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Abstract: Global asset optimization aims to simultaneously optimize mine production schedules, destination
policies and the various processing streams in order to maximize the economic value over the life of a mineral
resource supply chain. Conventional mine optimization approaches are incapable of incorporating geological
uncertainty and may lead to severe deviations from forecasted production targets. Stochastic optimization
models that manage risk in mine design and production scheduling have been developed over the past several
years, however these models are often oversimplified, thus limited to provide only a local optimum in terms
of the mining complex as a whole.

This paper addresses the issue of global optimization of open pit mine production schedules for complex
mining supply chains under geological uncertainty. The proposed simulation-optimization framework builds
on previous mining supply chain optimization work by permitting extraction decisions to be made simulta-
neously with material destination policies and processing stream decisions in order to maximize the value
of the supply chain. The resulting framework is capable of modelling and efficiently optimizing over the
non-linear intricacies that are often present in large mining complexes. The proposed optimizer uses a hybrid
of both simulated annealing and particle swarm optimization. The method is tested on a copper-gold deposit
and experimental results demonstrate that the optimizer is capable of generating production schedules and
destination policies that reduce the risk of meeting production targets, have 14% higher net present value
and increase the size of the final pit by 22%.

Key Words: Open pit mine design, supply chain optimization, production scheduling, metaheuristics, des-
tination policy.
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1 Introduction

A mining supply chain maps a spatio-temporal flow of materials from open pit or underground mines through

various processing streams and destinations to final saleable products. Global asset optimization (Whittle,

2007; Whittle, 2009) aims to optimize mining supply chains, starting from the decisions of what material

to extract from the various sources (mines) in a given time period, and how to best utilize the supply

chain’s resources to maximize the value of the material that has been extracted. Historically, these two

components have been optimized independently, leading to sub-optimal solutions for the supply chain as a

whole. Existing attempts at global asset optimization ignore the compounded effect that uncertainty (i.e.

geological or economic) has on the value and operational feasibility of the supply chain (Monkhouse and

Yeates, 2007). As the complexity of the supply chain increases in terms of number of mines, destinations

and processing stream options, there is an increasing importance in solving all elements simultaneously while

considering the uncertainty that arise within the mining complex’s various components.

A substantial amount of progress has been made over recent years in order to integrate geological, or sup-

ply, uncertainty into open pit mine production scheduling optimization models. Ramazan and Dimitrakopou-

los (2012) propose a two-stage stochastic integer programming (SIP) formulation (Birge and Louveaux, 1997)

that seeks to maximize the net present value (NPV) of a production schedule while simultaneously minimiz-

ing the risk of not meeting production targets. Through the use of a parameter referred to as geological

risk discounting (Dimitrakopoulos and Ramazan, 2004), the authors force the optimizer to strike a balance

between extracting high value and low-risk material at the beginning of a mine’s life, while deferring riskier

material to later periods when more geological information is available. The basic SIP model has been tested

and improved over time (Leite and Dimitrakopoulos, 2007; Jewbali, 2006; Benndorf and Dimitrakopoulos,

2009; Albor and Dimitrakopoulos, 2010; Lamghari and Dimitrakopoulos, 2012a), and the results consistently

demonstrate that the NPV of the production schedule that considers geological uncertainty can be substan-

tially higher than that of a conventional schedule, and, moreover, there is substantially less risk in terms of

deviations from production targets. Despite these advances in integrating geological uncertainty into mine

production scheduling models, all of the previous formulations make two limiting assumptions: first, the defi-

nition of ore and waste are defined a-priori, hence cut-off grade optimization (Lane, 1988; Rendu, 2008) is not

directly integrated in the models, and finally, the previous models assume a simple supply chain that consists

of a processing facility (mill) and a waste dump, without any consideration for intermediate or subsequent

destinations.

To address issues related to simultaneous cut-off grade optimization with open-pit production scheduling,

Boland et al. (2009) propose a multistage stochastic programming model that allows processing decisions to

be made dynamically (per simulation), along with mining extraction decisions that can adapt as uncertainty

is revealed as mining progresses. While being an interesting concept, this method suffers from the flaw that

the optimizer returns several mine design possibilities, which is often impractical for a mine engineer who

needs to use these designs for subsequent work. The authors also rely on the time-separable properties of

the formulation, which makes it challenging to integrate more advanced processing streams in the model

(e.g. stockpiles). Moreover, scenario-dependent destination policies are overly optimistic and don’t reflect

the fact that destination decisions (such as cut-off grade policies) need to be decided while considering the

geological uncertainty. Menabde et al. (2007) propose a mixed integer programming (MIP) model that

integrates geological uncertainty into production scheduling while simultaneously generating robust cut-off

grade policies. The authors note an increase in NPV when permitting the optimizer to select the cut-off grade

versus the case when only the marginal cut-off is used. This model, however, doesn’t explicitly attempt to

control the risk over the life of the mine.

To address issues related to more complex supply chains, Ramazan and Dimitrakopoulos (2004) introduce

a stockpile into the SIP model. This model suffers the same a-priori cut-off grade limitation from previous

SIP models, but also suffers from having to specify the average stockpile grade a-priori in order to preserve

linearity for the model. Lamghari and Dimitrakopoulos (2012b) design an efficient metaheuristic based on this

model, and De Frietas Silva et al. (2013) improve the method by successively solving the model and updating

the stockpile grades, however the method cannot be easily extended to cases with stockpile capacities and

grade blending or more complex supply chains.
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While the methods for integrating geological uncertainty into long-term production scheduling have under-

gone considerable advances, they are not presently capable of optimizing while considering complex destina-

tion policies and processing streams. The underlying issue with these optimization problems is the extensive

amount of non-linearity that is required to accurately model the blending of materials and the complex

transformations from input to output products. There have been several attempts to model and optimize

the various aspects of the supply chain with an increasing level of detail (Hoerger et al., 1999; Hoerger et al.,

1999; Chanda, 2007; Whittle, 2007; Whittle, 2009; Bley et al., 2012), however all models ignore geological

uncertainty, and are limited in the degree of flexibility in modelling the non-linear intricacies in the supply

chain. Bodon et al., (2009) and Sandeman et al. (2010) present a discrete event simulation-optimization

framework, which permits a high-degree of flexibility in modelling the supply chain and independent stochas-

tic events at the various destinations, however requires simplifications to eliminate non-linear constraints.

Simulation-optimization frameworks are useful tools when optimizing complex supply chains because it per-

mits the dynamic evaluation (simulation) of the impact that a set of decisions (e.g. production schedules,

destination policies and processing streams) have on a mining complex, and then attempts to improve these

decisions through the use of an optimizer. More recently, Goodfellow and Dimitrakopoulos (2012) propose

a simulation-optimization framework that not only permits a high degree of flexibility for modelling the

non-linear aspects of the supply chain, but does not require simplifying assumptions to generate high-quality

optimization solutions. Moreover, the proposed model can integrate geological uncertainty directly and can

be used to generate robust destination policies.

This paper improves on the previous simulation-optimization framework by enabling the optimizer to

make production scheduling decisions in addition to destination policies and processing stream decisions.

First, an overview of the modelling approach proposed by Goodfellow and Dimitrakopoulos (2012) is given.

Following this, a two-stage SIP formulation is proposed, where the first stage decisions are to optimize multi-

mine long-term production schedules and robust destination policies, and the second-stage recourse decisions

are used to optimize the various processing streams of the supply chain. Following this, the proposed solution

method is discussed, which is a hybrid of particle swarm optimization and an adapted version of simulated

annealing designed to handle multiple neighbourhoods. The method is then tested at on a copper-gold deposit

data set. Finally, conclusions and future work are presented.

2 Stochastic global asset optimization

The goal of global asset optimization (Whittle, 2007; Whittle, 2009) is to generate a long-term (multi-) mine

production schedule that provides the appropriate types, quantities and quality of materials that maximize

the long-term value of the supply chain. For the sake of continuity in the descriptions from previous work,

the aspect of making extraction decisions for a mine will be referred to as “production scheduling”, whereas

optimizing the destination policies and processing streams according to a given production schedule will be

referred to as “supply chain optimization” (Goodfellow and Dimitrakopoulos, 2012). Global asset optimiza-

tion simultaneously considers both production scheduling and supply chain optimization, acknowledging the

interdependence of the two concepts. In this section, the proposed framework for modelling and simulating

(evaluating) supply chains will be outlined. Following this, an optimization formulation for global asset

optimization is given, similar to that given by Goodfellow and Dimitrakopoulos (2012), but with additional

emphasis on integrating production scheduling. A description of the hybrid metaheuristic algorithms used

to solve the optimization problem is then discussed.

