of

a representative customer. For each customer we estimate their consumption deviating around this

average. See Section 1.1.1 for details.

4. Using an optimization model we select the price that each customer class should be charged to maximize

revenue. Section 1.2.2 presents the optimization model and describes how binary variables are used.

1.2.1 Piecewise estimation model

Within this section we describe the linear piecewise model that is used to approximate the relationship

between consumption and price. We begin by defining the notation used:

Parameters:

P := {0.1, 0.125, 0.15, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4} is the set of prices considered.
C̄pc,tj := the consumption for customer class c, at time tj and price p. This is the exact information provided

in the spreadsheets provided with the AIMMS Competition Report.
Pb := is the range of prices over which the bth piece of the piecewise function is used to estimate the

consumption. (Note Pb ⊆ P ∀b = 1, . . . , 4).

Variables:

∆p := the error between the real value and our approximation at price p
∆+
p := the absolute value of the error between the real value and our approximation at price p

αbc,tj , β
b
c,tj := coefficients of the bth piece of the piecewise linear estimation of consumption for customer

class c at time tj

The following model finds the linear regression line (αbc,tjp+βbc,tj ) that minimizes the error from the given

value of consumption (C̄pc,tj ). The model is solved for each customer class and each time period and the

optimal solution (αbc,tj , β
b
c,tj ) defines the linear equation of the bth piece in the piecewise function. Note that

the last two constraints and the minimization imply that ∆+
p = |∆p|.

(αbc,tj , β
b
c,tj ) = min

∑
p∈P

∆+
p

s.t. αbc,tjp+ βbc,tj − C̄
p
c,tj = ∆p ∀p ∈ Pb,∀b = 1, . . . , 4

∆+
p ≥ ∆p ∀p ∈ P

∆+
p ≥ −∆p ∀p ∈ P

1.2.2 Main model

This section will define the optimization model we use to find the prices and describes the simplifications

and assumptions that have been made from the non-linear model presented in Section 1.1 of the AIMMS

Competition Outline. We begin by presenting the notation used within the model:
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Parameters:

N := the total number of customers (N = 16, 000)
I := the set of customer (|I| = N)
P := {.1 : .005 : .4} is the set of prices that will be considered.
S := the set of customer classes (|S| = 5)

Φ(i) := the class of customer i. Therefore Φ(i) ⊂ S and |Φ(i)| = 1 (since each customer only belongs
to one class).

αbc,tj , β
b
c,tj := coefficients of the bth piecewise model that defines the linear relationship between price and

consumption at time tj for customer class c

C̃pi,tj := the estimated consumption of customer i at time tj when the price is p.

C̄p
a

c,tj := the consumption for customer class c, at time tj and the current price pa. This is the exact
information provided in the spreadsheet provided with the AIMMS Competition Report.

The following parameters are defined as in the competition report: m, tj , µ
+, µ−,Wi, γ,S1,S2.

Pb ∀b = 1, . . . , 4 is defined as in the previous section, however note that P is defined differently. Recall that

αbc,tj and βbc,tj are parameters in the main model, however they are variables in the piecewise linear problems

(see Section 1.2.1).

Variables:

vpc,tj :=

{
1 if all customers in class c are charged price p at time tj

0 otherwise
∀c ∈ S,∀j = 1, . . . ,m, ∀p ∈ P

The main mathematical model is as follows:

max

N∑
i=1

m∑
j=1

∑
p∈P

(tj − tj−1)(vpΦ(i),tj
)(p)(C̃pi,tj )

s.t. µ−Wi ≤
m∑
j=1

(
(tj − tj−1)vpΦ(i),tj

C̃pi,tj

)
≤ µ+Wi ∀i ∈ I

∑
i∈I1

1

|I1|
∑
p∈P

(
vpΦ(i),tj

p
)
≤ γ

∑
i∈I2

1

|I2|
∑
p∈P

(
vpΦ(i),tj

p
)
∀j = 1, . . . ,m

∑
p∈P

vpc,tj = 1 ∀c ∈ S, j = 1, . . . ,m

vpc,tj ∈ {0, 1} ∀c ∈ S, j = 1, . . . ,m, p ∈ P

where Wi =

 m∑
j=1

(tj − tj−1)C̄p
a

Φ(i),tj


The last two constraints ensure that only one vpi,tj variable will be nonzero for each customer class and each

time period. Therefore the revenue of each class at each time period will equal
∑
p∈P(vpΦ(i),tj

)(p)(C̃pi,tj ). The

objective function sums these revenues to get the total revenue. The first constraint models the consumption

deviation relations from the model presented in Section 1.1 of the AIMMS Competition Report. The difference

is that as opposed to using a variable consumption we use the parameter for estimated consumptions. Similar

to the objective function vpΦ(i),tj
is used so that only the estimated consumption associated with the selected

price will be nonzero. Similarly models the price equity.

