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Abstract: The use of spatial high-order statistics has been previously proposed as an alternative to introduce
richer information about complex spatial patterns in the simulation of continuous attributes. These statistics
are normally inferred from exhaustive quasi -support training images. Spatial high-order statistics values are
combined within series of orthogonal polynomials to approximate local conditional distributions that can be
used for the drawing of simulated point-support values. This paper extends this formalism to direct block-
support simulation. This is achieved by inferring block-point high-order statistics from up-scaled training
images and incorporating these statistics in the orthogonal polynomials approximation of the conditional
distributions. This methodology is computationally expensive, so a reasonable option is to approximate all
the required local conditional distributions only once. These can be subsequently sampled by different fields
of correlated probabilities to produce multiple realizations of the attribute. The resulting simulated maps
reproduce the high-order statistics of the up-scaled training image and they also match the up-scaled global
distribution of the attribute.

Key Words: Geostatistical simulation, high-order spatial statistics, spatial uncertainty, orthogonal polyno-
mials, conditional probabilities, block support.
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1 Introduction

In mining, environmental sciences, and other contexts, numerical models are usually needed in a resolu-

tion that is much coarser than the sampling resolution. The geographical space where an ore deposit or a

contaminated area occurs is represented by a 2D or 3D mesh with cell, or block, sizes that correspond to

the minimum volume over which real life decisions can be taken effectively and efficiently. The problem of

modelling block-support attributes from practically point volume data has been an important aim since the

early years of Geostatistics (David 1977).

Spatial simulation techniques produce numerical models that reproduce the probability distribution (pdf)

and spatial variability of the input dataset (Journel and Huijbregts 1978, Journel 1974). These techniques

are conditioned by available hard and soft information about the spatial attribute. An ensemble of simulated

numerical models, or realizations, all of them with similar statistics but locally different, can be used to

quantify the uncertainty about the spatial distribution of ore grades and other rock attributes (Journel

1994). In mining, pit optimization and production scheduling algorithms that incorporate the uncertainty

space provided by the simulated models can result in production scheduling that maximizes the economic

return while minimizing risks related to production fluctuations (Godoy 2003, Godoy and Dimitrakopoulos

2004). Underlying most conditional simulation methods for continuous attributes is the inference of a local

conditional cumulative distribution function (ccdf) given hard-data and secondary soft-information, if this

last is available (Christakos 1992, Chilès and Delfiner 1999). These ccdfs are sampled randomly to produce

simulated values (Isaaks 1990). Under a sequential approach, previously simulated values are used for the

conditioning of local cdf at further locations along a random path. Changing the random path leads to

different full field realizations of the numerical model of the attribute. This require the re-estimation of all

the local ccdfs for each new realization.

The sequential approach for conditional simulation is theoretically sound but can be computationally

demanding. An efficient alternative is the probability field (p-field) methodology (Srivastava 1992, Froidevaux

1993) although its statistical properties are not well established for conditional simulation (Chilès and Delfiner

2012). Contrarily to the sequential simulation approach, p-field simulation requires the inference of the local

ccdfs only once. To produce different realizations of the attribute, the local ccdfs are sampled by different

fields of simulated spatially correlated probabilities. P-field realizations, however, present artifacts nearby

conditioning samples and do not reproduce the input model of spatial correlation satisfactorily (Pyrcz and

Deutsch 2001, Srivastava and Froidevaux 2005)

Geostatistical simulation is commonly performed over small volumes of size comparable to the individual

samples dimensions. The simulated block support values are obtained by averaging the sample scale simulated

values within each block. This can be efficiently achieved by applying the LU methodology for obtaining

realizations at the discretization points within each block (Glacken 1996). The block-support simulated

values can then be used for conditioning other blocks (Godoy 2003). Alternatively, instead of discretizing

the blocks, a change of support model can be applied to directly obtain the block-support realizations from

point-support data (Emery 2009). The ensemble of block scale simulated values, obtained either by averaging

or by a change of support model, over multiple realizations describes the local block scale uncertainty. These

methods are limited by their reliance on the multiGaussian model and 2-point statistics, such as variograms

and covariances. Gaussian based methods result in maximum entropy realizations given a distribution and

variogram model (Journel and Deutsch 1993). This, coupled with the limited capability of 2-point statistics

for describing complex non-linear patterns (Journel 2005), difficult the reproduction of geologically realistic

numerical models by using the traditional simulation methods.

During the last decade, multiple-point simulation methods have been developed in response to the limi-

tations of traditional methods based on 2-point statistics. Multiple-point simulation methods for continuous

variables, such as those based on the filtering of patterns (Zhang, Switzer and Journel 2006, Wu, Boucher

and Zhang 2008) or direct sampling (Mariethoz, Renard and Straubhaar 2010) work at the same scale of

the samples. Up-scaling of the fine scale realizations is then needed to produce the block scale realizations.

More important, multiple-point methods do not guarantee the reproduction of all input low and high-order

statistics by the resulting realizations (Boucher 2009, Osterholt 2006).



2 G–2014–57 Les Cahiers du GERAD

Spatial high-order moments and cumulants are able to describe complex non-linear patterns (Mustapha

and Dimitrakopoulos 2010c, Dimitrakopoulos, Mustapha and Gloaguen 2010). They have been proposed for

informing the fitting of non-Gaussian conditional distributions by incorporating them in either Legendre or

Laguerre polynomial series (Mustapha and Dimitrakopoulos 2010b, Mustapha and Dimitrakopoulos 2010a).

An initial algorithm for sequential simulation using high-order statistics was presented later with encouraging

results (Mustapha and Dimitrakopoulos 2011).

This paper explains the theoretical and practical details of the approximation of local cdfs conditioned by

hard data using high-order moments obtained from a training image and Legendre polynomial series. This

approach is extended to the conditioning of block-support values by point-support samples. Spatial stochastic

simulations based on multiple-point and high-order statistics are considerably more computationally demand-

ing than those based on 2-point statistics. Extending high-order simulation to direct block scale simulation

requires obtaining a very large number of point-point and cross point-block high-order moments. This, to-

gether with the calculation-intensive ccdf fitting by Legendre polynomials, precludes the implementation of

a sequential approach for high-order simulation at block scale, at least until smarter algorithms are devised.

Instead, a p-field simulation approach is adopted for high-order simulation. This paper presents an algorithm

that implements point-point and point-block conditioning of local cdfs using high-order moments. The ob-

tained ccdfs are sampled by simulated fields of correlated probabilities to obtain non-Gaussian realizations of

the attribute. Generating the probability fields is considerably much less expensive than approximating the

local ccdfs by series of high-order statistics. Thus, despite the recognized drawbacks of the p-field method,

this seems to be the only viable alternative for high-order simulation at block scale by now.

