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Les textes publiés dans la série des rapports de recherche Les

Cahiers du GERAD n’engagent que la responsabilité de leurs
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Abstract: We introduce an efficient approach to evaluate counterparty risk and compute the Credit Value
Adjustement for derivatives having early exercise features. The approach is flexible and can account for Wrong
Way Risk and various models for the underlying asset’s dynamics. Numerical experiments are presented to
illustrate the efficiency of the method.

Résumé: Nous présentons une approche efficace pour l’évaluation du risque de contrepartie et le calcul de
l’ajustement CVA pour le risque de crédit dans le cas de dérivés ayant des possibilités d’exercice anticipé.
Cette approche est flexible et peut s’appliquer à une large gamme de modèles d’évolution des actifs sous-
jacents. Elle est également aisément adaptable pour tenir compte de la corrélation entre cette évolution et
le risque de crédit. Des exemples numériques sont fournis pour illustrer l’efficacité de la méthode.
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1 Introduction

Counterparty risk is defined as the risk faced by an entity entering an Over-the-counter (OTC) contract with
a counterparty having a relevant default probability, so that it might not respect its payment obligations.
Since the global financial crisis of 2008, it has been recognized that credit risk should be taken into account
when evaluating the value of OTC derivatives. The Credit Value Adjustment (CVA) capital charge required
by Basel III incorporates the impact of counterparty risk, as it measures the expected potential loss from
counterparty default. Wrong Way Risk (WWR) is the additional risk faced when the underlying asset and
the default of the counterparty are correlated.

While the computation of CVA is straightforward for European-style derivatives (Klein 1996, Gregory
2010), it is not the case for derivatives with early exercise opportunity because the CVA is then path-
dependent (exposure falls to zero after exercise). In that case, the CVA is presently evaluated using compu-
tationally intensive simulation-based methods.

In this paper, we introduce a new approach to price counterparty risk and compute the CVA for derivatives
having early exercise features. This approach is much more efficient than presently available methods,
providing an accurate evaluation without the need for costly simulation. Moreover, the algorithm provides
more than a point estimate: it yields the value of the vulnerable derivative and the CVA for all possible values
of the underlying asset and time to maturity. The CVA pricing model is implemented using an intensity
model for counterparty default, which can be calibrated to market data.

The paper is organized as follows. In Section 2, we briefly present the counterparty risk pricing frame-
work and review some existing approaches for European options, American options, and WWR. Section 3
presents a general CVA pricing model using a discrete dynamic programming framework in the context of
a Bermudian put option. Section 4 reports on numerical experiments with different market and correlation
models. Section 5 is a conclusion.

2 Counterparty risk pricing

This paper examines counterparty risk from a pricing point of view, that is, how should the price of in-
struments be adjusted to account for possible default of the counterparty. The so-called CVA is defined as
the value of this adjustment, and corresponds to the expected potential loss due to a future default of the
counterparty.

More specifically, consider a defaultable claim maturing at T . Denote by Nt the net cash flows of the
claim between t and T , discounted back at t, from the point of view of the investor facing counterparty risk.
Denote by V D

t the value of this defaultable claim at t, and by Vt the value of an equivalent counterparty-
risk-free claim at t. At valuation time t, provided the counterparty has not defaulted before t, the general
counterparty risk pricing formula is given by

V D
t = Vt − (1−R)Et[1{t<τ≤T}βt (τ) [Nτ ]

+
] (1)

where τ is the default time, βt (τ) is the risk-free discount factor between dates t and τ , and R is the recovery
factor, assumed deterministic. The notation Et [·] represents the expectation, under the risk-neutral measure,
conditional on the information up to t, including default monitoring. The functions 1A and [x]

+
are defined

respectively by

1A =

{

1 if A
0 otherwise

[x]
+

= max {0, x} .

The corrective term in formula (1) is the Credit Value Adjustment at date t:

CV At = (1−R)Et[1{t<τ≤T}βt (τ) [Nτ ]
+] (2)

= Vt − V D
t .
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In the following paragraphs, we briefly describe our model for counterparty default time and present
a simple formula that can be used for European derivatives under the assumption of independent random
events. We then review existing approaches for derivatives with early exercise opportunities and for the case
where the default event is correlated with the underlying portfolio value. For more details about counterparty
risk features, see Brigo (2011) and Gregory (2010).