2.1 Modelling and simulating mining supply chains

2.1.1 Background and definitions

Consider a set of locations in a mining supply chain, L = Lm∪Ld, whereby lm ∈ Lm is used to denote a mine

m from the set of mines that supply the chain with material, and ld ∈ Ld is used to denote a destination d

from the set of destinations (e.g. concentrators, refineries, ports, customers). Consider a topologically sorted

directed acyclic graph that represent the general flow of materials through a supply chain, GTS
(
L,Omat

l,l′

)
,

where the vertices of the graph l ∈ L are locations in the supply chain, and are connected to other vertices



Les Cahiers du GERAD G–2014–55 3

(locations) l′ ∈ L, l 6= l′ by a set of arcs defined in the set Omat
l,l′ . For the purpose of simplifying the explanation

of the proposed methodology, it is assumed that this supply chain graph GTS
(
L,Omat

l,l′

)
is static through time,

however, in the implementation a node l ∈ L may or may not have an arc to location l′ when comparing

one time period to another – a case that may arise when a mine or processing facility starts or closes. The

arcs in Omat
l,l′ are used to describe the flow of an output material (or product) mat from destination l, which

serves as an input material at destination l′. Any destination can have multiple output materials that go to

the same destination and a destination may have the same input material coming from multiple sources (e.g.

multiple mines produce a similar oxide material sent to a processing plant). It is assumed that there is not a

material flow from a location to the mines, i.e. Omat
l∈L,l′∈Lm

= ∅. Any destination in the supply chain ld ∈ Ld

may receive a set of materials from a previous destination, which can then be transformed and combined into

intermediate and output products.

In the proposed framework, the materials have no practical meaning, and are merely an abstraction to

define the flow of materials. Properties are associated with materials and are used to give a material their

meaning in the practical sense. For example, a mine may send a sulphide material to a processing plant, with

a property that the represents the tonnage of a metal. More formally, each material mat ∈Matl for location

l ∈ L, has an associated set of properties Rmatl , whereby an individual property from the set is denoted

by rmat ∈ Rmatl with a value of vprmat
in period p. In the sorted supply chain graph, GTS

(
L,Omat

l,l′

)
, it is

assumed that the properties associated with material mat are linearly additive. In practice, this means that

if destinations l1 ∈ L and l2 ∈ L, l1 6= l2 both send an output material mat to destination l′, the total value

of the input property at l′ is equal to the sum of the values coming from l1 and l2. While this may initially

appear to be counter-intuitive, the practical reason for this is simple: if two mines are sending sulphide

material to a plant, it makes sense to add the copper tonnages and total tonnages from each mine, however

it is illogical to add the respective grades together.

Within any given destination in the supply chain, the transformation of materials mat ∈ Matl can

be modelled from inputs to intermediate products to outputs using a topologically sorted directed acyclic

graph within destination l, similar to that of the supply chain graph GTS
(
L,Omat

l,l′

)
. Unlike the properties

associated with the materials in the supply chain graph, the properties associated with intermediate or output

materials can be expressed linearly or non-linearly as functions of other properties previously defined. This

permits being able to model the transformation from one product into another; one example might be to

convert the input copper tonnes and total tonnes into a copper head grade, which can then be used to

obtain a recovery from a non-linear and non-additive grade-recovery curve. Alternatively, some non-linear

transformation models can be accommodated by treating incoming materials independently (to preserve the

linearly additive property), then applying non-linear transformations to combine the two materials and their

respective properties (e.g. a variable throughput that may depend on the proportions of the total quantities

of the various input materials).

Given that there is a natural ordering when evaluating the properties for any destination l ∈ Ld, con-

sider a topologically sorted directed acyclic graph GTS
(
Rl, AriArj

)
. The vertices are defined by Rl =⋃

mat∈Matl
Rmatl , i.e. all properties that must be evaluated for all materials at destination l and the arcs,

AriArj , are used to describe the precedence relationship that a property ri ∈ Rl must be evaluated prior

to evaluating rj ∈ Rl. The result is a graph that gives the order of evaluation for the properties at a given

destination, which is used when simulating the supply chain and will be discussed in Section 2.1.3.

2.1.2 Destination policies under uncertainty

A mine lm ∈ Lm is generally represented as a three-dimensional volume discretized by a set of blocks, Blm ,

where each block in the set can be denoted by blmk ∈ Blm if the variable k ∈ {1, . . . , Nlm} is used to index

each of the Nlm blocks in the model. Consider a finite set of geological simulations of the orebody, which

can be indexed by s ∈ {1, . . . , Sm}, where Sm is the total number of simulations available for mine lm. In

each simulation, each block contains a material type (used to define a set of potential destinations), and

properties related to the material, which is simply inherited from the available material types and properties

associated with mine lm. It is noted that these material types can vary between simulations, along with
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the associated property values vkrmat
(s), which is used to denote the value of block k for property rmat in

simulation s ∈ {1, . . . , Sm}.

There are three conceivable options regarding making decisions under uncertainty about the destination

of a block. The first option is to optimize where to send the block for each simulation, an assumption

made by Boland et al. (2009), which implies that the optimizer or decision-maker has perfect knowledge

of the block’s properties, and all other block properties in the model. Under this assumption, the optimal

solutions of a supply chain optimizer (ignoring the production scheduling aspect) would be referred to as the

wait-and-see solution (Birge and Louveaux, 1997), which doesn’t reflect the fact that the decisions related

to supply chain optimization need to be made under uncertainty. The next conceivable option is to decide

on a single destination for each block (Montiel and Dimitrakopoulos, 2012); given that the material types,

hence candidate destinations, may differ from one geological simulation to the next, this solution is likely

to generate misclassification errors, and doesn’t necessarily reflect a mine’s ability to change the destination

decision of the block once the block is available for extraction and has been sampled. A fair compromise

between these two options to utilize classification: rather than deciding on the (possibly erroneous) block

destination, one may wish to classify the blocks into groups of similar types of properties and make decisions

that apply across all simulations (Goodfellow and Dimitrakopoulos, 2012). This concept can be used to

create a destination policy based on the multi-dimensional properties of the blocks that not only eliminates

misclassification, but integrates geological uncertainty into the supply chain optimization by applying the

same policy across all simulations. In the case where a single property is considered (i.e. metal grade), the

proposed clustering method is similar to the robust cut-off grade policies proposed by Menabde et al. (2007).

To classify the blocks over all simulations, the k-means++ (Arthur and Vassilvitskii, 2007) variant of the

k-means algorithm (Lloyd, 1982) is used, which is a heuristic algorithm that attempts to find the cluster

center locations such that the Euclidean distance between the cluster center and the cluster’s membership

blocks is minimized. Consider a subset of the blocks Bmat
l ⊆ Bl for a mine l ∈ Lm that are of material

type mat ∈ Matl for any simulation. Each material can be aggregated into nl,mat
clusters clusters, where each

cluster center is defined by a set of multi-dimensional positions based on the average value of the properties,

vkrmat
(s), of the blocks that are closest to the cluster center. This implies that the membership of a given

block and simulation can only belong to a single cluster, however the cluster membership may vary for

each block between simulations, given that the material types and property values can vary between the

simulations. For future notation when discussing production scheduling, let cluslmat,n (s) ⊆ {1, . . . , Nlm} be

used to denote the indices of the blocks from mine l that have material type mat in simulation s that are

members of cluster n.

There are several advantages over other methods when using clusters to generate destination policies. The

clusters act as a catalyst that enables destinations policies to be made while considering geological uncertainty,

which can then be easily tested against a different set of geological simulations of the same deposit in order

to verify the robustness of a solution. By moving from block destinations to cluster destinations, the issue of

misclassification is eliminated, and moreover, the number of decision variables required is reduced from Nlm ,

the number of blocks in mine lm, to
∑

p∈P

∑
mat∈Ml

nl,mat
clusters, where P is the set of periods that the mine

is active. For example, in a case study for a nickel laterite deposit, Goodfellow and Dimitrakopoulos (2012)

reduce the number of block decision variables from 55,622 to 3,268 destination policy variables. The reader

is encouraged to refer to this paper for an in-depth analysis of the impacts clustering has on the quality of

the solution and computing times.

Recall that in Section 2.1.1, it is stated that the properties travelling from a source to a destination are

considered to be linearly additive; as a result, a substantial amount of the data can be pre-processed for

each cluster. Let virmat
represent the value of property rmat for a block i whose block index is a member

of cluslmat,n (s). Additionally, let the variable xi,t ∈ {0, 1} define whether or not block i is scheduled to

be extracted in period t. The property value vt
(
cluslmat,n (s)

)
of cluster cluslmat,n (s) can be calculated as

follows:

vt
(
cluslmat,n (s)

)
=

∑
i∈cluslmat,n(s)

virmat
· xi,t (1)



Les Cahiers du GERAD G–2014–55 5

2.1.3 Supply chain simulation

There are three key decision variables that enable the supply chain simulation-optimization framework.

First, the decision of whether or not to extract block i ∈ {1, . . . , Nlm} from mine lm ∈ Lm in period

t is defined as xi,t ∈ {0, 1}. These variables define the production schedule, hence, the quantities and

properties of the materials available for the supply chain for any given period and simulation. Secondly, let

ztd
(
cluslmat,n

)
∈ {0, 1} be a binary decision variable that represents whether or not cluster n of material

mat ∈Matl from mine l ∈ Lm is sent to destination d ∈ Ld in period t, where the option of going from l to

d is defined in the supply chain graph GTS
(
L,Omat

l,l′

)
. In order to preserve resource constraints, it is required

that the material from the cluster be entirely sent to a single destination, i.e.
∑

d∈Ld
ztd
(
cluslmat,n

)
= 1.