2 Point-block high-order simulation

Normally, in geostatistical modelling, a 2D or 3D domain D is discretized by a mesh of Nv blocks vβ , β =

1, . . . , Nv of support v. The unknown values of the attribute at each location are modelled by different

Random Variables (RVs) that together form a spatially correlated Random Field (RF) (Matheron 1970,

Christakos 1992). Given a quasi-point support dataset z (uα) , α = 1, . . . , n, which may include previously

simulated values, and under the stationarity decision (Myers 1989) over D, the ccdf of the RV Z at a point

uk within block v is expressed by (Isaaks 1990)

FZ (uk ∈ v; t|z (u1) = z1, . . . , z (un) = zn)

= Prob {Z(v) ≤ t|z (u1) = z1, . . . , z (un) = zn}

=
Prob {Z (uk) ≤ t, z1, . . . , zn}

Prob {z1, . . . , zn}
.

(1)

A simulated value at block support zl(v) can be obtained by averaging the simulated values drawn from

multiple ccdfs evaluated at K points inside v such as uk ∈ v,∀k = 1, . . . ,K. The block support ccdf,

F (v; z|z(u1), . . . , z(un)), is then approximated by the distribution of multiple zl(v) values obtained from

different realizations of the simulation algorithm.

The construction of the joint distribution in the equation above is well defined and computationally

efficient if they are assumed multiGaussian (Ripley 1987, Alabert 1987a, Chilès and Delfiner 1999, Alabert

and Massonnat 1990). In this case, as well as for sequential indicator simulation (Alabert 1987b, Journel

and Isaaks 1984), the knowledge of the univariate marginal distribution and the spatial 2-point statistics is

enough for building the required joint multivariate distributions.

In high-order simulation, the estimation of the non-Gaussian ccdfs requires the inference of high-order

moments from sampling data and/or training images. Moments are quantities that, depending of their order,

describe different features of univariate or multivariate distributions. Thus, the first order moment, the

mean, gives the central tendency of the distribution; the second order moment yields to the variance and the

covariance, which measure the spread and correlation of univariate and bivariate distributions, respectively;

the third and fourth order moments inform of the asymmetry or “peakedness” of the probability distribution.

In a spatial context, the combinations of high-order moments, known as cumulants, are able to describe
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complex spatial relationships that 2-point statistics, such as the variogram and the covariance, cannot resolve.

This section presents the point-block high-order moments and how they can be used for approximating the

block-support local ccdf. These ccdfs can subsequently be used as the input for p-field simulation.

2.1 Block-point high-order statistics

Let us consider Z0 = Z (u0) , a Random Variable (RV) anchored at point u0, and Z1, . . . · Zn as the RVs

anchored at the end-points of vectors h1, . . . ,hn that radiate from u0. A (n+ 1)-point moment of order ω of

these RVs is given by the expectation (Kendall et al. 1994)

µw0w1...wn = E [Zw0
0 · Z

w1
1 · . . . · Zwn

n ] , (2)

where w0 +w1 + · · ·+wn = ω, and w0, w1, · · · , wn ∈ N0. The set of points u0, u0+h1, . . . ,u0+hn is termed

as the n+ 1-point template of the moment µw0w1...wn
, and it is represented as τh1,...,hn

. Finding enough data

events that replicate this template in order to obtain a robust estimate of the high-order moment may not be

feasible with scattered samples, thus, an exhaustive image is usually needed for such purpose. This image,

known as training image (TI), is deemed to contain the same spatial patterns as the geological setting from

where the samples were taken from.

If the attribute’s values average linearly, the block support RV is obtained by the integration of point-

support values within the block volume (Matheron 1963):

Z (v) =
1

|v|

∫
u∈v

Z (u) du. (3)

If the support of the centre of the template is a volume, instead of a point, the corresponding block-point

high-order moment is

µv,w0w1...wn
= E [Zw0

v · Z
w1
1 · . . . · Zwn

n ] . (4)

When w0 = 1 the high order moment becomes,

E [Zv · Zw1
1 · . . . · Zwn

n ] = E

 1

|v|

∫
x∈v

Z (x) dx

 · Zw1
1 · . . . · Zwn

n


=

1

|v|

∫
x∈v

E [Z (x) · Zw1
1 · . . . · Zwn

n ] dx.

This can be regarded as a multiple-point generalization of the block-point non centred covariance. For any

integer power w ≥ 1 we can generalize the high-order block-point moment as

E [Zwv · Z
w1
1 · . . . · Zwn

n ] = E

 1

|v|

∫
x∈v

Z (x) dx

w

· Zw1
1 · . . . · Zwn

n


=

1

|v|w
∫

x1∈v

· · ·
∫

xw∈v

E [(Z (x1) · · ·Z (xw)) · Zw1
1 · . . . · Zwn

n ] dx1 · · · dxw.
(5)

These high-order multiple-point statistics can be computationally very demanding to infer from a high res-

olution TI by using expression (5). An approximate, but more efficient alternative is get the Zv values by

up-scaling the TI and using these up-scaled values directly, as in Expression (4). This alternative is suggested

to obtain the block-point high-order moments required for the non-Gaussian cdf conditioning explained next.

2.2 Block cdf conditioning by point scale data using high-order statistics

In image processing literature, it is common to find the bivariate pdf approximation by a truncated series

of Legendre cumulants Lk0,k1 and orthogonal Legendre polynomials Pk (z) (Yap and Paramesran 2005, Liao
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and Pawlak 1996, Teh and Chin 1988, Teague 1980, Hosny 2007). These and other authors use Legendre

and other orthogonal polynomials for the compression and reconstruction of 2D images and 3D volumes. In

geostatistics we are not trying to rebuild an image, although we use a training image as a support for the

inference of the high-order moments. But this training image is analogous to the attribute we intend to

model only in the sense that we assume that both share the same spatial patterns and the same stationary

low and high-order statistics. The available samples of the attribute are not scattered information pieces

of the training image we want to rebuild, nor does the training image provide locally accurate information

about the spatial distribution of the attribute. Instead, we try to use the information about complex spatial

structures provided by a training image and, at a less extent, by the dataset to model the space of uncertainty

due to the lack of exhaustive information about the attribute. The local ccdfs model this uncertainty.

Applying the Legendre series to the approximation of local ccdfs is a considerably more challenging

task than their application to image reconstruction since it requires moving from a 2D or 3D context to a

multidimensional context. But let us consider by now three continuous RVs, one at block support Zv, and

the other two, Z1 and Z2 at point support, all of them with values within the interval [−1, 1] ∈ R. The point

support RVs are separated from the centre of the block v by vectors separation h1 and h2. The corresponding

3-variate pdf can be approximated by the Legendre series of maximum order ω in the following way (Teh

and Chin 1988),

fZ(zv, z1, z2) ≈
ω∑

iv=0

iv∑
i1=0

i1∑
i2

Pkv (zv)Pk1 (z1)Pk2 (z2)Lkv,k1k2 , (6)

with kv = iv − i1, k1 = i1 − i2 and k2 = i2. The Legendre polynomials Pk (z) can be obtained recursively

(Abramowitz and Stegun 1964) or, alternatively, from its explicit formulation as (Weisstein):

Pk (z) =

bk/2c∑
j=0

(−1)
j
2−k

(2k − 2j)!

