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Abstract: A preconditioned variant of the Golub and Kahan (1965) bidiagonalization process recently
proposed by Arioli (2013) and Arioli and Orban (2013) allows us to establish that symmlq and minres
applied to least-squares problems in symmetric saddle-point form perform redundant work and are combinations
of methods such as lsqr and lsmr. A well-chosen preconditioner allows us to formulate a projected variant
of the Golub-Kahan process that forms the basis of specialized numerical methods for linear least-squares
problems with linear equality constraints. As before, full-space methods such as symmlq and minres
applied to the symmetric saddle-point system defining the optimality conditions of such problems perform
redundant work and are combinations of projected variants of methods such as lsqr and lsmr. We establish
connections between numerical methods for least-squares problems, full-space methods and the projected and
constraint-preconditioned Krylov methods of Gould, Orban, and Rees (2013).

Key Words: Linear least-squares, linear constraints, Golub-Kahan process, Lanczos process, Krylov
methods, projected Krylov methods, nullspace methods, lsqr, lsmr, craig, craig-mr, cg, symmlq,
minres.

Résumé : Une variante préconditionnée du processus de bidiagonalisation de Golub and Kahan (1965)
proposée récemment par Arioli (2013) et Arioli and Orban (2013) nous permet d’établir que symmlq et
minres appliquées à des problèmes aux moindres carrés sous forme de système augmenté effectuent des
opérations redondantes et se décomposent suivant deux méthodes telles que lsqr et lsmr. Un préconditionneur
bien choisi nous permet de formuler une variante projetée du processus de Golub-Kahan qui est à la base de
méthodes numériques particularisées aux problèmes aux moindres carrés avec contraintes d’égalité linéaires.
Comme auparavant, les méthodes travaillant dans l’espace entier telles que symmlq et minres sont des
combinaisons de variantes projetées de méthodes telles que lsqr et lsmr. Nous établissons des liens entre les
méthodes numériques pour les problèmes aux moindres carrés, les méthodes travaillant dans l’espace entier,
ainsi que les variantes projetées et avec préconditionneur par contraintes de Gould, Orban, and Rees (2013).

Acknowledgments: Research partially supported by an NSERC Discovery Grant. Paige (1974) and Saunders
(1995) were constant sources of inspiration for this work. This paper also benefited from enlightening discussions
with Mario Arioli and Michael Saunders.
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1 Introduction
We consider the solution of constrained weighted linear least-squares problems of the form

minimize
x∈Rn

1
2‖Ax− b‖2M−1 subject to Ex = 0, (1.1)

where A ∈ Rm×n, b ∈ Rm, M ∈ Rm×m is symmetric and positive definite, and E ∈ Rp×n. Typically,
though not always, m ≥ n. We assume that p < n and that E has full row rank. Throughout the paper, we
refer to (1.1) as a nullspace-constrained linear least-squares problem. Problems such as (1.1) arise in mixed
regression-interpolation data fitting problems (Björck, 1996) and portfolio optimization (El Ghaoui, 2013).
Such problems also arise frequently in the solution of smooth constrained optimization problems of the form

minimize
x∈Rn

f(x) subject to c(x) = 0, Ex = d, (1.2)

involving a mixture of linear and nonlinear equality constraints, by way of a method related to the sequential
quadratic programming paradigm, in which each step is computed as the sum of a normal and a tangential
step (Nocedal and Wright, 2006). Numerical methods typically exploit linear constraints by generating iterates
xk satisfying Exk = d at all times. A normal step then takes the form (1.1) where A is the Jacobian of c at
xk and b = −c(xk). In this optimization context, it is customary to add a trust-region constraint ‖x‖N ≤ ∆
where N = NT is positive definite and ∆ > 0 is a trust-region radius. As the next sections will show, we
develop numerical methods for (1.1) without a trust-region constraint and are able to add this constraint
afterwards at little extra cost.

The first and second-order optimality conditions of (1.1) may be stated as the symmetric saddle-point
system [

ATM−1A ET

E 0

] [
x
y

]
=
[
ATM−1b

0

]
(1.3)

or as the augmented symmetric saddle-point systemM A 0
AT 0 ET

0 E 0

r
x
y

 =

b
0
0

 , (1.4)

where r := M−1(b−Ax) is the residual. The system (1.3) is a standard symmetric saddle-point system with
a positive semi-definite leading block and the projected conjugate gradient method of Gould, Hribar, and
Nocedal (2001) is appropriate. The system (1.4) may be viewed as a standard symmetric saddle-point system
of the form [

Q JT

J 0

] [
q
y

]
=
[
f
0

]
with Q =

[
M A
AT 0

]
, J =

[
0 E

]
, f =

[
b
0

]
. (1.5)

The projected Krylov methods of Gould, Orban, and Rees (2013), and in particular the projected minres
algorithm, are then applicable. The latter requires a one-time factorization of a symmetric and indefinite
matrix of the form [

Q̃ JT

J 0

]
where Q̃ = Q̃T ≈ Q

and matrix-vector products with Q. However, we show in the next sections that it is possible to exploit the
structure of (1.1) further and devise specialized iterative methods for linear least-squares problems. Our
methods are especially applicable when it is possible to solve linear systems with coefficient matrices M and
N efficiently, where N defines the appropriate norm for x.

The rest of the paper is organized as follows. The remainder of this section covers related research and
sets the notation used throughout. Section 2 provides necessary background and basic results referred to in
later sections. Section 3 lays the foundations by describing the preconditioned Golub-Kahan process, upon
which preconditioned numerical methods for linear least squares are built. This process is used to construct a
related Lanczos process in §4 and corresponding preconditioned full-space methods. A special case of the
preconditioned Golub-Kahan process leads to methods for (1.1) in §5 and for (1.3) and (1.4) in §6. We present
an application to optimization in §7 and conclude in §8.
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Related Research

Björck (1996) mentions several approaches to solve (1.1). Among them, the method of direct elimination
consists in computing the QR factorization of E to reduce the problem to an unconstrained linear least-
squares problem. The nullspace method proceeds similarly using the LQ factorization of E to formulate an
unconstrained linear least-squares problem defined in Null(E). The nullspace method is closely related to
methods discussed in the present paper.

Van Loan (1985) proposes the method of weights, which is a penalty method consisting in solving the
unconstrained regularized linear least-squares problem

minimize
x∈Rn

1
2‖Ax− b‖2M−1 + 1

2µ
2‖Ex‖22,

for well-chosen values of µ. The rationale is that as µ→∞ the exact solution x(µ) to this regularized problem
converges to a solution of (1.1).

Benbow (1999) gives a formulation of LSQR for problems of the form (1.1) without constraints. His
formulation is based on a preconditioned version of the Golub-Kahan process and serves as inspiration for
some of the variants presented below.

Arioli and Orban (2013) give a full account of regularized problems, where the picture is more complete.
As a result, we do not consider regularized least-squares problems here but we regularly refer to (Arioli and
Orban, 2013) throughout the discussion to emphasize similarities and differences.