1.3 Solution

The process presented in Section 1.2 is coded into AIMMS version 3.13. Figure 4 shows two of the page

pages for problem 1.

The Major runs the aforementioned process on the page on the left. Following the steps on the left of this

page the Major should begin by clicking ‘Load Basic Data’ to initialize many of the parameters. Note that
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Figure 4: User interface: The main page for problem 1

this step also runs some pre-processing which includes the piecewise regression models that calculate αbi,tj
and βbi,tj . The Major should then click either ‘Random Case’ to generate the random portion of the data

related to the deviation of customer consumption or ’Load Case’ to load a pre-existing random case. Clicking

‘Solve the Problem’ runs the main optimization (and runs some post-processing to calculate values needed

for the charts). Finally clicking ‘See Results’ takes the Major to a new page that summarizes the results.

The ’Status’ of this page is currently solving the main optimization model. This status identifier will change

between ’Processing...’, ‘Solving...’ and ‘Completed!” depending on the status. The page on the right is the

main results page. It shows the total revenue (objective value of the main model) and the change in revenue

the Major can expect. Clicking the links takes the Major to specific results.

The entire process takes approximately 15 minutes. It takes just over a minute to solve all of the piecewise

linear models and 10.2 seconds to solve the main optimization model. The majority of the time is spent dealing

with the large quantity of random data associated with the deviation in customer consumption.

1.3.1 Optimality

The model is a binary optimization model with linear constraints and solves to find an optimal solution

(AIMMS:Program Status is ‘optimal’). This means that an integer solution was found and that it was the

(or one of the) feasible integer solutions with the best objective value. It is important to note that the

solution provided is optimal for the model we solved and not for the exact model provided in the AIMMS

Competition Outline. We are not able to state if the actual optimal value from the model presented in

the competition outline would be larger or smaller than our solution since our model is neither a relaxation

(would result in a ‘better’ objective value) or a tightening (would result in a ‘worse’ objective value). Our

model is an approximation as we approximate the relationship between consumption and price.

1.3.2 Parameter choice

The model has 5 parameters: γ, µ−, µ+ as defined in the AIMMS Competition Outline and p and p̄ as the

minimum and maximum value of the price. The values of the parameters are as follows:

γ := 0.80 µ− := 0.80 µ+ := 4 p := 0.10 p̄ := 0.40

The choice of γ is such that the average price of small residential, large residential and office building and

commercial customers will be at most 80% of the price paid by shift and no-shift industrial customers. The

choice of µ− is such that the consumption will not decrease too much from the current consumption. We

found µ+ had quite an impact on the model and in the end was selected so that the model was feasible. Recall

that customer consumption is explicitly found for each potential price before the main optimization model

is solved. This means that individual customer consumption is already bounded from deviating too much

from an unrealistic value (specially it does not deviate much from the representative customer consumption

at each time period). If the price drops one would expect consumption to increase and if the price drastically

drops then customers could choose to significantly increase their consumption (for example they may buy a
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dishwasher or do laundry more often). The values we chose are the minimum and maximum price for which

data is provided. Section 1.1.3 describes our reasoning in full.

1.3.3 Results

Using the parameters outlined in the previous section the total revenue (i.e. optimal objective value) of our

approach is $198,796.75. Comparing this with the current total price $141,707.74 gives the Major a total gain

of $57,089.01. The exact prices and consumption for each customer class and each time period are shown

in the Appendix (see Tables 1 and 2 respectively). Figure 5 shows the price and consumption for small

residential customers. The results for the other 4 classes can be found under the ‘Price’ and ‘Consumption’

link of the interface respectively but have been omitted from this report due to space constraints.

Figure 5: Small residence price and consumption results for problem 1 at each time period

1.4 Analysis of model and solution

1.4.1 Advantages and limits of the model

Advantages of the model:

• The range of prices within each customer class of the course of the 24 hours is small.

• Our model has linear constraints and a linear objective function.

• Our solution methodology uses an approximation of the relationship between consumption and price.

However the piecewise approximate is a very close approximation of the real data. having all linear

constraints has advantages.