In order to define what occurs in the remainder of the processing streams of the supply chain, let the

variable yt,sd′ (matld) ∈ [0, 1] represent the linear proportion of output material matl ∈Matl being sent from

destination ld ∈ Ld to destination d′ ∈ Ld\ld in simulation s ∈
{

1, . . . , Stotal
}

and period t. Recall that

the supply chain may contain multiple sources of uncertainty (geological, metal price, etc.), hence Stotal

is defined as the product of the number of simulations from all sources of uncertainty. For example, if the

supply chain consists of 2 mines, each having 20 geological simulations, along with 30 metal price simulations,

Stotal = 202 · 30 = 12000. In the proposed framework, it is assumed that the destination policies are applied

across all simulations s ∈
{

1, . . . , Stotal
}

, however once the material is received at the initial set of destinations

after the mine, the uncertainty of the material received (and possibly other sources, such as metal price) for

a given production period is revealed, and the yt,sd′ (matld) variables are used to decide how to make best use

of the materials sent under the destination policy to maximize the value of the supply chain. For a stochastic

optimization formulation, the destination policies are therefore referred to as the first-stage decision variables,

and the processing proportion variables are referred to as the recourse variables (Birge and Louveaux, 1997).

While it is sensible to assume that the uncertainty of a mined material is revealed when it is sent to its

initial destination, it may not always be practical to make this assumption for other variables if the time of

a material spent in a supply chain is long (e.g. when considering metal prices, if material is extracted in the

first period, but not sold until the subsequent period). Future work may focus on a multistage framework

where the uncertainty can be revealed at different positions in the supply chain, rather than simply the first

destination after the mines, which would require a method to cluster some of the yt,sd′ (matld) proportion

variables together based on the properties of the output material.

Any destination d ∈ Ld has the option to carry over material from one period to the next; this is frequently

seen in strategic stockpiles, where material is sent out to a processing facility over time. Other destinations,

however, may need to preserve mass balancing requirements in order to guarantee that all output material

that is available is sent out. Let Dmatd represent the set of candidate destinations for output material
matd at destination d. In the case where material is permitted to be carried over between periods, let∑

d′∈Dmatd
yt,sd′ (matd) ≤ 1. In the case where all output material must go to the subsequent destination, let∑

d′∈Dmatd
yt,sd′ (matd) = 1.

For a set of given variables ztd
(
cluslmat,n

)
∈ {0, 1} and yt,sd′ (matld), the simulation of a mining supply

chain proceeds as follows:

1. Based on the current production schedule for the various mines lm ∈ Lm defined by xi,t, evaluate

Eq. (1) to get the property values for each cluster in each time period and simulation for all mines.

2. For each simulation s and cluster cluslmat,n (s), send (or update) the linearly additive properties,

vt
(
cluslmat,n (s)

)
, to the mine for all periods t. This step is only necessary if one wishes to impose

constraints at the mine-level (e.g. mining extraction capacity) or track information about specific types

of material (e.g. total quantity of sulphides versus oxides extracted).

3. For each simulation s and cluster cluslmat,n (s), send (or update) the linearly additive properties,

vt
(
cluslmat,n (s)

)
, to the destination where ztd

(
cluslmat,n

)
= 1 for all periods t.

4. For each destination d ∈ Ld that was updated in Step 1, evaluate the sorted property graph GTS(Rd,

Ar1Ar2) to transform the properties from inputs to outputs.

5. For each destination d evaluated in the previous step, each simulation and each period t ∈ Td (each

period that d is available from lowest to highest):
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(a) Send yt
′,s
d′ (matd) amount of output material to destination d′, in period t. Given that all properties

associated with output material matd are assumed to be linearly additive, the quantity sent for

property rmatd ∈ Rmatd is equal to vtrmat
(s)× yt,sd′ (matd).

(b) If destination d permits carrying over material over time (e.g. a strategic stockpile), any remaining

material that has not been sent out to subsequent destinations is added to the property value in

the subsequent available period t′: vt
′

rmat
(s) + =

(
1−

∑
d∈Dmat

yt,sd′ (matd)
)
· vt,srmat

(matd).

6. For all vertices d′ ∈ L that received material from the previous step, set d = d′ and go to Step 4.

Repeat until the full supply chain graph GTS
(
L,Omat

l,l′

)
has been simulated.

7. If the production schedule for any mine lm ∈ Lm has changed, go to Step 1 to re-simulate the supply

chain.

2.2 Model for global asset optimization under uncertainty

2.2.1 Generalized model

As stated in Section 2.1.3, the fundamental concept behind the simulation-optimization framework is to

optimize the production scheduling variables xi,t, along with the supply chain optimization variables, which

are comprised of the destination policies ztd
(
cluslmat,n

)
and the processing stream proportions yt,sd′ (matld).

The objective is to generate a (possibly multi-mine) production schedule that provides the optimal amount

of accessible materials in order to maximize the total value of the supply chain, while meeting operational

constraints at the mines and each destination in the supply chain, and also while considering the various

stochastic (uncertain) parameters that influence the total value. The proposed mixed integer non-linear

stochastic formulation is defined as follows:

Objective:

max
∑

l∈Linit

∑
t∈Pl

∑
m∈Matl

∑
rmat∈Rmatl

E
{
ctrmat

×
(
vt,srmat

)}
︸ ︷︷ ︸

(1) First stage decisions

+
∑

l∈L\Linit

∑
t∈Pl

∑
m∈Matl

∑
rmat∈Rmatl

E
{
ctrmat

×
(
vt,srmat

)}
︸ ︷︷ ︸

(2) Recourse decisions

−
∑
l∈L

∑
t∈Pl

∑
m∈Matl

∑
rmat∈Rmatl

E

{
dtrmat

×
(
atrmat

)p(a(rmat))

+ dtrmat
×
(
atrmat

)p(a(rmat))
}

︸ ︷︷ ︸
(3) First or second stage recourse constraint penalties

(2)

Subject to:

Supply chain constraints:

vt,srmat
− at,srmax ≤ P t

rmat
∀l ∈ L,mat ∈Matl, r ∈ rmat, t ∈ Tl, s ∈ Sglobal (3)

vt,srmat
+ at,srmax

≥ P t
rmat

∀l ∈ L,mat ∈Matl, r ∈ rmat, t ∈ Tl, s ∈ Sglobal (4)

at,srmax , a
t,s
rmax
≥ 0 ∀l ∈ L,mat ∈Matl, r ∈ rmat, t ∈ Tl, s ∈ Sglobal (5)

Mine operational constraints:

xi,t ≤ xj,t ∀lm ∈ Lm, i ∈ {1, . . . , Nlm} , j ∈ P (i) , t ∈ {1, . . . , Tlm} (6)

Tlm∑
t=1

xi,t ≤ 1 ∀lm ∈ Lm, i ∈ {1, . . . , Nlm} (7)

where:
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• E {•} denotes the expectation of the contents of the braces, •, over all simulations s ∈
{

1, . . . , Stotal
}

.

• Linit ⊆ Ld are the initial destinations that are fed directly from the mine; these destinations do not

receive any material through the processing stream variables.

• vt,srmat
is the value of the property rmat in period t and simulation s.

• at,srmax is the deviation from a maximum bound P t
rmat

for property rmat in period t and simulation s.

• at,srmax
is the deviation from a minimum bound P t

rmat
for property rmat in period t and simulation s.

• ctrmat
= j(rmat)

(1+d(rmat))
t is an adjustment factor associated with property rmat in period t. j (rmat) is a

constant value (e.g. 1 or -1) and d (rmat) is a discount rate expressed as a decimal. For example, if

vt,srmat
represented the undiscounted value of a metal processed and sold, ctrmat

could be used to convert

the property to a discounted cash flow. A negative ctrmat
may be associated with a cost in the model,

such as processing, mining and re-handling costs.

• dtrmat
= dev(rmat)

(1+d(dev(rmat)))
t ≥ 0 and dtrmat

=
dev(rmat)

(1+d(dev(rmat)))
t ≥ 0are penalty costs associated with devia-

tion variables at,srmax and at,srmax
, respectively. dev (rmat) and dev (rmat) are used to weight the constraint

deviations (i.e. some constraints might be more important to adhere to than others). d
(
dev (rmat)

)
and d

(
dev (rmat)

)
are discount rates that can be used if necessary to relax the penalty associated

with a constraint violation over time; this is commonly seen when applying a geological discount rate

(Ramazan and Dimitrakopoulos, 2004).

• p (a (rmat)) and p (a (rmat)) are exponents associated with the upper and lower deviation variables,

respectively. These can be used to severely penalize large deviations, but gradually reduce the weight

of these penalties in the objective function as the optimizer finds a more feasible solution.

• P (i) is used to describe the set of blocks in a mine that must be extracted in order to safely extract

block i, which is often referred to as slope or precedence constraints.

