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Abstract: We show here that every m-dimensional semiring module M over an idempotent semiring S with
strongly independent basis can be embedded into Sm, and provide an algebraic invariant – the Λ-matrix –
which characterises the isomorphy class of M . The strong independence condition also yields a significant
improvement to the Whitney embedding for tropical torsion modules published earlier [28]. We also show
that the strong independence of the basis of M is equivalent to the unique representation of elements of M .
Numerous examples illustrate our results, and a fast test for strong independence of the columns of a matrix
is provided.

Résumé : On montre ici que tout semimodule M de dimension m sur un anneau idempotent S ayant
une base fortement indépendante peut être plongé dans Sm et nous proposons un invariant algébrique – la
matrice Λ – qui caractérise la classe d’isomorphie de M . La condition d’indépendance au sens fort fournit
aussi une amélioration importante du Théorème de Whitney pour les modules tropicaux publiée dans [28].
On montre également que notre condition d’indépendance au sens fort est équivalente à la condition de
représentation unique des éléments de M . De nombreux exemples illustrent nos résultats et nous proposons
un test simple et rapide pour l’indépendance forte des colonnes d’une matrice.
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1 Introduction

Idempotent mathematics arose from applications. Basically, we could say from the modelling and analysis of

man-made systems – which include in particular computers, and production systems – and from mathematical

physics. After the cerebrated paper by Kleene [14], many authors used idempotent mathematics: semigroups

in language theory [21], semirings in network routing problems [8]. From the mathematical point of view,

these idempotent structures have been widely investigated by Cuninghame-Green [10], and applications to

control and optimization of production systems have been developed [1, 9], to mention only a few.

In mathematical physics, the dequantization point of view on idempotent mathematics was founded in

the 1980’s by V.P. Maslov and his school. This approach consists in an asymptotic view of traditional

mathematics over the numerical fields making the Planck constant ~ tend to zero, taking imaginary values

(cf [16]).

Once introduced, the topic has been found intrinsically interesting and arouse the interest of a large

number of scientists (again without any pretention to completeness) in the automatic control [2, 3, 13] and

mathematical communities [4, 5, 6, 7, 12].

As a result of the Maslov dequantization of real algebraic geometry, O. Viro [23] constructed a piecewise

linear geometry of a special kind of polyhedra in finite dimensional Euclidean space. Subsequently, the

tropical approach arouse an increased interest in the algebraic geometry community [11, 17, 20, 22]. A more

complete list of references can be found in [15] and [16].

The classification of modules over a principal ideal domain is given by their decomposition into a direct

sum of free and torsion modules. No such result exists for tropical modules. This is essentially due to the fact

that he direct sum decomposition of tropical modules is trivial, on the one hand, and that this classification

problem received scant attention in the other. In a previous approach, we shoved that although the direct

sum decomposition misses the target, we can introduce the weaker concept of semi-direct sum [27] which is

more closely related to the algebraic structure of tropical modules, which are to idempotent abelian monöıds

(i.e. semilattices) what modules are to abelian groups. Also in [27], we show that every general tropical

module may be decomposed into a semi-direct sum of four sub-semimodules: a free, Boolean, semi-Boolean,

and torsion tropical module, respectively.

The aim of this paper is to prove a classification result for idempotent semiring modules. Our main result

(Theorem 1) shows that this problem can be completely solved for such modules whose basis satisfy a strong

independence condition. To make it short, the aim of the paper is to fill the gap in the table below.

algebraic invariants

category specify char.

vector space field F, n Fn

module PID free ⊕ torsion.

idempotent semimodule ? ?

The paper is organised as follows. In Section 2 below, we recall the basic properties of tropical modules,

and torsion. In Section 3, we state and prove the classification theorem for idempotent semiring modules.

Section 4, is dedicated to the analysis of some examples. The completed table of algebraic invariants then

concludes the paper.

2 Iidempotent semiring and semiring modules

For any set S, (S,∨, ·,0,1l) is a semiring if (S,∨,0) is a commutative monoid. Also, · distributes over ∨,

and 0 is the neutral element for ∨, which is also absorbing for ·, i.e. ∀σ ∈ S, 0 · σ = σ · 0 = 0, and

1l is the neutral element for ·. (S,∨, ·,0,1l) is an idempotent semiring or a diöıd if ∨ is idempotent, i.e.