2.1 Counterparty default model

A number of approaches have been developed to incorporate the impact of credit risk on the value of deriva-
tives. These approaches can be divided into two major categories, according to the way the default event is
modeled, that is, either using structural or intensity models.

In structural models, the event of default of a given firm is related to the evolution of some of its structural
variables. This approach originated with the paper of Merton (1974) where the firm defaults if the value of
its assets is below its outstanding debt at maturity. Several extensions of this model have been developed;
for instance, the Black and Cox (1976) model, in which the firm’s default occurs as soon as the firm’s asset
value drops to a given default threshold. Examples of papers that use structural models to price contingent
claims subject to default risk include Johnson and Stulz (1987) and Klein (1996).

On the other hand, in intensity models, default is treated as an unexpected event whose likelihood is
governed by a default-intensity process. Examples of intensity models include Jarrow and Turnbull (1995),
Duffie and Huang (1996), and Jarrow and Yu (2001).

One fundamental difference between intensity and structural models is that intensity models use only
public (market) information, which is fully observable. As such, the relation between default and the firm
value is not considered explicitly. It is therefore argued that intensity models are more useful for investors
who use them for pricing and hedging, whereas structural models are more appropriate for managers and
regulators. For a more detailed discussion about the two categories of model, see Benito et al. (2005).

In this paper, we use a simple intensity model where default is assumed to obey a homogeneous Poisson
process. The assumptions underlying this model is that the probability of default in a very small time
interval, conditional on no prior default before that time, is constant over time. The constant hazard rate,
denoted λ, is called the intensity of default. The default time τ is the first jump time of this Poisson process.
In such a model, two parameters are sufficient to characterize counterparty risk, namely the recovery factor
R and the intensity of default λ. These parameters can be estimated using market data, for instance ratings
from Credit Rating Agencies and spreads of Credit Default Swaps (CDS). Under the homogeneous Poisson
assumption, it can be shown (see Brigo and Masetti 2005 and Gregory 2010) that

λ (1−R) ≈ κ, (3)

where κ is the (continuous) rate which makes the premium leg of a CDS equivalent to its protection payment,
or loss given default 1 − R. Usually, the parameter R is estimated using historical category data published
by rating agencies; equation (3) can then be used to estimate the parameter λ using CDS spread data.

2.2 A simple formula for European options

In the case of European options, there is a single positive cash flow paid at maturity. If the default time and
the evolution of the underlying asset are independent, it is then easy to show that expression (2) reduces to

CV At = (1−R)VtFt (T )

where Ft (T ) is the probability of default before maturity T , conditional to no prior default before t, and Vt
is the standard risk-neutral price of a European option, offered by a default-free counterparty, with the same
characteristics as the vulnerable one. Assuming a homogeneous Poisson process of intensity λ, for any time
u ≥ t,

Ft (u) = 1− e−λ(u−t)
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so that the CVA and the value of the defaultable option are given respectively by

CV At = (1−R)Vt

(

1− e−λ(T−t)
)

V D
t =

(

R+ (1−R) e−λ(T−t)
)

Vt.

The value of a defaultable security is expressed as a fraction of the default-free value, which depends on the
default parameters λ and R and on the time to maturity. In particular, if R = 0, we get V D

t = e−λ(T−t)Vt
where is apparent that the intensity of default appears as a correction in the discount rate of the final payoff.

2.3 Early exercise opportunities

For derivatives with early exercise opportunities, the approach presented above is no longer applicable,
because the dates of the cash-flows are not known; the exercise date, after which the exposure falls to zero,
depends on the path of the underlying asset and on the exercise strategy. On the other hand, the loss upon
default depends on the expected value of future cash flows. The evaluation of the CVA is presently performed
using simulation approaches involving two random stopping times, that is, the exercise date and the default
date.

Such approaches consist in first evaluating the value function and exercise strategy of the default-free
option using an efficient numerical method (binomial tree, finite differences, Least Square Monte-Carlo, or
dynamic programming), and then jointly simulating default and asset price trajectories to compute the
eventual loss on each simulation path. Losses, corresponding to a deterministic fraction of the option value
upon default if the option has not yet been exercised, are then averaged to obtain the CVA. Simulation
approaches are computationally intensive (see Kan 2010 and Lu & Juan 2011).