It is noted that the key decision variables (xi,t, z
t
d

(
cluslmat,n

)
and yt,sd′ (matld)) are not explicitly included

in the optimization formulation presented in Eqs. (2)–(7). This is done intentionally to highlight the generality

and flexibility of the formulations. Given that no two mining supply chains are alike, a modeller will need

to put emphasis on different components or constraints in the supply chain. Again, it must be noted that

the property values vt,srmat
are linear or non-linear functions of the key decision variables, and are obtained

after simulating the supply chain. Of course, if one wishes, this formulation can be explicitly written for a

given case study, including the various non-linear transformations. An example of an explicit formulation is

written formally for the case study presented in Section 3.

In order to highlight some key aspects of the optimization model, the objective function presented in

Eq. (2) has been decomposed into three components. The first component, (1), relates to the properties

that are functions solely of the first-stage decision variables, specifically the production scheduling decisions

xi,t and the destination policies ztd
(
cluslmat,n

)
. Some examples of this might be to subtract mining costs,

stockpiling costs or treatment charges at the initial destinations in the supply chain. Note that while these

calculated costs may vary between simulations, they are only dependent on the first-stage policies. The

second component, (2), of the objective function relates to the properties in the supply chain that are a

function of the first-stage decision variables (extraction and destination policies), along with the recourse

variables – specifically, the processing stream variables yt,sd′ (matld). If the supply chain is complex, this

might be the economic value of the metal that is sent to various customers. The third component of the

objective function is used to describe penalties associated with constraint violations anywhere along the

supply chain; these constraints can either be dependent solely on the first-stage decisions, or both first- and

second-stage decisions, depending on where in the supply chain the constraint is applied. Some examples

of constraints that may be included are mining capacity constraints (first-stage constraint violations), or

much more complex constraints such as throughput capacities, total capacities, and grade blending (first-



8 G–2014–55 Les Cahiers du GERAD

or second-stage depending on the complexity supply chain model). It isn’t, however, generally necessary to

make the distinction between first-stage and second-stage properties when modelling; the only information

that one might glean from this information is when there is a shortfall or surplus of desirable material in the

supply chain, and when a second-stage variable is used to rectify the problem (e.g. a mill is being fed by a

stockpile rather than directly from a mine).

2.2.2 Relationship to existing stochastic models

For specific configurations of supply chain models, it is possible to reduce the generalized formulation into

common models that integrate geological uncertainty. For example, if one wishes to emulate the model

of a basic SIP for open pit mine production scheduling (Ramazan and Dimitrakopoulos, 2012), consider a

single-mine case where there are two material types defined: ore and waste. These material types have been

pre-processed based on some a-priori cut-off grade policy. The supply chain graph GTS
(
L,Omat

l,l′

)
simply

consists of a mill and a waste dump, where the arcs in the graph only allow ore material to go the mill,

and the waste material to go to the waste dump. The three components of the objective function could be

designed as follows:

1. The first component would aim to maximize the NPV of the material sent to the mill, which accounts for

revenues from the metal, recovery, processing costs and mining costs. These can simply be pre-processed

for each block, if desired, and this property would be sent from the mine to the mill.

2. The second component of Eq. (2) would be empty because the supply chain does not contain interme-

diate or subsequent destinations.

3. Subtract the deviations from mine extraction capacities, processing capacities and grade blending con-

straints. It is possible to include geological risk discounting to defer riskier blocks to later periods.

Note that this type of model effectively eliminates the destination policy variables, ztd
(
cluslmat,n

)
, because

the ore and waste policies are specified a-priori. Naturally, the entire purpose of the global asset optimizer is

to enable the optimizer to make these decisions dynamically.

2.3 Algorithmic optimization with metaheuristics

Given that a supply chain model will often require the use of non-linear transformations, the generalized global

asset optimization formulation can be extremely complex and very challenging to solve using conventional

mathematical programming methods. For this reason, the simulation-optimization framework proposed has
been designed for optimization with metaheuristics. Recall that a simulation-optimization framework is a tool

that permits the dynamic evaluation of a mining complex or supply chain according to a set of prescribed vari-

ables (production schedules, destination policies and processing stream variables). An optimization method

is simultaneously used to modify the variables in order to improve the quality of the solution, which is defined

by the value of the objective function. Metaheuristics are generalized optimization algorithms that are par-

ticularly useful in simulation-optimization frameworks because they do not require linear formulations or any

special structure in the optimization problem. Metaheuristics do not, however, guarantee a mathematically

optimal solution, however have been shown in the past to give useful solutions for mining-related problems

(Godoy, 2003; Montiel and Dimitrakopoulos, 2012; Goodfellow and Dimitrakopoulos, 2013).

The proposed simulation-optimization framework uses a hybrid of particle swarm optimization (PSO) and

a modified simulated annealing algorithm, which will herein be referred to as multi-neighbourhood simulated

annealing (MNSA). The purpose of using a combination of two metaheuristics is to overcome some of the

limitations inherent in the individual method: PSO cannot be easily adapted to make production scheduling

decisions without specific assumptions on block destinations, and simulated annealing-based methods cannot

easily accommodate continuous variables, which is required to optimize the processing streams. Moreover,

the use of two complementary metaheuristics is useful to help ensure that solutions do not get trapped in a

local optimum. For the proposed framework, PSO is used to optimize the supply chain decisions, specifically

the destination policies and processing stream decisions (Goodfellow and Dimitrakopoulos, 2012), and MNSA

is used to help optimize the discrete (binary) decisions, specifically the destination policies and production
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scheduling simultaneously. The two methods are used interchangeably during the algorithm to improve the

solution and to move a solution out of a local optimum. The specifics of each of the methods are described

in the subsequent sections.

2.3.1 Solution encoding scheme

The simulation-optimization framework dependent on three variables: the production scheduling decisions

xi,t, along with the supply chain optimization variables ztd
(
cluslmat,n

)
and yt,sd′ (matld). It is often useful to

encode these decision variables to ensure that they are compatible with a given metaheuristic; for a well-

designed encoding scheme, it is possible enforce certain constraints that should never be violated during

the runtime of the algorithm (e.g. slope constraints, reserve constraints and mass balancing). The solution

encoding scheme for production scheduling for use with MNSA is fairly straightforward, where each block is

represented on a three-dimensional grid and contains the period that the block is mined in, or a null value

is it is not extracted. Of course, if the mine is extremely large, this method uses excessive memory, and the

model can be condensed into a single dimensional structure. This structure permits the optimizer to quickly

verify slope constraints when proposing a change in the solution. The supply chain optimization variables

are encoded separately for use with the particle swarm optimization algorithm. Consider a one-dimensional

solution vector, Sol, of size

Size (Sol) =
∑
l∈Lm

∑
t∈Tl

∑
mat∈Ol

nl,mat
clusters︸ ︷︷ ︸

Destination policies

+
∑
l∈Ld

∑
t∈Tl

∑
mat∈Ol

∑
d∈D(mat)

∑
s∈{1,...,STotal}

1

︸ ︷︷ ︸
Processing streams

(8)

where Ol is used to define the set of output materials at a location l ∈ L in the supply chain. The first

component of the solution vector is used to define the destination policy for each cluster in a given material

type, in each period and for each mine. Each destination is given a unique identifier, however an encoding

scheme is used to convert the destination identifier to a discrete variable, bounded by [0, N (D (mat))], where

N (D (mat)) is used to denote the total number of candidate destinations for material mat. This encoding

is necessary for the particle swarm optimization algorithm, which prefers to operate in a continuous space

without jump discontinuities, which would likely happen if the destination identifiers were used directly

in the encoding scheme. A decoding scheme that converts the encoded variable to a destination identifier

is stored in a compact table. The second component of Eq. (8) relates to the processing stream (recourse)

variables, yt,sd′ (matld). Each destination in the supply chain graph GTS
(
L,Omat

l,l′

)
that has an output material

has a recourse variable for each candidate destination and simulation. When using the metaheuristics, it is

necessary to enforce the material flow conditions (cannot send out more material than is available). In
order to satisfy this, when the sum of the outflow is greater than one, i.e.

∑
d′∈Dmatd

yt,sd′ (matd) > 1, the

yt,sd′ (matld) variables are normalized as follows:

yt,sd′ (matld) =
yt,sd′ (matld)∑

d′∈Dmatd
yt,sd′ (matd)

(9)

2.3.2 Supply chain optimization with particle swarm optimization

Particle swarm optimization (Kennedy and Eberhart, 1995) is a population-based metaheuristic that is capa-

ble of optimizing over both discrete and continuous variables, making it particularly suitable for optimizing

the supply chain. The goal of the algorithm is to find a global minimum (or maximum) in a multi-dimensional

space by initializing a swarm of particles with random solution vector positions and velocities. As the particles

explore the domain, the swarm of particles converges on a global optimum. Consider a set of Np particles,

where each particle is represented by its own distinct supply chain optimization solution vector, Sol. Each

particle p ∈ Np has three vectors: the current solution at iteration t, xp (t), the particle’s best solution vector,

xp,best, and a velocity vector for a given iteration t, vp (t), each of length Size (Sol). Additionally, consider

the solution vector of the particle that has the best objective function found during the algorithm, xglobal.

