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Les textes publiés dans la série des rapports de recherche Les
Cahiers du GERAD n’engagent que la responsabilité de leurs
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du Fonds de recherche du Québec – Nature et technologies.
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Legal deposit – Bibliothèque et Archives nationales du Québec,
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Jérémy Omer

GERAD & Polytechnique Montréal, Montréal (Québec)
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Abstract: Any significant increase in current levels of air traffic will need the support of efficient decision-
aid tools. One of the tasks of air traffic management is to modify trajectories when necessary to maintain a
sufficient separation between pairs of aircraft. Several algorithms have been developed to solve this problem,
but the underlying assumptions are different, which makes it difficult to compare their performance. In this
article, separation is maintained through changes of heading and velocity while minimizing a combination
of fuel consumption and delay. For realistic trajectories, the speed is continuous with respect to time, the
acceleration and turning rate are bounded, and the planned trajectories are recovered after the maneuvers.
After describing the major modifications to existing models that are necessary to comply with this advanced
definition of the problem, we compare three mixed integer linear programs. The first model is based on
a discretization of the air space, and the second relies on a discretization of the time horizon. The third
model implements a time decomposition of the problem; it allows only one initial maneuver, and it is solved
periodically with a receding horizon to build a complete trajectory. The computational tests are conducted
on a benchmark of artificial instances specifically built to include complex situations. Our analysis of the
results highlights the strengths and limits of each model, and the time decomposition proves to be an excellent
compromise.

Key Words: Air traffic control, Conflict resolution, Mixed integer linear programming.
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1 Introduction

The airspace is a crowded environment requiring constant attention for both security and economic reasons.

Air traffic management (ATM) is organized into successive layers corresponding to levels of anticipation that

converge toward real-time. The last layer is air traffic control (ATC); for portions of the airspace outside the

direct vicinity of airports, it involves monitoring traffic, establishing communication with pilots, and taking

actions to ensure the fluidity and security of the traffic.

ICAO [1] translates the general concept of security into quantified criteria by defining reference distances

of separation that depend on the portion of the airspace under consideration. Two aircraft are considered

separated if they respect either a minimum horizontal or a minimum vertical distance, the alternative being a

loss of separation. A conflict occurs when the predicted trajectories of two aircraft lead to a loss of separation.

The ATC operator must detect conflicts, determine maneuvers that lead to conflict-free trajectories, and send

the corresponding instructions to pilots.

Because of the potential benefits for overall ATM and the intrinsic mathematical difficulties of conflict

detection and resolution (CD&R), the problem has been the focus of a large literature. The motivation is

that the inclusion of an efficient and effective automated CD&R in the toolbox available to controllers could

lead to a major increase in airspace capacity [2].

CD&R is a particular case of motion planning for multiple mobiles with collision avoidance. An optimal

trajectory connecting two given initial and final positions is determined for each aircraft under the linking

constraints that no loss of separation should occur. The cost to optimize usually reflects the flight time and

fuel consumption. The result is a complex continuous-time problem in which multiple optimal trajectories

are determined simultaneously with additional nonconvex separation constraints. An ideal approach should

rely on general assumptions, fit the nature of the problem, and be computationally efficient. All existing

studies represent a compromise among these three aspects.

Optimal control methods search for a continuous-time control law optimizing a cost functional. Since the

aircraft trajectories involve continuous-time positions, speeds, and accelerations, optimal control is a logical

candidate for CD&R. It allows us to derive complete models (see [3–5]), but the optimal solution can be

found only for simple cases with two aircraft and a constant velocity [3]. Numerical methods are necessary

to solve the problem under more general hypotheses.

If the aircraft are assumed to fly at the same altitude, one approach is to limit the possible maneuvers

to a finite set of heading and/or speed changes. With this constraint, Bicchi and Pallottino [4] suggest a

heuristic that builds conflict-free trajectories with sequences of straight lines and circular arcs. Frese and

Beyerer [6] focus on first instantaneous heading changes with constant speed and second velocity changes

with constant heading to solve the problem through a tree-exploration technique. With the same maneuvers,

Durandet al. [7] develop a genetic algorithm to handle complex situations.

The second and more popular approach is to formulate the problem with discrete time. For instance,

Raghunathanet al. [5] sample the time interval to focus on a finite set of variables and constraints. The

resulting model is a nonlinear program (NLP) with nonconvex separation constraints. The NLP may be

solved numerically, but fast algorithms cannot guarantee more than a local optimum. Borrelliet al. [8] report

disappointing computational results, because a good initial point is necessary to converge to a good local

optimum.

To solve the problem more efficiently, the nonlinear constraints and objective function of the NLP may

be approximated with linear equations involving integer variables to obtain a mixed integer linear program

(MILP). MILPs have been very popular in ATC, because they may achieve a good approximation of the

NLP (see [9]),and implementations of state-of-the-art algorithms (e.g., CPLEX1 or Gurobi [10]) find optimal

solutions of large instances in a reasonable time. For instance, Schouwenaars [11] and Omer and Farges [12]

develop time-discretized MILPs.

1CPLEX is freely available for academic and research purposes under the IBM academic initiative: http://www-03.ibm.com/
ibm/university/academic

http://www-03.ibm.com/ibm/university/academic
http://www-03.ibm.com/ibm/university/academic
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An extreme time sampling is to take only the two extremities. In this case, the conflicts resolution must

be achieved with one initial maneuver per aircraft, thus leading to a simpler form of the NLP. In particular,

the separation constraints become a disjunction of two linear constraints. Such models appear in [13–15].

MILPs also arise from space discretization. Instead of sampling the time interval, these models reduce

the airspace to a finite set of important points, namely the initial and final points of the trajectories and the

points where pairs of trajectories intersect. Since space discretization makes it hard to represent geographic

deviations from the predicted trajectories, in these models the maneuvers are usually restricted to speed

changes [16–19]. However, Omer [20] develops a space-discretized model that includes heading changes.

Despite the abundant literature on CD&R, there has been little experimental comparison of different

models. Frese and Beyerer [21] conduct an experimental study, but it is limited to the avoidance of collisions

between cars. In [8, 12], results are presented for an NLP and an MILP, but these models do not have to

be opposed. MILP may be used as a first step toward the final result by providing a starting point for

the NLP [12]. The first motivation for this article is to alleviate the overwhelming feeling induced by the

multitude of models. Since a large proportion of the existing models are MILPs and they represent a wide

range of options, this work focuses on MILPs. Based on the literature review above, we consider three

different families of MILPs: time-discretized models with potentially more than one maneuver per aircraft,

time-discretized models with at most one maneuver per aircraft, and space-discretized models.

A major obstacle is that every existing model is based on specific hypotheses. The hypotheses made in

the space-discretized model of Omer [20] represent the most complete description of the problem:

• fuel consumption and delays are minimized;

• speed and heading changes are allowed;

• speed and heading are continuous functions of time;

• velocity, acceleration, and turning rate are bounded;

• aircraft must revert to their planned trajectories.

For a meaningful comparison of the families of models, they must all be based on the same hypotheses. Our

first major contribution is thus to modify existing time-discretized and one-maneuver models with this goal in

mind. Our second major contribution is an experimental comparison of the three models. We generate a large

set of benchmark instances to ensure that the conclusions illustrate general tendencies, and we highlight the

main features of each family of model. The most interesting result is that the one-maneuver model emerges

as an excellent compromise.

Our approach is based on the formal definition of the problem given in Section 2. In Section 3, we briefly

describe a previously developed space-discretized model. Our original modeling contribution includes the

insertion of fuel consumption in a time-discretized model in Section 4 and a larger revision of a one-maneuver

model in Section 5. Based on experimental tests, we compare the models in Section 6.

2 Formal definition of the conflict resolution problem

The conflict resolution problem aims to keep a set A of aircraft separated on a time interval [0, T ]. Given

a set of pairs of aircraft in potential conflict C, a new trajectory is planned for each aircraft Ai ∈ A so that

each pair in C respects the reference separation distances.

2.1 Dynamics of the aircraft

The motion of an aircraft Ai ∈ A is described by its position pi(t), speed vi(t), and acceleration ui(t) at

each time t ∈ [0, T ]. The particular problem we are focusing on deals with planar and deterministic

motion. These two restrictive hypotheses are reasonable for short-term traffic control focusing on portions

of the airspace outside the proximity of airports, where the altitude of an aircraft is constant most of the

time. In this case, a typical value of T is 10 to 15 minutes, and separation needs to be achieved through
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heading and speed maneuvers. pi(t), vi(t), and ui(t) are thus two-dimensional vectors, and their relation is

given by the simple dynamical system:
(

dpi(t)
dt

dvi(t)
dt

)
=

(
vi(t)
ui(t)

)
. (1)

A reasonable level of realism is ensured by assuming that acceleration is stepwise constant. In other

words, the maneuvers are executed with a constant acceleration vector, and the speed vector remains constant

between two consecutive maneuvers. This assumption is consistent with the continuity of speed with respect

to time and the need to execute maneuvers smoothly.

The dynamics of an aircraft are constrained by its performance and the comfort of passengers. The

performance imposes a minimum and a maximum speed, but, as specified in [22], large velocity decreases

below the preferred value are usually not appreciated by pilots. As a consequence, the minimum velocity

is the larger of the value based on the aircraft’s performance and that based on the pilots’ preferences. In

addition, the comfort of the passengers requires that the velocity and heading do not change too abruptly.

This leads to maximum values for the derivatives of the speed vector’s norm and argument, which are called

the “acceleration” and “yaw rate” in what follows. The constraints are formalized as: ∀t ∈ [0, T ],

V min
i ≤ Vi(t) ≤ V max

i , (2)

∣∣∣∣
dχi(t)

dt

∣∣∣∣ ≤ ωmax
i and

∣∣∣∣
dVi(t)

dt

∣∣∣∣ ≤ Umax
i , (3)

where χi(t) is the heading and Vi is the norm of the speed vector of Ai at time t.

2.2 Ensuring separation

Since the motions of the aircraft are planar, only the horizontal separation is considered. The distance

between each pair of conflicting aircraft must be greater than or equal to the reference horizontal distance of

separation D: ∥∥pj(t)− pi(t)
∥∥ ≥ D,∀(Ai, Aj) ∈ C,∀t ∈ [0, T ], (4)

where ‖ · ‖ is the Euclidean norm.

2.3 Reverting to the planned trajectory

Trajectory recovery reflects the natural idea that a conflict resolution should minimize perturbations to the

overall trajectory of an aircraft. Moreover, several projects consider a trajectory-based ATM in which both

the airlines and ATC commit to do all they can to keep each aircraft as close as possible to a previously

negotiated business trajectory (BT) (see [23]).

Both space and time deviations from the BT are controlled. A constraint is added for each aircraft to

recover the course of its planned trajectory:

〈
pi(T )− pTi

∣∣nTi
〉

= 0 ∀Ai ∈ A, (5)

where pTi and vTi are the planned position and speed of Ai at time T , nTi is any vector orthogonal to vTi , and

〈 .| .〉 is the scalar product. The temporal aspect of trajectory recovery is taken into consideration through a

penalty in the cost function rather than a hard constraint. This issue is dealt with in the next section.