2.4 Wrong Way Risk

Wrong Way Risk is the additional risk faced by the investor when the underlying portfolio and the default
of the counterparty are correlated in the worst possible way. For instance, consider a European put option
written on some underlying asset, and suppose that the underlying asset’s value is positively correlated with
the counterparty default time. If the price of the asset goes down dramatically, then both the exposure
(because of the increase in the payoff at maturity) and the probability of default (because of the decrease in
expected default time) increase. Intuitively, the presence of WWR should increase the CVA. The opposite
situation (Right Way Risk) indicates a beneficial relationship between exposure and default probability that
actually reduces counterparty risk. This would be the case for a European call option on the same underlying
asset, which would be in the money when credit quality is higher. Figure 1 below, reproduced from Gregory
(2010), illustrates the impact of correlation between the default time and the level of the underlying asset
price on the value of European puts and calls, where it is apparent that the impact of Right Way Risk is far
less dramatic than that of WWR.

In the literature, there are mainly two approaches to incorporate this correlation into the pricing model.
The first one involves linking the time evolution of the underlying asset with the default time τ . Gregory
(2010) adopts this framework and uses Gaussian copulas to model the correlation between the underlying
asset and the default time. It is then possible to develop analytical expressions for the expected exposure,
the CVA and the value of a European risky option, similarly as in Section 2.2; however, these formulas are
not in closed-form and involve the numerical integration of a complex function.

The second approach involves linking an auxiliary variable, having a consistent relationship with the
derivative portfolio, with the intensity of default, so that the hazard rate becomes stochastic over time. This
type of approach is adopted in Hull & White (2012). The two types of correlation models can be easily
incorporated both in simulation-based approaches and in the approach we propose in this paper.

3 A general CVA pricing model

We now present a general model for the numerical evaluation of counterparty risk, which can be used whenever
closed-form formulas are not available. To simplify the exposition, we first consider the case of a vulnerable
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Figure 1: Value of vulnerable (R = 0 and λ = 0.05) European call and put as a function of correlation. Asset
price is 100, exercise price is 105.1, riskless interest rate is 5% and maturity is 1 year. (Source: Gregory
(2010))

Bermudian put option written on a single asset, where the time to default and the asset price are not
correlated.

3.1 The risk-free case

Consider a Bermudian put option of maturity T written on the underlying asset, not subject to counterparty
risk. This option gives its holder the right to sell the asset for a predetermined strike price K at any date
in a set of M equally spaced exercise dates tm = m∆, m = 1, . . . ,M , where ∆ ≡ T

M
is the elapsed time

between two successive exercise dates, and where t0 = 0 is the inception date of the contract. Notice that the
European option corresponds to M = 1, while the American option corresponds to the limit when M → ∞.
Let the price of the underlying asset be a Markov process {St} that verifies the fundamental no-arbitrage
property, where St ∈ [0,+∞). The value of the option at any date tm, when the price of the underlying asset
Stm = s, is given by:

vm(s) =











hm(s) for m = 0

max
{

[K − s]
+
, hm(s)

}

for m = 1, ldots,M − 1

[K − s]+ for m =M

(4)

where [K − s]+ is the exercise payoff of the option at s and where hm(s) denotes the holding value of the
option at tm and s. Under standard no-arbitrage assumptions, the discounted price of the underlying asset
is a martingale with respect to the risk-neutral measure, and the holding value, representing the expected
value of the future potentialities of the contract, is given by:

hm(s) = βEm,s[vm+1(Stm+1
)] for m = 0, . . . ,M − 1, (5)

where β ≡ e−r∆ is the discount factor between two exercise dates associated with the risk-free rate r,
assumed deterministic and constant, and Em,s[.] denotes the expectation with respect to the risk-neutral
measure, conditional to Stm = s. Equations (4)-(5) characterize the value of the option if it is exercised
optimally: at each exercise date, the option is exercised if the exercise payoff is higher than the value of the
future potentialities of the contract.

Assume that vm+1 is known over [0,+∞), and that the market model specifies the conditional distribution
of Stm+1

|Stm , so that the expectation in (5) can be obtained, either numerically or analytically, for any s.
Consequently, the value of hm(s) and vm(s) can be obtained for any s, and more specifically can be evaluated
on a finite set of grid points. Interpolation techniques can then be used to approximate vm by a continuous
function v̂m, defined over [0,+∞).