Gould, Orban, and Rees (2013) provide a framework in which projected Krylov methods may be derived
from standard formulations of preconditioned Krylov methods. They establish an equivalence between the
iterates generated by projected Krylov methods and the closely-related constaint-preconditioned Krylov
methods.

Notation

We use a notation compatible with those of Arioli and Orban (2013) and Gould, Orban, and Rees (2013)
and denote full-space quantities G, A, x and so forth, in upright boldface font. Quantities that are explicitly
expressed in a basis of Null(E) appear in italicized Roman lightface font, e.g., r and x. Throughout, ‖ · ‖2
denotes the Euclidian norm. If Q is any symmetric and positive-definite matrix, it determines the Q-norm
defined by ‖x‖2Q := xTQx.

2 Background and Preliminary Results
For simplicity, we only consider nullspace constraints in (1.1) but we note that the more general equality-
constrained problem

minimize
x∈Rn

1
2‖Ax− b‖2M−1 subject to Ex = c

may be solved by first identifying x0 such that Ex0 = c, solving the nullspace problem

minimize
∆x∈Rn

1
2‖A∆x− (b−Ax0)‖2M−1 subject to E∆x = 0,

and finally setting x := x0 +∆x.

The problem (1.1) possesses a unique solution if and only if E has full row rank and Null(A)∩Null(E) = {0}
(Björck, 1996, Chapter 5).

The following result on the eigenvalues of an augmented matrix is a special case of (Saunders, 1995,
Result 1). In particular, it implies that the spectrum of K is symmetric about 1

2 .
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Proposition 2.1 (Saunders, 1995, Result 1) Let Ē ∈ Rp×n have row rank p < n and let σ1, . . . , σp be
the nonzero singular values of Ē. The eigenvalues of

K :=
[

I ĒT

Ē 0

]
are

1. λ = 1 with multiplicity n− p, and

2. λ = 1
2 ±

1
2

√
1 + 4σ2

k for k = 1, . . . , p.
In addition, the eigenspace associated to λ = 1 is Null(Ē)× {0}.

Several numerical methods for solving a generic linear least-squares problem

minimize
x̄∈Rn

1
2‖Āx̄− b̄‖22, (2.1)

including those of Paige and Saunders (1982) and Fong and Saunders (2011), build upon the Golub and
Kahan (1965) bidiagonalization process, stated as Algorithm 2.1.

Algorithm 2.1 Golub-Kahan Bidiagonalization Process for (2.1)
Require: Ā, b̄

1: β1ū1 = b̄ with β1 > 0 so that ‖ū1‖2 = 1
2: α1v̄1 = ATū1 with α1 > 0 so that ‖v̄1‖2 = 1
3: for k = 1, 2, . . . do
4: βk+1ūk+1 = Āv̄k − αkūk with βk+1 > 0 so that ‖ūk+1‖2 = 1
5: αk+1v̄k+1 = ĀTūk+1 − βk+1v̄k with αk+1 > 0 so that ‖v̄k+1‖2 = 1.

Upon defining Ūk :=
[
ū1 · · · ūk

]
, V̄k :=

[
v̄1 · · · v̄k

]
as well as

Lk :=


α1
β2 α2

. . . . . .
βk αk

 , Bk :=


α1
β2 α2

. . . . . .
βk αk

βk+1

 =
[

Lk
βk+1eT

k

]
, (2.2)

the situation after k iterations of Algorithm 2.1 can be characterized by the identities

ĀV̄k = ŪkLk + βk+1ūk+1eT
k = Ūk+1Bk, (2.3a)

ĀTŪk+1 = V̄kBT
k + αk+1v̄k+1eT

k+1 = V̄k+1LT
k+1. (2.3b)

In addition, the identities ŪT
k Ūk = Ik and V̄T

k V̄k = Ik are satisfied in exact arithmetic. Algorithm 2.1 is
convenient because it allows to approximate a solution of (2.1) by a sequence of solutions of linear least-squares
problems whose operator is bidiagonal.

It is well known that the Golub-Kahan process is intimately connected to the Lanczos (1952) process.
Consider a generic symmetric linear system Hw = d. The Lanczos process applied to H and d generates
vectors wk according to the three-term recurrence

ω1w1 = d, ωk+1wk+1 = Hwk − χkwk − ωkwk−1, where χk := wT
k Hwk. (2.4)

Each ωk > 0 is chosen so that ‖wk‖2 = 1. In exact arithmetic, the vectors wk are orthonormal. Numerous
Krylov methods build upon the Lanczos process, e.g., the conjugate gradient method of Hestenes and Stiefel
(1952), SYMMLQ and the minimum residual method of Paige and Saunders (1975), and others—see (Saad,
2003) for more details. Suppose now that the vectors wk should be measured in Y norm, where Y is symmetric
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and positive definite. If we write the Lanczos process (2.4) for the symmetrically-preconditioned system
H̄w̄ = d̄, where H̄ := Y−

1
2 HY−

1
2 and d̄ := Y−

1
2 d, and apply the change of variable w̄ := Y

1
2 w, we obtain

the preconditioned Lanczos process

ω1Yw1 = d, ωk+1Ywk+1 = Hwk − χkYwk − ωkYwk−1; χk := wT
k Hwk, (2.5)

and where this time the scalars ωk > 0 are chosen so that ‖wk‖Y = 1. Note that the computation of each wk
requires the solution of a linear system with coefficient Y. After k iterations, the situation may be summarized
as

HWk = YWkΩk + ωk+1Ywk+1eT
k , (2.6)

where

Wk :=
[
w1 · · · wk

]
, and Ωk :=


χ1 ω2

ω2 χ2
. . .

. . . . . . ωk
ωk χk

 .
In exact arithmetic, the vectors wk are such that WT

k YWk = Ik, i.e, Y
1
2 Wk is orthogonal. At iteration k, a

numerical method based on (2.5) seeks an approximate solution of the form Wkwk for a vector of coefficients
wk ∈ R

k chosen so that the approximate solution satisfies a certain optimality condition.

In the next section, we perform a similar conversion of Algorithm 2.1 to a different metric.

We close this section with a representation of the various operators involved in (1.1) as operators between
appropriately defined Hilbert spaces. Arioli and Orban (2013) introduce a formal Hilbert space setting but
we keep details to a minimum here for clarity. Let M = (Rm,M) be the Hilbert space Rm endowed with
the norm defined by M. Similarly, let N = (Rn,N) and their duals M? = (Rm,M−1) and N = (Rn,N−1).
OperatorsM andM−1 are represented by M and M−1 in the canonical bases of M and M?. The operators
N and its inverse are defined similarly. The matrix A represents an operator A from N into M? and we
denote its adjoint A?. The latter operator is represented by AT. Finally, E represents an operator E between
N and the dual of another Hilbert space, say P. Finally, let Z denote the Hilbert subspace of N defined as the
nullspace of E and equipped with the induced norm. In §5, we introduce a matrix Z whose columns form a
basis for Null(E). This Z and its transpose represent corresponding operators Z and Z? between Z, N and
their duals. Figure 2.1 represents the situation in the form of a commutative diagram. Throughout the rest of
this paper, we refer to this diagram to understand what norm should be used to measure a certain residual or
error.