Limits of the model:

• The price is different for each hour of the time period and for each customer class. This structure is

not practical for the Major or for consumers, especially since the current system uses a single price of

$0.20/kWh. The Borough does not have the ability to track each customers’ consumption, therefore it

is fair to assume that tracking different prices for each hour would also be logistically difficult (if not

impossible). In addition there are many concerns with how using different hourly prices would affect

the customers. For example customers likely would not understand how these prices were calculated or

why prices were higher at certain times and reporting the prices would be difficult in a single bill.

• The generation of the deviation consumption for each customer can be criticized. Indeed, we choose

to generate a deviation different at each hour for each customer, whereas it could also be possible

to generate a relative deviation for each customer for the entire day. However, this second approach

assume that the deviation behaviour of a customer is similar during the entire day. This is a strong

assumption, because it is possible that a customer who consumes more at one time of the day will use

less electricity at a other time periods. Both approaches have advantages and limits and perhaps a

discussion with the Major will help to make the choice he would prefer.

• After the random generation of consumption deviation the distribution of customer consumption does

not always follow a normal distribution. An example is shown in Figure 6. This happens because some

of the customer classes are very small. This only happens in the small sized classes: office building and

commercial, shift industrial and no-shift industrial.
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Figure 6: Example of individual consumption that does not follow a normal distribution

2 Problem 2: Determining price based on the monetary utility of the
customers

This section will present our work for the problem from Section 1.2 of the AIMMS Competition Outline. A

bilevel optimization problem is proposed based on the monetary utility of the customer. The basis of our

approach is to decouple the inner problem from the outer problem. The inner problem is used to relate

consumption to price and the newly reformulated outer problem selects the best pricing strategy. Section 2.1

presents the assumptions and modeling decisions we have made and includes some background information

about electricity markets, usual prices and electricity meters (see Section 2.1.3). The process used and the

newly proposed optimization model that simplifies the bilevel problem is discussed in Section 2.2. Finally, the

solution we found and an analysis of both our process and solutions are in Sections 2.3 and 2.4 respectively.

We begin with the following definitions that are essential to our approach:

• A pricing policy is a set of prices for each hour of the day. The πth pricing policy is denoted as the

vector [pπtj ]∀j .

• Price-consumption strategy defines the relationship between price and consumption based on cus-

tomer class. It is a pricing policy and the consumption that would be expected.

2.1 Decisions and assumptions

This section describes the assumptions and modeling decisions that we have made. We assume that each

customer in a class has an average consumption that is similar to the average consumption of the class. In

addition we assume that each customers’ consumption deviates from this average and that this deviation

follows a truncated normal distribution. This is identical to the previous problem (see Section 1.1.1). We

also make the same assumptions about the bounds on the price. Our additional assumptions/decisions are:

how the bilevel model is separated; the discretization of the price; and the use of ‘peaks’ and the patterns to

describe the price. These are discussed in depth in the sections that follow.

2.1.1 Separating the bilevel problem

Recall that the monetary utility has the form:

Uij(x) = 1− e−aijx

where aij is such that Uij(C̄
i
tj ,pa) = ui and ui is defined as in the AIMMS Competition Outline (namely

ui = 0.9 for small residential customers, ui = 0.85 for large residential customers, ui = 0.9 for office building

and commercial customers, ui = 0.75 for shift industrial customers and ui = 0.8 for no-shit industrial

customers).

The utility function is used within the inner problem of the bilevel model defined in the AIMMS Com-

petition Outline. Bilevel problems are difficult to solve therefore we made the modeling decision to separate
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the two parts. The inner problem assumes price is fixed and determines a customers’ consumption (based

on total price and monetary utility). The outer problem finds the optimal price using the consumption that

would be determined by the inner problem. We simplify the model by not considering all prices in the outer

model. First we pick a finite combination of prices called pricing policies and find the expected consump-

tion. Then we solve the outer problem to select one of these pricing policies. We describe what pricing

policies are and how we select them in Section 2.2.1. Note that the consumption is still the result of the

inner optimization problem, however the inner problem can be solved separately (making the bilevel model

no longer bilevel) and we are only considering a finite subset of possible prices. The outer problem now is

to select from the different vectors with price and the corresponding consumption the one which maximizes

the revenue. The details of the inner problem and the revised outer problem are discussed in Section 2.2.2

and 2.2.3 respectively.