The dynamic programming (DP) approach consists in evaluating the value function vm for all m by
backward induction. Thus, assume that, at stage m+1 ≤M , the option value as a function of the underlying
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asset price is described by a function v̂m+1 defined on [0,+∞). At stage m, the approximate DP algorithm
consists in evaluating on a set of p+ 1 grid points ai, i = 0, . . . , p,

h̃m(i) = βEm,ai
[v̂m+1(Stm+1

)] (6)

ṽm(i) =











h̃m(i) for m = 0

max
{

[K − ai]
+
, h̃m(i)

}

for m = 1, . . . ,M − 1

[K − ai]
+

for m =M.

(7)

An interpolation function v̂m coinciding with the values ṽm(i), i = 0, . . . , p and defined on [0,+∞) is then
obtained. Starting from the known function v̂M , the process is repeated until v̂0 is determined.

For many market models, the use of polynomial or piecewise polynomial functions allows for a closed-
form expression of the expectation in (6). In our numerical experiments, we interpolate the integrand in
(6) using Chebyshev polynomials with Gauss-Lobato grid points, which we found to be the most efficient
implementation. With this kind of interpolation, the DP algorithm can be applied with any market model,
provided that the conditional density of St+1|s can be computed efficiently. For more details on the use of
approximate DP and polynomial interpolation for option valuation, see Breton & de Frutos (2012).

We now show how to adapt the DP algorithm to evaluate the CVA of a vulnerable option under two
alternative assumptions about the behavior of the option holder.

3.2 Farsighted option holder

Consider a vulnerable Bermudian option with the same characteristics as the risk-free option described in
Section 3.1. In our first formulation, we assume that the option holder, when comparing the exercise payoff
to the holding value, is aware that he may not recover his claim in the future. For this farsighted investor,
the holding value, representing the future potentialities of the option, is that of a vulnerable option, and is
therefore adjusted for the possibility of default. Denote by vDm(s) the value of this option at tm when the price
of the underlying asset is s. At a given exercise date tm, provided that the counterparty has not defaulted
yet, the option holder can either exercise immediately or hold the option until at least the next exercise date.
The holding value, adjusted for the possibility of default between dates tm and tm+1 is then

hDm(s) = βEm,s[1{τ>tm+1}v
D
m+1

(

Stm+1

)

] + βEm,s[1{tm<τ≤tm+1}Rv
D
m+1

(

Stm+1

)

]

= βEm,s[v
D
m+1

(

Stm+1

)

]−Am(s)

where, as in (2), the adjustment is given by

Am(s) = (1−R)βEm,s[1{tm<τ≤tm+1}v
D
m+1

(

Stm+1

)

].

Under our intensity model, and assuming independence between counterparty default and asset price, we
readily obtain as in Section 2.2:

Am(s) = (1−R)
(

1− e−λ∆
)

βEm,s[v
D
m+1

(

Stm+1

)

]

hDm(s) = β′
Em,s[v

D
m+1

(

Stm+1

)

].

where β′ = β
(

R+ (1−R) e−λ∆
)

. The DP algorithm to compute the value of the vulnerable option is then
given by

vDm(s) =











hDm(s) for m = 0

max
{

[K − s]
+
, hDm(s)

}

for m = 1, . . . ,M − 1

[K − s]
+

for m =M

hDm(s) = β′
Em,s[v

D
m+1(Stm+1

)], for m = 0, . . . ,M − 1 .

The computation of the value of a vulnerable option is done exactly in the same way as in Section 3.1, except
for the adjustment in the discount factor. The CVA can be obtained at any exercise date as a function of
the asset price by computing the difference

CV Am(s) = vm(s)− vDm(s).
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Because the decision to hold or to exercise the option is taken by comparing the exercise payoff to the
vulnerable value vDm, the exercise strategy in this first model is different from the exercise strategy of the
corresponding counterparty-risk-free option.