j! (k − 1)! (k − 2j)!
zk−2j =

bk/2c∑
j=0

aj,kz
k−2j , (7)

with floor(k/2) as the highest integer smaller than k/2. Whereas, the 3-variate block-point Legendre cumu-

lants are defined by (Lebedev and Silverman 1965)

Lkv,k1,k2 =
(2kv + 1) (2k1 + 1) (2k2 + 1)

2n+1

×
1∫
−1

1∫
−1

1∫
−1

Pkv(zv)Pk1 (z1)P k2 (z2) f (zv, z1, z2) dzvdz1dz2. (8)

Since the Legendre polynomials are defined in the interval [−1, 1] ∈ R, the original point and block support

values must be transformed within that interval. The norm (2kv + 1) · · · (2kn + 1)/2n+1 depends of the

number of variables in the multivariate distribution. In this case, since there are two conditioning samples,

n = 2. Replacing the Legendre polynomials in (8) by their equivalences from (7), and applying the definition

of non-centred multivariate moments, the Legendre cumulant becomes (Teague 1980)

Lkv,k1,k2 =
(2kv + 1) (2k1 + 1) (2k2 + 1)

2n+1

×
bkv/2c∑
jv=0

bk1/2c∑
j1=0

bk2/2c∑
j2

ajv,kvaj1,k1aj2,k2E
[
Zkv−2jvv · Zk1−2j11 · Zk2−2j22

]
, (9)

where E
[
Zkv−2jvv · Zk1−2j11 · Zk2−2j22

]
is a block-point high-order moment. The Legendre cumulants above

can also be expressed in terms of spatial cumulants (Mustapha and Dimitrakopoulos 2010b), since moments

can be expressed in terms of cumulants, and vice versa (Smith 1995). However, there is no practical advantage

of doing so, because it is easier to obtain the spatial high-order moments than the spatial cumulants, and

the former are the building blocks of both cumulants and Legendre cumulants. Being combinations of

moments, spatial cumulants carry more information than single moments, but the same can be said of

Legendre cumulants.
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The block support pdf conditioned by the two point support values can be obtained by the relation:

fZ (Zv|z1, z2) =
fZ (zv, z1, z2)

fZ (z1, z2)
=

fZ (zv, z1, z2)∫ 1

−1 fZ (zv, z1, z2) dzv
, (10)

And the conditional probability of the block value being smaller or equal to a threshold t can be obtained by,

FZ (Zv ≤ t|z1, z2) =

∫ t
−1 fZ (zv, z1, z2) dzv∫ 1

−1 fZ (zv, z1, z2) dzv
. (11)

By integrating the multivariate pdf (6) according to the expression above, the approximated block-support

ccdf is given by

FZ (Zv ≤ t|z1, z2) ≈∑ω
iv=0

∑iv
i1=0

∑i1
i2
Pk1 (z1)Pk2 (z2)L

kv,k1k2

∑bkv/2c
jv=0 ajv,kv

(
tkv−2jv+1−(−1)kv−2jv+1

kv−2jv+1

)
∑ω
iv=0

∑iv
i1=0

∑i1
i2
Pk1 (z1)Pk2 (z2)L

kv,k1k2

∑bkv/2c
jv=0 ajv,kv

(
1kv−2jv+1−(−1)kv−2jv+1

kv−2jv+1

)
,

(12)

where, as previously, kv = iv − i1, k1 = i1 − i2 and k2 = i2.

Alternatively, the block-support 1-point w-order moment conditioned by two point-support data is given

by the relation

E [Zwv |z1, z2] =

1∫
−1

zwv fZ (Zv|z1, z2) dzv

=

∫ −1
−1 z

w
v fZ (zv, z1, z2) dzv∫ 1

−1 fZ (zv, z1, z2) dzv
.

(13)

Therefore, similar to expression (12), the conditional high-order moment can be approximated by

E [Zwv |z1, z2] ≈∑ω
iv=0

∑iv
i1=0

∑i1
i2
Pk1 (z1)Pk2 (z2)L

kv,k1k2

∑bkv/2c
jv=0 ajv,kv

(
1w+kv−2jv+1−(−1)w+kv−2jv+1

w+kv−2jv+1

)
∑ω
iv=0

∑iv
i1=0

∑i1
i2
Pk1 (z1)Pk2 (z2)L

kv,k1k2

∑bkv/2c
jv=0 ajv,kv

(
1kv−2jv+1−(−1)kv−2jv+1

kv−2jv+1

) (14)

The first conditional moments, from order 1 to 4, usually suffice to provide an acceptable approximation

of the conditional cdf. This is a more efficient alternative to fitting the ccdf for 9 or more thresholds using

expression (12). The general expressions for Legendre cumulants (9), the approximate block-support ccdf (12)

and the conditional moments (14) for any number of point and block-support conditioning data are presented

in the Appendix A.

Given a maximum approximation order ω and n conditioning samples, the number of coefficients required

for approximating the ccdf or the conditional moments using either expression (12) or (14) is calculated by

the formula:

Ncoeff =
(ω + 1)(ω + 2) · · · (ω + n+ 1)

(n+ 1)!
. (15)

This quickly leads to a very high number of required coefficients as ω and n increases, and, consequently,

a rapidly exploding computational effort. Mustapha and Dimitrakopoulos (2011) suggest that, in order

to reduce the computational complexity of the ccdf approximation, the moments E [Zw0
0 · Z

w1
1 · . . . · Zwn

n ]

with w0, w1 · · ·wn > 1 can be neglected since they tend to zero. This is true for very high orders, i.e.

w0, w1 · · ·wn > 10, and when the number of conditioning samples is large. Nevertheless, for few conditioning

samples and ω = w0+, w1 + · · · + wn ≤ 6, the contribution of those moments is still considerable. Also,

they state that moment of the form E
[
Zw0
0 · Z

w1
1 · Z1

n

]
will tend to E

[
Z1
0 · Z1

1 · Z1
n

]
if w0 and w1 are close
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to 1, but the difference between moments E
[
Z2
0 · Z2

1 · Z1
n

]
and E

[
Z1
0 · Z1

1 · Z1
n

]
can be also considerable.

Another suggestion for the efficient approximation of the ccdf is to consider only the Legendre cumulants

Lkv=0,k1=0,k2=0, Lkv=1,k1=0,k2=0, Lkv=1,k1=1,k2=0, and Lkv=1,k1=1,k2=1, but to disregard Lkv=1,k1=0,k2=1,

Lkv=0,k1=1,k2=1 since they are implicitly included in Lkv=1,k1=1,k2=1 (Mustapha and Dimitrakopoulos 2011).

Nonetheless, the information that Lkv=1,k1=1,k2=0 conveys is different from the information provided by

Lkv=1,k1=0,k2=1 and Lkv=0,k1=1,k2=1, thus, including the first Legendre cumulant but skipping the other two

may introduce unwarranted fluctuations in the ccdf approximation by expression (12). These observations

are supported by the results of the test example in the following section. In view of these issues, a provisional

rule of thumb for keeping the computational effort within the limits of available computational resources is

to limit the approximation order ω ≤ 5.

