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Abstract: The distance signless Laplacian of a connected graph G is defined by DQ = Diag(Tr) + D,
where D is the distance matrix of G, and Diag(Tr) is the diagonal matrix whose main entries are the vertex
transmissions in G. The spectrum of DQ is called the distance signless Laplacian spectrum of G. In the
present paper, we study some properties of the distance signless Laplacian eigenvalues. Among other results,
we show that the complete graph is the unique graph with only two distinct distance signless Laplacian
eigenvalues. We prove several bounds on DQ eigenvalues and establish a relationship between n− 2 being a
distance signless Laplacian eigenvalue of G and G containing a bipartite component.

Key Words: Distance matrix, eigenvalues, Laplacian, signless Laplacian, spectral radius.

Résumé : Le laplacien sans signe des distances d’un graphe connexe G est défini par DQ = Diag(Tr) +D,
où D est la matrice des distances de G et Diag(Tr) est la matrice diagonale dont les principaux éléments
sont les transmissions des sommets de G. Le spectre de DQ est appelé le spectre du laplacien sans signe des
distances de G. Dans le présent article, nous étudions les propriétés des valeurs propres du laplacien sans
signe des distances. Entre autres résultats, nous montrons que seul le graphe complet admet exactement deux
valeurs propres du laplacien sans signe, distinctes. Nous prouvons plusieurs bornes sur les valeurs propres
de DQ, et établissons une relation entre le fait que n− 2 soit une valeur propre du laplacien sans signe des
distances de G et l’existence de composantes biparties dans G.

Mots clés : Matrice des distance, valeurs propres, laplacien, laplacien sans signe, rayon spectral.
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1 Introduction

In the present paper, we consider only simple and finite graphs, i.e, graphs on a finite number of vertices
without multiple edges or loops. A graph is (usually) denoted by G = G(V,E), where V is its vertex set and

E its edge set. The order of G is the number n = |V | of its vertices and its size is the number m = |E| of its
edges.

As usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by S+
n the unicyclic graph obtained

from sthe star Sn by adding an edge, by Ka,n−a the complete bipartite graph and by Kn the complete graph,
each on n vertices. A kite Kin,ω is the graph obtained from a clique Kω and a path Pn−ω by adding an edge

between an endpoint of the path and a vertex from the clique.

The adjacency matrix A of G is a 0–1 n × n–matrix indexed by the vertices of G and defined by aij = 1

if and only if ij ∈ E. Denote by (λ1, λ2, . . . , λn) the A–spectrum of G, i.e., the spectrum of the adjacency

matrix of G, and assume that the eigenvalues are labeled such that λ1 ≥ λ2 ≥ · · · ≥ λn. The matrix
L = Diag(Deg) − A, where Diag(Deg) is the diagonal matrix whose diagonal entries are the degrees in

G, is called the Laplacian of G. Denote by (µ1, µ2, . . . , µn) the L–spectrum of G, i.e., the spectrum of the

Laplacian of G, and assume that the eigenvalues are labeled such that µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The matrix

Q = Diag(Deg) + A is called the signless Laplacian of G. Denote by (q1, q2, . . . , qn) the Q–spectrum of

G, i.e., the spectrum of the signless Laplacian of G, and assume that the eigenvalues are labeled such that
q1 ≥ q2 ≥ · · · ≥ qn.

Given two vertices u and v in a connected graph G, d(u, v) = dG(u, v) denotes the distance (the length of a

shortest path) between u and v. The Wiener index W (G) of a connected graph G is defined to be the sum

of all distances in G, i.e.,

W (G) =
1

2

∑

u,v∈V

d(u, v).

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v to all other vertices in

G, i.e.,

Tr(v) =
∑

u∈V

d(u, v).

A connected graph G = (V,E) is said to be k–transmission regular if Tr(v) = k for every vertex v ∈ V .

The distance matrix D of a connected graphG is the matrix indexed by the vertices of G where Di,j = d(vi, vj)

and d(vi, vj) denotes the distance between the vertices vi and vj . Let (∂1, ∂2, . . . , ∂n) denote the spectrum
of D and assume that the eigenvalues are labeled such that ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. It is called the distance

spectrum of the graph G.