3.3 Myopic option holder

In existing models for the evaluation of the CVA, it is however usually assumed that the exercise strategy for
a vulnerable option is the same as for the corresponding option without counterparty risk. This is akin to
assuming that the option holder is myopic with respect to the possibility of default. In our second formulation,
we suppose that the exercise strategy is not affected by the possibility of counterparty default. Therefore, we
first compute the exercise barrier of the risk-free option at all exercise dates using the DP algorithm (4)-(5).
The exercise barrier at tm is denoted bm and is obtained by finding the root of the equation

hm(bm) = [K − bm]
+
. (8)

Denote by vCm(s) the value of the vulnerable option at tm when the price of the underlying asset is s under
the myopic investor assumption. The holding value, adjusted for the possibility of default between dates tm
and tm+1 is then

hCm(s) = βEm,s[v
C
m+1

(

Stm+1

)

]− Cm(s)

where the adjustment is given by

Cm(s) = (1−R)βEm,s[1{tm<τ≤tm+1}v
C
m+1

(

Stm+1

)

].

Assuming independence between default and asset price in our intensity model, we obtain similarly as above

Cm(s) = (1−R)
(

1− e−λ∆
)

βEm,s[v
C
m+1

(

Stm+1

)

]

hCm(s) = β′
Em,s[v

C
m+1

(

Stm+1

)

].

The only difference with respect to the previous model appears in the DP algorithm to compute the value of
the vulnerable option, which becomes

vCm(s) =















hCm(s) for m = 0
{

[K − s]
+

if s ≤ bm
hCm(s) if s > bm

for m = 1, . . . ,M − 1

[K − s]+ for m =M

hCm(s) = β′
Em,s[v

C
m+1(Stm+1

)], for m = 0, . . . ,M − 1 .

Again, the CVA at tm and s is given by

CV Am(s) = vm(s)− vCm(s).

The function vCm(s) is discontinuous at bm since hCm (bm) 6= h(bm) = [K − bm]+ so that care should be
taken when interpolating it from discrete values. Notice that the value function equals the exercise payoff
for s ≤ bm. In our implementation, we localize the grid points so that ai ∈ [bm,∞), i = 0, . . . , p at step m,
and the value function vCm is interpolated in the region where it is smooth.

Finally, we want to point out that, while the myopic assumption is used in practice, the fact that the value
function is discontinuous in this second model is a serious flaw, indicating arbitrage opportunities around the
exercise barrier.

4 Numerical experiments

In this section, we report on numerical experiments comparing the precision and computational burden of our
method with those of Monte-Carlo simulation, and illustrating the impact of WWR and of jumps in the asset
price dynamics. All options are Bermudian puts with a maturity of one year and 100 exercise opportunities,
which are good approximations of their American counterparts.
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4.1 Simulation setup

Our simulation setup follows the first approach described in Section 2.3, that is, it assumes that the value
and exercise strategy of the counterparty-risk-free option have already been computed and are available for
all exercise dates as a function of the asset price. In our implementation, we use the function v̂m(s) computed
using the DP algorithm (6)-(7) and the exercise barrier bm satisfying (8). Notice that, for s > bm, v̂m is a
polynomial of degree p, completely characterized by its p+ 1 coefficients, whereas it is equal to the exercise
payoff for s ≤ bm.

We then simulate the default time τ and the underlying asset price trajectory {Stm}, m = 1, . . . ,M
under their physical probability distributions, using antithetic variates to reduce simulation variance. For
each sample path, we record the default time τ , the corresponding time index j =

⌈

τ
∆

⌉

such that τ ∈ (tj−1, tj],
and the first date tk at which the price of the underlying asset is below the exercise barrier bk.

On a given sample path, if j > k, default occurs after the exercise of the option and the exposure is 0.
If however j ≤ k, default occurs during the time interval (tj−1, tj ] while the option is still alive, and the
exposure is (1−R)βj v̂j(Stj ). The CVA of the vulnerable option is obtained by averaging the exposures on
all sample paths.

4.2 Lognormal model without WWR

Our first set of results reports on the computation of the CVA assuming a geometric Brownian motion model
for the asset price dynamics, and assuming independence of default and market factors. The lognormal
model and its parameters are recalled in Appendix 6.1. Tables 1 to 3 present results obtained assuming the
option holder is myopic in his determination of the exercise barrier, as described in Section 3.3. Results
under the farsightedness assumption are qualitatively similar, but are obtained in half of the computation
time. Simulation is performed using a sample of 1 000 000 scenarios, requiring around 600 CPU1 seconds.
We ran the DP algorithm with p = 50, 100 and 150 grid points and report on the corresponding CPU times
in Table 1. All experiments were made using an Intel Core 2 Duo T6400 processor with 2 Ghz and 3 Go of
RAM.