At iteration t+ 1 in the algorithm, a particle’s velocity is updated as follows:

vp (t+ 1) = c1v
p (t) +

(
c2 × rand()×

(
xp,best − xp

))
+
(
c3 × rand()×

(
xglobal − xp

))
(10)
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where vp (t+ 1) is particle p’s new velocity in iteration t+1, c1 gives weight to the particle’s previous velocity,

c2 gives weight to the difference between the particle’s current solution and its best solution, c2 gives weight

to the difference between the particle’s current solution and the global best solution found by iteration t and

rand() ∈ [0, 1] is a uniform random number. The particle’s velocity is therefore a function of its inertia and

also an attraction towards previously found solutions with a better objective function. The particle’s solution

vector for iteration t+ 1 is then updated as follows:

xp (t+ 1) = xp (t) + vp (t+ 1) (11)

It is noted that if any element of the solution vector xp (t+ 1) exceeds the bounds [0, N (D (mat))] of the

encoded solution vector from Section 2.3.1, the element will be set to the nearest bound. This is used to

ensure that the cluster of material can only be sent to a feasible destination.

After the particle’s solution vector has been updated, the supply chain is then evaluated or simulated

(Section 2.1.3) to compute the objective function defined in Eq. (2). Let f (xp (t)), f
(
xp,best

)
and f

(
xglobal

)
represent the simulated objective function value for the particle’s current solution vector, the particle’s best

solution vector and the global best solution vector, respectively, found at iteration t, and are calculated from

Eq. (2). Given that the objective function in Eq. (2) is defined as a maximization function, if f (xp (t)) ≥
f
(
xp,best

)
, then the particle’s best solution vector is updated, i.e. xp,best = xp. If f

(
xp,best

)
≥ f

(
xglobal

)
,

then the global best solution vector is updated (xglobal = xp,best).

2.3.3 Production schedule and destination policy optimization with multi-neighbourhood simulated
annealing

The main limitation of particle swarm optimization is that it has a tendency to converge in a sub-optimal

solution for high-dimensional problems (Yanbin, 2008). Additionally, it is challenging to develop an effi-

cient encoding or decoding scheme for use with production scheduling optimization, given that the solution

must always guarantee that the slope constraints in Eq. (6) are satisfied. To overcome these challenges,

an adapted version of the simulated annealing metaheuristic (Kirkpatrick et al., 1983; Geman and Geman,

1984) is used. Simulated annealing works well with discrete variables, and has been successfully applied for

several mine design optimization problems (Godoy, 2003; Montiel and Dimitrakopoulos, 2012; Goodfellow

and Dimitrakopoulos, 2013). This metaheuristic is applied intermittently to the global best solution vector,

xglobal, found by the particle swarm supply chain optimizer, as discussed in Section 2.3.2.

For the proposed simulation-optimization framework, the modified simulated annealing algorithm at-

tempts to perturb a production schedule (xi,t) and destination policies (ztd
(
cluslmat,n

)
) to move the global

asset optimizer out of a local optimum. Any attempted change in solution, be it production schedule or

destination policy, is referred to as a perturbation. A set of candidate perturbations that are possible for

a given solution vector is referred to as a neighbourhood. A perturbation in the production schedule can

be found by randomly selecting a block from a mine and attempting to extract it in a different production

period. In order to ensure slope stability, the algorithm does a depth-first search (Cormen et al., 2009) to

explore the block’s overlying or underlying blocks (Khalokakaie et al., 2000) and attempts to also move them

to a new period. For a more detailed review of simulated annealing for mine designs, the reader is referred

to Goodfellow and Dimitrakopoulos (2013).

Simulated annealing is a metaheuristic modelled after the metallurgical phenomenon of cooling a metal

slowly to increase the size of the crystals and minimize the number of defects. At the beginning of the

algorithm, the optimizer automatically accepts a perturbation of the solution if it yields a better objective

function value, however it is also permitted to accept sub-optimal perturbations in order to avoid being

trapped in a local optimum. As the algorithm progresses, the number of sub-optimal perturbations that are

accepted decreases, until it eventually becomes greedy (only accepts solutions with better objective functions).

In the classic simulated annealing algorithm, the acceptance probability for a perturbation of the solution

vector for a maximization problem is based on the following acceptance probability distribution:

P (f (xnew) , f (x) , T ) =

{
1 if f(xnew) ≥ f(x)

exp (− |f(xnew)− f(x)| /T ) otherwise
(12)



Les Cahiers du GERAD G–2014–55 11

where f (x) and f (xnew) are the objective functions before and after a perturbation, respectively, and T is a

parameter called the “annealing temperature”. As the algorithm progresses, the temperature is reduced until

only minor changes in the objective function are accepted; this is often controlled by the initial temperature

at the start of the algorithm, T (0), and the cooling schedule, which is defined by a reduction factor, k ∈ [0, 1],

and a number of iterations before the reduction factor is applied, niter.

One of the primary difficulties of the simulated annealing algorithm is the calibration of the initial tem-

perature; naturally, this parameter is dependent on the magnitude of change in objective function that any

given perturbation will have. This parameter is particularly problematic for simulated annealing with multi-

ple neighbourhoods or variables, such as the case in the proposed method where both production scheduling

moves and destination policies are made, because the different neighbourhoods for a set of variables may have

different effects on the change in objective function value. Figure 1 shows an example of the cumulative dis-

tributions of the difference between objective function values for sub-optimal candidate perturbations for the

production scheduling and destination policy neighbourhoods, i.e. perturbations where f (xnew)− f (x) < 0.

The difference between the distributions of sub-optimal perturbations is drastically different; in practice, this

means that for a very large annealing temperature, the optimizer will may limit the number of sub-optimal

changes in production schedule, but will likely accept all destination policy changes. As the temperature

decreases, the optimizer is more likely to only accept sub-optimal destination policy changes, and reject all

sub-optimal production schedule changes. The classical simulated annealing method with a single temper-

ature ignores the inherent relationship between the two decision variables and neighbourhoods. For this

reason, a multi-neighbourhood simulated annealing (MNSA) is proposed.
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Figure 1: Example of cumulative probability distributions of objective function changes 

for sub-optimal perturbations of two neighbourhoods. 

Figure 1: Example of cumulative probability distributions of objective function changes for sub-optimal
perturbations of two neighbourhoods.

In MNSA, the cumulative probability distributions of objective function changes for sub-optimal pertur-

bations are first constructed for each neighbourhood by proposing random perturbations. Rather than using

a fixed temperature, T , for both neighbourhoods in Eq. (12), the optimizer uses two temperature variables

Tprod and Tdest for the production schedule and destination policy neighbourhoods, respectively, which are

in turn controlled by a single cumulative distribution probability ρ. For a fixed ρ, the respective temperature

variables (Tprod and Tdest) are found from the cumulative probability plots (Figure 1). The cooling schedule

(k,niter) is then applied directly to ρ, which in turn relates to increasingly small Tprod and Tdest temperatures.

As the algorithm progresses, the information garnered from any new proposed sub-optimal perturbations is

used as feedback to update the cumulative distributions; this better reflects the current search space, rather

than the search space when the MNSA commenced.

As stated previously, the PSO and MNSA algorithms are used interchangeably for both local improvement

and to avoid getting stuck in a local optimum. For blending problems or problems with complex supply chains,

PSO is extremely useful for refining and improving the supply chain, and MNSA is useful to move away from

local optima. For simple cases where there are not any intermediate or subsequent destinations, such as the
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case study in Section 3, MNSA is primarily used and PSO is used to refine the solutions. The software used

for the proposed methodology permits changing which algorithm (PSO or MNSA) is used dynamically, thus

being able to switch between the two methods when needed. Future work will focus on a generalized algorithm

that selects the appropriate metaheuristic when needed in order to give a more automated approach.

3 Case Study – Application at a Copper-Gold Deposit

The proposed global asset optimization framework is demonstrated on a copper-gold mining complex, which is

loosely based off a real-world deposit, but has been modified substantially for the sake of both confidentiality

and discussion.

3.1 Overview of the mining complex

In the given case study, a single mine supplies materials to a mining complex that extracts both gold and

copper. Figure 2 summarizes the definition of the mine’s material types along with the various processing

options. The mine is represented by a set of 50 equally probable geological simulations with variable copper,

gold, tonnages and material types; 40 of the simulations are used for optimization and the remaining 10 are

used to verify the robustness of the stochastic solution. The mine is comprised of three main material groups:

sulphides, transition and oxides. Each of these major groups is separated into two material types for use

with the proposed methodology (Figure 2). In order to model the material flows in the processing paths, the

sulphide and transition material groups are both separated into two different material types based on being

above or below 0.2% copper in order to be compatible with the heap leach chemistry requirements. The oxide

materials are automatically classified based on potential ore and waste; the waste group is material below

the marginal cut-off grade of the process or is material that is not simulated, thus automatically considered

as waste.
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Figure 2: Definition of material types at the copper-gold mine, along with the various destinations. Note that
the input materials at the destinations have been colour-coded according to the materials in the mine.