Similarly to the (adjacency) Laplacian L = Diag(Deg) − A, we defined in [4] the distance Laplacian of a

connected graph G as the matrix DL = Diag(Tr)− D, where Diag(Tr) denotes the diagonal matrix of the

vertex transmissions in G. Let (∂L
1 , ∂

L
2 , . . . , ∂

L
n ) denote the spectrum of DL and assume that the eigenvalues

are labeled such that ∂L
1 ≥ ∂L

2 ≥ · · · ≥ ∂L
n . We call it the distance Laplacian spectrum of the graph G.

Some properties of the distance Laplacian eigenvalues are discussed in [3]. In [14], Nath and Paul studied

the second smallest distance Laplacian eigenvalue ∂L
n−1 and characterized some families of graphs for which

∂L
n−1 = n+ 1. They [14] also studied the distance Laplacian spectrum of the path Pn.

Also in [4], and similarly to the (adjacency) signless Laplacian L = Diag(Deg) + A, we introduced the
distance signless Laplacian of a connected graph G to be DQ = Diag(Tr) +D. Let (∂Q

1 , ∂Q
2 , . . . , ∂Q

n ) denote

the spectrum of DQ and assume that the eigenvalues are labeled such that ∂Q
1 ≥ ∂Q

2 ≥ · · · ≥ ∂Q
n . We call it

the distance signless Laplacian spectrum of the graph G.

In Figure 1, we give the cube graph with its different spectra.

For a connected graph G, let PG
D (t), PG

L (t) and PG
Q (t) denote the distance, the distance Laplacian and the

distance signless Laplacian characteristic polynomials respectively.
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Figure 1: The cube graph with its different spectra.

For the complete graph Kn, we have

PKn

D (t) = (t− n+ 1)(t+ 1)n−1;

PKn

L (t) = t(t− n)n−1;

PKn

Q (t) = (t− 2n+ 2)(t− n+ 2)n−1.

For the complete bipartite graph Ka,b, we have

P
Ka,b

D (t) =
(

t− n+ 2−
√

a2 − ab+ b2
)(

t− n+ 2 +
√

a2 − ab+ b2
)

(t+ 2)n−2;

P
Ka,b

L (t) = t(t− n)(t− (2n− a))b−1(t− (2n− b))a−1;

P
Ka,b

Q (t) =

(

t− 5n− 8 +
√

9(a− b)2 + 4ab

2

)(

t− 5n− 8−
√

9(a− b)2 + 4ab

2

)

× (t− 2n+ b+ 4)
a−1

(t− 2n+ a+ 4)
b−1

.

From the above polynomials, one can easily derive those corresponding to the star Sn, i.e., a = n − 1 and

b = 1.

Distance, distance Laplacian and distance signless Laplacian spectra of some common families of graphs can

be found in [3, 4].

In [8, 9, 10], Cvetković and Simić studied the spectral graph theory based on the signless Laplacian matrix.

Among other results, they showed equivalence between the spectrum of the signless Laplacian and

• the adjacency spectrum for the class of (degree) regular graphs;

• the Laplacian spectrum for the class of (degree) regular graphs;

• the Laplacian spectrum for the class of bipartite graphs.

In [4], we showed equivalence between the distance Laplacian spectrum and

• the distance spectrum among the class of transmission regular graphs;

• the distance signless Laplacian spectrum among the class of transmission regular graphs;

• the Laplacian spectrum among the class of graphs with diameter at most two.

The rest of the paper is organized as follows. In Section 2, we discuss some local properties of the distance
signless Laplacian spectrum. In Section 3, we prove a series of bounds on the eigenvalues of DQ, in particular

the largest and the smallest of them. We also establish a relationship between the smallest eigenvalue of DQ

of a connected graph G and the existence of a bipartite component in the complement G. Finally, we list

some open conjectures in Section 4.

2 Local properties

Some regularities in graphs are useful in calculating certain eigenvalues of the matrices related to these graphs.