Table 1: CPU time according to the grid size, log-normal model without WWR.

p 50 100 150

CPU time 0.468 1.154 2.075

Tables 2 and 3 compare adjusted prices obtained using DP (prices for all grid sizes agreed up to the fifth
decimal) to the 95% confidence intervals obtained by simulation for various option parameters and default
intensity. The length of these confidence intervals is of the order of 10−3; all DP prices are inside the intervals.
One can observe the efficiency of our proposed approach in precision, computation time and memory: while
600 seconds are required to reach a precision of 10−3 by simulation using 106 samples, the DP approach
reaches a precision of 10−5 in less than 0.5 seconds using 50 grid points.

Figure 2 compares the default-free and the adjusted value functions at inception. The difference between
the two functions is the CVA, and is plotted in Figures 3 and 4 under both the farsighted and the myopic
assumptions. One can observe that the CVA is important when the asset price is near the strike K. In
fact, when the option in the money, counterparty risk is not very significant since the investor will generally
exercise early, and it increases almost linearly with exposure. On the other hand, when the option is deep
out of the money, the option value becomes so small that the adjustment eventually vanishes. Figure 4 shows
the value of the CVA as a percentage of the value of the option. It is always the case that the CVA is slightly
higher when the option holder is myopic than when he is farsighted.

Figure 5 compares the CVA of an at-the-money American put option to that of its European counterpart,
as a function of the default intensity λ in the myopic case. As expected, the CVA of an option is smaller
with early exercise opportunities, because these reduce the exposure.

1Central Processing Unit (CPU) time is the amount of time used to process the instructions of the computer program.
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Table 2: Adjusted price of a Bermudian put option in the lognormal model without correlation. Parameters
are K = 50, r = 0.05, s = 0.2, T = 1, M = 100.

DP Simulation

λ = 0.05 4.4001 [4.3991, 4.4016]
S0 = 47 λ = 0.10 4.3060 [4.3043, 4.3077]

λ = 0.15 4.2146 [4.2129, 4.2171]

λ = 0.05 2.9594 [2.9582, 2.9602]
S0 = 50 λ = 0.10 2.8792 [2.8782, 2.8811]

λ = 0.15 2.8017 [2.8002, 2.8036]

λ = 0.05 1.9383 [1.9377, 1.9393]
S0 = 53 λ = 0.10 1.8777 [1.8765, 1.8788]

λ = 0.15 1.8191 [1.8178, 1.8205]

Table 3: Adjusted price of a Bermudian put option in the lognormal model without correlation. Parameters
are K = 60, r = 0.06, s = 0.25, T = 1, M = 100.

DP Simulation

midrule λ = 0.1 6.1803 [6.1782, 6.1833]
S0 = 56 λ = 0.3 5.6576 [5.6521, 5.6603]

λ = 0.5 5.1918 [5.1856, 5.1955]

λ = 0.1 4.3424 [4.3412, 4.3455]
S0 = 60 λ = 0.3 3.8942 [3.8929, 3.8998]

λ = 0.5 3.5002 [3.4976, 3.5059]

λ = 0.1 3.0049 [3.0034, 3.0069]
S0 = 64 λ = 0.3 2.6528 [2.6488, 2.6545]

λ = 0.5 2.3467 [2.3426, 2.3494]
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Figure 2: Comparison of the standard (default-free) and adjusted value of a Bermudian option in the lognormal
model without correlation. Parameters are K = 50, r = 0.05, σ = 0.2, T = 1, M = 100, λ = 0.25.
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Figure 3: CVA of a Bermudian option in the lognormal model without correlation. Comparison between
farsighted and myopic assumptions. Parameters are K = 50, r = 0.05, σ = 0.2, T = 1, M = 100, λ = 0.25.
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Figure 4: CVA as a proportion of the default-free value. Comparison between farsighted and myopic assump-
tions. Parameters are K = 50, r = 0.05, σ = 0.2, T = 1, M = 100, λ = 0.25.