Z?

M N? P

M? N P?

Z

A?

A

N−1NMM−1

Z?

Z

E?

E

Figure 2.1: Commutative diagram between the relevant Hilbert spaces.
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3 The Preconditioned Golub-Kahan Bidiagonalization Process
Consider now the preconditioned linear-least-squares problem

minimize
x∈Rn

1
2‖Ax− b‖2M−1 , (3.1)

whose optimality conditions may be written as the augmented system[
M A
AT

] [
r
x

]
=
[
b
0

]
, (3.2)

or as the normal equations
ATM−1Ax = ATM−1b. (3.3)

Note that (3.2) also represent the necessary and sufficient optimality conditions of the convex quadratic
program

minimize
r∈Rm

−bTr + 1
2rTMr subject to ATr = 0,

and therefore the methods below equally apply to the problem stated in this form. Suppose that the context
dictates that the appropriate norm to measure the variables x is the N-norm, where N is a symmetric and
positive-definite n-by-n matrix. Consider solving the central-preconditioned variant of (3.2)[

M− 1
2

N−
1
2

][
M A
AT 0

][
M− 1

2

N−
1
2

][
M

1
2 r

N
1
2 x

]
=
[
M− 1

2 b
0

]
. (3.4)

The coefficient matrix of (3.4) may be written

K̄ :=
[

I Ā
ĀT 0

]
, Ā := M− 1

2 AN−
1
2 .

We follow Arioli and Orban (2013) and refer to the singular values of Ā as the elliptic singular values of A.
By virtue of Proposition 2.1, those values govern the convergence of iterative methods for (2.1). Consider now
the application of Algorithm 2.1 to the operator Ā and right-hand side b̄ := M− 1

2 b. After the change of
variable ui := M− 1

2 ūi and vi := N−
1
2 v̄i, the resulting process may be stated as Algorithm 3.1, in which the

computation of each uk requires the solution of a linear system with matrix M and that of each vk requires
the solution of a linear system with matrix N. Algorithm 3.1 is given by Arioli (2013, Section 3) and Arioli
and Orban (2013, Algorithm 4.2), and generalizes related processes of Benbow (1999).

Algorithm 3.1 Preconditioned Golub-Kahan Bidiagonalization Process
Require: A, b, M−1, N−1

1: β1Mu1 = b with β1 > 0 so that ‖u1‖M = 1
2: α1Nv1 = ATu1 with α1 > 0 so that ‖v1‖N = 1
3: for k = 1, 2, . . . do
4: βk+1Muk+1 = Avk − αkMuk with βk+1 > 0 so that ‖uk+1‖M = 1
5: αk+1Nvk+1 = ATuk+1 − βk+1Nvk with αk+1 > 0 so that ‖vk+1‖N = 1.

Algorithm 3.1 is precisely the Golub-Kahan process applied to the operator A and right-hand side b with
preconditioners M and N.

Defining as before Uk :=
[
u1 · · · uk

]
and Vk :=

[
v1 · · · vk

]
, Algorithm 3.1 is characterized by the

identities

AVk = MUkLk + βk+1Muk+1eT
k = MUk+1Bk, (3.5a)

ATUk+1 = NVkBT
k + αk+1Nvk+1eT

k+1 = NVk+1LT
k+1, (3.5b)
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in place of (2.3). In addition, the identities

UT
kMUk = Ik and VT

k NVk = Ik

are satisfied in exact arithmetic, i.e., M
1
2 Uk and N

1
2 Vk are orthogonal matrices.

The rest of this section reviews several iterative methods for (3.1). The methods below are fully described
by Arioli and Orban (2013) in the presence of regularization terms. The reason for presenting them again
below is to highlight the differences with the case when no regularization term is present and to help establish
connections between methods for (3.2) and methods for (3.3). Note that Arioli and Orban (2013) specify
complete algorithms along with meaningful stopping criteria. We refer the interested reader to their paper for
complete algorithmic details.

3.1 Preconditioned lsqr

By definition, the lsqr method of Paige and Saunders (1982) is equivalent to the conjugate gradient method
(cg) applied to (3.3). Based on Algorithm 3.1, lsqr seeks an approximate solution as a combination of
v1, . . . ,vk, i.e., of the form xk = Vkxk. The vector xk is chosen to minimize the least-squares residual. Using
(3.5), we have

Axk − b = MUk+1(Bkxk − β1e1)

and
‖Axk − b‖M−1 = ‖M

1
2 Uk+1(Bkxk − β1e1)‖2 = ‖Bkxk − β1e1‖2,

where we used the fact that M
1
2 Uk+1 is an orthogonal matrix in exact arithmetic. Finally, xk is selected as

the solution of the overdetermined bidiagonal linear least-squares problem

minimize
x∈Rk

1
2‖Bkx− β1e1‖

2
2, (3.6)

and therefore satisfies [
Ik+1 Bk

BT
k

] [
rk
xk

]
=
[
β1e1

0

]
, (3.7)

where rk := β1e1 −Bkxk.

The following result may be established exactly as (Arioli and Orban, 2013, Theorem 6.1).

Proposition 3.1 The preconditioned lsqr iterates on (3.1) are the same as those generated by the standard
conjugate gradient method on the positive semi-definite system (3.3) with preconditioner N. The error
(xk − x∗) decreases along the iterations in the (N−

1
2 ATM−1AN−

1
2 )-norm.

Note that (3.3) with preconditioner N is none other than the system of normal equations

ĀTĀx̄ = ĀTb̄.

It is instructive to characterize the preconditioned lsqr method with its own Lanczos process. We have
from (3.3) and (3.5) that

ATM−1AVk = NVkBT
kBk + αk+1βk+1Nvk+1eT

k . (3.8)

Note that BT
kBk is indeed tridiagonal and symmetric, as in (2.6).
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3.2 Preconditioned craig

The method of Craig (1955), as described by Paige and Saunders (1982, §7.2), attempts to solve the saddle-
point system (3.2) directly by seeking approximations rk := Ukrk and xk := Vkxk. This amounts to seeking
an approximation in the Krylov subspace spanned by the columns of blkdiag(Uk,Vk), and yields the block
equations

MUkrk + AVkxk = Muk+1(β1e1) and ATUkrk = 0.