2.4 Cost minimization

The economic efficiency of a flight is usually measured by the duration and the fuel consumption. Fuel-optimal

conflict-free trajectories are determined, for instance, in [14], although duration is not explicitly taken into

consideration. In this work, the trajectories minimize a combination of the fuel consumption of the aircraft
and the time deviations from the BT at time T .
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“yaw rate” in what follows. The constraints are formalized as:
∀t ∈ [0, T ],

V min
i ≤ Vi(t) ≤ V max

i , (2)
∣∣∣∣
dχi(t)

dt

∣∣∣∣ ≤ ωmax
i and

∣∣∣∣
dVi(t)

dt

∣∣∣∣ ≤ Umax
i , (3)

where χi(t) is the heading and Vi is the norm of the speed
vector of Ai at time t.

B. Ensuring separation

Since the motions of the aircraft are planar, only the
horizontal separation is considered. The distance between each
pair of conflicting aircraft must be greater than or equal to the
reference horizontal distance of separation D:

∥∥pj(t)− pi(t)
∥∥ ≥ D,∀(Ai, Aj) ∈ C,∀t ∈ [0, T ], (4)

where ‖ · ‖ is the Euclidean norm.

C. Reverting to the planned trajectory

Trajectory recovery reflects the natural idea that a conflict
resolution should minimize perturbations to the overall tra-
jectory of an aircraft. Moreover, several projects consider a
trajectory-based ATM in which both the airlines and ATC
commit to do all they can to keep each aircraft as close as
possible to a previously negotiated business trajectory (BT)
(see [23]).

Both space and time deviations from the BT are controlled.
A constraint is added for each aircraft to recover the course
of its planned trajectory:

〈
pi(T )− pTi

∣∣nTi
〉

= 0 ∀Ai ∈ A, (5)

where pTi and vTi are the planned position and speed of Ai at
time T , nTi is any vector orthogonal to vTi , and 〈 .| .〉 is the
scalar product. The temporal aspect of trajectory recovery is
taken into consideration through a penalty in the cost function
rather than a hard constraint. This issue is dealt with in the
next section.

D. Cost minimization

The economic efficiency of a flight is usually measured by
the duration and the fuel consumption. Fuel-optimal conflict-
free trajectories are determined, for instance, in [14], although
duration is not explicitly taken into consideration. In this
work, the trajectories minimize a combination of the fuel
consumption of the aircraft and the time deviations from the
BT at time T .

As in [14], we use the BADA user manual [24] as the
reference physical model from which the fuel consumption is
derived. Sample consumption profiles are plotted in Figure 1.

Constraint (5) ensures that there is no lateral deviation from
the BT at time T , so the time deviation from the BT at T is
proportional to the longitudinal deviation (with a 1

V nom
i

factor).
To penalize the time deviation, we assume that the aircraft
must eventually make up the delay. Since this operation is
not an emergency, the speed should not be pushed to its
limit, so 1

2 (V nom
i +V max

i ) or 1
2 (V nom

i +V min
i ) are acceptable
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Fig. 1: Fuel consumption per distance unit; the profiles are
normalized by setting the minimum consumption equal to 1.0

speeds, depending on the sign of the delay. Two penalties for
respectively being behind or ahead of the BT, ρ−i and ρ+

i , are
thus computed as the additional fuel consumption needed to
return to the BT. A detailed description of the computation of
ρ−i and ρ+

i is given in [9].

III. SPACE-DISCRETIZED MODEL

A. Principle of the space discretization

Space discretization focuses on the points of the airspace
that are most likely to be important for the conflict resolution.
These are the initial positions, the predicted final positions of
the aircraft, and the conflict points, i.e., the points where the
trajectories of two conflicting aircraft intersect. Although it is
not identified as such, a space discretization is used in [16],
[17], [19] to derive a model involving only speed maneuvers.
The main contribution of a previous work [20] is to include
heading maneuvers. Since we implement the same model,
we describe only the principles of space discretization and
the assumptions made to allow for a linear formulation with
heading maneuvers. See the original description of the model
for a complete mathematical formulation.

For given traffic, space discretization leads to a directed
graph (N , E), where N is the union of the following set of
nodes:
• NI : nodes corresponding to the initial positions;
• NC : nodes corresponding to the conflict points;
• NT : nodes corresponding to the positions at time T .

E is then built by adding, for each aircraft, the pairs of
consecutive nodes over which the aircraft flies. Since a given
pair of nodes (nk, np) may define several edges if several
aircraft fly over nk and np, the edge corresponding to the BT
of Ai ∈ A is denoted (Ai, nk, np). Figure 2 illustrates the
structure of a conflict graph for a situation involving three
aircraft.

The conflict graph is completely built based on the BTs. In
the model, the structure of the graph is thus fixed. The variable
features of the graph are the characteristics of the edges. For
instance, a speed change modifies the flight time, and heading

Figure 1: Fuel consumption per distance unit; the profiles are normalized by setting the minimum consumption
equal to 1.0

As in [14], we use the BADA user manual [24] as the reference physical model from which the fuel

consumption is derived. Sample consumption profiles are plotted in Figure 1.

Constraint (5) ensures that there is no lateral deviation from the BT at time T , so the time deviation

from the BT at T is proportional to the longitudinal deviation (with a 1
V nom
i

factor). To penalize the time

deviation, we assume that the aircraft must eventually make up the delay. Since this operation is not an

emergency, the speed should not be pushed to its limit, so 1
2 (V nom

i +V max
i ) or 1

2 (V nom
i +V min

i ) are acceptable

speeds, depending on the sign of the delay. Two penalties for respectively being behind or ahead of the BT,

ρ−i and ρ+
i , are thus computed as the additional fuel consumption needed to return to the BT. Denoting

respectively ∆−‖,i and ∆+
‖,i the negative and the positive longitudinal gaps from the BT at time T , it is possible

to penalize these gaps with two costs ρ−i and ρ+
i respectively. A detailed description of the computation of

ρ−i and ρ+
i is given in [9].

3 Space-discretized model

3.1 Principle of the space discretization

Space discretization focuses on the points of the airspace that are most likely to be important for the conflict

resolution. These are the initial positions, the predicted final positions of the aircraft, and the conflict points,

i.e., the points where the trajectories of two conflicting aircraft intersect. Although it is not identified as

such, a space discretization is used in [16, 17, 19] to derive a model involving only speed maneuvers. The

main contribution of a previous work [20] is to include heading maneuvers. Since we implement the same

model, we describe only the principles of space discretization and the assumptions made to allow for a linear

formulation with heading maneuvers. See the original description of the model for a complete mathematical

formulation.

For given traffic, space discretization leads to a directed graph (N , E), where N is the union of the

following set of nodes:

• NI : nodes corresponding to the initial positions;

• NC : nodes corresponding to the conflict points;

• NT : nodes corresponding to the positions at time T .
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Fig. 2: Conflict graph for a situation with three aircraft [20]

maneuvers stretch out the length of an edge while introducing
a lateral shift with respect to the BT.

In a time discretization, the separation constraints focus on
the positions of two conflicting aircraft, whereas in a spatial
discretization they focus on fly-over instants. Specifically, the
instants that Ai and Aj fly over the conflict point must be
separated with a minimum time separation Tmin

i,j depending
on the angle between the trajectories of the two aircraft and
on their velocities. If the velocities Vi and Vj are constant and
so is the angle, θij , between the trajectories of Ai and Aj ,
Tmin
i,j may be computed as in [16]:

Tmin
i,j =

D

ViVj |sin θi,j |
√

(Vi)2 + (Vj)2 − 2ViVj cos θi,j .

The combinatorics intrinsic to the problem appears in the
choice of the aircraft that passes first at the conflict point. This
is modeled with two big-M constraints that involve one binary
variable δij and a large constant value M . The considerable
strength of this model is that it involves only one binary
variable per conflict. Let Ti and Tj be the fly-over times of
Ai and Aj at the conflict point; then the separation constraints
corresponding to the conflict are

Ti−Tj ≥ Tmin
i,j −Mδij , and Tj −Ti ≥ Tmin

i,j −M(1− δij),
with δij ∈ {0, 1}.

B. Including heading maneuvers

The maneuvers induce nonlinear modifications of the char-
acteristics of the edges if they do not follow any specific pat-
tern. As a consequence, the maneuvers are restricted to those
corresponding to a combination of the patterns represented in
Figure 3, and they cannot extend over more than one edge.
In the heading maneuver depicted in Figure 3a, the aircraft
has the same heading at the beginning and at the end of the
maneuver: the purpose is to move the aircraft away laterally
from its BT or to spatially recover it. The speed maneuvers
illustrated in Figure 3b end with the same speed as they
started: their purpose is to move the aircraft back or forward
temporally (or longitudinally) from its BT. These maneuvers
are called trapezoidal speed and heading changes in reference
to the shape of the graphs of speed and heading as functions of
time. Finally, they are executed with the maximum turning rate
or acceleration to minimize the transition between the initial
and final speeds or headings.

constant yaw rate

translation of
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Fig. 3: Representation of the two permitted types of maneuvers

The contribution of [20] relies on the fact that a trapezoidal
heading change generates a lateral shift with the BT, which
can in turn be converted into a temporal shift at the conflict
point if the speed is constant around this point. Figure 4
illustrates that if Ai is laterally shifted by ∆i then the conflict
point is moved by a distance ∆i tan θij along the trajectory
of Ai, and by a distance ∆i sin θij along the trajectory of Aj .
Assuming that the velocities of Ai and Aj are constant, Ti and
Tj are linear functions of the decision variables. The resulting
restriction is that the speed vectors of the aircraft must be
set to a constant value around the conflict points so that the
separation constraints remain valid. For this, the speed vectors
are constant on the segments where the distance between the
trajectories is less than or equal to the reference separation
distance D. As depicted in Figure 4, this corresponds to an
interval of length 2 D

sin θij
centered on the conflict point.

Finally, a stepwise linear approximation of the fuel con-
sumption is minimized, and the recovery of the BT is ensured
by demanding a zero lateral shift and minimizing the time
shift at the nodes of NT .

The overall model is called SPACE.

IV. TIME-DISCRETIZED MODEL

Two operations are performed sequentially to transform
the original optimal control problem into an MILP. The
problem is first expressed with a finite number of variables
and constraints. The nonlinear equations of the model are then
approximated with linear expressions. A complete description

Figure 2: Conflict graph for a situation with three aircraft [20]

E is then built by adding, for each aircraft, the pairs of consecutive nodes over which the aircraft flies.

Since a given pair of nodes (nk, np) may define several edges if several aircraft fly over nk and np, the edge

corresponding to the BT of Ai ∈ A is denoted (Ai, nk, np). Figure 2 illustrates the structure of a conflict

graph for a situation involving three aircraft.

The conflict graph is completely built based on the BTs. In the model, the structure of the graph is thus

fixed. The variable features of the graph are the characteristics of the edges. For instance, a speed change

modifies the flight time, and heading maneuvers stretch out the length of an edge while introducing a lateral

shift with respect to the BT.

In a time discretization, the separation constraints focus on the positions of two conflicting aircraft,

whereas in a spatial discretization they focus on fly-over instants. Specifically, the instants that Ai and Aj
fly over the conflict point must be separated with a minimum time separation Tmin

i,j depending on the angle

between the trajectories of the two aircraft and on their velocities. If the velocities Vi and Vj are constant

and so is the angle, θij , between the trajectories of Ai and Aj , T
min
i,j may be computed as in [16]:

Tmin
i,j =

D

ViVj |sin θi,j |
√

(Vi)2 + (Vj)2 − 2ViVj cos θi,j .