∀σ ∈ S, σ ∨ σ = σ. (S,∨, ·,0,1l) is a semifield (resp. idempotent semifield) iff it is a semiring (resp.
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idempotent semiring) s.t. (S \ {0}, ·,1l) is a group, i.e. (S \ {0}, ·,1l) is a monoid such that every element is

invertible (∀σ ∈ S, ∃σ−1 : ;σ · σ−1 = σ−1 · σ = 1l).

(S,∨, ·,0,1l) is said to be an abelian (idempotent) semiring or semifield if (S,∨, ·,0,1l) is a (idempotent)

semiring or semifield such that · is commutative.

Note that S is endowed with an order relation defined by σ ≤ µ ⇐⇒ σ ∨ µ = µ. Since 0 is the neutral

element of ∨, it follows that 0 is the bottom element of S, i.e ∀σ ∈ S,0 ≤ σ.

Dually, we define the semiring (S,∧, ·,0,1l), with top element 0 as neutral for ∧. We will also consider

the extended (idempotent) semiring with bottom 0 (0 ≤ σ), and top 0 (σ ≤ 0) for all σ ∈ S).

By abuse of language, the structure (S,∨,∧,0 , 0 , ·.1l) will also be called a semiring (or semifield, or

diöıd).

In the sequel we will assume that both ∨ and ∧ are idempotent.

Also, the following convention will be used:

C1: 0 · 0 = 0,

C2: 0 · 0 = 0.

C3: (0)− = 0, and (0)− = 0.

2.1 Notation

In the literature on semirings and semiring modules, the notation + or ⊕ is often used for either max or

min composition laws. As we claim that idempotent semirings are at the intersection of linear algebra and

ordered structures, there is as much justification for the use of the lattice and ordered structures notation

(i.e. ∨ for max and ∧ forr min) as for the use of the linear algebra notation (either + or ⊕). Moreover, as

we will see in the sequel, we will often need the use of both ∨ and ∧, and to keep the + or ⊕ notation would

soon become a bit awkward.

Note also that, unless necessary, the notation · will usually be omitted.

Matrix multiplication: Let A,B be two matrices of appropriate sizes with entries (A)ik – written aik –

(resp (B)kj –written bkj–) in S.

Define (A ·B)ij =
∨
k

aikbkj , and (A ? B)ij =
∧
k

aikbkj .

Also, we write At for the transpose of A , A− for the matrix with entries a−1
ij , and A−t for (At)− = (A−)t,

where a−1 is the multiplicative inverse of a ∈ S \ {0,0}, with the convention C3.

2.2 Semimodules over an idempotent semiring

Left (right) ∨-semimodule over a semiring is defined similarly as module over a ring:

1. (M,∨) is a monoid with neutral 0

2. There is a map S ×M →M called exterior multiplication, satisfying: (σ , x) 7→ σx.

i) (σ ∨ µ, x) = (σ x ∨ µx),

ii) (σ , x ∨ y) = (σ x ∨ σ y)

iii) (0, x) = (σ , 0) = 0.

If the semiring (semifield) is idempotent, then so is the semimodule, since x∨ x = 1lx∨ 1lx = (1l∨ 1l) x =

1l x = x (and similarly for ∧).

The first composition laws ∨ and ∧ in S extend to vector and matrices in a natural way. Also exterior

multiplication by a scalar λ ∈ S is defined componentwise (resp. entrywise) for vectors (matrices). This

makes Sn and the set of matrices with entries in S, left (or right) ∨-semimodules over S.
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Notwithstanding the fact that we consider here ∨-semimodules, (∧-semimodules can be defined similarly),

we will however use the ∧ composition whenever required by the developments of the theory.

We will further assume that S is a totally ordered, and conditionally complete semifield.

2.3 Independence

Let M be a S semimodule, and X = (xi)i∈I ⊂ M . We say that MX = {
∨
i∈I

λixi|xi ∈ X , λi ∈ S , λi =

0 except for a finite number of them} is the semimodule generated by X, and that X is the set of generators

of M .

In [24], we considered the following concepts of independence for X ⊂ Sn.

1. ∀Y, Z ⊂ X MX

⋂
MY = MX∩Y

2. ∀Y,Z ⊂ X , Y
⋂
Z = Ø⇒MY

⋂
MZ = {0}

3. ∀x ∈ X , x /∈MX\{x}.

Note that 1⇒ 2⇒ 3, while the converse does not hold, although they are equivalent in vector spaces.