The methodology that implements the equations presented in this section is described next.

3 An algorithm for ccdf approximation using high-order statistics

As mentioned before, p-field simulation is an efficient alternative to a sequential approach that would require

the inference of point-block cross high-order moments and much more complex Legendre cumulants and ccdf

approximation. P-field simulation requires a field of previously estimated ccdfs to sample it by multiple

realizations of a field of correlated probabilities. This section describes the methodology for inferring non-

Gaussian ccdfs using the theory explained in the previous section.

3.1 Description of the algorithm

The following is the general overview of a proposed algorithm for the inference of local ccdfs based on

high-order statistics:

1. Transform the original data, training image and reference distributions to the interval [−1, 1]

2. Rasterize the search ellipsoid

3. On basis of the block dimensions, create an up-scaling template for averaging training image values

4. Initialize the containers for storing the high-order moments and Legendre cumulants

5. Start the iteration over all the nodes of the output grid

6. At each block v find the informed neighbours z (u1) , . . . , z (un) at v+h1, . . . ,v+hn and build a custom

search template τh1,...,hn
. Go to point 11 if the number of neighbours is less than the chosen minimum

7. Scan the training image with the template τh1,...,hn
and using the up-scaling template to get the block-

support values from the high-resolution training image.

8. Convert the high-order moments to Legendre cumulants and prompt the approximation of the ccdf for

the current node.

9. Correct order relations in the fitted ccdf,

10. Write in the output grid the approximate ccdf values for all user-defined thresholds,

11. Visit another block and repeat from points 7 to 11 until all nodes have been visited.

The key components of this algorithm are the methods related to the inference of block-point high-order

moments, the storage and retrieval of high-order moments and Legendre cumulants, and the approximation

of the local ccdfs via Legendre polynomial series. These methods are detailed next.

3.1.1 Inference of point-block high-order moments

The definition of the block dimensions as multiples of the cell dimensions of the training image permits

building an up-scaling template for obtaining block-support training values values (see Figure 1(b)). Let us

represent the up-scaling template by νh0,h1,...,hnd
, with nd as the number of training image cells that can be

accommodated in individual output blocks, and h0,h1, . . . ,hnd
as the vectors that radiate from the centre

of the block to the training image cells, including the one located at h0 = (0, 0, 0).
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blocks, and              as the vectors that radiate from the centre of the block to the 

training image cells, including the one located at     (     ). 

The iteration path along the output grid is ordered, just like in classic estimation 

algorithms. At each point or block-support node of the output grid, the rasterized search 

neighbourhood located over the node collects the samples within its limits. The spatial 

configuration of these samples in relation to the centre of the node forms a moment 

template           (see Figure 1(a)). 

These two templates,              
 and          , travel together along the training image. 

At each cell, the up-scaling template              
collects the values that are averaged to 

produce a value of the block-support value of   , while the template          collects the 

point-support values of        . The replicates thus obtained are used to estimate the 

point-block high-order moments (equation (4)) for the           template and all its sub-

templates.  

 

Figure 1: Moment (a) and up-scaling (b) templates for the inference of high-order moments. The 

grey area represents a block, the small squares the training image cells, the small circles the 

samples, the big circle a neighbourhood, and the arrows the vectors that form the templates. 

As new locations are visited along the iteration of the output grid, the moment template 

needs to be redefined according to the spatial configuration of the neighbouring samples. 

A new scanning of the training image is required if the new moment template contains at 

least one vector that is different from the templates used before. But only those moments 

that do not exist yet in the moment’s container are calculated.  

Figure 1: Moment (a) and up-scaling (b) templates for the inference of high-order moments. The grey area
represents a block, the small squares the training image cells, the small circles the samples, the big circle a
neighbourhood, and the arrows the vectors that form the templates.

The iteration path along the output grid is ordered, just like in classic estimation algorithms. At each

point or block-support node of the output grid, the rasterized search neighbourhood located over the node

collects the samples within its limits. The spatial configuration of these samples in relation to the centre of

the node forms a moment template τh1,...,hn (see Figure 1(a)).

These two templates, νh0,h1,...,hnd
and τh1,...,hn

, travel together along the training image. At each cell, the

up-scaling template νh0,h1,...,hnd
collects the values that are averaged to produce a value of the block-support

value of Zv, while the template τh1,...,hn collects the point-support values of Z1 · . . . ·Zn. The replicates thus

obtained are used to estimate the point-block high-order moments (equation (4)) for the τh1,...,hn
template

and all its sub-templates.

As new locations are visited along the iteration of the output grid, the moment template needs to be

redefined according to the spatial configuration of the neighbouring samples. A new scanning of the training

image is required if the new moment template contains at least one vector that is different from the templates

used before. But only those moments that do not exist yet in the moment’s container are calculated.

If block support data is not available, the point-block high-order moments are inferred only from a training

image. In such case, the dataset can be used only for the inference point-point moments. In initial applications

of high-order simulation, the data was combined with the training image (Mustapha and Dimitrakopoulos

2010b, Mustapha, Dimitrakopoulos and Chatterjee 2011, Machuca-Mory and Dimitrakopoulos 2012). From

the practical point of view, however, the samples could distort the patterns informed by the training image,

and, consequently, the inferred high-order moments. Moreover, doing so requires a training image that covers

all the sampled area. Furthermore, from the conceptual point of view, the hard data should not be treated

as pieces of the training image, as it was explained before (Section 2.2). Instead, two containers of moments

can be allocated, one for those inferred from the training image and the other for those that can be inferred

from the dataset. A container of combined high-order moments is then obtained by the weighted average

of the moments that exist in both containers and the inclusion of the moments that exist only in the first

container.

3.1.2 Storage of high-order moments and Legendre cumulants

The containers for the storage and retrieval of moments and Legendre cumulants were designed as vectors of

maps. Each element of the vector corresponds to a map that contains only moments or Legendre cumulants of

the same order ω, including ω = 0. For example, if the approximation is performed with up to the 5th order

of Legendre series, the containers for both, the moments and the Legendre cumulants will contain 6 maps

and a moment such as E
[
Z2
v · Z2

3 · Z1
15

]
will be stored in the 6th map. This data structure design, rather
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than using a single map, is intended to improve the efficiency of storage and retrieval of the moments and

Legendre cumulants.

Being spatial statistics, high-order moments are dependent of the spatial template used for their inference.

Thus, it is important to keep the information about the spatial template τh1,...,hn linked to the moment value.

This is achieved by indexing the moments by integer arrays of size η+ 1, with η as the number of nodes of a

rasterized circular or elliptical neighbourhood. In these map keys, the position of each element in the array

corresponds to the position of a template point within a neighbourhood, and its value, to the power wα ∈
N0, α = 0, 1, · · · , η with w0+w1+· · ·+wη = ω. For instance, Figure 2 shows a small circular neighbourhood of

3-units radius centred in a block v, the neighbouring rasterized nodes coded by their proximity to the centre,

and two conditioning samples that coincide with nodes 3 and 15. The key for moment E
[
Z2
v · Z2

3 · Z1
15

]
in this

neighbourhood is [2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. An equivalent indexing

method is used for the vector of Legendre cumulant maps.
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Figure 2: Rasterized neighbourhood with node ordering and two neighbouring samples.

