
Les Cahiers du GERAD

CITATION ORIGINALE / ORIGINAL CITATION

GERAD HEC Montréal
3000, ch. de la Côte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

Les Cahiers du GERAD ISSN: 0711–2440

Improved Primal Simplex:
A More General Theoretical Framework
and an Extended Experimental Analysis

J. Omer, S. Rosat,
V. Raymond, F. Soumis

G–2014–13

March 2014

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication de

ces rapports de recherche bénéficie d’une subvention du Fonds de recherche du Québec – Nature et technologies.

Improved Primal Simplex: A More General Theoretical
Framework and an Extended Experimental Analysis

Jérémy Omer

Samuel Rosat

Vincent Raymond

François Soumis

GERAD & Département de mathématiques et de génie industriel

École Polytechnique
Montréal (Québec) Canada, H3C 3A7

jeremy.omer@gerad.ca

samuel.rosat@gerad.ca

vincent.raymond@polymtl.ca

francois.soumis@gerad.ca

March 2014

Les Cahiers du GERAD

G–2014–13

Copyright c© 2014 GERAD

ii G–2014–13 Les Cahiers du GERAD

Abstract: In this article, we propose a general framework for an algorithm derived from the primal simplex
that guarantees a strict improvement in the objective after each iteration. Our approach relies on the
identification of compatible variables that ensure a nondegenerate iteration if pivoted into the basis. The
problem of finding a strict improvement in the objective function is proved to be equivalent to two smaller
problems respectively focusing on compatible and incompatible variables. We then show that the improved
primal simplex (IPS) of Elhallaoui et al. is a particular implementation of this generic theoretical framework.
The resulting new description of IPS naturally emphasizes what should be considered as necessary adaptations
of the framework versus specific implementation choices. This provides original insight into IPS that allows
for the identification of weaknesses and potential alternative choices that would extend the efficiency of the
method to a wider set of problems. We perform experimental tests on an extended collection of data sets
including instances of Mittelmann’s benchmark for linear programming. The results confirm the excellent
potential of IPS and highlight some of its limits while showing a path toward an improved implementation
of the generic algorithm.

Key Words: Linear programming, simplex, degeneracy, decomposition, primal algorithms.

Les Cahiers du GERAD G–2014–13 1

1 Introduction

1.1 Degeneracy in the Primal Simplex

The primal simplex, described by Dantzig in 1947 (see Dantzig (1955)), was the first efficient algorithm to

be developed for solving linear programs (LPs) and is still used for a large number of applications. It starts

with a feasible solution obtained from a basis of the variable space by setting all the nonbasic variables at

one of their bounds. It then iteratively improves the objective value until optimality is reached. At each

iteration, the algorithm moves to an adjacent, improving basis by selecting a nonbasic entering variable and

removing a variable from the basis through a simplex pivot. One of the major difficulties the algorithm may

encounter is called degeneracy. It occurs when many the basic variables are at one of their bounds. In this

case, there is a high probability that the variable selected to enter the basis cannot have its value modified

without making the current solution infeasible. The resulting degenerate pivot leads to no change in the

current solution and no improvement in the objective value. In a study of degeneracy in the simplex method,

Perold (1980) states that typically if on average 20% of the basic variables are at one of their bounds, 50%

of the iterations will be degenerate. Combined with the multiplicity of highly degenerate problems arising in

industrial applications, this observation highlights the need for an efficient treatment of degeneracy in any

good implementation of the primal simplex algorithm.