In [24] (see also [18]), the proof that every finitely generated semimodule has generating set satisfying 3,

and that this set is unique up to a homothetic transformation xi 7→ λixi , xi ∈ X , λi ∈ S is given.

Let A ∈ Hom(Sm,Sn), i.e. A is a rectangular matrix of size n×m with entries in S. Clearly, the columns

of A generate a finite dimensional semimodule over S. We write MA for this subsemimodule of Sn. Also,

if the columns of A are independent in the sense of 3 above, then dimMA = m. From the existence and

uniqueness theorem mentioned above, follows that for any diagonal and permutation matrices of appropriate

sizes D1, D2, P1, P2 , A and B = D1P1AP2D2 generate isomorphic semimodules. We write in this case A ∼ B.

The problem we address in this paper is twofold. First, is there an algebraic invariant which characterises

the isomorphy class of MA? Second, what is the minimal p such that MA is isomorphic to a subsemimodukle

of Sp? In [28], we addressed this problem for semimodules over S = IRmax with finite entries (i.e. 6= 0),

where IRmax is the tropical semifield of reals endowed with “ ∨′′ (= max) and “ ·′′ (= +) operations [29].

2.4 The standard/canonical Λ-matrix of a semimodule

Inspired by the torsion in modules (or abelian groups), in [25], we defined the (slightly different) concept of
torsion in semiring modules as follows.

Consider the congruence relation in M defined by x ∼ y iff x ≺ y and y ≺ x where x ≺ y iff ∃ ξ ∈ S s.t.

x ≤ ξy. For any basis X, we consider the semilattice generated by X : X∗ = {
∨
i∈I

ξixi|xi ∈ X ξi ∈ {0 1l},

ξi = 0 except for a finite number of them. Since X+ ⊂M , the congruence ∼ is well-defined on X+, and the

map π : X+ → X+|∼ is an epimorphism of semilattices (Lemma 4.1 of [25]).

Semi-Boolean semimodules have been defined in [27] by the condition that π : X+ → X+|∼ is an isomor-

phism. We may say that the generators of a semi-Boolean semimodule have at least one entry 0, as opposed

to a pure torsion semimodule whose generators have no 0 entry. A general semimodule is semi-direct sum

of Semi-Boolean and torsion semimodules. Roughly speaking, the distinction between direct and semi-direct

sum of (say two) components is that in the latter we will have some order relation between the element of the

first and the second components. It is beyond the scope of this paper to recall how we can further distinguish

the free and Boolean parts of an idempotent semi-Boolean semimodule. The interested reader may find such

details in [27].

Let X be the basis of M , given by the (independent) columns of a matrix A of size n ×m. In [28] we

showed how to construct the Λ matrix of a torsion matrix written in canonical form. This “canonical” form

has been later (cf [29]) renamed “standard”. One significant outcome of our classification theorem below is

to bring some clarification in this terminology (cf 3.1).
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The method used in [28] to define the canonical/standard form of a tropical matrix A can be generalised

to the case considered in this paper, provided we specify that the generators of the semi-Boolean part of M ,

stand first, followed by the generators of the torsion part. For the generators of the semi-Boolean part, we

first write the aij 6= 0 on the first rows. Then, by left and right multiplication of A by appropriate diagonal

and permutation matrices, we get a standard matrix B ∼ A such that ΛB = Bt ·B−, with the condition that

λi,i+1 =

{
1l , ∃ ξ s.t. b·,i ≤ ξb·,i+1

0 , otherwise.

3 The classification theorem

In this section, we prove and state the main result of this paper. Let A ∈ Hom(Sm,Sn), and MA the

S-semimodule generated by the columns of A. It is well-known in residuation theory, that the inequation

A ·X ≤ B has a maximal solution A\B, called the right residuate of A by B, and we have A\B = A−t ?B (cf

[3], eq 4.82, [19], or [30]). In particular, for B = A, the matrix A\A has been defined in [29] as the Γ-matrix

of A, written ΓA.

It is not difficult to see that, although in [3] the entries in A lie in the semifield IRmax, the statement still

holds for more general idempotent semimodules considered in this paper, and with the conventions C1, C2,

C3 above.