4.3 Lognormal model with WWR

Our second set of results reports on the impact of WWR on the CVA of a put option. We again assume
that the asset price dynamics is described by a geometric Brownian motion. We experiment with two models
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Figure 5: Comparison of the CVA of a European and a Bermudian option in the lognormal model without
correlation. Parameters are S0 = 50, K = 50, r = 0.05, σ = 0.2, T = 1, M = 100.

proposed in the literature for the correlation between the default time and the asset price; the first model
is based on a Gaussian copula as in Gregory (2010), and the second model uses a stochastic hazard rate
related to the asset price, as in Hull & White (2012). Clearly, the introduction of WWR does not modify
significantly the performance of the simulation approach: it suffices to account for the correlation model
when generating the default time and asset price sample paths. This is also the case for DP: the inclusion of
WWR modifies the conditional density functions of asset prices (in the first model) or the periodic discount
rate (in the second model), which does not change the algorithm’s complexity. Therefore, we present here
qualitative results pertaining to the impact of WWR according to the two correlation models.

In the first model, correlation is measured by the parameter ρ representing the correlation between the
Brownian component of the price and a transformation of the default time. Figure 6 compares the CVA
at inception (under the myopic assumption) of a Bermudian put option with a large number of exercise
possibilities to that of its corresponding European counterpart, as a function of the correlation coefficient
in this model. One can observe that, with respect to European options, the impact of WWR when the
option holder has early exercise rights is very small: the increase in the CVA when correlation increases is
barely observable in the Bermudian case. This agrees with what is observed in the literature: under WWR,
counterparty risk does not reduce much the value of American-style instruments because of the possibility of
exiting the contract given to the option holder. Figure 7 plots the part of the CVA that is due to WWR for
a correlation of 0.75 in the Gregory (2010) model, as a function of the asset price .

In the second model, the dependence between the intensity of default and the asset value is described by
two parameters denoted by c and d, where d measures the amount of Right Way or Wrong Way risk (d > 0
indicates WWR). Accordingly, the default intensity is assumed to be λts = exp(c+ dvm(s)) during the time
interval [tm, tm+1] when Stm = s. Figure 8 illustrates the difference in the CVA of a vulnerable Bermudian
option with or without WWR, where parameters c and d are set so that λts ∈ [0.25, 1], and where the CVA
without WWR is computed with λ = 0.25.

The two models seem to behave similarly, except for deep in the money options, which most probably
would not be available at inception. Figures 9 and 10 compare the additional CVA of the two models (in
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Figure 6: CVA of Bermudian and European options as a function of the correlation ρ in the Gregory (2010)
model. Parameters are S0 = 50, K = 50, r = 0.05, σ = 0.2, T = 1, M = 100, λ = 0.25.
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Figure 7: Additional CVA due to WWR in the Gregory (2010) model. Parameters are K = 50, r = 0.05,
T = 1, M = 100, σ = 0.2, λ = 0.25, ρ = 0.75.

the myopic framework) at the first exercise date. When the option holder can exercise his option, the two
models behave in a similar way; in both cases, WWR is highest around the exercise barrier.
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Figure 8: Additional CVA due to WWR in the Hull & White (2012) model. Parameters are K = 50, r = 0.05,
T = 1, M = 100, σ = 0.2, λ = 0.25, c = −1.3863, d = 0.0277.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Asset price

C
V

A
 d

iff
er

en
ce

 

 
Intensity approach
Copula approach
Exercise barrier

Figure 9: Additional CVA due to WWR (myopic assumption) at the first exercise date. K = 50, r = 0.05,
T = 1, M = 100, σ = 0.2, λ = 0.25, ρ = 0.75 (for the copula approach), c = −1.3863, d = 0.0277 (for the
intensity approach).
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Figure 10: Additional CVA due to WWR (myopic assumption) at the first exercise date. K = 50, r = 0.05,
T = 1, M = 100, σ = 0.2, λ = 0.25, ρ = 0.9 (for the copula approach), c = −1.3863, d = 0.1 (for the intensity
approach).

4.4 Jump-diffusion model

Our third set of results is obtained by specifying a different market model, namely the Jump-diffusion model
of Merton (1976). In turbulent times when counterparty risk is present, jumps in the asset prices may well
be a better assumption than the constant volatility of the lognormal model. We investigate in this section
to what extent the introduction of the possibility of jumps in the asset price’s dynamics is significant when
dealing with counterparty risk. Our results are obtained under the assumptions that asset prices and default
time are independent and that the exercise strategy is myopic.