It is the case, for instance, for the largest eigenvalue of the adjacency matrix or the signless Laplacian whenever
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the graph is degree regular. The same is true for the largest eigenvalue of the distance Laplacian, and of the

distance signless Laplacian, whenever the graph is transmission regular. Sometimes, a local regularity in a

graph suffices to determine some eigenvalue. We prove below that it is possible to know a distance signless
Laplacian eigenvalue of a graph if it contains a clique or an independent set whose vertices share the same

transmission.

Theorem 2.1 Let G be a connected graph on n vertices. If S = {v1, v2, . . . vp} is an independent set of G

such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then τ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and

τ − 2 is an eigenvalue of DQ with multiplicity at least p− 1.

Proof. Since the vertices in S share the same neighborhood, any vertex in V −S is at the same distance from

all vertices in S. Each vertex of the independent set S is at distance 2 from any other vertex in S. Thus all

vertices in S have the same transmission, say τ .

To show that τ − 2 is a distance Laplacian eigenvalue with multiplicity p− 1, it suffices to observe that the
matrix (τ − 2)In −DQ contains p identical rows (columns).

Theorem 2.2 Let G be a connected graph on n vertices. If K = {v1, v2, . . . vp} is a clique of G such that

N(vi) −K = N(vj) −K for all i, j ∈ {1, 2, . . . , p}, then τ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and

τ − 1 is an eigenvalue of DQ with multiplicity at least p− 1.

The proof of this theorem is similar to that of the previous one and is omitted here.

Note that results similar to Theorem 2.1 and Theorem 2.2 are proved in [3] for the distance Laplacian

spectrum.

3 Bounds on the eigenvalues

In this section, we prove some bounds on the eigenvalues of the distance signless Laplacian of a connected
graph.

First, recall the following result proved in [4].

Proposition 3.1 If G is a connected graph on n ≥ 3 vertices, then ∂Q
i (G) ≥ ∂Q

i (Kn) = n−2, for all 2 ≤ i ≤ n.

Moreover, ∂Q
2 (G) = ∂Q

2 (Kn) = n− 2 if and only if G is the complete graph Kn.

The next proposition gives a sharp upper bound on the index of DQ in terms of the Wiener index and the

order of the graph.

Proposition 3.2 Let G be a connected graph on n ≥ 2 vertices with Wiener index W , then ∂Q
1 (G) ≤ 2W −

(n− 1)(n− 2) with equality if and only if G is the complete graph Kn.

Proof. From spectral theory, we have

∂Q
1 (G) + ∂Q

2 (G) + · · ·+ ∂Q
n (G) = Tr1 + Tr2 + · · ·+ Trn = 2W.

Then

∂Q
1 (G) = 2W − ∂Q

2 (G)− · · · − ∂Q
n (G).

We conclude using Proposition 3.1.

Note that the gap between ∂Q
1 (G) and 2W − (n− 1)(n− 2) may be arbitrarily large when the graph is not

dense. To illustrate, the gap for an even cycle on n vertices is exactly n2(n− 2)/4.

To prove the next theorem, we need the following well-known result from matrix theory.
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Lemma 3.3 (Gershgorin Theorem, [13]) Let M = (mij) be a complex n×n–matrix and denote by λ1, λ2, . . . λp

its distinct eigenvalues. Then

{λ1, λ2, . . . λp} ⊂
n
⋃

i=1

{

z : |z −mii| ≤
∑

j 6=i

|mij |
}

.

We now give sharp bounds on ∂Q
1 in terms of minimum, average and maximum transmissions.

Theorem 3.4 Let G be a connected graph with minimum, average and maximum transmissions Trmin, Tr

and Trmax respectively. Then

2Trmin ≤ 2Tr ≤ ∂Q
1 (G) ≤ 2Trmax

with equalities if and only if G is a transmission regular graph.

Proof. Using the Rayleigh’s quotient, we have

∂Q
1 (G) = max

X 6=0
R(X) = max

X 6=0

XtDQX

XtX
.