3.1.3 Approximation of the local ccdfs and conditional moments

In expressions (12) and (14), the Legendre cumulants Lkv,k1,···,kn provide information about the stationary

multi-point spatial structure. The local conditioning is achieved by the inclusion of the n neighbouring

sample values z1, · · · , z1 in the Legendre polynomials Pk1 (z1) , · · · , Pkn (zn). At each node of the output

grid, the high-order moments are recombined into Legendre cumulants according to (9) if the current moment

template has not been yet found at previous nodes. Otherwise, the Legendre cumulant is just retrieved from

the corresponding container. A recursive method implements the transformation of high-order moments into

Legendre cumulants. Expressions (12) and (14) are also calculated using recursive algorithms.

The ccdfs fitted using Legendre or other polynomials will inevitably suffer of order relation problems.

These are fixed by applying the same corrections applied to the ccdfs build using indicator methods (Goovaerts

1997, Deutsch and Journel 1998). However, in some cases, invalid ccdfs that cannot be fixed by those

corrections may be produced. A suggested solution is to remove the invalid ccdfs from the output grid and

to rebuild them by interpolating the thresholds of neighbouring valid ccdfs.

By selecting higher orders of approximation ω it is possible to fit more complex ccdfs and approximate

conditional univariate moments of higher order. This also reduces the occurrence of order relation problems

and invalid ccdfs. However as the order of the approximation increases, the computational costs explode.

The overall computational cost of this algorithm depends not only on the order of approximation and the

number of neighbouring samples, but also on the number of dimensions (2D or 3D), the size of the search

ellipsoid, the size of the training image, and the output grid and block sizes. Some ideas for improving the

computational performance include the parallelization of processes, the use of graphical processing units,

smaller but pattern-rich local training images, the implementation of multigrid search neighbouhoods and

profiting of approximated symmetries of the type E
[
Za0 · Zb1

]
≈ E

[
Zb0 · Za1

]
.
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3.2 Test example

Before attempting to run a first full case study, it is crucial to verify if the algorithm is actually fitting the

local ccdfs accordingly to the theory presented in Section 2. Failing to do so would raise justified concerns

about the validity of the proposed algorithm. The test example presented next is designed for such aim.

Figure 3(a) shows a small grid formed by 4 blocks of 3×3 pixels cell size. Two samples are available in the

grid. The 2D training image for extracting the point-point and point-block high-order moments appears in

the right side of Figure 3. A search circle of 3 pixel radius, such as the one shown in Figure 2, was selected.

By using this search neighbourhood, the cdf at block 1 (B1) is conditioned only by the high value sample,

at B2, it is conditioned by both samples, no conditioning data is available for B3, and the cdf at B4 is

conditioned only by the low value sample.
 

 

 

 

93  

 

Figure 3: (a) Four 3x3 pixel blocks with two neighbouring samples and (b) a 2D training image 

Figure 4 shows the point and block scale fitted ccdfs at the centres of the 4 blocks. These 

results correspond to a maximum order of 4 for the ccdf approximation. All the required 

low and high-order moments were calculated from the training image and used in the 

Legendre approximation of the ccdfs. For B1 (Figure 4 (a)), the presence of a high value 

neighbour bends the point and block-support ccdf towards higher probabilities for high 

values. In B2 (Figure 4 (b)), the influence of both values results in a bimodal point-

support ccdf, whereas the block-support ccdf shows a more uniform shape between the 

thresholds defined by the two sample values. This shape of the block-support ccdf is 

coherent with the averaging effect of up-scaled values. B3 (Figure 4 (c)) has no 

conditioning neighbours, thus, the corresponding point and block-support ccdfs approach 

the respective global cdfs. Notice that the block-support global cdf is less bimodal than 

the point-support global cdf. B4 (Figure 4 (d)) is conditioned only by the low value 

sample, thus, the point-support ccdf is shifted towards the lower values giving no 

probability of occurrence to high values. Contrastingly, the block-support ccdf, as it 

would be expected, is more resilient to the influence of a single low value. These results 

show that multi-point high-order moments can be used effectively to approximate 

conditional cdfs in a spatial context and for different supports. 

Figure 3: (a) Four 3×3 pixel blocks with two neighbouring samples and (b) a 2D training image.

Figure 4 shows the point and block scale fitted ccdfs at the centres of the 4 blocks. These results correspond

to a maximum order of 4 for the ccdf approximation. All the required low and high-order moments were

calculated from the training image and used in the Legendre approximation of the ccdfs. For B1 (Figure 4(a)),

the presence of a high value neighbour bends the point and block-support ccdf towards higher probabilities

for high values. In B2 (Figure 4(b)), the influence of both values results in a bimodal point-support ccdf,

whereas the block-support ccdf shows a more uniform shape between the thresholds defined by the two sample

values. This shape of the block-support ccdf is coherent with the averaging effect of up-scaled values. B3

(Figure 4(c)) has no conditioning neighbours, thus, the corresponding point and block-support ccdfs approach

the respective global cdfs. Notice that the block-support global cdf is less bimodal than the point-support

global cdf. B4 (Figure 4(d)) is conditioned only by the low value sample, thus, the point-support ccdf is

shifted towards the lower values giving no probability of occurrence to high values. Contrastingly, the block-

support ccdf, as it would be expected, is more resilient to the influence of a single low value. These results

show that multi-point high-order moments can be used effectively to approximate conditional cdfs in a spatial

context and for different supports.

Figure 5 shows the impact of the maximum order of approximation in the fitted point and block-supports

ccdfs, in this case for location B2 of the example. At order 0, the Legendre cumulants only allow fitting a

uniform cdf. At order 1 the influence of conditioning data on the fitted ccdfs is minimal. At orders 2 and 3

the influence of conditioning data is noticeable, but the fitted ccdfs lack of detail and may be biased. Only for
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Figure 4: Point and block-support 4
th
-order Legendre ccdf approximation at 4 different locations 

and with 0 to 2 conditioning samples. The vertical dashed lines mark the values of the 

conditioning samples. 

Figure 5 shows the impact of the maximum order of approximation in the fitted point and 

block-supports ccdfs, in this case for location B2 of the example. At order 0, the 

Legendre cumulants only allow fitting a uniform cdf. At order 1 the influence of 

conditioning data on the fitted ccdfs is minimal. At orders 2 and 3 the influence of 

conditioning data is noticeable, but the fitted ccdfs lack of detail and may be biased. Only 

for orders greater or equal to 4, the ccdf approximation by Legendre cumulants is able to 

fit complex asymmetric and multimodal ccdfs.  

Figure 4: Point and block-support 4th-order Legendre ccdf approximation at 4 different locations and with 0
to 2 conditioning samples. The vertical dashed lines mark the values of the conditioning samples.

orders greater or equal to 4, the ccdf approximation by Legendre cumulants is able to fit complex asymmetric

and multimodal ccdfs.