For any matrix A ∈ Hom(Sm, Sn), we write x
A∼ y ⇐⇒ Ax = Ay, and, for every x ∈ Sm : x =∨

{y ∈ Sm| y A∼ x}. In [29], we defined DOMINJA = {x|x ∈ Sm}. Since
A∼ is a congruence, DOMINJA is a

semimodule, which is isomorphic to Sm|∼, thus, DOMINJA 'MA.

In [28], we defined, for a square tropical torsion matrix A of size n : INJA = {ξ ∈ IRn|∃σ ∈ Sn such that

∀ k ,
n∨

j=1,j 6=k
aσ(k)jξj ≤ aσ(k)kξk}. We proved that, when such a permutation exists, then it is unique, A is

injective on INJA, and the columns of Ã∗ generate INJA, where Ã ∼ A is such that the permutation in INJÃ
is the identity permutation, and A∗ = I ∨A ∨A2 ∨ . . . is the Kleene star of A (cf [14]). Hence Ãx = x. It is

well-known in this case that the columns of Ã∗ generate INJÃ.

In order to see that INJA = INJÃ, note that Ã = DPA for some diagonal and permutation matrices D

and P . Hence Ax = Ay ⇔ DPAx = DPAy ⇔ Ãx = Ãy. It is not difficult to see that these results also

hold if IR is replaced by S.

ERRATUM (cf [28])

In Corollary to Theorem 1 of [28], we stated that INJA ' MA, which fails to be true. In the following

counterexample, we show that the torsion coefficients of A and INJA are not equal, which is an obstruction to

the existence of an isomorphism INJA 'MA. This raises the question of the conditions for the isomorphism

INJA ' DOMINJA.

Example 3.1 A =

[
1l 1l 12
1l 4 4
1l 6 11

]
Writing cj for column j of A, we have 12c1 ∨ 9c2 = (12 13 15)t = 9c2 ∨ c3 ∈ Mc1,c2

⋂
Mc2,c3 . But

(12 13 15)t /∈Mc2 . Hence Mc1,c2

⋂
Mc2,c3 6= Mc2 , and {c1, c2, c3} is not strongly independent.

The torsion coefficients of A : τ12, τ13, τ23 are equal to 6, 8, 12 respectively (the λij’s are given by

the matrix ΛA = At · A− [28] ). Let P =

[
0 1l 0

0 0 1l
1l 0 0

]
, and D = diag(1l 6−1 12−1), then A ∼ DPA =[

1l 4 4
6−1 1l 5
12−1 12−1 1l

]
= Ã. It is easy to see that Ã∗ = Ã2 =

[
1l 4 9

6−1 1l 5
12−1 8−1 1l

]
. Hence INJA is generated by[

1l
6−1

12−1

]
,

[
4
1l

8−1

]
,
[

9
5
1l

]
. Now, ΛINJA

=

[
1l 4−1 9−1

6 1l 5−1

12 8 1l

]
, and the τij of INJA are given by 2, 3, 3 respectively.

It follows that INJA 6'MA (hence also INJA 6' DOMINJA).
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It is not difficult to see that the following statements (Propositions 5.1–5.4, as well as Theorem 1) in [29],

stated for tropical torsion matrices extend to the case considered in this paper. Matrices are always assumed

to have independent columns (in the sense of 3 above).

Proposition 3.1 For an arbitrary matrix A, we have ΓA = Λ−A

Proposition 3.2 For an arbitrary matrix A, we have ΛΓA = ΛA.

Proposition 3.3 For any square matrix A , I ∨A2 = A ⇐⇒ A∗ = A.

Proposition 3.4 For an arbitrary matrix A, we have ΓΓA

= ΓA.

Proposition 3.5 (Theorem 1 of [29]) INJΓA = MΓA

We have the following statement.

Theorem 1 A is injective on MΓA ⇐⇒ its columns are strongly independent.

Proof. The sufficient condition. Assume the columns of A are strongly independent. We show that A is

injective on MΓA . Let x =
∨

γ·,j∈X
ξjγ·,j , y =

∨
γ·,k∈Y

λkγ·,k ∈MΓA be such that Ax = Ay.

Then Ax =
∨

a·,j∈X
ξja·,j , Ay =

∨
a·,k∈Y

λka·,k. Since the columns of A are strongly independent, we must

have Y = X, and we may write Ax =
∨
j∈J

ξja·,j =
∨
j∈J

λja·,j .