If we take X = 1I, the all 1’s vector, we get R(1I) = 2Tr and then ∂Q
1 (G) ≥ 2Tr ≥ 2Trmin.

The upper bound follows immediately from Lemma 3.3.

It is easy to see that equalities hold if and only if Trmin = Tr = Trmax and 1I is an eigenvector belonging to

the largest eigenvalue ∂Q
1 (G).

Combining the above theorem and Proposition 3.1, we easily get the following corollary.

Corollary 3.5 If G is a connected graph on n ≥ 2 vertices, then ∂Q
1 (G) ≥ ∂Q

1 (Kn) = 2n− 2 with equality if
and only if G is the complete graph Kn.

Proposition 3.6 Let G = (V,E) be a connected graph on n ≥ 2 vertices and k an integer such that 1 ≤ k ≤ n.

Denote by Pk(V ) the family of subsets of V with cardinality k. Then

∂1(G) ≥ max
S∈Pk(V )

{

1

k

∑

u∈S

Tr(u) +
1

k

∑

u,v∈S

d(u, v)

}

and ∂n(G) ≤ min
S∈Pk(V )

{

1

k

∑

u∈S

Tr(u) +
1

k

∑

u,v∈S

d(u, v)

}

.

Proof. Using Rayleigh’s quotient, we have

∂Q
1 (G) = max

X 6=0
R(X) = max

X 6=0

XtDQX

XtX
and ∂Q

n (G) = min
X 6=0

R(X) = min
X 6=0

XtDQX

XtX
.

Thus, to be done, it suffices to take X = [x1, x2, . . . xn]
t with xi = 1 if ui ∈ S and 0 otherwise.

We next establish some interconnections, as inequalities, between the distance signless Laplacian spectrum

of a connected graph G and the signless Laplacian spectrum of its complement G. First, recall the following
well-known result from matrix theory.

Lemma 3.7 (Courant–Weyl inequalities, [6]) For a real symmetric matrix M of order n, let λ1(M) ≥
λ2(M) ≥ · · · ≥ λn(M) denote its eigenvalues. If N1 and N2 are two real symmetric matrices of order n

and if N = N1 +N2, then for every i = 1, . . . , n, we have

λi(N1) + λ1(N2) ≥ λi(N) ≥ λi(N1) + λn(N2).
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Theorem 3.8 Let G be a connected graph on n ≥ 3 vertices with diameter D. Let ∂Q
1 ≥ ∂Q

2 ≥ · · · ≥ ∂Q
n and

q1 ≥ q2 ≥ · · · ≥ qn be the distance signless Laplacian of G and the signless Laplacian of the complement G

of G.

(1) If D = 2, then

n− 2 + qi ≤ ∂Q
i ≤ 2n− 2 + qi for every 1 ≤ i ≤ n; (1)

n− 2 + qn ≤ ∂Q
i ≤ n− 2 + q1 for every 1 ≤ i ≤ n− 1; (2)

2n− 2 + qn ≤ ∂Q
1 ≤ 2n− 2 + q1. (3)

(2) If D ≥ 3, then

∂Q
i ≥ n− 2 + qi for every 1 ≤ i ≤ n. (4)

Proof.

(1) In a connected graph with diameter 2, we have Tr(v) = d(v) + 2(n − d(v) − 1) = 2n− 2 − d(v), and

therefore Diag(Tr) = (2n− 2)I −Diag(Deg). Moreover, the distance between two vertices is 1 if they

are neighbors and 2 otherwise. Thus the distance matrix can be written as D = A+ 2A, where A and
A denote the adjacency matrices of G and its complement G respectively. Now, if we denote by Q and

Deg the signless Laplacian matrix and the degree vector of G, the distance signless Laplacian of G can

be written as

DQ = D +Diag(Tr)

= A+ 2A+ (2n− 2)I −Diag(Deg)

= A+A+ (n− 1)I +
(

(n− 1)I −Diag(Deg) +A
)

= J + (n− 2)I +Diag
(

Deg
)

+A

= J + (n− 2)I +Q,

where J is the all ones n × n matrix, whose eigenvalues are 0 with multiplicity n − 1 and n with

multiplicity 1.