The combinatorics intrinsic to the problem appears in the choice of the aircraft that passes first at the

conflict point. This is modeled with two big-M constraints that involve one binary variable δij and a large

constant value M . The considerable strength of this model is that it involves only one binary variable per

conflict. Let Ti and Tj be the fly-over times of Ai and Aj at the conflict point; then the separation constraints

corresponding to the conflict are

Ti − Tj ≥ Tmin
i,j −Mδij , and Tj − Ti ≥ Tmin

i,j −M(1− δij),

with δij ∈ {0, 1}.

3.2 Including heading maneuvers

The maneuvers induce nonlinear modifications of the characteristics of the edges if they do not follow any

specific pattern. As a consequence, the maneuvers are restricted to those corresponding to a combination

of the patterns represented in Figure 3, and they cannot extend over more than one edge. In the heading

maneuver depicted in Figure 3a, the aircraft has the same heading at the beginning and at the end of the

maneuver: the purpose is to move the aircraft away laterally from its BT or to spatially recover it. The speed

maneuvers illustrated in Figure 3b end with the same speed as they started: their purpose is to move the

aircraft back or forward temporally (or longitudinally) from its BT. These maneuvers are called trapezoidal

speed and heading changes in reference to the shape of the graphs of speed and heading as functions of time.
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Fig. 2: Conflict graph for a situation with three aircraft [20]

maneuvers stretch out the length of an edge while introducing
a lateral shift with respect to the BT.

In a time discretization, the separation constraints focus on
the positions of two conflicting aircraft, whereas in a spatial
discretization they focus on fly-over instants. Specifically, the
instants that Ai and Aj fly over the conflict point must be
separated with a minimum time separation Tmin

i,j depending
on the angle between the trajectories of the two aircraft and
on their velocities. If the velocities Vi and Vj are constant and
so is the angle, θij , between the trajectories of Ai and Aj ,
Tmin
i,j may be computed as in [16]:

Tmin
i,j =

D

ViVj |sin θi,j |
√

(Vi)2 + (Vj)2 − 2ViVj cos θi,j .

The combinatorics intrinsic to the problem appears in the
choice of the aircraft that passes first at the conflict point. This
is modeled with two big-M constraints that involve one binary
variable δij and a large constant value M . The considerable
strength of this model is that it involves only one binary
variable per conflict. Let Ti and Tj be the fly-over times of
Ai and Aj at the conflict point; then the separation constraints
corresponding to the conflict are

Ti−Tj ≥ Tmin
i,j −Mδij , and Tj −Ti ≥ Tmin

i,j −M(1− δij),
with δij ∈ {0, 1}.

B. Including heading maneuvers

The maneuvers induce nonlinear modifications of the char-
acteristics of the edges if they do not follow any specific pat-
tern. As a consequence, the maneuvers are restricted to those
corresponding to a combination of the patterns represented in
Figure 3, and they cannot extend over more than one edge.
In the heading maneuver depicted in Figure 3a, the aircraft
has the same heading at the beginning and at the end of the
maneuver: the purpose is to move the aircraft away laterally
from its BT or to spatially recover it. The speed maneuvers
illustrated in Figure 3b end with the same speed as they
started: their purpose is to move the aircraft back or forward
temporally (or longitudinally) from its BT. These maneuvers
are called trapezoidal speed and heading changes in reference
to the shape of the graphs of speed and heading as functions of
time. Finally, they are executed with the maximum turning rate
or acceleration to minimize the transition between the initial
and final speeds or headings.
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The contribution of [20] relies on the fact that a trapezoidal
heading change generates a lateral shift with the BT, which
can in turn be converted into a temporal shift at the conflict
point if the speed is constant around this point. Figure 4
illustrates that if Ai is laterally shifted by ∆i then the conflict
point is moved by a distance ∆i tan θij along the trajectory
of Ai, and by a distance ∆i sin θij along the trajectory of Aj .
Assuming that the velocities of Ai and Aj are constant, Ti and
Tj are linear functions of the decision variables. The resulting
restriction is that the speed vectors of the aircraft must be
set to a constant value around the conflict points so that the
separation constraints remain valid. For this, the speed vectors
are constant on the segments where the distance between the
trajectories is less than or equal to the reference separation
distance D. As depicted in Figure 4, this corresponds to an
interval of length 2 D

sin θij
centered on the conflict point.

Finally, a stepwise linear approximation of the fuel con-
sumption is minimized, and the recovery of the BT is ensured
by demanding a zero lateral shift and minimizing the time
shift at the nodes of NT .

The overall model is called SPACE.

IV. TIME-DISCRETIZED MODEL

Two operations are performed sequentially to transform
the original optimal control problem into an MILP. The
problem is first expressed with a finite number of variables
and constraints. The nonlinear equations of the model are then
approximated with linear expressions. A complete description
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Fig. 2: Conflict graph for a situation with three aircraft [20]

maneuvers stretch out the length of an edge while introducing
a lateral shift with respect to the BT.

In a time discretization, the separation constraints focus on
the positions of two conflicting aircraft, whereas in a spatial
discretization they focus on fly-over instants. Specifically, the
instants that Ai and Aj fly over the conflict point must be
separated with a minimum time separation Tmin

i,j depending
on the angle between the trajectories of the two aircraft and
on their velocities. If the velocities Vi and Vj are constant and
so is the angle, θij , between the trajectories of Ai and Aj ,
Tmin
i,j may be computed as in [16]:

Tmin
i,j =

D

ViVj |sin θi,j |
√

(Vi)2 + (Vj)2 − 2ViVj cos θi,j .

The combinatorics intrinsic to the problem appears in the
choice of the aircraft that passes first at the conflict point. This
is modeled with two big-M constraints that involve one binary
variable δij and a large constant value M . The considerable
strength of this model is that it involves only one binary
variable per conflict. Let Ti and Tj be the fly-over times of
Ai and Aj at the conflict point; then the separation constraints
corresponding to the conflict are

Ti−Tj ≥ Tmin
i,j −Mδij , and Tj −Ti ≥ Tmin

i,j −M(1− δij),
with δij ∈ {0, 1}.

B. Including heading maneuvers

The maneuvers induce nonlinear modifications of the char-
acteristics of the edges if they do not follow any specific pat-
tern. As a consequence, the maneuvers are restricted to those
corresponding to a combination of the patterns represented in
Figure 3, and they cannot extend over more than one edge.
In the heading maneuver depicted in Figure 3a, the aircraft
has the same heading at the beginning and at the end of the
maneuver: the purpose is to move the aircraft away laterally
from its BT or to spatially recover it. The speed maneuvers
illustrated in Figure 3b end with the same speed as they
started: their purpose is to move the aircraft back or forward
temporally (or longitudinally) from its BT. These maneuvers
are called trapezoidal speed and heading changes in reference
to the shape of the graphs of speed and heading as functions of
time. Finally, they are executed with the maximum turning rate
or acceleration to minimize the transition between the initial
and final speeds or headings.
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The contribution of [20] relies on the fact that a trapezoidal
heading change generates a lateral shift with the BT, which
can in turn be converted into a temporal shift at the conflict
point if the speed is constant around this point. Figure 4
illustrates that if Ai is laterally shifted by ∆i then the conflict
point is moved by a distance ∆i tan θij along the trajectory
of Ai, and by a distance ∆i sin θij along the trajectory of Aj .
Assuming that the velocities of Ai and Aj are constant, Ti and
Tj are linear functions of the decision variables. The resulting
restriction is that the speed vectors of the aircraft must be
set to a constant value around the conflict points so that the
separation constraints remain valid. For this, the speed vectors
are constant on the segments where the distance between the
trajectories is less than or equal to the reference separation
distance D. As depicted in Figure 4, this corresponds to an
interval of length 2 D

sin θij
centered on the conflict point.

Finally, a stepwise linear approximation of the fuel con-
sumption is minimized, and the recovery of the BT is ensured
by demanding a zero lateral shift and minimizing the time
shift at the nodes of NT .

The overall model is called SPACE.

IV. TIME-DISCRETIZED MODEL

Two operations are performed sequentially to transform
the original optimal control problem into an MILP. The
problem is first expressed with a finite number of variables
and constraints. The nonlinear equations of the model are then
approximated with linear expressions. A complete description

(b) Speed maneuver

Figure 3: Representation of the two permitted types of maneuvers
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of this process appears in [12] for a model that involves the
constraints of the problem definition but a different objective.
We present below a synthesis of this work that takes into
account the fuel consumption.

A. A time-discretized model

The simplest time-discretization is done by sampling [0, T ]
according to a constant step h. The model then focuses on a

sequence of K + 1 times, 0 = t0 < t1 < · · · < tK = T .

The linearization then relies on two related techniques that
are most clearly understood via a geometric representation of
the constraints. Separation constraints and bounds on speed
and acceleration share one important characteristic: they can
be seen as quadratic constraints. A convenient way to describe
them involves a circle inside or outside of which the endpoint
of a vector depending on the constraint must lie. Figure 5a
gives a representation of the separation constraints in the
mobile frame attached to one conflicting aircraft, while bounds
on the velocity appear in Figure 5b. These figures also show
how the circles are approximated by a set of tangents or chords
to obtain a set of linear constraints ensuring that the initial
quadratic constraints are satisfied.

Before focusing on the new objective function, we de-
scribe the time-discretized MILP of [12]. For convenience,
we introduce the two sets T = {tk}k=0,...,K and T − =
{tk}k=0,...,K−1, and the value that a function f takes at an
instant tk ∈ T is denoted fk = f(tk). Nv and Ns are respec-
tively the number of linear constraints used to approximate the
velocity and separation constraints, Θv = { 2nπ

Nv
}n=0,...,Nv−1,

Θs = { 2nπ
Ns
}n=0,...,Ns−1, and eθ is the unit vector with

coordinates (cos θ, sin θ).

min
∑

Ai∈A

∑

tk∈T −
h · uki , subject to: (6)

∀Ai ∈ A :

(p0
i ,p

K
i ) = (pBT

i (0),pBT
i (T )) (7)

∀Ai ∈ A, ∀tk ∈ T :

pk+1
i = pki + h× vki +

h2

2
uki , (8)

〈
vki
∣∣ eθ
〉
≤ vki cos

(
π

Nv

)
,∀θ ∈ Θv (9)

〈
vki
∣∣ eθ
〉
≥ vki −Mvε

kθ
i ,∀θ ∈ Θv (10)∑

θ∈Θv

εkθi = Nv − 1, (11)

V min
i ≤ vki ≤ V max

i , V min
i ≤ vki ≤ V max

i , (12)

∀Ai ∈ A, ∀tk ∈ T − :

vk+1
i = vki + h× uki , ∀i ∈ A, (13)
〈
uki
∣∣ eθ
〉
≤ uki cos

(
π

Nu

)
,∀θ ∈ Θu, (14)

vk+1
i − vki ≤ hUmax

i , (15)

vk+1
i − vki ≥ −hUmax

i , (16)

uki ≤ ωmax
i vki , (17)

∀ (Ai, Aj) ∈ C,∀tk ∈ T −,∀θ ∈ Θs :

〈
pkj − pki

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (18)

〈
pk+1
j − pk+1

i

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (19)

∑

θ∈Θs

δkθij = Ns − 1, (20)

∀Ai ∈ A, ∀tk ∈ T :

Figure 4: Focus on a crossing conflict in presence of a lateral shift

Finally, they are executed with the maximum turning rate or acceleration to minimize the transition between

the initial and final speeds or headings.