Assume by contradiciton that ∃ ` s.t. ξ` < λ`. Clearly ∃ i s.t. (Ax)i = ξ`ai`, for if not, then Ax =∨
j∈J,j 6=`

ξja·,j , which would contradict the strong independence assumption (i.e. we would have X 6= Y ). But

(Ay)i = λ`ai` ∨
∨

j∈J,j 6=`
λjaij = ξ`ai` ⇒ λ` ≤ ξ`, which contradicts our assumption. Hence we must have

∀j ∈ J , λj ≤ ξj . Similarly, the assumption ∃ ` ∈ J s.t. λ` < ξ` yields ∀j ∈ J , ξj ≤ λj . It follows that

ξj = λj ∀j ∈ J , hence x = y.

The necessary condition. If the columns of A are not strongly independent, then, as shown by Example

3.1 above, A fails to be injective on MΓA .

Remark 3.1 For any X s.t. AX = A, the map A : MX →MA is surjective: ∀u ∈MA , u =
m∨
j=1

ξja·,j = Aξ.

Let y = Xξ, then Ay = AXξ = Aξ = u.

Theorem 2 Let A ∈ Hom(Sm, Sn). The following are equivalent:

i) The columns of A are strongly independent.

ii) INJA = MΓA .

iii) INJA ' DOMINJA.

iv) The representation of any x ∈MA is unique.

v) MA is characterised by the (m− 1)2 entries λij , j 6= i, i+ 1 of ΛA.

vi) ΛA < Λ2
A.

Proof. The equivalence i) ⇐⇒ ii) ⇐⇒ iii) is straightforward, by Theorem 1 and Remark 3.1.

The implication i) ⇒ iv) has been proved in the proof of Theorem 1. Assume then that iv) holds.

By Remark 3.1 A is surjective on MΓA . It remains to show that A is injective on MΓA . As above, let

x =
∨

γ·,j∈X
ξjγ·,j , y =

∨
γ·,k∈Y

λkγ·,k ∈ MΓA . Then by iv), for z = Ax =
∨

a·,j∈X
ξja·,j =

∨
a·,j∈X

λja·,j = Ay, we

must have X = Y , and ξj = λj ∀j : z =
∨

a·,j∈X
ξja·,j . Thus y = x, and MA 'MΓA .
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The proofs of v) and vi) are easy (although somewhat tricky) and are left to the reader.

Remark 3.2 Note that vi) provides a fast test for strong independence of the columns of a matrix.

Corollary 3.1 The “canonical” form of A defined in [27] is indeed canonical iff the columns of A are strongly

independent.

Proof. This statement is a straightforward consequence of iv) in the theorem. However, as there are misprints

in Example 4.2 of [29], we provide below the correct entries of the matrix.

Example 3.2 We have A =

[
2 1l 4 1l
1 1 2 1l
3 2 3 1l
4 3 5 1l

]
∼

[
1l 1l 3 4
1l 1 1 3
1l 1 1 2
1l 2 2 5

]
, with ΛA =

[
1l 1l 1−1 2−1

2 1l 1l 1−1

3 3 1l 1l
5 4 3 1l

]
, which yields

{
τ12=τ13=2 , τ14=
τ24=τ23=τ34=3 .

Permutation of columns 2 and 3 of A yields the equivalent matrix:

B =

[
2 4 1l 1l
1 2 1 1l
3 3 2 1l
4 5 3 1l

]
∼

[
1l 1l 3 4
1l 1 4 6
1l 1 3 3
1l 2 2 5

]
, with ΛB =

[
1l 1l 2−1 3−1

2 1l 1l 2−1

4 3 1l 1l
6 5 3 1l

]
and the same τij’s, although the λij(A) may differ

from the λij(B)

This shows that the standard form of A is not unique. The reader may find it interesting to show that the

columns of A are not strongly independent.

Corollary 3.2 Strong independence of the columns of a matrix allows for a new equivalence between matrices,

namely A ∼ ΓA, which relates a (possibly) rectangular matrix to a square matrix.

Corollary 3.3 If the columns of A ∈ Hom(Sm, Sn) are strongly independent, then:

vii) MA can be embedded in Sm.

Proof. The proof is straightforward, since MΓA ∈ Sm.

4 Examples

Example 4.1 (4.3 of [29]) Let A =


1l 1l 5
1l 1 4
1l 2 14
1l a a
1l 8 15
1l 9 11

, with 5 < a < 8. It is not difficult to see that the columns of

A are strongly independent, and ΓA =

[
1l 1l 4

9−1 1l 1l
15−1 12−1 1l

]
.