The model’s destinations consist of a sulphide mill (SM), a sulphide heap leach (SHL), a sulphide dump

leach (SDL), a transition heap leach (THL), an oxide heap leach (OHL) and an oxide waste dump. The

sulphide mill, which is limited to processing three million tonnes per year, only accepts sulphide materials

and produces both copper and gold as products. The sulphide heap leach has an eight million tonnes per year

capacity for both sulphide and transition materials, however, for chemistry reasons, it can only process the
materials above 0.2% copper, hence the creation of distinct material types around this grade. The sulphide

waste dump is essentially a waste dump where excess sulphide and transition materials go for leaching,
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regardless of whether or not it is profitable to treat the material. Both of the sulphide leach processes extract

only copper as a product. The transition and oxide heap leaches accept only transition or oxide materials,

respectively, and both extract only gold. The oxide waste dump accepts both oxide materials, however does

not treat any of the material. All leaching processes, excluding the SHL, are assumed to have unlimited

capacity.

With the exception of the oxide waste dump, all destinations have variable grade-recovery curves that

are based on the average grade of the incoming material at a process in a given period. These grade-

recovery curves are shown in Figure 3 and are expressed relative to the process with the highest recovery

for confidentiality purposes. As a result of the dynamic recoveries, the oxide materials are not explicitly

classified as ore or waste, given that it may be desirable to not treat the “potential” oxide material if the

average gold grade in a given year is low, which might be related to an uneconomical recovery. The non-linear

grade-recoveries also have interesting implications when considering the transition material: for a given block

or cluster that has (hypothetically) similar copper and gold economic values, the selected destination would

be the one that profits the most from an increase in average grade, hence increased recovery after processing

costs are considered. As a result, one cannot assume that block destinations can be specified a-priori in a

greedy manner because it is the recovery of the aggregated material sent to a given process that determines

the potential value. 
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Figure 3: Copper (left) and gold (right) grade-recovery curves for the various processes. 

Note that the recoveries are expressed relative to the process with the maximum recovery. 

 

Table 1: Summary of mining, processing and economic parameters used. Note that all 

costs are expressed relative to a base cost (x) that is not disclosed. 

Mining parameters 

Mining cost 

(relative to base cost x) 

$1.00*x /tonne 

Slope angle 45° 

Total number of blocks 30,098 

Processing costs (relative to base cost x) 

Sulphide mill $11.30*x /tonne 

Sulphide heap leach $2.98*x /tonne 

Sulphide dump leach $1.87*x /tonne 

Transition heap leach $2.15*x /tonne 

Oxide heap leach $2.06*x /tonne 

Economic parameters 

Copper price (including 

selling and G&A costs) 

$2.88 /lb Cu recovered 

Gold price (including G&A 

costs) 

$1480 /oz Au recovered 

Discount rate 7% 

 

Figure 3: Copper (left) and gold (right) grade-recovery curves for the various processes. Note that the
recoveries are expressed relative to the process with the maximum recovery.

Table 1 shows a summary of the mining, processing and economic parameters used in the optimization

models. It must be noted that for confidentiality purposes, the mining and processing costs are expressed

relative to a base cost “x” to give an idea about the order of magnitude of costs for the various processes. It

can be seen that despite the fact that the sulphide mill has the highest recoveries for both copper and gold,

the processing cost is substantially higher than the destinations that process only one element.

3.2 Stochastic optimization model

The proposed optimization model seeks to maximize the net present value of the mining complex while

minimizing deviations from the mining capacity and processing capacities of the sulphide mill and the sulphide

heap leach. It has been seen through testing with conventional mine planning software that these two

destinations generate the vast majority of the mining complex’s profits (40% and 58%, respectively), so it is

desirable to control the risk of the quantities of materials going to these destinations in the mine production

schedule. It is noted that the non-linearities of the model arise from the use of dynamic recovery curves,

which in turn depend on the average grade of the material sent to a given destination. The definitions and

explicit optimization formulation are as follows:
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Table 1: Summary of mining, processing and economic parameters used. Note that all costs are expressed
relative to a base cost (x ) that is not disclosed.

Mining parameters

Mining cost (relative to base cost x) $1.00*x /tonne
Slope angle 45◦

Total number of blocks 30,098

Processing costs (relative to base cost x)

Sulphide mill $11.30*x /tonne
Sulphide heap leach $2.98*x /tonne
Sulphide dump leach $1.87*x /tonne
Transition heap leach $2.15*x /tonne

Oxide heap leach $2.06*x /tonne

Economic parameters

Copper price (including selling and G&A costs) $2.88 /lb Cu recovered
Gold price (including G&A costs) $1480 /oz Au recovered

Discount rate 7%

Definitions:

• vbtonnagei (s), vcutonnagei (s) and vaugrams
i (s) denote block i’s total tonnage, copper tonnage and grams

of gold, respectively, in simulation s.

• mat ∈ {1, . . . , 5} denote the low-grade (1) and high-grade sulphide materials (2), the low-grade (3) and

high-grade (4) transition materials and potential oxide (5) materials.

• i ∈ {1, . . . , N} indexes the blocks considered for extraction, where N = 30098 is the number of blocks

in the model.

• s ∈ {1, . . . , 20} indexes the number of geological simulations considered.

• t ∈ {1, . . . , 22} indexes the time periods considered.

• clusmat,n denotes the cluster of material type mat, which is indexed by n. All materials are grouped

into 25 clusters, with the exception of the oxide waste, which only contains one cluster. The total

number of clusters considered for each time period is therefore 126.

• ztl
(
cluslmat,n

)
∈ {0, 1} denotes whether or not cluster clusmat,n is sent to destination l ∈ {SM,SHL,

SDL, THL,OHL} in period t.

• f lmetal (g) denotes the recovery for metal metal ∈ {Cu,Au} evaluated at destination l ∈ {SM,SHL,

SDL, THL,OHL} with average head grade g. This is evaluated using a look-up table and interpolation

for the grade-recovery curves depicted in Figure 3.

• mc is the mining cost in dollars per tonne of material extracted.

• valCu, valAu are the metal values for copper (per tonne) and gold (per gram), respectively.

• tcl is the treatment (processing, leaching) cost per tonne of material the destination l ∈ {SM,SHL,

SDL, THL,OHL}.

Objective:

maxE {PVSM}+ E {PVSHL}+ E {PVSDL}+ E {PVTHL}+ E {PVOHL} − E {MC}︸ ︷︷ ︸
First-stage policies

− E
{
pSM

}
− E

{
pSM

}
− E

{
pSHL

}
− E

{
pSHL

}
− E

{
pMine

}
︸ ︷︷ ︸

Recourse penalties

(13)
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Subject to:

Mining slope and reserve constraints:

xi,t ≤ xj,t i ∈ {1, . . . , N} , j ∈ P (i) , t ∈ {1, . . . , 22} (14)

22∑
t=1

xi,t ≤ 1 ∀i ∈ {1, . . . , N} (15)

Cluster property calculations (total tonnes, copper tonnes, gold grams) for all mat ∈ {1, . . . , 5} , n ∈
{1, . . . , 25}, s ∈ {1, . . . , 40} , t ∈ {1, . . . , 22}:

vbtonnaget (clusmat,n (s)) =
∑

i∈cluslmat,n(s)

vbtonnagei (s) · xi,t (16)

vcutonnaget (clusmat,n (s)) =
∑

i∈cluslmat,n(s)

vcutonnagei (s) · xi,t (17)

vaugrams
t (clusmat,n (s)) =

∑
i∈cluslmat,n(s)

vaugrams
i (s) · xi,t (18)

Quantities of material received at the destinations for all s ∈ {1, . . . , 40} , t ∈ {1, . . . , 22}:

vSMTonnage
t (s) =

∑
mat∈{1,2}

25∑
n=1

vbtonnaget (clusmat,n (s))× ztSM

(
cluslmat,n

)
(19)

vSMCuT
t (s) =

∑
mat∈{1,2}

25∑
n=1

vcutonnaget (clusmat,n (s))× ztSM

(
cluslmat,n

)
(20)

vSMAuG
t (s) =

∑
mat∈{1,2}

25∑
n=1

vaugrams
t (clusmat,n (s))× ztSM

(
cluslmat,n

)
(21)

vSHLTonnage
t (s) =

∑
mat∈{2,4}

25∑
n=1

vbtonnaget (clusmat,n (s))× ztSHL

(
cluslmat,n

)
(22)

vSHLCuT
t (s) =

∑
mat∈{2,4}

25∑
n=1

vcutonnaget (clusmat,n (s))× ztSHL

(
cluslmat,n

)
(23)

vSDLTonnage
t (s) =

∑
mat∈{1,2,3,4}

25∑
n=1

vbtonnaget (clusmat,n (s))× ztSDL

(
cluslmat,n

)
(24)

vSDLCuT
t (s) =

∑
mat∈{1,2,3,4}

25∑
n=1

vcutonnaget (clusmat,n (s))× ztSDL

(
cluslmat,n

)
(25)

vTHLTonnage
t (s) =

∑
mat∈{3,4}

25∑
n=1

vbtonnaget (clusmat,n (s))× ztTHL

(
cluslmat,n

)
(26)

vTHLAuG
t (s) =

∑
mat∈{3,4}

25∑
n=1

vaugrams
t (clusmat,n (s))× ztTHL

(
cluslmat,n

)
(27)

vOHLTonnage
t (s) =

25∑
n=1

vbtonnaget (clusmat,n (s))× ztOHL

(
cluslmat,n

)
(28)

vOHLAuG
t (s) =

25∑
n=1

vaugrams
t (clus5,n (s))× ztOHL

(
clusl5,n

)
(29)
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Metal recoveries as functions of grade-recovery curves shown in Figure 3 for all s ∈ {1, . . . , 40} , t ∈
{1, . . . , 22}:

vSMCuRec
t (s) = fSM

Cu

(
vSMCuT
t (s) /vSMTonnage

t (s)
)