The jump-diffusion model and parameters are recalled in Appendix 6.2. As pointed out in Section 3.1, the
DP algorithm can accommodate any market model. However, a more complex model and added volatility
may require additional processing time and number of grid points to attain a given precision. For a risk-free
option, we reach an accuracy of 10−4 with respect to the analytical solution of Merton (European option)
and the compound option approach of Gukhal (2004) (two exercise possibilities) with 10 grid points in 0.03
seconds. With 50 exercise possibilities, convergence to four digit precision is attained in 4 seconds with 80
grid points.

Table 4 presents the prices of vulnerable Bermudian options obtained by our DP approach for various
grid sizes, as a function of the default intensity. It shows that a precision of 10−3 is attained with 80 grid
points in around 8 seconds.

Figure 11 presents the impact of the presence of jumps on counterparty risk for a Bermudian put option.
It compares the CVA in the jump-diffusion framework to the CVA in the pure diffusion model, as a function
of the default intensity. One observes that the introduction of jump risk in the model has a significant impact
on the CVA, which is increasing with the default intensity.
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Table 4: Price of vulnerable Bermudian puts. Parameters are S0 = 50, K = 50, r = 0.05, σ = 0.2, α = 5,
γ = 0, ψ = 0.2, T = 1, M = 50.

p 60 80 100 120

λ =0 8.369 8.346 8.346 8.346
λ =0.25 7.077 7.058 7.058 7.058
λ =0.50 6.008 5.993 5.993 5.993
λ =1 4.383 4.373 4.373 4.373
λ =2 2.453 2.448 2.448 2.448

CPU time 5.59 7.74 10.12 12.68
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Figure 11: CVA with jumps (α = 5) and without jumps (α = 0) as a function of λ. Parameters are S0 = 50,
K = 50, r = 0.05, σ = 0.2, γ = 0, ψ = 0.2, T = 1, M = 100.

5 Conclusion

We propose a new efficient DP approach to price options with early exercise opportunities subject to coun-
terparty risk. Computation of the CVA then reduces to the computation of the difference between the value
of default-free and vulnerable options with the same characteristics. The method is very general and highly
flexible. With respect to simulation-based methods, our approach yields the CVA with better precision, using
much less computation time and memory. Moreover, unlike simulation, it provides the CVA for all possible
values for the underlying asset’s price and time to maturity.

We provide numerical illustrations for the classic lognormal and jump-diffusion models, and for two models
for WWR, using Bermudian put options with a large number of exercise opportunities. The DP method can
accommodate any market model, provided density functions can be evaluated efficiently, many counterparty
risk features, such as WWR and the presence of collateral, and most derivative contracts, including exotic
and path dependent options. However, like all DP approaches, since the value function is evaluated for all
possible states of the world, our method is best suited for market models and contracts with low-dimensional
factors.
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6 Appendix

6.1 Lognormal model

In the lognormal model, the price process St is described by:

dSt = σStdWt + µStdt,

where:

- Wt is a Brownian motion

- σ is the volatility

- µ is the drift.

Under the risk-neutral measure, the price dynamics is then described by:

St = S0 exp

((

r − σ2

2

)

T + σ
√
tX

)

,

where:

- X is a standard Gaussian random variable

- r is the risk-free rate.

6.2 Merton jump-diffusion model

In the jump-diffusion model, the price process is described by

dSt = (µ− yα)St dt+ σSt dWt + S dQt , (9)

where

- µ is the drift

- α is the intensity of the process Qt

- y is the expected jump size

- σ is the volatility

- Wt is a Brownian motion

- Qt is a compound Poisson process.

Under the risk-neutral measure, the price dynamics is then described by:

St = S0 exp

(

σX + (r − yα− 1

2
σ2)t

) Nt
∏

i=1

(Yi + 1).

where:

- X is a standard Gaussian random variable

- Y is a random variable

- r is the risk-free rate.

In the Merton model, the distribution of the jump size Y is log-normal:

log(Y + 1) ∼ N (γ, ψ2).

where γ and ψ are respectively the mean and the standard deviation of the log jump sizes.
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