Applying Lemma 3.7 with N1 = (n − 2)I + Q and N2 = J , we get (1), and with N1 = J and

N2 = (n− 2)I +Q, we get (2) and (3).

(2) Consider the n×nmatrixM = (m,j) defined bymi,j = max{0, di,j−2} for 1 ≤ i, j ≤ n, whereD = (di,j)

denotes the distance matrix of G. For a vertex i in G, we write its transmission as Tri = di+2di+Tr′i,

where di denotes the degree of i in G. Using this notation, we have

DQ = Diag(Tr) +D
= Diag(Deg) +Diag(Deg) +Diag(Tr′) +A+ 2A+M

=
(

A+A+Diag(Deg) +Diag
(

Deg
))

+
(

A+Diag
(

Deg
))

+ (Diag(Tr′) +M)

= Q(Kn) +Q+M ′,

where M ′ = Diag(Tr′) + M . It is easy to see that M ′ is diagonally dominant, and then, its least

eigenvalue is nonnegative. Now, applying twice Lemma 3.7 (with N1 = Q(Kn) and N2 = Q+M ′ and

then with N1 = Q and N2 = M ′), we get ∂Q
i ≥ n− 2 + qi, for 1 ≤ i ≤ n.

As a corollary of the above theorem, we establish a relationship between the fact that n − 2 is a distance

signless Laplacian eigenvalue of a connected graph G and the existence of a bipartite component or an isolated

vertex in the complement G.
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Corollary 3.9 Let G be a connected graph on n vertices. If ∂Q = n − 2 is a distance signless Laplacian

eigenvalue with multiplicity µ, then the complement G of G contains at least µ components, each of which is

bipartite or an isolated vertex.

Proof. From (1) of Theorem 3.8, if n − 2 is a distance signless Laplacian eigenvalue, then 0 is a signless

Laplacian eigenvalue at least as many times as n − 2 for DQ. To complete the proof, we use the fact (see

[7, 11]) that 0 is a Q–eigenvalue of a graph G if and only if G contains a bipartite component or an isolated

vertex, and in that case, the multiplicity of 0 is at most equal to the number of bipartite components plus
the number of isolated vertices.

Note that there exist graphs with bipartite complements with ∂n > n−2. For instance, if G is the complement

of the path on 7 vertices, i.e. G = P 7, we have ∂Q
7 (G) ≃ 5.042816 > 5 while G = P7 is bipartite. Another

example is illustrated on Figure 2.

Figure 2: A graph G (left) on 5 vertices with ∂Q
5 ≃ 3.050286 > 3 and a bipartite complement (right).

Corollary 3.10 Let G be a connected graph on n vertices. Let µ be the multiplicity of ∂Q = n−2 as a distance

signless Laplacian eigenvalue, then µ ≤ n− 1 with equality if and only if G ∼= Kn.

Corollary 3.11 Let G be a connected graph on n vertices with diameter D. If D ≥ 4, then ∂Q
n > n− 2.

Proof. Since D ≥ 4, G is connected and contains at least a triangle (a cycle on 3 vertices). Thus G is not

bipartite, and therefore qi ≥ qn > 0. The results follows from (2) of Theorem 3.8.

Another consequence of Theorem 3.8 is that, for a given order n ≥ 3, the bipartite graphs with ∂Q
n = n− 2

are entirely characterized.

Corollary 3.12 Let G be a bipartite graph on n ≥ 3 vertices, then ∂Q
n (G) = n− 2 if and only if G is the path

P4 or the complete bipartite graph Kn−2,2.

Proof. If G is the star Sn with n ≥ 3, then ∂Q
n (G) > n− 2 except for S3 = K1,2.

If n = 4, the only bipartite graphs are S4, P4 and K2,2, for which ∂Q
n (Sn) > 2 and ∂Q

n (Pn) = ∂Q
n (K2,2) = 2.