2.1.2 Discretization of price

The reasons for discretizing price are similar to the previous problem (see Section 1.1.4). However for this

problem the potential prices are limited to 13 values which are bounded between 0.10/kWh and $0.40/kWh

in increments of $0.025. The approach for this question is more complicate than in the previous one and it

was necessary to discretized with a larger step size.

2.1.3 Electricity market and peaks

In addition to discretizing price we assume the prices during a day follow a pattern. This section presents

some background informations about the electricity market prices and explain our decision to categorize

the price throughout the day and to define patterns. A short overview of some big American electricity

distributor websites (PG&E, BGE, Portland General Electric) shows that in most of the cases residential

and commercial building customers have a maximum of 3 different prices through out a day. These are

categorized as off-peak, partial-peak and on-peak. Figure 7 shows a typical way that a 24 hour period is

divided into these categories. In fact, as said in [2], most of the ‘Domestic variable-rate meters generally

permit two to three prices (“peak”,“off-peak” and “shoulder”)’. As a result of these findings we have decided

to have no more than 3 prices during the day for each customer.

Figure 7: Different residential prices at PGE [1]

For industrial customer it seems to be more complicate, because the consumption is larger and having

one price for every hour is common in practice. But it is also important to notice that applying more than

3 prices per day require specific equipment, which is very expensive, specially when amperage is high.

For small and big customers the cost of equipment and the installation of smart meter is huge. For exam-

ple, in Montreal, Canada the company Hydro-Québec will spend $845 CAD for the smart meter (including
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installation) for each residential customer [3]. The price for the equipment for high amperage (for industry

customers) is even more expensive. This initial investment can not be ignored and reinforces our choice of

three different prices per day for each class of customer.

As our model does not take into account the cost for the Major to buy electricity from producer (and

the price is not the same at every hour) we will build our own period from the analysis of the consumption

of the total of customers. The periods will be the same for every class of customers. Figure 8 shows the

overall consumption at pa as a function of the hour of the day. This overall consumption is computed from

the provided data by calculating the total consumption for all of the 16,000 customers of the town.

Figure 8: Overall Consumption

We have decided to have the following periods:

• On-Peak: from 6:00 a.m. to 8:00 a.m. and from 3:00 p.m. to 10:00 p.m.

• Partial-Peak: from 9:00 a.m. to 2:00 p.m.

• Off-Peak: from 10:00 p.m. to 5:00 a.m.

With this simplification the new problem is then to determine the prices for each period and each type of

customer.

2.2 Process

Our model is based on generating price-consumption strategies solutions (which means price policies and

the corresponding class consumptions). Specifically this means that the inner problem is rewritten as a

set of potential solutions and then the outer problem selects the ‘best’ solution that also satisfies the other

constraints. The set of potential solutions (called price-consumption strategies) is determined by solving

the inner problem to find the consumption for varies prices (called pricing policies). The goal of the outer

model is to select the best price-consumption strategy for each customer class i. The process we used for this

problem is outlined below:

1. We determined an appropriate set Π of pricing policies to be considered. We examine the specifics of

these pricing policies in Section 2.2.1.

2. The relationship between price and consumption is defined by solving the inner problem for each

customer class i ∈ S and each pricing policies pπtj ∀j = 1, . . . ,m to determine the expected consumption

Cπc,tj ∀j = 1, . . . ,m for customer class c and the πth pricing policy. The combination of a pricing policy

and related consumption is called a price-consumption strategy.

3. The main model is solved to determine which price-consumption strategy is used for each customer

class c ∈ S.
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2.2.1 Determining pricing policies

The decision of which pricing policies to consider is critical since adding too many will make the problem

computationally difficult yet adding too few will make the feasible region so small that the solution is very

far from the true optimal and therefore not helpful for the Major to make accurate decisions.

We have decided that each pricing policies will have three different prices, one for each of the on-peak,

partial-peak and off-peak periods in a day. The prices will vary between $0.10/kWh and $0.40/kWh in

increments of $0.025. Our strategy generates a total of 13∗13∗13 = 2197 different pricing policies (|Π| = 2197),

because we do not impose that the prices during on-peak are higher than during off-peak. As there is a finite

number of vectors pπtj to test, we are able to compute each Cπi,tj by solving the inner problem.

2.2.2 Inner problem

The purpose of the inner problem is to define the relationship between price and consumption for each

customer. Solving the inner problem for each individual customer would be too time consuming, instead we

solve the inner problem for each class c and each pricing policy π to find an estimated ‘average’ consumption

for class c when the prices are pπtj ∀j = 1, . . . ,m. We then deviate this consumption to find the expected

individual customer consumption.