Premultiplying the first equation with UT
k and the second with VT

k amounts to imposing a Galerkin condition
on the residual of the saddle-point system. Combining with (3.5) and using the orthonormality of M

1
2 Uk and

of N
1
2 Vk, this yields the reduced saddle-point system[

Ik Lk
LT
k

] [
rk
xk

]
=
[
β1e1

0

]
, (3.9)

which represents the optimality conditions of the problem

minimize
x

1
2‖Lkx− β1e1‖

2
2.

Note the similarity with (3.6) and (3.7). It is clear that Lk being square and nonsingular, xk = L−1
k (β1e1)

and rk = 0. This method in itself is therefore of limited interest unless r indeed vanishes at a solution of
(3.2), i.e., unless Ax = b is consistent. However, this method turns out to be useful in §4 to explain the
behavior of symmlq on (3.2).

3.3 Preconditioned lsmr

By definition, the preconditioned lsmr method of Fong and Saunders (2011) consists in applying minres
(Paige and Saunders, 1975) to (3.3). Because Figure 2.1 indicates that the residual of (3.3) should be measured
in the N−1-norm, this amounts to solving

minimize
x

‖ATM−1(Ax− b)‖N−1 .

Seeking again an approximation of the form xk = Vkxk, we obtain the subproblem

minimize
x

∥∥∥∥[ BT
kBk

αk+1βk+1eT
k

]
x− α1β1e1

∥∥∥∥
2
,

and the Lanczos process (3.8). The details follow from the same reasoning as in previous sections and may
be found in (Fong and Saunders, 2011) and (Arioli and Orban, 2013). The following result summarizes the
defining properties of the preconditioned lsmr.

Proposition 3.2 The preconditioned lsmr iterates on (2.1) are the same as those generated by the standard
minres on the positive semi-definite system (3.3) with preconditioner N. The residual ATM−1rk decreases
along the iterations in the N−1-norm, where rk := b−Axk.

3.4 Preconditioned craig-mr

By definition, the preconditioned craig-mr method, introduced by Arioli and Orban (2013), consists in
applying minres to

AN−1ATy = b. (3.10)

Were Ax = b consistent, this would be equivalent to solving the minimum-norm problem

minimize
x

1
2‖x‖

2
N subject to Ax = b. (3.11)
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Because Figure 2.1 indicates that the residual of (3.10) should be measured in the M−1-norm, applying
minres to (3.10) amounts to solving

minimize
y

‖(AN−1AT)y− b‖M−1 .

Note that this approach is justified even if Ax = b is not consistent, in which case the residual above is
nonzero. Seeking an approximation of the form yk = Ukyk, (3.5) shows that the residual may be written

M− 1
2 AN−1ATUkyk −M− 1

2 b = M− 1
2 AVkLT

kyk − β1M
1
2 u1

= M
1
2 Uk+1(BkLT

kyk − β1e1).

Using the orthogonality of M
1
2 Uk+1, we obtain the subproblem

minimize
y

∥∥∥∥[ LkLT
k

αkβk+1eT
k

]
y − β1e1

∥∥∥∥
2
,

and the Lanczos process
AN−1ATUk = MUkLkLT

k + αkβk+1Muk+1eT
k , (3.12)

where LkLT
k is symmetric and tridiagonal. This Lanczos process should be compared with (2.6). Arioli and

Orban (2013) provide complete algorithmic details, including the case where regularization terms are present.
The defining properties of craig-mr are summarized in the next result.

Proposition 3.3 The preconditioned craig-mr iterates on (2.1) are the same as those generated by
the standard minres on the positive semi-definite system (3.10) with preconditioner M. The residual
b− (AN−1AT)yk decreases along the iterations in the M−1-norm.

In the next section, we establish connections between the methods of this section and Krylov methods
applied to (3.2).

4 Preconditioned Full-Space Methods
The relations (3.5) combine into[

M A
AT

] [
Uk

Vk

]
=
[
M

N

] [
Uk

Vk

] [
Ik Lk
LT
k

]
+
[
βk+1Muk+1

0

]
eT

2k

(4.1)[
M A
AT

] [
Uk+1

Vk

]
=
[
M

N

] [
Uk+1

Vk

] [
Ik+1 Bk

BT
k

]
+
[

0
αk+1Nvk+1

]
eT

2k+1.

According to (2.6), (4.1) describe a Lanczos process applied to a symmetric saddle-point matrix in a metric
defined by the block-diagonal matrix blkdiag(M,N). Indeed, as long as αk+1 6= 0 and βk+1 6= 0, the symmetric
saddle-point matrices in the right-hand side of (4.1) are nonsingular. Yet, those matrices may not have an
LU factorization without pivoting and hence, the conjugate gradient method may not be well defined. The
permutation Pk :=

[
e1 ek+1 e2 ek+2 · · · ek e2k

]
pointed out by Paige (1974) restores the order in

which the vectors uk and vk are generated by Algorithm 3.1, i.e.,

Pk

[
Uk

Vk

]
PT
k =

[
u1 0 · · · uk 0
0 v1 · · · 0 vk

]
.
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The same permutation highlights the tridiagonal matrix generated after 2k iterations of the Lanczos process
(4.1):

T2k = Pk

[
Ik Lk
LT
k

]
PT
k =



1 α1
α1 0 β2

β2 1
. . .

. . . . . . αk
αk 0

 ,

T2k+1 =
[

T2k βk+1e2k
βk+1eT

2k 1

]
.

Equipped with the above, we are in position to examine preconditioned full-space methods targeting (3.2)
directly.

4.1 Preconditioned symmlq

By definition, the symmlq method of Paige and Saunders (1975) is the method referred to as D-Lanczos
by Saad (2003, Algorithm 6.17) that solves the system Tkwk = β1e1 where w = (r,x) by way of an LQ
factorization of Tk. For stability reasons, symmlq generates iterates that differ from those wk, but that allow
to recover the latter easily if desired and if they are well defined. In exact arithmetic, it is equivalent in
principle to symmbk (Chandra, 1978), which solves the tridiagonal system by way of a symmetric indefinite
factorization.

The Lanczos process (4.1) implies directly the following result.

Theorem 4.1 The application of symmlq to (3.2) with preconditioner blkdiag(M,N) amounts to perform-
ing an iteration of the preconditioned craig method every even step and an iteration of the preconditioned
lsqr method every odd step.

Theorem 4.1 indicates that symmlq may be viewed as a predictor-corrector process in that its iterations
come in two kinds. The first sets a predicted solution estimate according to the craig method, which would
be appropriate were the residual to vanish at the solution. The second applies a correction given as an lsqr
step.

Note that when applied to a symmetric positive definite operator, symmlq is, in a sense, equivalent the
conjugate gradient method (Saad, 2003, Section 6.7) because it may be used to generate the conjugate gradient
iterates. In the presence of regularization, the permuted tridiagonal in (4.1) takes the form[

Ik Lk
LT
k −Ik

]
and

[
Ik Bk

BT
k −Ik

]
,

both of which are symmetric and quasi definite (Vanderbei, 1995). Arioli and Orban (2013) establish that
symmlq and cg are also equivalent in the presence of symmetric quasi-definite operators. However, in the
absence of regularization, symmlq and cg differ and in fact, cg may not be well defined. In this sense,
Theorem 4.1 is not a special case of (Arioli and Orban, 2013, Theorem 8.1).