If n ≥ 5 and G 6∼= Sn, then the bipartition of the vertex set of G defines two independent sets V1 and V2, each

of which induces a clique in G. By Theorem 3.8, G contains at least a bipartite component. To be done,

it suffices to note that G contains a bipartite component if and only if G is a complete bipartite graph and

min{|V1|, |V2|} = 2.
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4 Some conjectures

In this section, we list a series of conjectures about some particular distance Laplacian eigenvalues of a
connected graph. These conjectures, as well as some of the results proved in this paper, were obtained using

the AutoGraphiX system [1, 2, 5] devoted to conjecture–making in graph theory.

First, we conjecture about an upper bound on the largest distance Laplacian eigenvalue over the class of all

connected graphs with a given order n.

Conjecture 4.1 Let G be connected graph on n vertices. Then

∂Q
1 (G) ≤ ∂Q

1 (Pn)

with equality if and only if G is the path Pn.

Since a path is a tree, the above conjecture can be stated also for the set of trees. A general lower bound on

∂Q
1 is given in Corollary 3.5, if we assume that the graph is a tree, the bound is no more valid since Kn is

not a tree for n ≥ 3. We next conjecture a lower bound on ∂Q
1 over the set of trees.

Conjecture 4.2 Let T be a tree on n vertices. Then

∂T
1 (G) ≥ ∂Q

1 (Sn) =
5n− 8 +

√
9n2 − 32n+ 32

2

with equality if and only if T is the star Sn.

For the class of unicyclic graphs, we conjecture a lower and an upper bound as well as a characterization of

the extremal graphs for each bound.

Conjecture 4.3 Let G be a connected unicyclic graph on n ≥ 6 vertices. Then

∂Q
1 (S+

n ) ≤ ∂Q
1 (G) ≤ ∂Q

1 (Kin,3)

with equality for the lower (resp. upper) bound if and only if G is the graph S+
n (resp. the long kite Kin,3).

Before stating the next conjecture, we need to define the Soltés graph [15]. Let u be an isolated vertex or one

endpoint of a path. Let us join u with at least one vertex of a clique. The graph so obtained is the Soltés
graph PKn,m, also called the path-complete graph, where n is its order and m its size. There is exactly one

PKn,m for given n and m such that 1 ≤ n−1 ≤ m ≤ n(n−1)/2. The kite Kin,ω, defined in the introduction,

is a particular path-complete graph with m = ω(ω − 1)/2 + n− ω.

For given n and m such that 1 ≤ n− 1 ≤ m ≤ n(n− 1)/2, PKn,m maximizes (non uniquely) the diameter

D [12] and (uniquely) the average distance l [15].

Conjecture 4.4 Let n and m be integers such that 2 ≤ n− 1 ≤ m. The path-complete (Soltés) graph PKn,m

maximizes ∂Q
1 (G) over all connected graphs with order n and size m.

The next three conjectures are about the second largest distance signless Laplacian eigenvalue. First, we

conjecture an upper bound on ∂Q
2 , as well as a characterization of the corresponding extremal graphs, over

all the connected graphs on n vertices.

Conjecture 4.5 Let G be connected graph on n vertices. Then

∂Q
2 (G) ≤ ∂Q

2 (Pn)

with equality if and only if G is the path Pn.

We proved in Proposition 3.1 that, among the class of connected graphs on n vertices, ∂Q
2 is minimum for

the complete graph Kn. If we consider only the class of trees, the minimum of ∂Q
2 seems to be reached for

the star Sn.
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Conjecture 4.6 Let T be a tree on n ≥ 4 vertices. Then

∂Q
2 (T ) ≥ ∂Q

2 (Sn) = 2n− 5.

with equality if and only if T is the star Sn.

For the class of unicyclic graphs, we conjecture a lower and an upper bound as well as a characterization of

the extremal graphs for each bound.

Conjecture 4.7 Let G be a connected unicyclic graph on n ≥ 5 vertices. Then

2n− 5 = ∂Q
2 (S+

n ) ≤ ∂Q
1 (G) ≤ ∂Q

1 (Kin,3)

with equality for the lower (resp. upper) bound if and only if G is the graph S+
n (resp. the long kite Kin,3).

References

[1] M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré and A. Monhait.
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