Parameters:

pπtj := the price at time tj using the πth pricing policy

The following parameters are defined as in the AIMMS Competition Outline: m, tj , µ
+,Wi, λi, aij .

Variables:

Ĉπc,tj := the class consumption expected for the class c at time tj if pricing policy pπtj is used.

The model (defined below) is solved for all π ∈ Π and for all c ∈ S.

min

m∑
j=1

(tj − tj−1)
(
Ĉπc,tjp

π
c,tj − λc

(
1− e−acjĈ

π
c,tj

))
s.t.

m∑
j=1

(tj − tj−1)Ĉπc,tj ≤ µ
+Wc

where Wc =

 m∑
j=1

(tj − tj−1)C̄pc,tj


2.2.3 Main model

This section defines the main model that is used to select which price-consumption strategy the Major should

pick for each customer class c ∈ S. First we define the parameters and variables used within the model and

then present the complete formulation.

Parameters:

Cπc,tj := the consumption expected for customer class c at time tj if pricing policy pπtj is used.

Xi,tj := is the deviation consumption for the customer i at the time period tj .
pπtj := the price at time tj for the πth pricing policy

C̄pc,tj := the consumption for customer class c, at time tj at the current price pa. This is the exact
information provided in the spreadsheet provided with the AIMMS Competition Report.

The following parameters are defined as in the competition report: m, tj , µ
+, µ−,Wi, γ, I1, I2 and the

following are defined as in Section 1.2.2: S, N .
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Variables:

vπc :=

{
1 if the πth pricing policy is used for class c

0 otherwise

Note that since
∑
π∈Π v

π
c = 1 ∀c ∈ S and vπc ∈ {0, 1} ∀π ∈ Π, c ∈ S then exactly one vπc equals 1 for each

customer class and the rest equal 0. This corresponds to the one price-consumption strategy that is selected

for each customer class.

We can then define the main problem as follows:

max
∑
π∈Π

m∑
j=1

∑
i∈I

vπΦ(i)

(
|IΦ(i)|CπΦ(i),tj

pπtj +
∑
i∈Ic

Xi,tjp
π
tj

)

s.t.
∑
π∈Π

∑
i∈I1

1

|I1|
vπΦ(i)p

π
tj ≤ γ

∑
π∈Π

∑
i∈I2

1

|I2|
vπΦ(i)p

π
tj ∀j = 1, . . . ,m

∑
π∈Π

vπc = 1 ∀c ∈ S

vπc ∈ {0, 1} ∀c ∈ S, ∀π ∈ Π

2.3 Solution

The process presented in Section 2.2 is coded into AIMMS version 3.13. Figure 9 shows two of the main

pages for problem 2.

Figure 9: User interface: The main pages for problem 2

Similarly to problem 1, the Major follows the steps on the left of the left page to run problem 2. The

Major should begin by clicking ‘Load Basic Data’ to initialize many of the parameters. Note that this step

also runs some pre-processing which includes the generations of price policies and the inner optimization

models that calculate price-consumption strategies. The Major should then click either ‘Random Case’ to

generate the random portion of the data related to the deviation of customer consumption or ’Load Case’ to

load a pre-existing random case. Clicking ‘Solve the Problem’ runs the outer optimization problem (and runs

some post-processing to calculate values needed for the charts). Finally clicking ‘See Results’ takes the Major

to a new page that summarizes the results. The ’Status’ of this page is currently not running anything and

is waiting for the Major to select his next option. The page on the right is the main results page. Clicking

the links takes the Major to specific results.

The entire process takes just over 5 minutes. It takes less than a minute to solve all the inner problems

and 20.4 seconds to solve the outer optimization model. As in problem 1 the majority of the time is spent

dealing with the large quantity of random data associated with the deviation in customer consumption.

2.3.1 Optimality

The model is a binary optimization model with linear constraints and solves to find a feasible integer solution

(AIMMS: Program Status is ‘IntegerSolution’ and AIMMS:SolverStatus is ’ResourceInterrupt’). Since the
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integer solution is feasible but not guaranteed to be optimal we have a lower bound on the objective value of

our outer optimization model. In addition, the process we used to simplify the model given in the AIMMS

Competition Outline to get our outer optimization model is also a relaxation meaning that our solution is a

lower bound on the actaul optimal value of the model in the competition outline. Note that our model is a

relaxation since we are restricting the feasible region by only solving the inner problem for a finite number

of prices. Combining these two facts means that the integer solution AIMMS found is a lower bound on the

actual optimal value of the model in the competition outline.