The contribution of [20] relies on the fact that a trapezoidal heading change generates a lateral shift with

the BT, which can in turn be converted into a temporal shift at the conflict point if the speed is constant

around this point. Figure 4 illustrates that if Ai is laterally shifted by ∆i then the conflict point is moved

by a distance ∆i tan θij along the trajectory of Ai, and by a distance ∆i sin θij along the trajectory of Aj .

Assuming that the velocities of Ai and Aj are constant, Ti and Tj are linear functions of the decision variables.

The resulting restriction is that the speed vectors of the aircraft must be set to a constant value around the

conflict points so that the separation constraints remain valid. For this, the speed vectors are constant on

the segments where the distance between the trajectories is less than or equal to the reference separation

distance D. As depicted in Figure 4, this corresponds to an interval of length 2 D
sin θij

centered on the conflict

point.

Finally, a stepwise linear approximation of the fuel consumption is minimized, and the recovery of the

BT is ensured by demanding a zero lateral shift and minimizing the time shift at the nodes of NT .

The overall model is called SPACE.
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4 Time-discretized model

Two operations are performed sequentially to transform the original optimal control problem into an MILP.

The problem is first expressed with a finite number of variables and constraints. The nonlinear equations

of the model are then approximated with linear expressions. A complete description of this process appears

in [12] for a model that involves the constraints of the problem definition but a different objective. We present

below a synthesis of this work that takes into account the fuel consumption.

4.1 A time-discretized model

The simplest time-discretization is done by sampling [0, T ] according to a constant step h. The model then

focuses on a sequence of K + 1 times, 0 = t0 < t1 < · · · < tK = T .

The linearization then relies on two related techniques that are most clearly understood via a geometric

representation of the constraints. Separation constraints and bounds on speed and acceleration share one

important characteristic: they can be seen as quadratic constraints. A convenient way to describe them

involves a circle inside or outside of which the endpoint of a vector depending on the constraint must lie.

Figure 5a gives a representation of the separation constraints in the mobile frame attached to one conflicting

aircraft, while bounds on the velocity appear in Figure 5b. These figures also show how the circles are

approximated by a set of tangents or chords to obtain a set of linear constraints ensuring that the initial

quadratic constraints are satisfied.
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of this process appears in [12] for a model that involves the
constraints of the problem definition but a different objective.
We present below a synthesis of this work that takes into
account the fuel consumption.

A. A time-discretized model

The simplest time-discretization is done by sampling [0, T ]
according to a constant step h. The model then focuses on a

sequence of K + 1 times, 0 = t0 < t1 < · · · < tK = T .

The linearization then relies on two related techniques that
are most clearly understood via a geometric representation of
the constraints. Separation constraints and bounds on speed
and acceleration share one important characteristic: they can
be seen as quadratic constraints. A convenient way to describe
them involves a circle inside or outside of which the endpoint
of a vector depending on the constraint must lie. Figure 5a
gives a representation of the separation constraints in the
mobile frame attached to one conflicting aircraft, while bounds
on the velocity appear in Figure 5b. These figures also show
how the circles are approximated by a set of tangents or chords
to obtain a set of linear constraints ensuring that the initial
quadratic constraints are satisfied.

Before focusing on the new objective function, we de-
scribe the time-discretized MILP of [12]. For convenience,
we introduce the two sets T = {tk}k=0,...,K and T − =
{tk}k=0,...,K−1, and the value that a function f takes at an
instant tk ∈ T is denoted fk = f(tk). Nv and Ns are respec-
tively the number of linear constraints used to approximate the
velocity and separation constraints, Θv = { 2nπ

Nv
}n=0,...,Nv−1,

Θs = { 2nπ
Ns
}n=0,...,Ns−1, and eθ is the unit vector with

coordinates (cos θ, sin θ).

min
∑

Ai∈A

∑

tk∈T −
h · uki , subject to: (6)

∀Ai ∈ A :

(p0
i ,p

K
i ) = (pBT

i (0),pBT
i (T )) (7)

∀Ai ∈ A, ∀tk ∈ T :

pk+1
i = pki + h× vki +

h2

2
uki , (8)

〈
vki
∣∣ eθ
〉
≤ vki cos

(
π

Nv

)
,∀θ ∈ Θv (9)

〈
vki
∣∣ eθ
〉
≥ vki −Mvε

kθ
i ,∀θ ∈ Θv (10)∑

θ∈Θv

εkθi = Nv − 1, (11)

V min
i ≤ vki ≤ V max

i , V min
i ≤ vki ≤ V max

i , (12)

∀Ai ∈ A, ∀tk ∈ T − :

vk+1
i = vki + h× uki , ∀i ∈ A, (13)
〈
uki
∣∣ eθ
〉
≤ uki cos

(
π

Nu

)
,∀θ ∈ Θu, (14)

vk+1
i − vki ≤ hUmax

i , (15)

vk+1
i − vki ≥ −hUmax

i , (16)

uki ≤ ωmax
i vki , (17)

∀ (Ai, Aj) ∈ C,∀tk ∈ T −,∀θ ∈ Θs :

〈
pkj − pki

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (18)

〈
pk+1
j − pk+1

i

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (19)

∑

θ∈Θs

δkθij = Ns − 1, (20)

∀Ai ∈ A, ∀tk ∈ T :

(a) Separation constraints
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of this process appears in [12] for a model that involves the
constraints of the problem definition but a different objective.
We present below a synthesis of this work that takes into
account the fuel consumption.

A. A time-discretized model

The simplest time-discretization is done by sampling [0, T ]
according to a constant step h. The model then focuses on a

sequence of K + 1 times, 0 = t0 < t1 < · · · < tK = T .

The linearization then relies on two related techniques that
are most clearly understood via a geometric representation of
the constraints. Separation constraints and bounds on speed
and acceleration share one important characteristic: they can
be seen as quadratic constraints. A convenient way to describe
them involves a circle inside or outside of which the endpoint
of a vector depending on the constraint must lie. Figure 5a
gives a representation of the separation constraints in the
mobile frame attached to one conflicting aircraft, while bounds
on the velocity appear in Figure 5b. These figures also show
how the circles are approximated by a set of tangents or chords
to obtain a set of linear constraints ensuring that the initial
quadratic constraints are satisfied.

Before focusing on the new objective function, we de-
scribe the time-discretized MILP of [12]. For convenience,
we introduce the two sets T = {tk}k=0,...,K and T − =
{tk}k=0,...,K−1, and the value that a function f takes at an
instant tk ∈ T is denoted fk = f(tk). Nv and Ns are respec-
tively the number of linear constraints used to approximate the
velocity and separation constraints, Θv = { 2nπ

Nv
}n=0,...,Nv−1,

Θs = { 2nπ
Ns
}n=0,...,Ns−1, and eθ is the unit vector with

coordinates (cos θ, sin θ).

min
∑

Ai∈A

∑

tk∈T −
h · uki , subject to: (6)

∀Ai ∈ A :

(p0
i ,p

K
i ) = (pBT

i (0),pBT
i (T )) (7)

∀Ai ∈ A, ∀tk ∈ T :

pk+1
i = pki + h× vki +

h2

2
uki , (8)

〈
vki
∣∣ eθ
〉
≤ vki cos

(
π

Nv

)
,∀θ ∈ Θv (9)

〈
vki
∣∣ eθ
〉
≥ vki −Mvε

kθ
i ,∀θ ∈ Θv (10)∑

θ∈Θv

εkθi = Nv − 1, (11)

V min
i ≤ vki ≤ V max

i , V min
i ≤ vki ≤ V max

i , (12)
∀Ai ∈ A, ∀tk ∈ T − :

vk+1
i = vki + h× uki , ∀i ∈ A, (13)
〈
uki
∣∣ eθ
〉
≤ uki cos

(
π

Nu

)
,∀θ ∈ Θu, (14)

vk+1
i − vki ≤ hUmax

i , (15)

vk+1
i − vki ≥ −hUmax

i , (16)

uki ≤ ωmax
i vki , (17)

∀ (Ai, Aj) ∈ C,∀tk ∈ T −,∀θ ∈ Θs :

〈
pkj − pki

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (18)

〈
pk+1
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i

∣∣ eθ
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(
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)
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∑
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(b) Velocity bounds

Figure 5: Geometrical representation of separation and velocity constraints

Before focusing on the new objective function, we describe the time-discretized MILP of [12]. For conve-

nience, we introduce the two sets T = {tk}k=0,...,K and T − = {tk}k=0,...,K−1, and the value that a function f

takes at an instant tk ∈ T is denoted fk = f(tk). Nv and Ns are respectively the number of linear constraints

used to approximate the velocity and separation constraints, Θv = { 2nπ
Nv
}n=0,...,Nv−1, Θs = { 2nπ

Ns
}n=0,...,Ns−1,

and eθ is the unit vector with coordinates (cos θ, sin θ).

min
∑

Ai∈A

∑

tk∈T −
h · uki , subject to: (6)

∀Ai ∈ A :

(p0
i ,p

K
i ) = (pbt

i (0),pbt
i (T )) (7)

∀Ai ∈ A, ∀tk ∈ T :

pk+1
i = pki + h× vki +

h2

2
uki , (8)

〈
vki
∣∣ eθ
〉
≤ vki cos

(
π

Nv

)
,∀θ ∈ Θv (9)
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〈
vki
∣∣ eθ
〉
≥ vki −Mvε

kθ
i ,∀θ ∈ Θv (10)

∑

θ∈Θv

εkθi = Nv − 1, (11)

V min
i ≤ vki ≤ V max

i , V min
i ≤ vki ≤ V max

i , (12)

∀Ai ∈ A, ∀tk ∈ T − :

vk+1
i = vki + h× uki , ∀i ∈ A, (13)

〈
uki
∣∣ eθ
〉
≤ uki cos

(
π

Nu

)
,∀θ ∈ Θu, (14)

vk+1
i − vki ≤ hUmax

i , (15)

vk+1
i − vki ≥ −hUmax

i , (16)

uki ≤ ωmax
i vki , (17)

∀ (Ai, Aj) ∈ C,∀tk ∈ T −,∀θ ∈ Θs :

〈
pkj − pki

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (18)

〈
pk+1
j − pk+1

i

∣∣ eθ
〉
≥ D +

h2

8

(
uki + ukj

)
−Mδkθij , (19)

∑

θ∈Θs

δkθij = Ns − 1, (20)

∀Ai ∈ A, ∀tk ∈ T :

pki ∈ R2,vki ∈ R2, vki ≥ 0, vki ≥ 0,

εkθi ∈ {0, 1},∀θ ∈ Θv

∀Ai ∈ A, ∀tk ∈ T − : uki ∈ R2, 0 ≤ uki ≤ Umax
i

∀ (Ai, Aj) ∈ C,∀tk ∈ T −,∀θ ∈ Θs : δkθij ∈ {0, 1}

Constraints (8) and (13) describe the dynamics of the aircraft assuming that the acceleration vectors are

constant on each subinterval [tk, tk + 1], tk ∈ T −. Constraints (9)–(12) specify the upper bounds on the

velocity, and (10)–(11) represent the lower bounds. The upper bounds on the acceleration and yaw rate are

respectively given by (14)–(16) and (17). Separation is guaranteed by (18)–(20).