Initial works of simulation based on high-order statistics in a geostatistical context suggest that high-

order moments and Legendre cumulants with exponents higher than 1 should be disregarded or approached

by lower order moments of similar number of points (Mustapha and Dimitrakopoulos 2011). Doing so would

reduce dramatically the computational cost of high-order simulation since only n+ 2 moments and Legendre

cumulants would suffice, with n as number of conditioning samples (2 in this example).

335 high-order moments and the same number of Legendre cumulants were needed to fit all the point-

support ccdfs in Figure 4. This number was 55 for the block-support ccdfs. Appendix C shows some of

the high order moments (Table 1) and their corresponding Legendre cumulants (Table 2) required for the

4th order approximation of the point-support ccdf at B2. As these tables show, the moments of the form

E
[
Zw0
0 · Z1

1

]
, with w0 close to 1, cannot be approximated by moments of the form E

[
Z1
0 · Z1

1

]
. Neither can

they be dismissed for 2 ≤ w0 ≤ 4. The same can be said for the Legendre cumulants.

These observations preclude the previously suggested approach for reducing the computational complexity

of high-order simulation algorithms. Adopting it would result in a poor fitting of the ccdf, in the best case,

or, in increased unwarranted fluctuations that yield to invalid ccdfs, in the worst.
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Figure 5:  

Initial works of simulation based on high-order statistics in a geostatistical context 

suggest that high-order moments and Legendre cumulants with exponents higher than 1 

should be disregarded or approached by lower order moments of similar number of points  

(Mustapha and Dimitrakopoulos 2011). Doing so would reduce dramatically the 

computational cost of high-order simulation since only     moments and Legendre 

cumulants would suffice, with   as number of conditioning samples (2 in this example).  

335 high-order moments and the same number of Legendre cumulants were needed to fit 

all the point-support ccdfs in Figure 4. This number was 55 for the block-support ccdfs. 

Appendix C shows some of the high order moments (Table 1) and their corresponding 

Legendre cumulants (Table 2) required for the 4
th

 order approximation of the point-

support ccdf at B2. As these tables show, the moments of the form   [  
     

 ], with    

close to 1, cannot be approximated by moments of the form  [  
    

 ]. Neither can they 

be dismissed for       . The same can be said for the Legendre cumulants.  

These observations preclude the previously suggested approach for reducing the 

computational complexity of high-order simulation algorithms. Adopting it would result 

in a poor fitting of the ccdf, in the best case, or, in increased unwarranted fluctuations that 

yield to invalid ccdfs, in the worst.  

 

Figure 5:

4 Case study

The exhaustive 2D dataset used as the training image for this case study is the horizontal slice of the Stanford

V reservoir (Mao and Journel 1999) that appears in Figure 3(b). 251 scattered samples were taken from the

training image at random locations within a 100× 100 units area. Sampling directly from an exhaustive TI

is not feasible in real life applications. The TI is used only for obtaining the high-order moments, but it

does not provide locally specific information. More than reconstructing the training image, this case study

aims to model the space of uncertainty due to lack of complete locally specific information but counting with

knowledge about the complex spatial structure of the attribute. Figure 6(a) shows the clearly bimodal cdf

of the scattered dataset, while Figure 6(b) presents the sample locations. Note that the original values were

transformed to the [−1, 1] range to comply with the definition range of Legendre polynomials.
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The exhaustive 2D dataset used as the training image for this case study is the horizontal 

slice of the Stanford V reservoir (Mao and Journel 1999) that appears in Figure 3(b). 251 

scattered samples were taken from the training image at random locations within a 

        units area. Sampling directly from an exhaustive TI is not feasible in real life 

applications. The TI is used only for obtaining the high-order moments, but it does not 

provide locally specific information. More than reconstructing the training image, this 

case study aims to model the space of uncertainty due to lack of complete locally specific 

information but counting with knowledge about the complex spatial structure of the 

attribute. Figure 6(a) shows the clearly bimodal cdf of the scattered dataset, while Figure 

6(b) presents the sample locations. Note that the original values were transformed to the 

[    ] range to comply with the definition range of Legendre polynomials. 

 

Figure 6: (a) Cumulative distribution of the scattered dataset, and (b) sample locations 

The output grid block size is     units. The local block-support ccdfs were 

approximated using the locally specific information provided by the dataset and the 

spatial structure information provided by the high-order statistics obtained from the 

training image. Three orders of approximation, from 3 to 6 were tried. Figure 7 shows the 

cumulative probability maps for three thresholds applied on the ccdfs obtained using 

different orders of approximation. The conditional cumulative probabilities in these maps 

are lower in regions of high values and reproduce the curvilinear features observed in the 

training image. The blank blocks in these maps correspond to locations were the 

Legendre polynomials approximation yielded invalid ccdfs.  At order 3 the number of 

Figure 6: (a) Cumulative distribution of the scattered dataset, and (b) sample locations.

The output grid block size is 4 × 4 units. The local block-support ccdfs were approximated using the

locally specific information provided by the dataset and the spatial structure information provided by the

high-order statistics obtained from the training image. Three orders of approximation, from 3 to 6 were

tried. Figure 7 shows the cumulative probability maps for three thresholds applied on the ccdfs obtained

using different orders of approximation. The conditional cumulative probabilities in these maps are lower

in regions of high values and reproduce the curvilinear features observed in the training image. The blank
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invalid ccdfs is 119, at order 4 it is reduced to 46, and at order 5, it remains stable with 46 

invalid ccdfs.  However, increasing the order of the approximation results in a 

considerable increase of the computational time. At order 3, it took 8.6 minutes to 

complete the ccdfs approximation for all blocks in the grid; whereas at order 4 it took 

27.4 minutes, and 76.1 minutes at order 5. The blank ccdfs can be fixed by interpolating 

the percentiles of the valid neighbouring ccdfs.  

 

Figure 7:  

Alternatively, as Expression (14) shows, the Legendre cumulants approximation can also 

yield conditional 1-point low and high-order moments. Figure 8 shows the conditional 

moments maps from order 1 to 4. The blank areas in these maps correspond to blocks for 

which the conditional moments exceeded the valid range.  

 

Figure 7:

blocks in these maps correspond to locations were the Legendre polynomials approximation yielded invalid

ccdfs. At order 3 the number of invalid ccdfs is 119, at order 4 it is reduced to 46, and at order 5, it remains

stable with 46 invalid ccdfs. However, increasing the order of the approximation results in a considerable

increase of the computational time. At order 3, it took 8.6 minutes to complete the ccdfs approximation for

all blocks in the grid; whereas at order 4 it took 27.4 minutes, and 76.1 minutes at order 5. The blank ccdfs

can be fixed by interpolating the percentiles of the valid neighbouring ccdfs.

Alternatively, as Expression (14) shows, the Legendre cumulants approximation can also yield conditional

1-point low and high-order moments. Figure 8 shows the conditional moments maps from order 1 to 4. The

blank areas in these maps correspond to blocks for which the conditional moments exceeded the valid range.