(30)

vSMAuRec
t (s) = fSM

Au

(
vSMAuG
t (s) /vSMTonnage

t (s)
)

(31)

vSHLCuRec
t (s) = fSHL

Cu

(
vSHLCuT
t (s) /vSHLTonnage

t (s)
)

(32)

vSDLCuRec
t (s) = fSDL

Cu

(
vSDLCuT
t (s) /vSDLTonnage

t (s)
)

(33)

vTHLAuRec
t (s) = fTHL

Au

(
vTHLAuG
t (s) /vTHLTonnage

t (s)
)

(34)

vOHLAuRec
t (s) = fOHL

Au

(
vOHLAuG
t (s) /vOHLTonnage

t (s)
)

(35)

Expected net present values for the various destinations:

E {PVSM} =
1

40

40∑
s=1

22∑
t=1

1

1.07t

(
vSMCuT
t (s)× vSMCuRec

t (s)× valCu − vSMTonnage
t (s)× tcSM

)
+

1

40

20∑
s=1

22∑
t=1

1

1.07t
(
vSMAuG
t (s)× vSMAuRec

t (s)× valAu

)
(36)

E {PVSHL} =
1

40

40∑
s=1

22∑
t=1

1

1.07t

(
vSHLCuT
t (s)× vSHLCuRec

t (s)× valCu − vSHLTonnage
t (s)× tcSHL

)
(37)

E {PVSDL} =
1

40

40∑
s=1

22∑
t=1

1

1.07t

(
vSDLCuT
t (s)× vSDLCuRec

t (s)× valCu − vSDLTonnage
t (s)× tcSDL

)
(38)

E {PVTHL} =
1

40

40∑
s=1

22∑
t=1

1

1.07t

(
vTHLAuG
t (s)× vTHLAuRec

t (s)× valAu − vTHLTonnage
t (s)× tcTHL

)
(39)

E {PVOHL} =
1

40

40∑
s=1

22∑
t=1

1

1.07t

(
vOHLAuG
t (s)× vOHLAuRec

t (s)× valAu − vOHLTonnage
t (s)× tcOHL

)
(40)

Mining cost:

E {MC} =
1

40

40∑
s=1

22∑
t=1

1

1.07t

(
N∑
i=1

vbtonnagei (s) · xi,t ∗mc

)
(41)

Constraint deviation penalties:

E
{
pSM

}
=

1

40

40∑
s=1

10∑
t=1

25

1.1t

(
max

{
0, vSMTonnage

t (s)− 3000000
})1.05

(42)

E
{
pSM

}
=

1

40

40∑
s=1

10∑
t=1

25

1.1t

(
max

{
0, 2900000− vSMTonnage

t (s)
})1.05

(43)

E
{
pSHL

}
=

1

40

24∑
s=1

22∑
t=1

10

1.1t

(
max

{
0, vSHLTonnage

t (s)− 8000000
})1.05

(44)

E
{
pSHL

}
=

1

40

40∑
s=1

22∑
t=1

10

1.1t

(
max

{
0, 7800000− vSHLTonnage

t (s)
})1.05

(45)

E
{
pMine

}
=

1

40

40∑
s=1

10∑
t=1

10×

(
max

{
0,

N∑
i=1

vbtonnagei (s) · xi,t − 25000000

})
(46)
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As stated previously, the objective function (Eq. (13)) attempts to maximize the net present value of the

metals processed over the life of the mining complex. The slope (precedence) constraints are enforced through

Eq. (14) and Eq. (15) is used to ensure that a block is only set for extraction at most once. Equations (16)–

(18) are used to aggregate the values of the properties of the blocks extracted into their respective clusters,

which relates to the first step of the supply chain simulation algorithm. It is noted that these equations

are dependent on the block extraction (production scheduling) decisions, xi,t. Equations (19)–(29) are used

to calculate the quantities of metal and total tonnages sent from the mine to their assigned destinations,

which are defined according to the destination policy variable ztl
(
cluslmat,n

)
. Equations (30)–(35) are used to

describe the calculation of the recovery based on evaluating the appropriate grade-recovery curve; it is noted

that the grade of the metal is the average grade of the material received in a given period and simulation.

Equations (36)–(40) are used to calculate the expected present value (PV) at the destinations; recall that

40 equally probable geological simulations are used in the optimization process, hence the expected value is

calculated by averaging over the 40 simulations. Equation (41) is used to calculate the PV of the mining

costs, which is a function of all material extracted over the life of the mine. Equations (42) and (43) are used

to penalize the objective function for deviations at the sulphide mill during the first 10 years, whereby the

penalty cost is $25/tonne of deviation. It is noted that Eq. (43) is used to help guide the optimizer to have a

risk profile distributed around the sulphide mill’s capacity of 3Mtpa; by not properly calibrating the penalty

cost and not including Eq. (43), the optimizer may seek a risk-averse solution whereby there is no chance

of filling the process up to its capacity. Equations (44) and (45) are used to control the risk profiles of the

tonnages at the sulphide heap leach, where the penalty cost is set to $10/tonne of deviation. It is noted that

Eq’s. (42)–(45) all use geological risk discounting (10%) and an exponent for the penalty (1.05) in an attempt

to better control the risk profiles over the life of the mining complex. Finally, Eq. (46) is used to control

deviations from the mine extraction capacity of 25Mtpa; for this constraint, geological risk discounting and

penalty exponents are not used.

3.3 Numerical results

An initial production schedule is first generated for an estimated (deterministic) orebody model using Gem-

com Whittle (Whittle, 2007; Whittle, 2009). The estimated orebody model has been generated by averaging

the grades in the given simulations and re-classifying the material types in the same manner that the sim-

ulations are classified. Whittle generates a bench-wise long-term production schedule, and the resulting

sequence has been re-optimized with the proposed framework to correct any slope constraint violations that

are a result of fractional benches. All clustering parameters used for both the deterministic and stochastic

cases are listed in Table 2. Whittle indicates a 0.42% improvement in cumulative net present value (NPV)

over the proposed method, however this difference is minor and is mostly caused by difference in methodology

used; Whittle can obtain fractional solutions for a given bench (i.e. fractional solution for an aggregate of

blocks that are spatially contiguous), whereas the proposed methodology uses binary decision variables for

destination policies for aggregates of blocks. An interesting prospect for future research would be to refine

the aggregations used for destination policies through the use of metaheuristic clustering (Das et al., 2009),

which would likely improve the quality of clusterings and increase the NPV.

Table 2: Summary of clustering parameters used in the case study.

Material Number of Clusters Clustering Properties

Sulphide (1) < 0.2% Cu 25 Cu, Au
Sulphide (2) = 0.2% Cu 25 Cu, Au
Transition (3) < 0.2% Cu 25 Cu
Transition (4) = 0.2% Cu 25 Cu, Au
Oxide potential 25 Au
Oxide waste 1 N/A

Using the schedule generated from the deterministic model optimized with the proposed method, it is

possible obtain a risk analysis by fixing the production schedule and generating destination policies that

are robust under uncertainty, i.e. optimize the supply chain only (Goodfellow and Dimitrakopoulos, 2012).