Two modeling techniques need to be explained. First, the approximation with tangents is actually a

disjunction since one of the tangent constraints must be satisfied. As in SPACE, this is modeled with a

set of big-M constraints involving as many binary variables as tangents. Constraints (11) and (20) then

guarantee that at least one tangent constraint is satisfied.

Second, the constraints on the velocity and acceleration (9)–(10) and (14) include a set of variables v, v,

and u where one would expect to find the minimum and maximum velocities and the maximum acceleration

V min, V max, and Umax
i . This gives access to lower and upper bounds on the velocity and acceleration, which

may in turn be used to get linear expressions for several constraints and the objective function. For instance,

the natural expression for the maximum acceleration of Ai is nonlinear:
∣∣∥∥vk+1

i

∥∥−
∥∥vki

∥∥∣∣ ≤ Umax
i . Since

(9)–(10) ensure that vki ≤
∥∥vki

∥∥ ≤ vki and vk+1
i ≤

∥∥vk+1
i

∥∥ ≤ vk+1
i , (15)–(16) are valid linear constraints. A

similar reasoning reveals that the minimized criterion is the sum of the norms of the acceleration vectors.

For more details about the quality of the constraints, the computation of efficient M values, and the

addition of valid cuts to speed up the solution, see [9, 12].

4.2 Minimizing a meaningful objective function

The model given in the previous subsection minimizes acceleration and requires a complete recovery of the
BTs. Our intent is to relax the time recovery and minimize a combination of fuel consumption and delay.
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The fuel consumption per time unit is a nonlinear function of velocity. Two approximations lead to a

linear expression. First, the velocity is approximated on each subinterval of time [tk, tk+1] by the average

value 1
2

(∥∥vki
∥∥+

∥∥vk+1
i

∥∥). Second, the fuel consumption is approximated with a stepwise linear function

joining NZ + 1 points of the real curve. This provides a very good estimation of the fuel consumption for as

few as four segments, as illustrated in Figure 6 for an Airbus A320 at 33,000 feet.
6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, XXXXXXXXX 201X

pki ∈ R2,vki ∈ R2, vki ≥ 0, vki ≥ 0,

εkθi ∈ {0, 1},∀θ ∈ Θv

∀Ai ∈ A, ∀tk ∈ T − : uki ∈ R2, 0 ≤ uki ≤ Umax
i

∀ (Ai, Aj) ∈ C,∀tk ∈ T −,∀θ ∈ Θs : δkθij ∈ {0, 1}
Constraints (8) and (13) describe the dynamics of the

aircraft assuming that the acceleration vectors are constant
on each subinterval [tk, tk + 1], tk ∈ T −. Constraints (9)–
(12) specify the upper bounds on the velocity, and (10)–
(11) represent the lower bounds. The upper bounds on the
acceleration and yaw rate are respectively given by (14)–(16)
and (17). Separation is guaranteed by (18)–(20).

Two modeling techniques need to be explained. First, the
approximation with tangents is actually a disjunction since one
of the tangent constraints must be satisfied. As in SPACE, this
is modeled with a set of big-M constraints involving as many
binary variables as tangents. Constraints (11) and (20) then
guarantee that at least one tangent constraint is satisfied.

Second, the constraints on the velocity and acceleration (9)–
(10) and (14) include a set of variables v, v, and u where one
would expect to find the minimum and maximum velocities
and the maximum acceleration V min, V max, and Umax

i . This
gives access to lower and upper bounds on the velocity and
acceleration, which may in turn be used to get linear expres-
sions for several constraints and the objective function. For
instance, the natural expression for the maximum acceleration
of Ai is nonlinear:

∣∣∥∥vk+1
i

∥∥−
∥∥vki

∥∥∣∣ ≤ Umax
i . Since (9)−(10)

ensure that vki ≤
∥∥vki

∥∥ ≤ vki and vk+1
i ≤

∥∥vk+1
i

∥∥ ≤ vk+1
i ,

(15) − (16) are valid linear constraints. A similar reasoning
reveals that the minimized criterion is the sum of the norms
of the acceleration vectors.

For more details about the quality of the constraints, the
computation of efficient M values, and the addition of valid
cuts to speed up the solution, see [9], [12].

B. Minimizing a meaningful objective function

The model given in the previous subsection minimizes
acceleration and requires a complete recovery of the BTs. Our
intent is to relax the time recovery and minimize a combination
of fuel consumption and delay.

The fuel consumption per time unit is a nonlinear function
of velocity. Two approximations lead to a linear expression.
First, the velocity is approximated on each subinterval of time
[tk, tk+1] by the average value 1

2

(∥∥vki
∥∥+

∥∥vk+1
i

∥∥). Second,
the fuel consumption is approximated with a stepwise linear
function joining NZ+1 points of the real curve. This provides
a very good estimation of the fuel consumption for as few as
four segments, as illustrated in Figure 6 for an Airbus A320
at 33,000 feet.

For a particular aircraft Ai ∈ A, let Z = αni V + βni be the
equation of the nth segment, with n ∈ {1, . . . , NZ}. The fuel-
consumption function was found to be convex on the interval
[V min, V max] for all the aircraft types that were tested. Let z̃ki
be the approximate fuel consumption on [tk, tk+1]; then, for
all n ∈ {1, . . . , NZ},

z̃ki ≥ h×
(αn

2

(∥∥vki
∥∥+

∥∥vk+1
i

∥∥)+ βn

)
. (21)
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Fig. 6: Fuel consumption per time unit: original function and
stepwise approximation for an Airbus A320 at 33,000 feet

If the value of z̃ki is minimized subject to the above constraint,
it will exactly follow one of the NZ segments. Now, recall
that vki ≥

∥∥vki
∥∥. As a consequence, instead of (21) we add

the following linear constraints to the model:

z̃ki ≥ h×
(αn

2

(
vki + vk+1

i

)
+ βn

)
, n = 1, . . . , NZ . (22)

Space recovery is then enforced by adding constraint (5),
and the delay is minimized by penalizing the longitudinal
deviations:
∑

Ai∈A

∑

tk∈T −
zki +

(
∆+
‖,i + ∆−‖,i

)
× Cd,i (V nom

i ) + ρ+
i ∆+

‖,i + ρ−i ∆−‖,i.

(23)

The complete model, called TIME, consists in minimizing
(23) subject to (8)–(20), (5), and (22).

V. THE ONE-MANEUVER SIMPLIFICATION

The specificity of this model is that it describes a conflict
resolution involving only one maneuver for each aircraft, all
these maneuvers being executed simultaneously at the initial
time. It is similar to the model of Vela et al. [14] but it makes
several improvements:
• speed changes are not assumed to be instantaneous;
• both the acceleration and yaw rate are constrained;
• the fuel-consumption equations involve continuous vari-

ables instead of the SOS2 variables that lead to a larger
exploration tree;

• the space and time recovery of the BT are explicit.
Moreover, the resulting model is solved multiple times with a
receding horizon to allow for the same number of maneuvers
as in TIME.

A. Description of the simplified model

The maneuvers are assumed to be performed with a constant
acceleration vector during a given time step of length h.
Starting with known position and speed vectors, pini

i and vini
i ,

Figure 6: Fuel consumption per time unit: original function and stepwise approximation for an Airbus A320
at 33,000 feet

For a particular aircraft Ai ∈ A, let Z = αni V + βni be the equation of the nth segment, with n ∈
{1, . . . , NZ}. The fuel-consumption function was found to be convex on the interval [V min, V max] for all

the aircraft types that were tested. Let z̃ki be the approximate fuel consumption on [tk, tk+1]; then, for all

n ∈ {1, . . . , NZ},
z̃ki ≥ h×

(αn
2

(∥∥vki
∥∥+

∥∥vk+1
i

∥∥)+ βn

)
. (21)

If the value of z̃ki is minimized subject to the above constraint, it will exactly follow one of the NZ segments.

Now, recall that vki ≥
∥∥vki

∥∥. As a consequence, instead of (21) we add the following linear constraints to the

model:

z̃ki ≥ h×
(αn

2

(
vki + vk+1

i

)
+ βn

)
, n = 1, . . . , NZ . (22)

Space recovery is then enforced by adding constraint (5), and the delay is minimized by penalizing the

longitudinal deviations: ∑

Ai∈A

∑

tk∈T −
zki +

(
∆+
‖,i + ∆−‖,i

)
× Cd,i (V nom

i ) + ρ+
i ∆+

‖,i + ρ−i ∆−‖,i.

(23)

The complete model, called TIME, consists in minimizing (23) subject to (8)–(20), (5), and (22).

5 The one-maneuver simplification

The specificity of this model is that it describes a conflict resolution involving only one maneuver for each

aircraft, all these maneuvers being executed simultaneously at the initial time. It is similar to the model of

Vela et al. [14] but it makes several improvements:

• speed changes are not assumed to be instantaneous;

• both the acceleration and yaw rate are constrained;
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• the fuel-consumption equations involve continuous variables instead of the SOS2 variables that lead to

a larger exploration tree;

• the space and time recovery of the BT are explicit.

Moreover, the resulting model is solved multiple times with a receding horizon to allow for the same number

of maneuvers as in TIME.

5.1 Description of the simplified model

The maneuvers are assumed to be performed with a constant acceleration vector during a given time step of

length h. Starting with known position and speed vectors, pini
i and vini

i , the movement of an aircraft Ai is

thus entirely described by the target speed vector vi that is reached at time h.

The constraints on velocity are then similar to (9)–(12), except that upper bounds on the acceleration

may be directly included because the initial speed is known. ∀Ai ∈ A,

〈vi| eθ〉 ≤ vi cos

(
π

Nv

)
, ∀θ ∈ Θv (24)

V min
i ≤ vi ≤ min

(
V max
i ,

∥∥vini
i

∥∥+ hUmax
i

)
, (25)

〈vi| eθ〉 ≥ max
(
V min
i ,

∥∥vini
i

∥∥+ hUmax
i

)
−Mvε

θ
i , ∀θ ∈ Θv (26)

∑

θ∈Θv

εθi = Nv − 1 (27)

εθi ∈ {0, 1}, ∀θ ∈ Θv (28)

The upper bound on the yaw rate is also easily expressed with linear constraints involving the upper bound

on the velocity, v: 〈
vi|vini

i

〉
≥ vi

∥∥vini
i

∥∥ cos (hωmax
i ) , ∀Ai ∈ A. (29)

The most significant effect of performing only one maneuver is that the separation constraint becomes a

disjunction between two linear constraints if the speed changes are instantaneous. Figure 7 shows a conflict in

the mobile frame attached to one conflicting aircraft. Geometrically, the conflict is then solved if the relative

speed vector vij is outside the forbidden cone. The remaining issue is that speed changes are assumed to be

done with a constant acceleration vector.J. OMER: COMPARISON OF MILPS FOR FUEL-OPTIMAL AIR CONFLICT RESOLUTION WITH RECOVERY 7

n−
ijAj
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vij

pij
D
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n+
ij

Fig. 7: Conflict solved with only one instantaneous maneuver

the movement of an aircraft Ai is thus entirely described by
the target speed vector vi that is reached at time h.