2.3.2 Parameter choice

The model has 7 parameters: λi for each customer class, γ and µ+. We chose the following values for these

parameters:

λSR := 0.15 λLR := 0.50 λOB := 300 λSI := 200 λNSI := 2,000 γ := 0.80 µ+ := 1.2

Let us define the policy πa so that all prices are equal to pa (i.e. pπ
a

tj = pa ∀tj ∈ T ). We chose λi in such

a way that for the policy πa the consumption Cπ
a

i,tj
is approximately equal to the current consumption C̄itj ,pa

(i.e. about the same order of magnitude).

2.3.3 Results

Using the parameters outlined in the previous section the total revenue (i.e. optimal objective value) of our

approach is $141,115.16. Comparing this with the current total price $139,500.44 gives the Major a total

gain of $1,614.72. The exact prices and consumption for each customer class and each time period are shown

in the Appendix (see Tables 3 and 4 respectively). Figure 10 shows the price and consumption for small

residential customers. The results for the other 4 classes can be found under the ‘Price’ and ‘Consumption’

link respectively but have been omitted from this report due to space constraints.

Figure 10: Small residence price and consumption results for problem 2 at each time period

2.4 Analysis of model and solution

2.4.1 Solution analysis

One can remark that the highest price in a day, for each customer, is not necessary during the on-peak time

period. Although this is not realistic there is a mathematical explanation. Looking at the provided data

we see that most of the time the consumption of a customer decreases when the price increases. However,

the model of the monetary utility for the customers prevents the consumption from decreasing too much.

Thus, the price can increase without resulting in a equivalent decrease in consumption (for example during

the night for small residential customers). Since the total consumption is bounded within a range dependent

on current consumption (deviation is no more than µ+%) the total price is maximized by increasing price.

We can also observe that the price $0.40/kWh appears very often (in more than 60% of the policy pricing).

This results from the maximization of price (discussed above) being forced to the price upper bound. In

addition with no lower bound on the consumption we observed that most of the time the consumption in the

solution is lower than in the past (when the price is set at $0.20/kWh).
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Monetary utility (and the priority given to it) clearly affects the relationship between price and con-

sumption. We examined what would happen if we changed this priority by changing the values of λi. If we

decrease the value of λi then the prices of the optimal strategy decrease. This is because the weight given to

the monetary utility decreases. However, consumption also decreases even for the current price $0.20/kWh,

this is not good as it does not reflect the data that is provided. Namely at the current price we know the

current level on consumption.

2.4.2 Advantages and limits of the model

Advantages of the model:

• This model is more realistic than the one in question 1 because it takes into account the reaction of the

customers.

• This approach is flexible for the Major. He has the possibility to test some other pricing policies and

he does not necessary have to respect the periods. This would involving changes to the parameter used

to define pricing policies in the AIMMS code.

• The strategies provided by this model are practical. Specifically, it is not necessary to adapt the

equipment of the electricity network and easy to explain the changes to the customers.

Limits of the model:

• The Major is a distributor of electricity, not a producer. A more exact model would take into account

the price of the energy that the Major must first buy. If this was done, the gains of the solution of

question 2 would probably increase because (as described above) the consumption in the solution is less

than in the reality, with a price of $0.20/kWh. Moreover, he will then buy the electricity at different

prices depending of the hours of the day. The objective function must take the cost of the electricity

into account and most distributors vary their price by the time of day. The on-peak and off-peak will

be more relevant if the price the Major has to pay also follows this pattern.

• The choice of the λi is very difficult to make and the choice of the model for the monetary utility can

be questioned.

• As in 1.4.1, the way we generate the deviation can be improved.

3 Further recommendations

The two problems presented in the AIMMS Competition Outline highlight a key difficulty in the energy field,

namely the difficulty in modeling the relationship between price and consumption. The true relationship is

too complex to model exactly and therefore was simplified. In Section 1 we approximated the relationship

between price and consumption with a piecewise linear model. In Section 2 we simplified the bilevel nature

of price and consumption by solving the inner problem for a subset of prices to define the corresponding

consumption. Further analysis in the following areas could help strengthen the Majors understanding of

energy markets and help improve the way we model the situations:

• We highly recommend to the Major to include the cost of energy since the Major is likely not a producer.