18 G–2014–55 Les Cahiers du GERAD

Figure 4 shows a comparison between the tonnage and NPV risk profiles for the optimized supply chain

considering uncertainty and the purely deterministic case. It is noted that the true NPV values are withheld

for confidentiality purposes, and are expressed relative to the cumulative NPV of the long-term production

schedule from the pure deterministic case. The risk profiles are presented as the P-10, P-50 and P-90 values,

i.e. the value for which 10, 50 and 90% of the simulations fall below, respectively. For the deterministic case

and the associated risk profiles, the sulphide mill is filled to its maximum capacity (3 Mt) for the first 10

years, however there is not enough sulphide material to continue feeding it up to capacity for the remainder

of the mine life. Additionally, during the first ten years, the risk profiles show an average of 6.4% deviations

from the processing capacity of the sulphide mill. One of the major difference between the deterministic

and risk profiles is that the deterministic profile shows substantially more material going to the mill than
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Figure 4: Comparison of risk analysis of the conventional long-term production schedule 

to the results of deterministic model. 
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the risk analysis indicates in periods 11 and 12; upon further investigation, this is due to a lack of available

sulphide material. Interestingly, this does not impact the net present value of the schedule because the risk

analysis has a higher head grade, hence recovery, for these two periods. The sulphide heap leach graph shows

that it is used to its full capacity (8 Mt) over the life of the mining complex for the deterministic model,

whereas the risk profiles indicate that the deterministic schedule doesn’t have sufficient quantities to send

to this process, or the material is often more valuable sent to other destinations. On average, the quantity

of material sent to the sulphide heap leach is 5.2% less than the deterministic model over the life of the

mine, with an average risk of 5.6% for being above or below the target capacity. Given that this destination

contributes 58% to the total NPV of the mining complex for the deterministic case, this risk is substantial

and could benefit from the proposed stochastic global asset optimizer. There is a drastic reduction in the

quantity of material going to the sulphide dump leach at the beginning of the mine’s life when comparing

the deterministic solution to the stochastic solution, which is associated with an increase in tonnage at the

transition heap leach process. This result is typical for risk analyses and is caused by the fact that the

simulations have a different gold grade-tonnage distribution than the deterministic model; the supply chain

optimizer is taking advantage of the higher-grade material that is typically smoothed out with estimated

(expected value) geological models. The tonnages going to the oxide leach pad are quite similar for both the

deterministic and risk profiles, which indicate that the estimated and simulated models are similar for this

destination. Finally, Figure 4 also shows a risk analysis of the cumulative NPV for a deterministic schedule.

Both the deterministic and the risk profiles from the simulations indicate a similar cumulative NPV, on

average, despite the fact that there is a fair amount of risk in terms of quantities of material going to the

sulphide mill or sulphide heap leach. This result is possible given the fact that the simulations typically

have more variability for both the copper and gold distributions than the estimated (E-type, average) model;

a higher variability of gold, for example, will not only relate to some higher-grade material, but also will

likely yield higher recoveries at the various destinations. Given that the risk analysis indicates similar NPVs

despite the risk profiles indicating a substantial shortfall of sulphide heap leach material in the deterministic

schedule, using a stochastic optimizer may be able to not only improve the NPV, but increase the certainty

that there is a sufficient supply of materials to fully utilize the capacities of the sulphide mill and the sulphide

heap leach destinations.

The proposed stochastic global asset optimizer is tested using the model defined by Eqs. (13)–(46) using 40

geological simulations; the simulations are sequentially fed into the optimizer to avoid excessive computing

times. Figure 5 shows the risk profiles (P10, P50 and P90) of the solution from the stochastic global

optimizer along with the results of the deterministic solution for comparison. The solution indicates a much

tighter control over the risk profiles of the sulphide mill than the deterministic solution – an average of 2.9%

deviation over the first 10 years of operation. This is a substantial difference in risk when compared to

the 6.4% deviations from the deterministic solution shown in Figure 4. The sulphide heap leach also shows

consistent quantities of material over the life of the operation, with an average of 3.1% deviation from the

target capacity of 8Mtpa. An interesting result in both graphs is that the down-side risk of not producing

material to feed either the sulphide mill or sulphide heap leach is minimal (i.e. the difference between the P10

and P50 curves); this implies that the production schedule and destination policies have very little risk in

terms of not providing enough material to be able to fill the destination’s respective capacities for the input

simulations. In fact, the optimizer has opted for a schedule that has a substantial amount of upside potential

– the difference between the P90 and P10 profiles. The effects of geological risk discounting are apparent for

the sulphide heap leach from years 14 to 22; the difference between the P10 and P90 profiles and the P50

profile becomes larger when comparing to the first 13 years of production. This implies the schedule is indeed

attempting to leave riskier material to later in the mining complexes life when more geological information

is available.

Figure 5 also shows that there is a substantial difference in sulphide dump leach and transition heap

leach tonnages for the first 4 years when compared to the risk profiles from the deterministic solution. The

stochastic solution opts to send more material to the sulphide dump leach, and less material to the transition

heap leach; admittedly, this may be a result of the optimizer seeking to send sub-optimal material from

the transition heap leach to the sulphide heap leach in order to satisfy the minimum capacity constraint

in Eq. (45). One must note, however, that both the supply chain optimization for the risk analysis of the
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Figure 5: Comparison of tonnage and NPV profiles generated using deterministic 

optimization and stochastic optimization with the proposed methodology. 

The proposed stochastic global asset optimizer is tested using the model defined by Eqs. 
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deterministic schedule and the stochastic global asset optimizer are generated using the same mathematical

model, and this phenomenon did not happen in the supply chain optimization solution in Figure 4, despite

the fact that there is a substantial shortage of material for the sulphide heap leach. It is more likely that

the lack of material sent to the transition heap leach is only a result of the production scheduling rather

than a sub-optimal destination policy. The risk profiles of the oxide heap leach tonnage for the stochastic

solution do not change drastically from that of Figure 4; on average, this destination receives the smallest

quantity of material, hence doesn’t have a substantial impact on the NPV. Finally, Figure 5 shows that

the expected NPV of the stochastic solution obtained by the global optimizer is 14.2% higher than that of

the deterministic model, and 15% higher than the expected value of the risk analysis of the deterministic
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solution. The stochastic solution therefore not only reduces the risk of quantities of materials going to the key

profit-generating destinations, but the solution also has a substantially higher value than the deterministic

solution.

Figure 6 shows a cross-section of the mine production schedule for both the deterministic and stochastic

optimizers. For the deterministic design, it is noted that the schedule is smooth and benchwise – a result of

using Whittle’s output sequence as a starting sequence for the proposed method. The stochastic schedule

shows some drastic differences; the schedule is much less smooth – a common result from many optimization

formulations that have difficulties accommodating smoothness, and, moreover, the shape of the final pit is

substantially different. The size of the stochastic solution’s ultimate pit is 22% larger in tonnage than that

of the deterministic pit – a substantial increase in size that indicates better utilization of the non-renewable

resource.
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Figure 7: Sensitivity analysis of stochastic solution with 10 unused simulations. 
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Figure 6: Cross-section of the (A) deterministic and (B) stochastic production schedules.

Figure 7 shows the risk profiles for the sulphide mill tonnage and sulphide heap leach tonnages after

performing a sensitivity analysis of the stochastic solution with the remaining 10 simulations that were not

during optimization. Despite the risk profiles being “tight” for the 40 input simulations, it is not as robust

for the remaining 10 unused simulations, which indicates that the stochastic solution is sensitive to the input

simulations. Specifically, the sensitivity analysis indicates an 8% risk and 5% risk of being above or below

the sulphide mill tonnage and sulphide heap leach tonnage targets, respectively, but still meet the target

capacity on average. The NPV, whose graph has been omitted for brevity, remains relatively stable, with

only a 2% decrease from what the stochastic solution originally indicated. Admittedly, the drastic change

in risk profiles is an unexpected result. Further investigation shows that this result is not the result of a

limitation of the optimizer, but is rather the result of the clustering in the proposed method. The ability

to make production scheduling decisions with destination policies effectively permits the optimizer to find

block and policy configurations that are similar to making a block’s destination decisions for each simulation

rather than tying the simulations together through the cluster policies. Future work will seek to improve the

solution sensitivity and robustness by looking into innovative ways to penalize these fine-scale changes to the

solution. Regardless of this shortcoming, the stochastic solution still provides a stable quantity of material

to the sulphide mill and sulphide heap leach, and the increased NPV over the deterministic solution is not

sacrificed.
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4 Conclusions

This paper presents a simulation-optimization framework for global asset optimization of mining complexes

under uncertainty, whereby the solutions give robust long-term open-pit mine production schedules and

destination policies. The proposed framework permits a high-degree of flexibility and detail in modelling the

mining complex, including the opportunity to integrate non-linear relationships that are generally ignored

in existing models because of the challenges associated with optimization. The mathematical formulations

can be generalized as a mixed integer non-linear stochastic programming problem, where the first-stage

decisions are the production schedules for the mines along with the destination policies, and the recourse

decisions decide how to best use the processing streams and destinations in order to maximize the value

of the material that has been extracted. The optimizer uses a hybrid metaheuristic comprised of particle

swarm optimization and a modified simulated annealing optimizer, whereby the particle swam optimizes the

destination policies and processing streams and the simulated annealing optimizes the long-term production

schedules and destination policies.

The method is tested on a copper-gold mining complex. Experimental results show a 3.5% and 2.7%

average reduction in risk for not meeting production targets at the sulphide mill and sulphide heap leach

destinations, respectively. Additionally, the stochastic solution indicates a 14.2% higher net present value and

22% increase in total tonnage for the mining complex than the deterministic solution, thus better utilization

of the non-renewable natural resource. Future work will focus on how to improve the clusterings used to

define the destination policies through metaheuristic clustering, with the aim of improving both economic

value and solution robustness. Given that the proposed method seeks to generate a single, robust set of

destination policies, it is of interest to investigate the use of multistage stochastic optimization in order to

permit adaptive policies under both supply (geological) and demand (metal price) uncertainty, which will

likely lead to higher economic value.
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