The constraints on velocity are then similar to (9)–(12),
except that upper bounds on the acceleration may be directly
included because the initial speed is known. ∀Ai ∈ A,

〈vi| eθ〉 ≤ vi cos

(
π

Nv

)
, ∀θ ∈ Θv (24)

V min
i ≤ vi ≤ min

(
V max
i ,

∥∥vini
i

∥∥+ hUmax
i

)
, (25)

〈vi| eθ〉 ≥ max
(
V min
i ,

∥∥vini
i

∥∥+ hUmax
i

)
−Mvε

θ
i , ∀θ ∈ Θv

(26)∑

θ∈Θv

εθi = Nv − 1 (27)

εθi ∈ {0, 1}, ∀θ ∈ Θv (28)

The upper bound on the yaw rate is also easily expressed with
linear constraints involving the upper bound on the velocity,
v:

〈
vi|vini

i

〉
≥ vi

∥∥vini
i

∥∥ cos (hωmax
i ) , ∀Ai ∈ A. (29)

The most significant effect of performing only one maneu-
ver is that the separation constraint becomes a disjunction
between two linear constraints if the speed changes are in-
stantaneous. Figure 7 shows a conflict in the mobile frame
attached to one conflicting aircraft. Geometrically, the conflict
is then solved if the relative speed vector vij is outside the
forbidden cone. The remaining issue is that speed changes are
assumed to be done with a constant acceleration vector.

Proposition 1. Consider p0, v0, u0 ∈ R2 and the functions
p and p̃ defined by

p(t) =

{
p0 + tv0 + t2

2 u0, 0 ≤ t ≤ h
p0 + hv0 + h2

2 u0 + (t− h)(v0 + u0h), h ≤ t

p̃(t) =

{
p0 + tv0, 0 ≤ t ≤ h

2

p0 + h
2v0 + (t− h

2 )(v0 + u0h), h2 ≤ t.
Then, p(t) = p̃(t)∀t ≥ h.

Proposition 1 states that after a speed vector change with
constant acceleration, the position is the same as if the change
had been achieved instantaneously after a delay equal to h/2.
Typically, h is set to less than one minute. Since emergencies
are treated with specific protocols, no loss of separation

is predicted in the time interval [0, h]. As a consequence,
everything behaves as if speed vector changes were instan-
taneous and the initial positions of the aircraft were given by
p̃ini
i = pini

i + h
2v

ini
i . For a given conflict between Ai and

Aj , the tangents defining the forbidden cone in Figure 7 are
computed using p̃ini

i and p̃ini
j as the initial positions of the

two aircraft. The two unit vectors, ñ+
ij and ñ−ij , orthogonal to

these tangents and pointing outside the forbidden cone then
give rise to the separation constraints: ∀(Ai, Aj) ∈ C,

〈
vj − vi| ñ+

i,j

〉
≥ −Mδij (30)

〈
vj − vi| ñ−i,j

〉
≥ −M(1− δij) (31)

δij ∈ {0, 1} (32)

The disjunction is modeled with big-M constraints. The value
of M must be such that, for any valid values of vi and vj ,
(30) and (31) are respectively satisfied if δij = 1 and δij = 0.
If we solve the model with a branch and bound method based
on linear relaxations of the MILP, the best value of M is the
smallest value that satisfies this condition, because it leads to
the tightest linear relaxations. Here, we notice that

〈
vj − vi| ñ+

i,j

〉
≥ −(‖vi‖+ ‖vj‖).

A good value of the constant is thus obtained by M = V max
i +

V max
j . It is also the best value if we do not take maximum

accelerations and yaw rates into account.
The estimation of the fuel consumption and delay rely on

the description of a complete trajectory. It is thus necessary
that the aircraft revert to their BTs. The difficulty is that an
aircraft should not start a recovery maneuver while a loss of
separation is possible.

Proposition 2. Let (Ai, Aj) ∈ C be such that the two aircraft
fly with constant speed vectors vini

i and vini
j . Assume that Ai

and Aj are separated at t = 0 and t = T , and that a loss
of separation occurs in (0, T ). The loss of separation ends at
t = τij with
〈
pij(τij)

∣∣ vini
ij∥∥vini
ij

∥∥

〉
= D ⇔ τij = D −

〈
pij(0)

∣∣ vini
ij∥∥vini
ij

∥∥

〉
.

Proposition 2 provides an estimation of the instant when a
conflict ends if no maneuver is performed. Under the same
condition, an aircraft Ai will not be involved in a loss of
separation after the time τi = max{τij : (Ai, Aj) ∈ C}. A
second virtual maneuver starting at τi is thus added to simulate
the complete trajectory for Ai. Clearly, the estimation of the
end of the conflicts is incorrect if maneuvers are performed,
but it remains valid since this second maneuver is computed to
estimate the fuel and delay costs. Let v′i, Ai ∈ A, be the target
speed vectors of this virtual recovery maneuver. Proposition 1
is applied once again to compute the final position with

pi(T ) = p̃ini
i + τivi + (T − τi −

h

2
)v′i, ∀Ai ∈ A.

As for TIME, the fuel consumption is approximated with a
stepwise linear function, and the final position of each aircraft
Ai is used to compute the longitudinal gaps ∆+

‖,i and ∆−‖,i. The

Figure 7: Conflict solved with only one instantaneous maneuver
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Proposition 1 Consider p0, v0, u0 ∈ R2 and the functions p and p̃ defined by

p(t) =

{
p0 + tv0 + t2

2 u0, 0 ≤ t ≤ h
p0 + hv0 + h2

2 u0 + (t− h)(v0 + u0h), h ≤ t

p̃(t) =

{
p0 + tv0, 0 ≤ t ≤ h

2

p0 + h
2v0 + (t− h

2 )(v0 + u0h), h2 ≤ t.
Then, p(t) = p̃(t)∀t ≥ h.

Proposition 1 states that after a speed vector change with constant acceleration, the position is the same

as if the change had been achieved instantaneously after a delay equal to h/2. Typically, h is set to less than

one minute. Since emergencies are treated with specific protocols, no loss of separation is predicted in the

time interval [0, h]. As a consequence, everything behaves as if speed vector changes were instantaneous and

the initial positions of the aircraft were given by p̃ini
i = pini

i + h
2v

ini
i . For a given conflict between Ai and Aj ,

the tangents defining the forbidden cone in Figure 7 are computed using p̃ini
i and p̃ini

j as the initial positions

of the two aircraft. The two unit vectors, ñ+
ij and ñ−ij , orthogonal to these tangents and pointing outside the

forbidden cone then give rise to the separation constraints: ∀(Ai, Aj) ∈ C,
〈
vj − vi| ñ+

i,j

〉
≥ −Mδij (30)

〈
vj − vi| ñ−i,j

〉
≥ −M(1− δij) (31)

δij ∈ {0, 1} (32)

The disjunction is modeled with big-M constraints. The value of M must be such that, for any valid values

of vi and vj , (30) and (31) are respectively satisfied if δij = 1 and δij = 0. If we solve the model with a

branch and bound method based on linear relaxations of the MILP, the best value of M is the smallest value

that satisfies this condition, because it leads to the tightest linear relaxations. Here, we notice that
〈
vj − vi| ñ+

i,j

〉
≥ −(‖vi‖+ ‖vj‖).

A good value of the constant is thus obtained by M = V max
i + V max

j . It is also the best value if we do not

take maximum accelerations and yaw rates into account.

The estimation of the fuel consumption and delay rely on the description of a complete trajectory. It

is thus necessary that the aircraft revert to their BTs. The difficulty is that an aircraft should not start a

recovery maneuver while a loss of separation is possible.

Proposition 2 Let (Ai, Aj) ∈ C be such that the two aircraft fly with constant speed vectors vini
i and vini

j .

Assume that Ai and Aj are separated at t = 0 and t = T , and that a loss of separation occurs in (0, T ). The

loss of separation ends at t = τij with
〈
pij(τij)

∣∣ vini
ij∥∥vini
ij

∥∥

〉
= D ⇔ τij = D −

〈
pij(0)

∣∣ vini
ij∥∥vini
ij

∥∥

〉
.

Proposition 2 provides an estimation of the instant when a conflict ends if no maneuver is performed. Under

the same condition, an aircraft Ai will not be involved in a loss of separation after the time τi = max{τij :

(Ai, Aj) ∈ C}. A second virtual maneuver starting at τi is thus added to simulate the complete trajectory for

Ai. Clearly, the estimation of the end of the conflicts is incorrect if maneuvers are performed, but it remains

valid since this second maneuver is computed to estimate the fuel and delay costs. Let v′i, Ai ∈ A, be the

target speed vectors of this virtual recovery maneuver. Proposition 1 is applied once again to compute the

final position with

pi(T ) = p̃ini
i + τivi + (T − τi −

h

2
)v′i, ∀Ai ∈ A.

As for TIME, the fuel consumption is approximated with a stepwise linear function, and the final position

of each aircraft Ai is used to compute the longitudinal gaps ∆+
‖,i and ∆−‖,i. The associated constraints and

objective function are then similar to (22) and (23); they are omitted to save space. The resulting MILP

with one maneuver is called ONE.
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5.2 Building a complete trajectory

Solving ONE produces at most one speed change for each aircraft. The second speed change that simulates

the recovery of the BT is included only to estimate the overall cost of a maneuver and is not meant to lead

to an actual control instruction. This recovery instruction should be sent only once all the conflicts are over,

so that no loss of separation may be created by this maneuver.

For a consistent comparison with TIME, ONE is solved at each time step tk ∈ T according to the

receding-horizon procedure summarized in Algorithm 1. The result is a set of complete conflict-free trajecto-

ries reverting to the associated BTs. In Algorithm 1, the conditional loop on lines 4–7 identifies the moment

when the recovery maneuver may be started. If τi ≤ tk, then no maneuver is needed to solve the conflicts

involving Ai, so it may revert to its BT. The recovery maneuver is computed to minimize a combination of

the fuel consumption and the penalties due to the longitudinal deviation, as in (23).

Algorithm 1 Multiple resolution of ONE

Require: initial states
{(

pini
i ,v

ini
i

)}
Ai∈A, final states {pTi }Ai∈A

1: for tk ∈ T − do
2: for Ai ∈ A do
3: Estimate τi
4: if τi ≤ tk then
5: Compute the recovery maneuver of Ai
6: A ← A \Ai
7: end if
8: end for
9: Solve ONE: the solutions are described by {vi}Ai∈A

10: for Ai ∈ A do
11: pini

i ,p
k+1
i ← p̃ini

i + h
2vi

12: vini
i ,v

k+1
i ← vi

13: end for
14: end for

In the remainder of this article, the term ONE will refer to the model described in the previous subsection

or to Algorithm 1, provided the context is unambiguous.

6 Computational experiments

6.1 Generation of a large benchmark of complex problems

The experimental comparison of TIME, ONE, and SPACE is based on the benchmark of [20], slightly

extended to include larger instances. The instances implement the three global schemes depicted in Figure 8.

These patterns represent complex situations in which a large number of losses of separation are predicted to

occur in the next five to ten minutes. As the number of aircraft grows, the corresponding situation becomes

much more complex than the most difficult situations that a controller ever deals with. The purpose of

building this benchmark is thus to test the algorithms with a diverse set of conflicts and to explore their

limits.