• If the Major opts for the second approach with the monetary utility, we suggest to make a deeper

analysis based on a market study and an analysis of the behaviour of the consumer to determine the

model of this utility and the coefficients λi used to define the trade-off.
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4 Appendix

Table 1: Price of energy in $/kWh found in problem 1 (i.e. pi,tj at optimality)

Time Small Large Office Shift No-Shift
Period Residential Residential Building Industrial Industrial

1 0.11 0.4 0.4 0.4 0.4
2 0.11 0.4 0.4 0.4 0.4
3 0.11 0.4 0.4 0.4 0.4
4 0.115 0.4 0.4 0.4 0.4
5 0.1 0.4 0.4 0.4 0.4
6 0.105 0.4 0.4 0.4 0.4
7 0.11 0.4 0.4 0.4 0.4
8 0.115 0.4 0.4 0.4 0.4
9 0.105 0.4 0.4 0.4 0.4
10 0.11 0.4 0.4 0.4 0.4
11 0.115 0.4 0.4 0.4 0.4
12 0.11 0.4 0.4 0.4 0.4
13 0.105 0.4 0.4 0.4 0.4
14 0.115 0.4 0.4 0.4 0.4
15 0.11 0.4 0.4 0.4 0.4
16 0.11 0.4 0.4 0.4 0.4
17 0.11 0.4 0.4 0.4 0.4
18 0.11 0.4 0.4 0.4 0.4
19 0.11 0.4 0.4 0.4 0.4
20 0.105 0.4 0.4 0.4 0.4
21 0.11 0.4 0.4 0.4 0.4
22 0.105 0.4 0.4 0.4 0.4
23 0.11 0.4 0.4 0.4 0.4
24 0.1 0.4 0.4 0.4 0.4

Table 2: Expected consumption in kWh found in problem 1 (i.e. Ci,tj at optimality)

Time Small Large Office Shift No-Shift
Period Residential Residential Building Industrial Industrial

1 0.03466 0.5486 118.4 135.6761 69.078
2 0.05142 0.5693 116.4 136.6176 69.7371
3 0.05412 0.5052 114.9 136.8869 71.8921
4 0.05204 0.495 115.8 133.3988 70.7779
5 0.0964 0.4779 156.9 144.3262 139.5847
6 0.18264 0.8586 708.9 150.6897 1057.1356
7 0.34794 0.8689 878.6 161.3149 1417.4577
8 0.83054 0.8305 902.6 169.8122 2598.3004
9 0.7271 0.5857 919.3 170.1174 2510.0339
10 0.60828 0.6045 920.1 182.4144 2523.8352
11 0.50148 0.5907 918.4 188.3838 2794.4265
12 0.55294 0.5735 921.1 207.9914 1062.8092
13 0.69112 0.5983 918.3 190.1684 1527.9656
14 0.52044 0.5972 939.3 193.1985 2378.8882
15 0.69242 0.6101 955.2 189.5228 2446.8136
16 0.87302 0.635 948.3 189.2962 1784.0074
17 1.07134 0.7054 934.2 186.6539 1068.5694
18 1.22334 0.7437 790.9 182.9272 715.366
19 1.2066 0.8028 648.8 200.0025 222.5659
20 1.31794 0.8784 156.8 174.6471 152.1223
21 1.2721 1.0034 147.6 164.9931 83.0425
22 1.25486 1.002 141.9 158.231 82.0534
23 0.55676 0.6916 132.8 152.2748 82.0542
24 0.29 0.6496 127.2 136.3711 85.1212
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Table 3: Price of energy in $/kWh found in problem 2 (i.e. pi,tj at optimality)

Time Small Large Office Shift No-Shift
Period Residential Residential Building Industrial Industrial

1 0.1 0.1 0.1 0.375 0.225
2 0.1 0.1 0.1 0.375 0.225
3 0.1 0.1 0.1 0.375 0.225
4 0.1 0.1 0.1 0.375 0.225
5 0.1 0.1 0.1 0.375 0.225
6 0.1 0.1 0.1 0.375 0.275
7 0.1 0.1 0.1 0.375 0.275
8 0.1 0.1 0.1 0.375 0.275
9 0.1 0.1 0.1 0.325 0.275
10 0.1 0.1 0.1 0.325 0.275
11 0.1 0.1 0.1 0.325 0.275
12 0.1 0.1 0.1 0.325 0.275
13 0.1 0.1 0.1 0.325 0.275
14 0.1 0.1 0.1 0.325 0.275
15 0.1 0.1 0.1 0.375 0.275
16 0.1 0.1 0.1 0.375 0.275
17 0.1 0.1 0.1 0.375 0.275
18 0.1 0.1 0.1 0.375 0.275
19 0.1 0.1 0.1 0.375 0.275
20 0.1 0.1 0.1 0.375 0.275
21 0.1 0.1 0.1 0.375 0.275
22 0.1 0.1 0.1 0.375 0.275
23 0.1 0.1 0.1 0.375 0.225
24 0.1 0.1 0.1 0.375 0.225