4.2 Preconditioned minres

Applying the minres method of Paige and Saunders (1975) to (3.2) amounts to directly minimizing the norm
of the residual. As the latter should be measured in blkdiag(M−1,N−1)-norm, the minimization problem
may be stated as

minimize
r,x

1
2

∥∥∥∥[M A
AT

] [
r
x

]
−
[
b
0

]∥∥∥∥
H−1

, (4.2)



10 G–2014–15 Les Cahiers du GERAD

where H := blkdiag(M,N). Seeking approximations rk = Ukrk and xk = Vkxk, the optimality conditions of
(4.2) impose the Ritz-Galerkin condition[

Uk

Vk

]T [M A
AT

] [
M−1

N−1

]([
M A
AT

] [
Ukrk
Vkxk

]
−
[
b
0

])
=
[
0
0

]
. (4.3)

Using (3.5), this may be rewritten([
Ik Lk
LT
k

]2

+ β2
k+1e2keT

2k

)[
rk
xk

]
=
[
β1e1
α1β1e1

]
.

This system represents the optimality conditions of

minimize
r,x

1
2

∥∥∥∥[Ik+1 Bk

BT
k

] [
r
x

]
−
[
β1e1

0

]∥∥∥∥
2
,

which is the subproblem solved at the k-th preconditioned minres iteration. Indeed,[
Ik Lk
LT
k

]2

=
[
Ik + LkLT

k Lk
LT
k LT

kLk

]
and

BT
kBk = LT

kLk + β2
k+1ekeT

k .

Upon pasting the Lanczos processes (3.8) and (3.12) together, we obtain[
AN−1AT + M A

AT ATM−1A

] [
Uk

Vk

]
=[

M
N

] [
Uk

Vk

] [
Ik + LkLT

k Lk
LT
k BT

kBk

]
+ βk+1

[
M

N

] [
αkuk+1eT

k uk+1eT
k

αk+1vk+1eT
k

]
. (4.4)

The operator in the above Lanczos-type process is none other than[
M A
AT

] [
M−1

N−1

] [
M A
AT

]
=
[
AN−1AT + M A

AT ATM−1A

]
, (4.5)

and is the operator appearing in (4.3). Thus, according to (2.6), (4.4) represents a Lanczos process on the
operator (4.5) in the metric defined by H. This Lanczos process characterizes the preconditioned minres
method for (3.2).

We have established the following result, which parallels (Arioli and Orban, 2013, Theorem 8.3).

Theorem 4.2 The application of minres to (3.2) with preconditioner blkdiag(M,N) amounts to per-
forming an iteration of the preconditioned craig-mr method every even step and an iteration of the
preconditioned lsmr method every odd step.

5 The Projected Golub-Kahan Bidiagonalization Process
Let us now return our attention to the nullspace-constrained problem (1.1). Let the columns of the n-by-q
matrix Z form a basis for Null(E) and let x = Zx, where x ∈ Rq. Then (1.1) may be equivalently written

minimize
x∈Rq

1
2‖AZx− b‖2M−1 . (5.1)
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The common optimality conditions of (1.1) and (5.1) now simplify to[
M AZ

ZTAT 0

] [
r
x

]
=
[
b
0

]
. (5.2)

Numerical methods for (5.1) typically attempt to solve the normal equations

ZTATM−1AZx = ZTATM−1b, (5.3)

for instance using a suitable implementation of the conjugate gradient or minimum residual method. In this
context, it is natural to select a preconditioner of the form N := ZTGZ for some G that is symmetric and
positive definite on Null(E), i.e., such that ZTGZ is symmetric and positive definite. Intuitively, it should be
beneficial to select G as a suitable approximation to ATM−1A. This intuition is confirmed by, e.g., (Gould
et al., 2013, Theorem 4.1).

Equipped with the above observations, we apply Algorithm 3.1 to the operator AZ with right-hand side b
and preconditioner N := ZTGZ. After the change of variable vi ← Zvi, we obtain Algorithm 5.1, where

PG := Z(ZTGZ)−1ZT, (5.4)

and where we define the seminorm
‖w‖2[G] := wTPGw, (5.5)

and its dual seminorm, defined on Null(E),

‖v‖2{G} = vTGv. (5.6)

If v ∈ Null(E) and v = Zv̄, then ‖v‖{G} = ‖v̄‖ZTGZ. It is easy to establish by a recursion argument that
vk ∈ Null(E) for all k.

Algorithm 5.1 Projected Golub-Kahan Bidiagonalization Process for (5.1)
Require: A, b, M−1, G

1: β1Mu1 = b with β1 > 0 so that ‖u1‖M = 1
2: α1v1 = PGATu1 with α1 > 0 so that ‖v1‖{G} = 1
3: for k = 1, 2, . . . do
4: βk+1Muk+1 = Avk − αkMuk with βk+1 > 0 so that ‖uk+1‖M = 1
5: αk+1vk+1 = PGATuk+1 − βk+1vk with αk+1 > 0 so that ‖vk+1‖{G} = 1.

Algorithm 5.1 may be summarized with the identities

AVk = MUkLk + βk+1Muk+1eT
k = MUk+1Bk, (5.7a)

PGATUk+1 = VkBT
k + αk+1vk+1eT

k+1 = Vk+1LT
k+1, (5.7b)

which replace (3.5). In addition, the identities

UT
kMUk = Ik and VT

k GVk = Ik

are satisfied in exact arithmetic. As before, this implies that M
1
2 Uk is orthogonal but care must be exercised

because G may be singular.

We refer to Algorithm 5.1 as the projected variant of the Golub-Kahan process because it computes basis
vectors vk of the intersection of a Krylov space associated to ATM−1A with Null(E) by repeated projection.
This is a slight abuse of terminology since the operator PG is not a projector but rather shares similarities
with a projector into Null(E). More precisely, the operator PGG is an oblique projector into Null(E).

Implementing projected variants of classic methods for linear least-squares problems such as lsqr, craig,
lsmr and craig-mr simply consists in using Algorithm 5.1 in place of Algorithms 2.1 or 3.1. The computation
of v := PGw may be performed by solving the symmetric saddle-point system[

G ET

E 0

] [
v
z

]
=
[
w
0

]
(5.8)
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by way of a factorization or an iterative method that ensures that Ev = 0 holds accurately. Therefore, it is
possible to view the operator PG as the composition

[
I 0

] [G ET

E 0

]−1 [I
0

]
, (5.9)

which shows that PG is in fact independent of the choice of Z. For this reason, we intentionally omitted Z
from the requirements of Algorithm 5.1.