For each pattern, five to six scenarios are used to randomly generate 100 instances. The scenarios mostly

differ in the number of aircraft involved. They are thus denoted by the first letter of the corresponding

pattern and the number of aircraft. When we generate the instances randomly, the initial separation between

aircraft flying on the same trail is set to 8 +U([−2.5, 2.5]) NM, where U([a, b]) follows a uniform random law

on the interval [a, b]. The distance between the first aircraft of each trail and the closest conflict point is also

perturbed with a uniform term U([−2.5, 2.5]) NM, and the crossing angle α follows U([π4 ,
3π
4 ]) for the trail

scenarios.
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α = 45 ◦

D = 5 NM

4D waypoint

dmin = 45 NM +
U([−2.5, 2.5]) NM

(a) Roundabout scenario

D = 5 NM 70 NMα

4D waypoints

dmin = 30 NM +
U([−2.5, 2.5]) NM

ds = 8 NM +
U([−2.5, 2.5]) NM

(b) Trail crossing scenario

D = 5 NM

15 NM

α

ds = 8 NM +
U([−2.5, 2.5]) NM

70 NM

dmin = 30 NM +
U([−2.5, 2.5]) NM

4D waypoints

(c) Grid scenario

Fig. 8: Scenarios used to build the benchmark

between the three models:

|S|SPACE ≤ |S|TIME ≤ |S|ONE (33)
ZSPACE ≥ ZTIME ≥ ZONE (34)

cpuTIME ≥ cpuONE ≥ cpuSPACE. (35)

The most surprising consequence of this ordering is that ONE
is better than TIME on all three aspects, although ONE is
presented as a simplification of TIME. The reason for this is
that, although a much stronger initial hypothesis is made to
build ONE, namely the limitation to one maneuver, overall it
makes fewer approximations than TIME makes in the course
of modeling the problem. For instance, no approximation is
needed to model the separation constraints or the upper bounds
on the acceleration and yaw rate. The disadvantage of ONE is
the time decomposition needed to get trajectories with more
than one modification of the speed vector. Since the complete
solution is the aggregation of the solutions obtained at each
time step, there is a necessary loss with regards to optimality.
This is compensated for by the fact that maneuvers have to
be started as soon as conflicts are detected to be efficient.
Consequently, the maneuvers computed at the first time step
need only a few adjustments during the following iterations.
In terms of the computational time, ONE needs to be solved
multiple times, but each call to Gurobi takes a negligible
portion of the runtime needed for TIME.

In the ordering above, the model SPACE is either the worst
or the best on each aspect. On the one hand, the average cost
for SPACE is approximately twice that for ONE, and more
than 35% of the instances of R07 and R08 had no conflict-
free solutions with SPACE, while ONE fails just once. This
mostly results from the need for constant speed vectors around
the conflict points in SPACE; this interval encroaches upon
the space available for the maneuvers. Since the size of the
intervals grows with the complexity of the scenarios, there is
finally insufficient space to avoid every loss of separation in
R07 and R08. To a lesser extent, restricting the maneuvers of
SPACE to two fixed patterns also reduces the space of the
conflict-free solutions. On the other hand, SPACE is solved
in a few seconds whatever the scenario. This alone could lead

to a preference for SPACE over TIME, because ATC has
a strong need for reactivity. ONE appears however to be a
better compromise on the three aspects that we focused on.
Indeed, the only advantage of SPACE is that it is solved
faster than ONE, but the latter model is still solved in a small
computational time. Moreover, if need be, Algorithm1 may be
stopped as soon as it finds a set of speed vectors that allows
us to avoid every loss of separation. In most cases, this is the
first time step.

From a modeling point of view, SPACE involves tedious
mathematical developments and several restrictions on the
maneuvers (see [20]). This could mean that the limits of space
discretization are not far from being reached, and it is hard to
say whether new operational needs could be taken into account
in the model without other costly approximations. In contrast,
ONE is relatively simple and should allow for additional
features such as uncertainties in the speed or prohibited
airspace volumes.

To illustrate the qualitative behavior of the three models,
Figure 10 shows the solutions they find for a roundabout
instance with six aircraft. The green squares and red disks
are respectively the initial and final positions in the BT. The
red circles around the aircraft have a radius of 2.5 NM; they
are drawn to emphasize the complexity of the situation. The
figure first shows that these complex conflicts can be resolved
with relatively small maneuvers giving rise to trajectories with
realistic aspects. Moreover, the six aircraft revert to their BTs
in the three solutions. The most obvious difference between
the solutions is the trapezoidal heading maneuver pattern on
the trajectories found with SPACE. The SPACE solution also
exhibits larger deviations from the BT than do the other two
solutions.

VII. CONCLUSION

This article is motivated by the difficulty of objectively
comparing the models and algorithms developed for the air
conflict resolution problem. We focus on three mixed integer
linear formulations representing the diversity of the state of
the art. They are respectively obtained by focusing on a
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between the three models:

|S|SPACE ≤ |S|TIME ≤ |S|ONE (33)
ZSPACE ≥ ZTIME ≥ ZONE (34)

cpuTIME ≥ cpuONE ≥ cpuSPACE. (35)

The most surprising consequence of this ordering is that ONE
is better than TIME on all three aspects, although ONE is
presented as a simplification of TIME. The reason for this is
that, although a much stronger initial hypothesis is made to
build ONE, namely the limitation to one maneuver, overall it
makes fewer approximations than TIME makes in the course
of modeling the problem. For instance, no approximation is
needed to model the separation constraints or the upper bounds
on the acceleration and yaw rate. The disadvantage of ONE is
the time decomposition needed to get trajectories with more
than one modification of the speed vector. Since the complete
solution is the aggregation of the solutions obtained at each
time step, there is a necessary loss with regards to optimality.
This is compensated for by the fact that maneuvers have to
be started as soon as conflicts are detected to be efficient.
Consequently, the maneuvers computed at the first time step
need only a few adjustments during the following iterations.
In terms of the computational time, ONE needs to be solved
multiple times, but each call to Gurobi takes a negligible
portion of the runtime needed for TIME.

In the ordering above, the model SPACE is either the worst
or the best on each aspect. On the one hand, the average cost
for SPACE is approximately twice that for ONE, and more
than 35% of the instances of R07 and R08 had no conflict-
free solutions with SPACE, while ONE fails just once. This
mostly results from the need for constant speed vectors around
the conflict points in SPACE; this interval encroaches upon
the space available for the maneuvers. Since the size of the
intervals grows with the complexity of the scenarios, there is
finally insufficient space to avoid every loss of separation in
R07 and R08. To a lesser extent, restricting the maneuvers of
SPACE to two fixed patterns also reduces the space of the
conflict-free solutions. On the other hand, SPACE is solved
in a few seconds whatever the scenario. This alone could lead

to a preference for SPACE over TIME, because ATC has
a strong need for reactivity. ONE appears however to be a
better compromise on the three aspects that we focused on.
Indeed, the only advantage of SPACE is that it is solved
faster than ONE, but the latter model is still solved in a small
computational time. Moreover, if need be, Algorithm1 may be
stopped as soon as it finds a set of speed vectors that allows
us to avoid every loss of separation. In most cases, this is the
first time step.

From a modeling point of view, SPACE involves tedious
mathematical developments and several restrictions on the
maneuvers (see [20]). This could mean that the limits of space
discretization are not far from being reached, and it is hard to
say whether new operational needs could be taken into account
in the model without other costly approximations. In contrast,
ONE is relatively simple and should allow for additional
features such as uncertainties in the speed or prohibited
airspace volumes.

To illustrate the qualitative behavior of the three models,
Figure 10 shows the solutions they find for a roundabout
instance with six aircraft. The green squares and red disks
are respectively the initial and final positions in the BT. The
red circles around the aircraft have a radius of 2.5 NM; they
are drawn to emphasize the complexity of the situation. The
figure first shows that these complex conflicts can be resolved
with relatively small maneuvers giving rise to trajectories with
realistic aspects. Moreover, the six aircraft revert to their BTs
in the three solutions. The most obvious difference between
the solutions is the trapezoidal heading maneuver pattern on
the trajectories found with SPACE. The SPACE solution also
exhibits larger deviations from the BT than do the other two
solutions.

VII. CONCLUSION

This article is motivated by the difficulty of objectively
comparing the models and algorithms developed for the air
conflict resolution problem. We focus on three mixed integer
linear formulations representing the diversity of the state of
the art. They are respectively obtained by focusing on a

(c) Grid scenario
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The values of the parameters of the models are listed in Table 1. They reflect the content of BADA [24]

for an Airbus A320 flying at 33,000 feet. They also ensure the comfort of passengers, according to the study

of Paielli [22]. Additionally, the characteristic values of the linear approximations are set to NZ = 4, Ns = 4,

and Nv = 36.

Table 1: Optimization and aircraft-performance parameters

D h V nom V min V max Umax ωmax

5NM 30 s 452 kt 425 kt 479 kt 0.4 kt.s−1 0.88◦.s−1

6.2 Analysis of the results

We solve TIME, ONE, and SPACE on 1600 instances generated randomly according to sixteen scenarios.

Gurobi [10] is used with its default options to solve each MILP on a quad-core 2.5-GHz Intel processor with

4 Go of RAM. The time limit of Gurobi is set to 120 s, and we keep the best available solution when Gurobi

reaches this limit. The simulation results are summarized in Figure 9. For each scenario, Figure 9a gives

the number of instances for which a conflict-free solution is found, and Figures 9b and 9c give the average

costs and the Gurobi runtimes respectively. The average costs are given in kilograms of fuel since the delay

penalties convert the time deviations into fuel consumptions. Moreover, they take into account only the

conflict-free solutions, because the costs of infeasible solutions may be exceptionally high. The scenarios are

ordered on the x-axis according to the growing cost of the solutions of TIME, which is a valid measure of

complexity.

Although significant differences exist between the three models, we draw the attention of the reader to

the overall efficiency of the three algorithms. If we omit G12, R07, and R08, which are included primarily

to test the limits of the models, a conflict-free solution is found for all the instances, and the average cost

of the associated maneuvers does not exceed 10 kg per aircraft. Moreover, the computational time is always

reasonable and is not far from being compatible with an operational implementation.