Table 4: Expected consumption in kWh found in problem 2 (i.e. Ci,tj at optimality)

Time Small Large Office Shift No-Shift
Period Residential Residential Building Industrial Industrial

1 297.581475 9144.986114 1152.19171 5982.557322 1439.651804
2 411.4682759 9295.706435 1207.381481 5970.38703 1586.940241
3 423.0412819 8756.160018 1188.630957 5838.935242 1723.834359
4 423.2090345 8596.627101 1289.094547 5974.677661 1475.02733
5 612.1551965 8451.936114 1551.262771 6102.936147 2705.333671
6 1032.433225 11700.06626 3440.033011 5935.749916 10115.93892
7 1672.613184 11845.02618 5245.234704 6192.971493 11854.30928
8 2886.650893 11565.95435 5963.206444 6020.441914 15377.33209
9 2560.115565 9651.863731 5048.982991 7277.959184 13259.21805
10 2371.69883 9633.071986 3585.20993 7062.908252 9741.971162
11 2173.593211 9474.273358 6178.24184 7369.153579 17993.76742
12 2243.823879 9356.462661 4041.245718 7256.621363 9240.006109
13 2492.157805 9476.768428 4797.410223 7770.047557 9114.384477
14 2252.329575 9605.317644 3808.745758 7205.745573 12550.68749
15 2559.201127 9762.617564 5300.918352 6443.099756 16634.91959
16 2880.597988 9931.440845 4130.028288 5735.280124 13830.99288
17 3217.252422 10529.50732 5285.76649 7009.677302 7781.220366
18 3411.90412 10794.39367 4414.480091 5557.707434 7778.648759
19 3379.842612 11255.32451 3365.415462 6486.870976 3673.07883
20 3421.449836 11941.77494 1460.405188 6257.872045 2919.766837
21 3420.816342 12717.14162 1537.759474 5532.892096 1762.583856
22 3333.24215 12608.60885 1527.678829 5932.846732 1719.710798
23 2244.826059 10508.90411 1447.703455 5917.997623 1910.766817
24 1373.38011 10048.72667 1425.640624 6214.119869 1753.198241



Les Cahiers du GERAD G–2014–73 17

References

[1] PG&E Prices. http://www.pge.com/en/mybusiness/rates/tvp/toupricing.page. Last Visit: 2014-06-06.

[2] Wikipedia: Electricity meter. http://en.wikipedia.org/wiki/Electricity_meter#In-home_energy_use_

displays. Last Modified: 2014-05-15.

[3] Wikipedia: Smart meter (in french). http://fr.wikipedia.org/wiki/Compteur_communicant#cite_note-32.
Last Modified: 2014-06-11.

[4] Henrique Pombeiro, Andr Pina, and Carlos Silva. Analyzing residential electricity consumption patterns based
on consumers segmentation.

http://www.pge.com/en/mybusiness/rates/tvp/toupricing.page
http://en.wikipedia.org/wiki/Electricity_meter#In-home_energy_use_displays
http://en.wikipedia.org/wiki/Electricity_meter#In-home_energy_use_displays
http://fr.wikipedia.org/wiki/Compteur_communicant#cite_note-32

	Problem 1: Determining price based on available data
	Modeling decisions and assumptions
	Customer classes and individual consumptions
	Consumption-price relation
	Price bounds
	Discretization of price

	Process
	Piecewise estimation model
	Main model

	Solution
	Optimality
	Parameter choice
	Results

	Analysis of model and solution
	Advantages and limits of the model


	Problem 2: Determining price based on the monetary utility of the customers
	Decisions and assumptions
	Separating the bilevel problem
	Discretization of price
	Electricity market and peaks

	Process
	Determining pricing policies
	Inner problem
	Main model

	Solution
	Optimality
	Parameter choice
	Results

	Analysis of model and solution
	Solution analysis
	Advantages and limits of the model


	Further recommendations
	Appendix