The probability fields were generated using sequential Gaussian conditional simulation. The condition-

ing data was created by replacing the original data values with the uniform distribution median value (0.5)

(Goovaerts 2002). This dataset was transformed to Gaussian space where different realizations were gen-

erated. The realizations were back-transformed into uniform distributions defined within the interval [0, 1].

The variogram model for simulating the probability fields was obtained from the uniform transforms of the

scattered dataset. The multiple probability fields were used to sample the local ccdfs obtained with the 5th

order Legendre approximation. Figure 9 shows some of the resulting realizations. Notice the similitude of

the patterns in the ccdf maps of Figure 7 with the patterns of simulated values in Figure 9.

The use of sequential Gaussian simulation to generate the probability fields may raise concerns about the

preservation of the high-order spatial structure of the ccdfs in the realizations. Nonetheless, as the 3rd order
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Figure 8: Approximated conditional 1
st
 (a), 2

nd
 (b), 3

rd
 (c) and 4

th
 (d) moments using Legendre 

cumulants. 

The probability fields were generated using sequential Gaussian conditional simulation. 

The conditioning data was created by replacing the original data values with the uniform 

distribution median value (0.5) (Goovaerts 2002). This dataset was transformed to 

Gaussian space where different realizations were generated. The realizations were back-

transformed into uniform distributions defined within the interval [   ]. The variogram 

model for simulating the probability fields was obtained from the uniform transforms of 

the scattered dataset. The multiple probability fields were used to sample the local ccdfs 

obtained with the 5
th

 order Legendre approximation. Figure 9 shows some of the resulting 

realizations. Notice the similitude of the patterns in the ccdf maps of Figure 7 with the 

patterns of simulated values in Figure 9. 

Figure 8: Approximated conditional 1st (a), 2nd (b), 3rd (c) and 4th (d) moments using Legendre cumulants.
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Figure 9: Block-support realizations obtained by probability sampling of the ccdfs.  

The use of sequential Gaussian simulation to generate the probability fields may raise 

concerns about the preservation of the high-order spatial structure of the ccdfs in the 

realizations. Nonetheless, as the 3
rd

 order cumulant maps of Figure 10 show, the 

individual realizations still contain complex spatial relations that are comparable to those 

found in the 3
rd

 order cumulant maps of the dataset (Figure 11(a)) and, specially, of the 

Training Image (Figure 11(b)).  

 

Figure 10: 3
rd

 order cumulant maps for the realizations presented above. 

Figure 9: Block-support realizations obtained by probability sampling of the ccdfs.

cumulant maps of Figure 10 show, the individual realizations still contain complex spatial relations that are

comparable to those found in the 3rd order cumulant maps of the dataset (Figure 11(a)) and, specially, of

the Training Image (Figure 11(b)).

High-order block-support simulation not only allows for a reasonable reproduction of the block-support

high-order spatial statistics, but also of the block-support low-order statistics and histogram. As Figure 12

shows, the global cdfs of the block-support realizations match the global cdf of the up-scaled Training Image
within ergodic fluctuations.
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Figure 11: 3
rd

 order cumulants maps obtained from the scattered samples (a), the block-support 

training image (b) and by averaging the 3
rd

 order cumulants of 10 block-support realizations 

High-order block-support simulation not only allows for a reasonable reproduction of the 

block-support high-order spatial statistics, but also of the block-support low-order 

statistics and histogram.  As Figure 12 shows, the global cdfs of the block-support 

realizations match the global cdf of the up-scaled Training Image within ergodic 

fluctuations.  

 

Figure 12: Global cdfs of the block-support realizations (black curves) and the up-scaled training 

image (red curve) 

5 Discussion and Conclusions 

A methodology based on high-order spatial statistics for the local conditioning of the 

cumulative distributions functions of continuous variables at point and block support has 

been presented. The high-order spatial statistics carry information about non-linear 

spatial correlations into the orthogonal polynomial series that are used to approximate the 

Figure 11: 3rd order cumulants maps obtained from the scattered samples (a), the block-support training
image (b) and by averaging the 3rd order cumulants of 10 block-support realizations (c).

5 Discussion and conclusions

A methodology based on high-order spatial statistics for the local conditioning of the cumulative distributions

functions of continuous variables at point and block support has been presented. The high-order spatial

statistics carry information about non-linear spatial correlations into the orthogonal polynomial series that

are used to approximate the conditional cdfs. Legendre polynomial series were used in the case study to

approximate local conditional cdfs from a bimodal dataset. Other types of polynomials, such as Laguerre or

Jacobi could be more appropriate if the data distribution is much skewed.

The results show that the resulting cdfs are effectively affected by the values and spatial configuration

of the conditioning samples and the spatial pattern informed by the high-order moments extracted from

a training image. The approximation block-support conditional cdfs from block support data and training

images is achieved by the incorporation of cross block-point high-order statistics with up-scaled block-support

values. This methodology is computationally expensive, thus, a reasonable option is to approximate the

conditional cdfs only once and use different fields of correlated probabilities to sample them. The use of

conditional sequential Gaussian simulation to generate the probability fields does not affect considerably the

high-order spatial structure of the realizations produced by the proposed methodology, whose cumulant maps
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5 Discussion and Conclusions 

A methodology based on high-order spatial statistics for the local conditioning of the 

cumulative distributions functions of continuous variables at point and block support has 

been presented. The high-order spatial statistics carry information about non-linear 

spatial correlations into the orthogonal polynomial series that are used to approximate the 

Figure 12: Global cdfs of the block-support realizations (black curves) and the up-scaled training image (red
curve).

show reasonable agreement with the cumulant map obtained from the up-scaled training image. The global

cdfs of the realizations also match closely the up-scaled training image cdf within ergodic fluctuations.

Besides the high demand of computational resources, the proposed methodology suffers of cases where

the Legendre approximation yields invalid conditional cdfs. So far this problem is tackled by order-relation

corrections or, for the extreme cases, by removing those cdfs and rebuilding them by interpolating the

probability values of surrounding valid conditional cdfs. More detailed studies are needed to identify the

conditions that difficult the approximation of the local conditional cdfs using series of orthogonal polynomials.

Future work also include the development of leaner and faster algorithms for the implementation of conditional

cdf approximation using orthogonal polynomials and high-order statistics at block and point-support scale.

These algorithms are needed to implement high-order sequential simulation.

Appendix A – General form of the conditional cdf approximation using
Legendre polynomials and high-order statistics

If the local cdf is conditioned by N point-support and M block-support data, it can be approximated by

FZ (Z0 ≤ t | z1, . . . , zN , zN+1, . . . zM ) ≈(∑ω
i0
· · ·
∑iN−1

iN

∑iN
iN+1
· · ·
∑iN+M+1

iM
Li0−i1,...,iN−iN+1,...iN+M∏N+M

k=1 Pik−ik+1
(zk)

∑b i0−i1
2 c

j=0 aj,i0−i1
(ti0−i1−2j+1−(−1)i0−i1−2j+1)

i0−i1−2j+1

)
(∑ω

i0
· · ·
∑iN−1

iN

∑iN
iN+1
· · ·
∑iN+M+1

iM
Li0−i1,...,iN−iN+1,...iN+M∏N+M

k=1 Pik−ik+1
(zk)

∑b i0−i1
2 c

j=0 aj,i0−i1
(1−(−1)i0−i1−2j+1)

i0−i1−2j+1

)
.