When we compare the curves, a gross ordering appears, with only minor exceptions if we consider G12,

R07, or R08. Let |S|mod, Zmod, and cpumod be respectively the number of conflict-free solutions, the average

cost, and the average computational time when solving mod. Global relations exist between the three models:

|S|SPACE ≤ |S|TIME ≤ |S|ONE (33)

ZSPACE ≥ ZTIME ≥ ZONE (34)

cpuTIME ≥ cpuONE ≥ cpuSPACE. (35)
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Fig. 9: Comparison of the three mixed integer linear models

small set of points including those where trajectories intersect
(SPACE), by sampling the time horizon (TIME), and by
assuming that each aircraft performs only one maneuver
(ONE). Based on a realistic formulation of the problem, we
describe major revisions of two existing time-discretized and
one-maneuver models. Every model minimizes a combination
of fuel consumption and flight time and avoids losses of sep-
aration through speed and heading maneuvers. Furthermore,
each aircraft respects dynamical constraints on the velocity,
acceleration, and yaw rate, and each reverts to its planned
trajectory after the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances including very complex situations.
The results reveal that every model may be solved to find
conflict-free and economically efficient trajectories in nearly
every situation. The exceptions are scenarios that were inten-
tionally added to test the limits of the models: they could
not be handled by SPACE. Our analysis focuses on the
number of conflict-free solutions, their average costs, and
the computational times. It shows that the apparently simple
model, ONE, represents the best compromise. The model
fails to produce a conflict-free solution on only one of 16000
instances, and the computational time is compatible with an
operational implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. would need to be adapted to comply
with the same problem definition. A more complete com-
parison would also involve an extended benchmark including
instances originating from real traffic data. Finally, since ONE
seems simple enough to be adaptive, it would be interesting
to add features that would be needed in an operational imple-
mentation. These include uncertainties in the speed, forbidden
airspace volumes, conflicts involving aircraft with changing
altitudes, and equity management.
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small set of points including those where trajectories intersect
(SPACE), by sampling the time horizon (TIME), and by
assuming that each aircraft performs only one maneuver
(ONE). Based on a realistic formulation of the problem, we
describe major revisions of two existing time-discretized and
one-maneuver models. Every model minimizes a combination
of fuel consumption and flight time and avoids losses of sep-
aration through speed and heading maneuvers. Furthermore,
each aircraft respects dynamical constraints on the velocity,
acceleration, and yaw rate, and each reverts to its planned
trajectory after the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances including very complex situations.
The results reveal that every model may be solved to find
conflict-free and economically efficient trajectories in nearly
every situation. The exceptions are scenarios that were inten-
tionally added to test the limits of the models: they could
not be handled by SPACE. Our analysis focuses on the
number of conflict-free solutions, their average costs, and
the computational times. It shows that the apparently simple
model, ONE, represents the best compromise. The model
fails to produce a conflict-free solution on only one of 16000
instances, and the computational time is compatible with an
operational implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. would need to be adapted to comply
with the same problem definition. A more complete com-
parison would also involve an extended benchmark including
instances originating from real traffic data. Finally, since ONE
seems simple enough to be adaptive, it would be interesting
to add features that would be needed in an operational imple-
mentation. These include uncertainties in the speed, forbidden
airspace volumes, conflicts involving aircraft with changing
altitudes, and equity management.
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small set of points including those where trajectories intersect
(SPACE), by sampling the time horizon (TIME), and by
assuming that each aircraft performs only one maneuver
(ONE). Based on a realistic formulation of the problem, we
describe major revisions of two existing time-discretized and
one-maneuver models. Every model minimizes a combination
of fuel consumption and flight time and avoids losses of sep-
aration through speed and heading maneuvers. Furthermore,
each aircraft respects dynamical constraints on the velocity,
acceleration, and yaw rate, and each reverts to its planned
trajectory after the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances including very complex situations.
The results reveal that every model may be solved to find
conflict-free and economically efficient trajectories in nearly
every situation. The exceptions are scenarios that were inten-
tionally added to test the limits of the models: they could
not be handled by SPACE. Our analysis focuses on the
number of conflict-free solutions, their average costs, and
the computational times. It shows that the apparently simple
model, ONE, represents the best compromise. The model
fails to produce a conflict-free solution on only one of 16000
instances, and the computational time is compatible with an
operational implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. would need to be adapted to comply
with the same problem definition. A more complete com-
parison would also involve an extended benchmark including
instances originating from real traffic data. Finally, since ONE
seems simple enough to be adaptive, it would be interesting
to add features that would be needed in an operational imple-
mentation. These include uncertainties in the speed, forbidden
airspace volumes, conflicts involving aircraft with changing
altitudes, and equity management.
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The most surprising consequence of this ordering is that ONE is better than TIME on all three aspects,

although ONE is presented as a simplification of TIME. The reason for this is that, although a much stronger

initial hypothesis is made to build ONE, namely the limitation to one maneuver, overall it makes fewer

approximations than TIME makes in the course of modeling the problem. For instance, no approximation

is needed to model the separation constraints or the upper bounds on the acceleration and yaw rate. The

disadvantage of ONE is the time decomposition needed to get trajectories with more than one modification

of the speed vector. Since the complete solution is the aggregation of the solutions obtained at each time

step, there is a necessary loss with regards to optimality. This is compensated for by the fact that maneuvers

have to be started as soon as conflicts are detected to be efficient. Consequently, the maneuvers computed at

the first time step need only a few adjustments during the following iterations. In terms of the computational

time, ONE needs to be solved multiple times, but each call to Gurobi takes a negligible portion of the runtime

needed for TIME.

In the ordering above, the model SPACE is either the worst or the best on each aspect. On the one hand,

the average cost for SPACE is approximately twice that for ONE, and more than 35% of the instances of R07

and R08 had no conflict-free solutions with SPACE, while ONE fails just once. This mostly results from the

need for constant speed vectors around the conflict points in SPACE; this interval encroaches upon the space

available for the maneuvers. Since the size of the intervals grows with the complexity of the scenarios, there

is finally insufficient space to avoid every loss of separation in R07 and R08. To a lesser extent, restricting

the maneuvers of SPACE to two fixed patterns also reduces the space of the conflict-free solutions. On the

other hand, SPACE is solved in a few seconds whatever the scenario. This alone could lead to a preference

for SPACE over TIME, because ATC has a strong need for reactivity. ONE appears however to be a better

compromise on the three aspects that we focused on. Indeed, the only advantage of SPACE is that it is

solved faster than ONE, but the latter model is still solved in a small computational time. Moreover, if need

be, Algorithm1 may be stopped as soon as it finds a set of speed vectors that allows us to avoid every loss of

separation. In most cases, this is the first time step.

From a modeling point of view, SPACE involves tedious mathematical developments and several restric-

tions on the maneuvers (see [20]). This could mean that the limits of space discretization are not far from

being reached, and it is hard to say whether new operational needs could be taken into account in the model

without other costly approximations. In contrast, ONE is relatively simple and should allow for additional

features such as uncertainties in the speed or prohibited airspace volumes.

To illustrate the qualitative behavior of the three models, Figure 10 shows the solutions they find for a

roundabout instance with six aircraft. The green squares and red disks are respectively the initial and final

positions in the BT. The red circles around the aircraft have a radius of 2.5 NM; they are drawn to emphasize

the complexity of the situation. The figure first shows that these complex conflicts can be resolved with

relatively small maneuvers giving rise to trajectories with realistic aspects. Moreover, the six aircraft revert

to their BTs in the three solutions. The most obvious difference between the solutions is the trapezoidal

heading maneuver pattern on the trajectories found with SPACE. The SPACE solution also exhibits larger

deviations from the BT than do the other two solutions.

7 Conclusion

This article is motivated by the difficulty of objectively comparing the models and algorithms developed for

the air conflict resolution problem. We focus on three mixed integer linear formulations representing the

diversity of the state of the art. They are respectively obtained by focusing on a small set of points including

those where trajectories intersect (SPACE), by sampling the time horizon (TIME), and by assuming that

each aircraft performs only one maneuver (ONE). Based on a realistic formulation of the problem, we

describe major revisions of two existing time-discretized and one-maneuver models. Every model minimizes

a combination of fuel consumption and flight time and avoids losses of separation through speed and heading

maneuvers. Furthermore, each aircraft respects dynamical constraints on the velocity, acceleration, and yaw

rate, and each reverts to its planned trajectory after the maneuvers.
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small set of points including those where trajectories intersect
(SPACE), by sampling the time horizon (TIME), and by
assuming that each aircraft performs only one maneuver
(ONE). Based on a realistic formulation of the problem, we
describe major revisions of two existing time-discretized and
one-maneuver models. Every model minimizes a combination
of fuel consumption and flight time and avoids losses of sep-
aration through speed and heading maneuvers. Furthermore,
each aircraft respects dynamical constraints on the velocity,
acceleration, and yaw rate, and each reverts to its planned
trajectory after the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances including very complex situations.
The results reveal that every model may be solved to find
conflict-free and economically efficient trajectories in nearly
every situation. The exceptions are scenarios that were inten-
tionally added to test the limits of the models: they could
not be handled by SPACE. Our analysis focuses on the
number of conflict-free solutions, their average costs, and
the computational times. It shows that the apparently simple
model, ONE, represents the best compromise. The model
fails to produce a conflict-free solution on only one of 16000
instances, and the computational time is compatible with an
operational implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. would need to be adapted to comply
with the same problem definition. A more complete com-
parison would also involve an extended benchmark including
instances originating from real traffic data. Finally, since ONE
seems simple enough to be adaptive, it would be interesting
to add features that would be needed in an operational imple-
mentation. These include uncertainties in the speed, forbidden
airspace volumes, conflicts involving aircraft with changing
altitudes, and equity management.
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small set of points including those where trajectories intersect
(SPACE), by sampling the time horizon (TIME), and by
assuming that each aircraft performs only one maneuver
(ONE). Based on a realistic formulation of the problem, we
describe major revisions of two existing time-discretized and
one-maneuver models. Every model minimizes a combination
of fuel consumption and flight time and avoids losses of sep-
aration through speed and heading maneuvers. Furthermore,
each aircraft respects dynamical constraints on the velocity,
acceleration, and yaw rate, and each reverts to its planned
trajectory after the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances including very complex situations.
The results reveal that every model may be solved to find
conflict-free and economically efficient trajectories in nearly
every situation. The exceptions are scenarios that were inten-
tionally added to test the limits of the models: they could
not be handled by SPACE. Our analysis focuses on the
number of conflict-free solutions, their average costs, and
the computational times. It shows that the apparently simple
model, ONE, represents the best compromise. The model
fails to produce a conflict-free solution on only one of 16000
instances, and the computational time is compatible with an
operational implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. would need to be adapted to comply
with the same problem definition. A more complete com-
parison would also involve an extended benchmark including
instances originating from real traffic data. Finally, since ONE
seems simple enough to be adaptive, it would be interesting
to add features that would be needed in an operational imple-
mentation. These include uncertainties in the speed, forbidden
airspace volumes, conflicts involving aircraft with changing
altitudes, and equity management.
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small set of points including those where trajectories intersect
(SPACE), by sampling the time horizon (TIME), and by
assuming that each aircraft performs only one maneuver
(ONE). Based on a realistic formulation of the problem, we
describe major revisions of two existing time-discretized and
one-maneuver models. Every model minimizes a combination
of fuel consumption and flight time and avoids losses of sep-
aration through speed and heading maneuvers. Furthermore,
each aircraft respects dynamical constraints on the velocity,
acceleration, and yaw rate, and each reverts to its planned
trajectory after the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances including very complex situations.
The results reveal that every model may be solved to find
conflict-free and economically efficient trajectories in nearly
every situation. The exceptions are scenarios that were inten-
tionally added to test the limits of the models: they could
not be handled by SPACE. Our analysis focuses on the
number of conflict-free solutions, their average costs, and
the computational times. It shows that the apparently simple
model, ONE, represents the best compromise. The model
fails to produce a conflict-free solution on only one of 16000
instances, and the computational time is compatible with an
operational implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. would need to be adapted to comply
with the same problem definition. A more complete com-
parison would also involve an extended benchmark including
instances originating from real traffic data. Finally, since ONE
seems simple enough to be adaptive, it would be interesting
to add features that would be needed in an operational imple-
mentation. These include uncertainties in the speed, forbidden
airspace volumes, conflicts involving aircraft with changing
altitudes, and equity management.
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