The τij of A and ΓA are the same and equal to (9, 11, 12) respectively. As stated in Theorem 1, MA can

be embedded in S3, independently of the value of a ∈]5, 8[.

Note also that, writing A6 (resp. A7) for the matrix with a = 6 (resp. 7), and M6 (resp M7) for the

semimodule generated by the columns of A6 (A7), we have M6 ' M7. However, there is no isomorphism

S6 7→ S6 whose restriction to M6 yields M7.

Example 4.2 Let A =

[1l 9 5
1l 1l 2
1l 0 1l
0 4 0

]
. We have ΓA =

[
1l 1l 1l 0

9−1 1l 0 4−1

5−1 2−1 1l 0

]
?

[1l 9 5
1l 1l 2
1l 0 1l
0 4 0

]
=

[
1l 0 1l
0 1l 0

5−1 0 1l

]
.

The torsion τ13 = 5 in both MA, and MΓA . However, here we have a·,1∨a·,2 =

[
9
1l
1l
4

]
≤ a·,2∨a·,3 =

[
9
2
1l
4

]
≤

2

[
9
1l
1l
4

]
. More precisely the torsion coefficient τc1∨c2,c2∨c3 = 2 in MA, while the corresponding coefficient in
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MΓA is equal to 5. It follows that MA, and MΓA cannot be isomorphic. Therefore, by Theorem 1 the columns

of A cannot be strongly independent.

Indeed, by inspection,we get Mc1,c2

⋂
Mc2,c3 3

[
13
4
1
8

]
/∈ Mc2 . The interested reader may be interested to

use the test of vi) in Theorem 1 mentioned in Remark 3.2.

Our next example shows that checking the strong independence of the columns of A directly on the

matrix, should not be overlooked.

Example 4.3 Let A =

1l 0 1l
1l 0 0

0 1l 1l
0 1l 0

. Taking the columns of A two by two seems to show they are strongly

independent, since neither ξ1c1 ∨ ξ2c2 = λ1c2 ∨λ3c3, nor ξ1c1 ∨ ξ3c3 = λ1c2 ∨λ3c3 has a non-trivial solution.

However, c3 < c1 ∨ c2, hence c1 ∨ c2 = c1 ∨ c2 ∨ c3, and the columns of A are not strongly independent.

We have ΓA =

[
1l 0 0

0 1l 0

0 0 1l

]
= I3, and A ·

[
1l
1l
0

]
= A ·

[
c1l
1l
1l

]
=

[
c1l
1l
1l
1l

]
, thus A is not injective on MΓA .

This example also shows that the strong independence of the columns of ΓA does not imply that of the

columns of A.

In our next example, we revisit Example 4.1 in which we set a = 0 and reorder rows and columns for

convenience.

Example 4.4 Let A =


ccc1l 1l 4
1l 3 13
1l 1 12
1l 5 5
1l 10 11
0 0 1l

, ΓA =

[
cccccc1l 1l 1l 1l 1l 0

1l 3−1 1−1 5−1 10−1 0
4−1 13−1 12−1 5−1 11−1 1l

]
?


ccc1l 1l 4
1l 3 13
1l 1 12
1l 5 5
1l 10 11
0 0 1l

 =

[
ccc1l 1l 4
10−1 1l 1l
0 0 1l

]
.

Here MA is isomorphic to the semi-direct sum MB⊕̃MC introduced in [27], where MB is generated by the

columns of B =

 cc1l 1l
1l 3
1l 1
1l 5
1l 10

 and MC by the column vector C = (4 13 12 5 11 1l)t. Since column λ12 = 10(= τ12),

and λ13 = 4 , λ23 = 1l, the sum MB⊕̃MC cannot be a direct sum.

By Theorem 1 MB 'MΓB , with ΓB =
[
cc1l 1l
10−1 1l

]
. By Theorem 1 MA 'MΓA , which is isomorphic to the

semi-direct sum MB⊕̃MD, with MD generated by the column vector D = (4 1 1l)t.

5 Conclusion

We conclude below by exhibiting the short table of (some) algebraic invariants mentioned in the introduction.

algebraic invariants

category specify char.

vector space field F , n Fn

module PID free ⊕ torsion.

idempotent semimodule strongly indep. basis Λ-matrix
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