The computation of the scaling factor αk+1 > 0 such that ‖vk+1‖{G} = 1 in Algorithm 5.1 is performed
as follows. First, compute PGATuk+1 by solving (5.8) with w = ATuk+1 and denote the top segment of the
solution vector as vk+1. Because Gvk+1 + ETz = ATuk+1 and Evk+1 = 0, taking the inner product of the
first block equation with vk+1 yields vT

k+1Gvk+1 = vk+1ATuk+1. By orthogonality, vT
k+1Gvk = 0. In other

words, ‖vk+1‖{G} = ‖ATuk+1‖[G].

Note that in the case where G is symmetric and positive definite, the explicit form of the inverse[
G ET

E 0

]−1

=
[
G−1 −G−1ETS−1EG−1 G−1ETS−1

S−1EG−1 S−1

]
,

where S := EG−1ET is the (negative) Schur complement, shows that the leading block of the inverse is indeed
a projector. In this case, w may equivalently be computed as the (preconditioned) residual of

minimize
z

1
2‖E

Tz−w‖2G−1 ,

and any appropriate direct or iterative method may be employed provided it ensures that Ev = 0 holds
accurately.

In the central-preconditioned variant of (5.2), the coefficient matrix corresponding to (3.4) may now be
written

K̄ :=
[

I Ā
ĀT 0

]
, Ā := M− 1

2 AZN−
1
2 .

We extend the nomenclature of Arioli and Orban (2013) and refer to the singular values of Ā as the constrained
elliptical values of A. By virtue of Proposition 2.1, those values govern the convergence of iterative methods
for (1.1). Algorithm 5.1 is precisely the Golub-Kahan process applied to the operator Ā and right-hand side
b̄ = M− 1

2 b.

A direct consequence of (Paige, 1974, Section 2) and (Arioli and Orban, 2013, Section 4) is that Algorithm 5.1
terminates with βk+1 = 0 in exact arithmetic if and only if b ∈ Range(AZ), i.e., in the range of A restricted
to Null(E). In the case of nonzero residual problems, Algorithm 5.1 must terminate with αk+1 = 0, i.e.,
vk+1 = 0. Geometrically, this means that the next basis vector would have been orthogonal to Null(E) in the
G-norm.

We are now in position to describe numerical methods for the reduced linear least-squares problem (5.1).
Because Z is an artefact of the analysis and never need be computed, the methods below also solve (1.1).
Conceptually, they may be seen as solving (5.2), or equivalently, (5.3), and in this sense, they correspond to
the nullspace method for saddle-point systems (Benzi, Golub, and Liesen, 2005, §6), with the difference that
in the present case, the reduced problem is itself stated as a symmetric saddle-point system.

Gould, Orban, and Rees (2013) describe projected Krylov methods for saddle-point systems. Such
methods applied to (1.3) are formally equivalent to applying a Krylov method to the corresponding nullspace
system, which happens to be precisely (5.3). This observation allows us to establish connections between
numerical methods for (1.1) and projected Krylov methods for (1.3). The same authors establish that
projected Krylov methods are also equivalent to constraint-preconditioned Krylov methods (Keller, Gould,
and Wathen, 2000), i.e., Krylov methods applied to (1.3) with an initial guess (x0,y0) satisfying Ex0 = 0
and with the preconditioner (5.8)—note that this is quite different from projected methods, which use the
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preconditioner (5.9). In this case, they establish that any constraint-preconditioned Krylov method guarantees
that Exk = 0 remains satisfied throughout the iterations. Note that the preconditioner (5.8) is indefinite but
constraint-preconditioned Krylov methods are a special case where applying methods such as cg, symmlq
and minres with an indefinite preconditioner is permitted.

We term the methods below constrained to emphasize the fact that they solve the nullspace-constrained
problem (1.1). For each method, the subproblem solved at iteration k is identical to that in the corresponding
method of §3.

5.1 Constrained lsqr

Replacing Algorithm 3.1 with Algorithm 5.1, the constrained lsqr method seeks an approximation in Null(E)
as a combination of v1, . . . ,vk, i.e., of the form xk = Vkxk ∈ Null(E). The vector xk is chosen to minimize
the least-squares residual (5.1). The next result follows directly from Proposition 3.1.

Corollary 5.1 The constrained lsqr iterates on (1.1) are the same as those generated by the standard
lsqr on (5.1). They also coincide with those generated by the standard cg on the positive definite system
(5.3) with preconditioner N = ZTGZ.

By definition of lsqr, we have also established a link with the projected cg method described by Gould
et al. (2001) and the projected and constraint-preconditioned cg methods of Gould et al. (2013).

Corollary 5.2 The constrained lsqr method is equivalent to the projected cg method applied to (1.1) or,
equivalently, to (1.3). In turn, this is equivalent to the constraint-preconditioned cg, i.e., the standard cg
method applied to the symmetric indefinite system (1.3) with preconditioner (5.8).

It follows from (5.7) that the projected lsqr method is characterized by the Lanczos-like process

PGATM−1AVk = VkBT
kBk + αk+1βk+1vk+1eT

k+1. (5.10)

Note that (5.10), due to a projection operation, does not exactly have the form (2.6) because the operator in
the left-hand side is not symmetric.

We may expect that the benefits of lsqr over the conjugate gradient method in terms of stability and
accuracy carry over to the present constrained context.

5.2 Constrained craig

This method is identical in principle to that of §3.2. We first rewrite (5.2) as[
M A

ZTAT

] [
r
x

]
=
[
b
0

]
and seek approximations r ≈ Ukrk and x ≈ Vkxk. The first block equation becomes MUkrk + AVkxk = b.
After substituting b = β1Mu1 and premultiplying with UT

k , we obtain rk + Lksk = β1e1. Premultiplying
the second block equation with Z(ZTGZ)−1 yields 0 = PGATUkrk = VkLT

krk. Premultiplying the result
with VT

k G finally yields LT
krk = 0. In summary, we have again obtained the reduced system (3.9). Although

admittedly of limited interest, the following result summarizes the above.

Corollary 5.3 The constrained craig iterates on (1.1) are the same as those generated by the standard
craig method on (5.1).
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5.3 Constrained lsmr

The constrained lsmr method consists in applying minres to (5.3), i.e., to solve

minimize
x

‖ZTATM−1(AZx− b)‖(ZTGZ)−1 .

This relationship is formalized in the next corollary.

Corollary 5.4 The constrained lsmr iterates on (1.1) are the same as those generated by the standard
lsmr on (5.1). They also coincide with those generated by the standard minres on the positive definite
system (5.3) with preconditioner N = ZTGZ.

The next result states a connection between the constrained lsmr method and the projected and constraint-
preconditioned minres methods of Gould et al. (2013). Indeed by construction, the projected minres is
equivalent to applying minres to (5.3).