Where Z0 can be a point or block-support random variable, z1 to zN are point-support data values, zN+1 to

zN+M are block support data values, the Legendre polynomials Pik−ik+1
(zk) are obtained by Expression (7),
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and the point-block Legendre cumulants Li0−i1,...,iN−iN+1,...iN+M
are given by

Li0−i1,...,iN−iN+1,...iN+M
=

∏M+N+1
k=0 (2 (ik − ik+1) + 1)

2M+N+1

×
b(i0−i1)/2c∑

j0=0

· · ·
biN+M/2c∑
JN+M=0

E
[
Z
i0−i1−2j0
0 · · · · · ZM+N−2j0

M+N

]∏N+M

l=0
ajl,il−il+1

.

The coefficients ajl,il−il+1
are the same as those in Expression (7).

Appendix B – Some high-order moment and Legendre cumulant values

Table 1: Some point-point and point-block high-order moments calculated for the test example in Section 3.

High-order Moment Point-point Block-point

E
[
Z1
0 · Z1

1

]
0.334954 0.312679

E
[
Z2
0 · Z1

1

]
−0.0578584 −0.0576177

E
[
Z3
0 · Z1

1

]
0.185085 0.148872

E
[
Z1
0 · Z1

14

]
0.342108 0.295744

E
[
Z2
0 · Z1

14

]
−0.055852 −0.0571939

E
[
Z3
0 · Z1

14

]
0.188256 0.124784

E
[
Z1
0 · Z1

1 · Z1
14

]
−0.055968 −0.0545197

E
[
Z2
0 · Z1

1 · Z1
14

]
0.123183 0.123839

Table 2: Legendre cumulant values for the same orders and points as the high-order moments presented in
the table above.

Legendre cumulant Point-point Block-point

L1,1,0 0.37682325 0.351763875
L2,1,0 −0.040103813 −0.039699938
L3,1,0 −0.10426605 −0.254199225
L1,0,1 0.3848715 0.2834145
L2,0,1 −0.04125825 −0.039133313
L3,0,1 −0.111621825 −0.1730568
L1,1,1 −0.094446 −0.092001994
L2,1,1 0.04864725 0.082740375

Appendix C – The HOEst program

HOEst stands for high-order estimation, and its objective is to estimate local non-Gaussian point and block-

support ccdfs and conditional high-order moments over a regular grid and given a set of conditioning hard

data. The resulting ccdfs can be used as an input to p-field simulation, or, alternatively, the more compact

conditional moments output can be used to approximate the ccdfs.

The HOEst program was written in C++ and implemented as a SGeMS plugin (Remy 2009). It

takes advantage of diverse classes and functions of SGeMS and the Geostatistical Template Library, GsTL

(Remy 2001). HOEst is formed by three main classes: The HOEst class, the Legendre ccdf class and the

HO moment map class. HOEst class links the algorithm with SGeMS and the user interface with the algo-

rithm. This class also executes the algorithm and manages the other two classes. The HO moment map class

calculates the high-order moments and stores them in a vector of maps. The Legendre ccdf class reads the
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Figure 13: HOEst user interface 

After the iteration of the entire output grid is finished, the program prints the maps of 

high-order moments and Legendre cumulants in two debugging text files. 
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Figure 13: HOEst user interface.

high-order moments maps and uses them to, first, obtain and store the Legendre cumulants, and, second, to

approximate the ccdf or the conditional moments. It returns the ccdf for a user-defined number of thresholds
or, alternatively, the local conditional moment up to a user-defined order.

The HOEst plugin appears in the Estimation group of the SGeMS algorithms. Figure 13 shows the three

pages of the user interface for HOEst. The first page contains the data and output parameters. The widgets

for the output grid and the hard data input are similar to those found in the user interfaces of classic SGeMS

algorithms. Two output types are permitted: ccdf and moments. In case the first output type is selected,

the “N. of thresholds/moments” parameter specify the number the number of cut-offs for discretizing the

output local ccdfs. In case the second output type is selected, each block in the output grid will contain the

univariate conditional moments up to an order given by the “N. of thresholds/moments” parameter. The

“Maximum Order” parameter specifies the order ω for the approximation of the local ccdfs and conditional

moments. It is recommended not to select a maximum order larger than the “N. of thresholds/moments”

parameter if the output type is conditional moments. If the “Block Estimation” box is unchecked, the output

ccdfs or moments will be at point-support. Otherwise, the dimensions of the output blocks must be provided.

These dimensions are multiples of the training image cell sizes.

The second page of the HOEst user interface is devoted to the training image and search ellipsoid. The

widget for selecting the training image and the training property are similar to those for selecting the hard

data grid and property. The search ellipsoid definition parameters follow the same convention as other SGeMS

plugins. A detailed explanation of the SGeMS search ellipsoid definition and the advanced search options

can be found in Chapter 2 of the book Applied Geostatistics with SGeMS (Remy, Boucher and Wu 2009).
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Chapter 6 of the same book explains the entries of the widget for a non-parametric distribution, as the one

that appears in the third page of the HOEst user interface. The target histogram is used to transform the

original data and TI cdfs to a declustered cdf. If a declustered histogram is not provided, the hard data

histogram will be used as the target histogram.

The last parameter in the third page of the HOEst user interface is the ccdf fitting effort level. The three

effort levels from 0 to 2 correspond to:

0. Only high-order moments and Legendre cumulants of the form E
[
Z0∨1
0 · Z0∨1

1 · . . . · Z0∨1
n

]
and

Lkv=0∨1,k1=0∨1,···k2=0∨1, respectively, are inferred and used for approximating the ccdfs,

1. only high-order moments of the form E
[
Z0∨1
0 · Z0∨1

1 · . . . · Z0∨1
n

]
are inferred. Moments of the form

E
[
Z>1
0 · Z>1

1 · . . . · Z>1
n

]
are approximated by moments E

[
Z1
0 · Z1

1 · . . . · Z1
n

]
. These approximated mo-

ments are used for obtaining the Legendre cumulants of any order and attempting to fit the ccdfs.

All high-order moments and Legendre cumulants required by expressions (9), (12) and (14) are obtained

up to the user selected order ω and used for approximating the local ccdfs or conditional moments. This is

the option that yields best results but also the most computationally demanding one.

It is important to remark that while only the hard data that falls within the boundaries of the output grid

is used for the local cdf and moments conditioning, the training image grid does not need to be coincident

with the output grid. This allows greater flexibility for building and choosing a training image. The only

restriction is that the block dimensions of the output grid must be entire multiples of the training image’s

cell dimensions.

After the iteration of the entire output grid is finished, the program prints the maps of high-order moments

and Legendre cumulants in two debugging text files.
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