Corollary 5.5 The constrained lsmr method is equivalent to the projected minres method applied to (1.1)
or, equivalently, to (1.3). In turn, this is equivalent to the constraint-preconditioned minres, i.e., the
standard minres method applied to the symmetric indefinite system (1.3) with preconditioner (5.8).

The Lanczos process associated to the projected lsmr method is identical to (5.10).

5.4 Constrained craig-mr

When Ax = b is consistent, the constrained minimum-norm problem corresponding to (3.11) reads

minimize
x∈Rn

1
2‖x‖

2
[G] subject to Ax = b, Ex = 0, (5.11)

where ‖x‖[G] denotes the seminorm (5.5) induced by G in Null(E). The optimality conditions of (5.11) may
be expressed as

AZ(ZTGZ)−1ZTATy = b, (5.12)

where y are Lagrange multipliers associated to the constraints Ax = b. Note that (3.10) may also be written
APGATy = b.

The constrained craig-mr method consists in applying minres to (5.12), i.e., to solve

minimize
y

‖APGATy− b‖M−1 . (5.13)

As before, craig-mr is well defined even if Ax = b is not consistent. The following result summarizes the
relationship between the constrained and standard craig-mr, and their relation to minres.

Corollary 5.6 The constrained craig-mr iterates on (1.1) are the same as those generated by the standard
craig-mr on (5.1). They also coincide with those generated by the standard minres on the positive
semi-definite system (5.12) with preconditioner M.

Seeking an approximation y ≈ yk = Ukyk in (5.13), it follows from (5.7) that the constrained craig-mr
method is characterized by the Lanczos process

APGATUk = MUkLkLT
k + αkβk+1Muk+1eT

k . (5.14)
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6 Constrained Full-Space Methods and Full-Space Methods
This section summarizes connections between the constrained methods of the previous section and on the one
hand, constrained full-space methods, i.e., methods applied to (5.2), and on the other hand, with full-space
methods, i.e., methods applied directly to (1.4). We use the notation Q, J and f introduced in (1.5).

The projected Krylov methods described by Gould et al. (2013) are full-space formulations of nullspace
methods. For (1.4), this is equivalent to applying a Krylov method to the restriction of Q to the nullspace of
J. A basis for the nullspace of J is given by the columns of

Z̃ =
[

Im 0m×q
0n×m Z

]
,

where, as before, the columns of Z form a basis for Null(E) and where we indicated the block dimensions for
clarity. The reduced operator Z̃TQZ̃ and right-hand side Z̃f are precisely the operator and right-hand side of
(5.2). Projected Krylov methods rely on a preconditioner G = GT ≈ Q such that Z̃TGZ̃ is positive definite
on Null(J). Using the same block decomposition as (1.5), we may write

Z̃TGZ̃ =
[

Im 0m×q
0n×m Z

]T [G11 GT
21

G21 G22

] [
Im 0m×q

0n×m Z

]
=
[

G11 GT
21Z

ZTG21 ZTG22Z

]
.

(6.1)

A natural choice is to pick G11 positive definite—and possibly G11 = M—G21 = 0 and G22 to be positive
definite over Null(E).

Constraint-preconditioned Krylov methods are Krylov methods applied directly to (1.4) and correspondingly
rely on the preconditioner [

G JT

J 0

]
=

G11 GT
21

G21 G22 ET

E

 . (6.2)

As in (5.9), the preconditioner (6.1) is related to (6.2) according to

Z̃TGZ̃ =
[
I 0

] [G JT

J 0

]−1 [I
0

]
. (6.3)

6.1 symmlq

The discussion of the previous section and (Gould et al., 2013, Theorem 2.3) establish the following result.

Theorem 6.1 The iterates generated by the projected symmlq method applied to (1.4) are the same as
those generated by the constraint-preconditioned symmlq method applied to (1.4), i.e., with preconditioner
(6.2). They also coincide with those generated by symmlq applied to (5.2) with preconditioner (6.1).

We may now use the parallel between, on the one hand, (1.4) and (5.2), and on the other hand, (1.3) and
(5.3) to establish a result corresponding to Theorem 4.1.

Theorem 6.2 The application of symmlq to (1.4) with preconditioner (6.2), or of any equivalent form of
symmlq described in Theorem 6.1, amounts to performing an iteration of the constrained craig method
every even step and an iteration of the constrained lsqr method every odd step.



16 G–2014–15 Les Cahiers du GERAD

6.2 minres

The results of the previous section carry over to minres using the same principles. We state them for
completeness.

Theorem 6.3 The iterates generated by the projected minres method applied to (1.4) are the same as
those generated by the constraint-preconditioned minres method applied to (1.4), i.e., with preconditioner
(6.2). They also coincide with those generated by minres applied to (5.2) with preconditioner (6.1).

Theorem 6.4 The application of minres to (1.4) with preconditioner (6.2), or of any equivalent form
of minres described in Theorem 6.3, amounts to performing an iteration of the constrained craig-mr
method every even step and an iteration of the constrained lsmr method every odd step.

7 Application to Optimization
In constrained optimization, it is often beneficial to treat linear constraints explicitly. At iteration k of a
sequential linear or quadratic programming scheme to solve (1.2), a step is computed that must improve two
conflicting objectives: the first is the objective function value, and the second is constraint satisfaction. For
this reason, the step is often decomposed as the sum of a normal and a tangential step (Nocedal and Wright,
2006). The role of the normal step, denoted s for simplicity, is to improve constraint satisfaction without
regard to the objective function. Assuming each xk is computed so as to satisfy the linear equality constraints,
the normal subproblem is typically formulated as (Conn, Gould, and Toint, 2000, Section 15.4)

minimize
s

1
2‖Aks + ck‖2M−1 subject to Es = 0, ‖s‖N ≤ ∆, (7.1)

where ck := c(xk), the rows of Ak := ∇c(xk)T are the constraint gradients ∇ci(xk)T, ∆ > 0 is a trust-region
radius, and M and N are symmetric and positive-definite matrices. Note that in this case, the least-squares
problem is underdetermined. A sophisticated user might include some linear constraints in Ak as appropriate
so as to keep the factorization of (5.8) efficient. Standard constraint qualification conditions for (1.2) impose
that the constraint gradients be linearly independent at a solution x∗. In particular, this implies that E
has full row rank. In the notation of (1.5), the matrix of (1.4) is nonsingular if Q is positive definite on the
nullspace of J. Let the columns of Z form an orthonormal basis for the nullspace of E and complete it with Y
such that W defined via WT :=

[
YT ZT] is orthogonal. The columns of W form an orthonormal basis of

the nullspace of J. Then
WTQW = YTMY + YTAkZ + (YTAkZ)T

is positive definite provided Ak has been scaled so that ‖Ak‖2 < λmin(M).

Practical trust-region methods do not require that (7.1) be solved to optimality. It is sufficient to compute
a step s that results in sufficient decrease of the least-squares objective (Conn et al., 2000, Assumption AA.1j,
p. 696). The sufficient decrease condition imposes that the step s result in decrease of the least-squares
objective that is at least a fixed fraction of the decrease achieved along the intersection of the projection of the
steepest descent direction into the nullspace of E and the trust region. This condition is met by the projected
lsqr method initialized with s0 := 0 because the first direction explored is precisely the steepest descent
direction. Subsequent iterations of the projected lsqr method only result in further decrease. It follows from
(Fong, 2011, Theorem 3.3.11) that the projected lsmr also decreases the least-squares residual monotonically,
so that it may also be employed to solve (7.1) and yields a step that satisfies the sufficient decrease condition.
An additional property of both lsqr and lsmr that makes them suitable for trust-region subproblems is
the guarantee that they generate successive estimates sj such that ‖sj‖N > ‖sj−1‖N—see (Steihaug, 1983,
Theorem 2.1) and (Fong, 2011, Theorems 2.1.6, 3.3.1 and 3.3.6). Consequently, if the iterates ever leave the
trust region, they will never return. Finally, in the case of lsqr, the decrease achieved is known to be at least
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half of that achieved at the global minimizer of (7.1) (Conn et al., 2000, Theorem 7.5.9), independently of the
elliptic singular values of Ak.

Once a normal step s has been computed, SQP methods compute the total step as the sum of s and a
tangential step p. The role of the latter is to decrease the objective value while maintaining the feasibility
improvements achieved by the normal step. The tangential subproblem can be stated as

minimize
p

qk(p) subject to
[
Ak

E

]
p = 0, ‖p‖N ≤ ∆̄, (7.2)

where qk(p) := gT
kp+ 1

2pTHkp is a quadratic approximation of the Lagrangian of (1.2), and ∆̄ is a trust-region
radius. Interestingly, the methods proposed in the previous sections may be applied to solve (7.2) provided
Hk is symmetric and positive definite. Indeed, in this case, it is possible to write Hk = RkRT

k for some
nonsingular matrix Rk—the Cholesky factor being but one example. If we set bk := −R−1

k gk, we see that
(7.2) is equivalent to

minimize
p

1
2‖R

T
kp− bk‖2 subject to

[
Ak

E

]
p = 0, ‖p‖N ≤ ∆̄, (7.3)

which has the form (1.1) with an additional trust-region constraint. The formulation (7.3) is practical in
situations where Rk is readily available, as in quasi-Newton methods in factored form. That we may apply
the projected conjugate gradient method to (7.2) or, equivalently, the projected lsqr method to (7.3) is no
surprise. But it is possible that we may also apply the projected lsmr method to (7.3), and that would be
equivalent to applying the projected minres method to (7.2). The defining property of lsmr implies that
qk(p) will be monotonically decreasing along the minres iterations. This is an alternative proof of (Fong and
Saunders, 2012, Theorem 2.5). We restate this observation below in this alternative form as it is important in
its own right for optimization purposes.

Theorem 7.1 (Fong and Saunders 2012, Theorem 2.5) Let H = HT be positive definite. The quadratic
q(p) := gTp + 1

2pTHp is monotonically decreasing along the minres iterations applied to the system
Hp = −g.

minres also ensures that its approximations satisfy ‖pj‖N > ‖pj−1‖N so that the trust-region constraint
may safely be treated by stopping the iterations as soon as the boundary of the trust region is crossed. The
complete procedure for identifying an approximate minimizer of a convex quadratic inside a trust region by
way of minres is as follows. Initialize minres to solve Hp = −g with p0 := 0. Let k0 be the smallest index
such that ‖pk0

‖ > ∆. If no such k0 exists, minres identifies a solution. Otherwise, the approximate solution
is defined as p̃ := (1− α)pk0−1 + αpk0

where α ∈ [0, 1) is chosen so that ‖p̃‖ = ∆.

In order to conclude that minres may be used to solve trust-region subproblems in the strictly convex
case, it remains to etablish that the solution that it returns satisfies the sufficient decrease condition. This is
the subject of ongoing research and experiments.

8 Discussion
It has been observed several times in the literature that certain Krylov methods, and in particular minres,
applied to symmetric saddle-point systems appear to perform redundant work in the sense that, roughly
speaking, every other iteration only yields neglibigle improvement—see, e.g., (Fischer, Ramage, Silvester, and
Wathen, 1998). In the present paper, we show that the iterations of such Krylov methods are combinations of
iterations of related methods for least-squares or least-norm problems. In the context of (1.1), the constrained
lsqr is the appropriate implementation of cg and should be expected to terminate in about half the number
of iterations as would be required by symmlq applied to (1.3) or (1.4). Similarly, lsmr and craig-mr are
the appropriate implementation of minres and should be expected to terminate in about half the number of
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iterations as would be required by minres applied to (1.3) or (1.4). Fischer et al. (1998, §4) allude to this
relationship.

In the presence of regularization, the method of Craig (1955) in its extended form is described by Saunders
(1995), and its generalized form is described by Arioli (2013) and Arioli and Orban (2013). In this situation,
symmetric saddle-point systems become symmetric quasi-definite systems (Vanderbei, 1995). Arioli and
Orban (2013) establish that the conjugate gradient method is well defined, may be used in place of symmlq,
and alternates between generalized craig and lsqr steps.

An extension of our work to linear inequality constraints is possible using either active-set or interior-point
methods. Both types of methods are extensively documented in the literature. Recently, Dehghani and Orban
(2013) proposed an interior-point method for the more general problem

minimize
x∈Rn

cTx + 1
2‖Ax− b‖2M−1 subject to Ex = d, x ≥ 0.

At each iteration, a search direction is computed as the solution to a symmetric and quasi-definite system.
Equivalently, this may be viewed as an unconstrained regularized linear least-squares problem in iteration-
dependent metrics. Notably, the regularization operator is diagonal.

To see that symmetric and quasi-definite systems may be viewed as the optimality conditions of uncon-
strained linear least-squares problems, consider the system[

Q C
CT −S

] [
x
y

]
=
[
b
0

]
and reformulate it as  Q C

D−1 E
CT ET

x
w
y

 =

b
0
0

 ,
where we used the factorization S = ETDE where D is positive definite. We may choose, e.g., D = S and
E = I, or D = I and E = S

1
2 . The latter system gives the optimality conditions of

minimize
y

∥∥∥∥[CE
]

y−
[
b
0

]∥∥∥∥
M−1

,

where M = blkdiag(Q,D−1). By contrast, the optimality conditions of the regularized constrained problem

minimize
x

1
2‖Ax− b‖2M−1 + 1

2‖x‖
2
N subject to Ex = 0,

may be stated as the symmetric saddle-point systemM A
AT −N ET

E

r
x
y

 =

b
0
0

 ,
where y are the Lagrange multipliers. The methods presented in the present paper are directly applicable
by substituting each of lsqr, craig, lsmr and craig-mr with their generalized version and setting the
regularization parameter to 1—see Arioli and Orban (2013) for details.
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