1.2 Dealing with Primal Degeneracy: A Short State of the Art

Several techniques have been developed to cope with degeneracy. One family of these methods focuses on the

selection of the variable entering the basis. For instance, in Greenberg (1978), a vector is computed such that

each of its positive entries corresponds to a nonbasic variable that will necessarily lead to a degenerate pivot if

it is chosen to enter the basis. The number of operations is similar to the computation of a reduced cost, but

the test is only heuristic since it does not identify all the nonbasic variables that would lead to a degenerate

pivot. The perturbation (Benichou et al. 1977) and bound-shifting (Gill et al. 1989) techniques follow a

different path. They apply a random modification of either the values of the degenerate variables or their

bounds to put an end to a sequence of nonimproving pivots. The random modification avoids performing

iterations without improvement, but it usually replaces them with small steps. Although not supported by

a strong theory, the two methods, that mostly differ from an implementation point of view, perform well,

and they appear in most efficient simplex codes. For further information, an excellent study of degeneracy

emphasizing its computational aspects is given by Maros (2003).

Another approach aims to take advantage of degeneracy rather than just to minimize its negative effects.
Geometrically, a degenerate vertex of the n-dimensional polyhedron described by the LP’s constraints is the

crossing point of more than n − 1 facets of the polyhedron. Degeneracy thus corresponds to a local excess

of information, which suggests that a smaller problem may be considered locally to make progress from a

degenerate solution. Perold (1980) introduces a particular degeneracy structure in the LU decomposition of

the basis, which involves fewer calculations when performing degenerate pivots. Pan (2008) generalizes the

definition of basis to include deficient bases containing p independent columns, with p lower than the number

of rows. When degeneracy occurs, a deficient basis, smaller than the usual square basis matrix, may be used

to perform the pivot calculations. Generalizing the dynamic constraint aggregation described by Elhallaoui

et al. (2005) for set partitioning problems, the improved primal simplex (IPS) of Elhallaoui et al. (2011)

makes the most of degeneracy by simultaneously reducing the number of rows and columns to perform as

many cheap pivots as possible. Once all the interesting pivots are done, a complementary LP is solved to

find a dual solution maximizing the minimum reduced cost. Either this reduced cost is null and optimality is

proved, or it corresponds to a combination of primal variables that may enter the basis through a sequence

of pivots ending with a strict improvement in the objective. Metrane et al. (2010) prove the equivalence of

IPS to a particular column generation algorithm by respectively identifying the reduced and complementary

problems of IPS with the master and pricing problems of column generation.

2 G–2014–13 Les Cahiers du GERAD

1.3 Contribution Statement

The present article is motivated by the promising experimental results for IPS that are reported by Elhallaoui

et al. (2011) and Raymond et al. (2010b). However, Elhallaoui et al. (2011) conduct their tests on instances

containing a majority of set-partitioning constraints, while the improvements proposed in Raymond et al.

(2010b) are designed for only a part of this restricted benchmark. Based on this proof of concept, our intent

is to investigate the performance of the algorithm on a much more diversified benchmark and, using a new,

more general theoretical description of the algorithm, to highlight potential improvements.

With that in mind, our first contribution is to describe IPS for an LP with upper and lower bounds on the

variables. In Elhallaoui et al. (2011), the algorithm is described for an LP in standard form, because every

LP has an equivalent standard form, but this is not compatible with an efficient implementation. Including

the bounds explicitly shows how degeneracy can be efficiently handled when a variable may be at either its

lower or its upper bound, and it specifies the special treatment that unbounded variables should receive. The

presentation of the algorithm is then generalized to a theoretical framework of which IPS is only one possible

implementation. Our goal is to emphasize the steps in IPS that may be seen as implementation choices. By

analyzing these choices independently of the core of the method, we can identify their main advantages and

drawbacks and consider alternative implementations. Moreover, the new framework is purely primal, which

simplifies the presentation and the proofs. We then extend the benchmark by including larger instances

and problems that do not share the specific structure of the instances used by Elhallaoui et al. (2011) and

Raymond et al. (2010b). A thorough analysis of the results provides a much more accurate description of the

families of problems that may be solved efficiently using IPS while highlighting the implementation choices

that would enlarge its domain of efficiency. The main contribution is thus to identify the limits of IPS while

laying the theoretical foundation for future improvements.

The generic theoretical framework is developed in Section 2, and the implementation choices for IPS are

described in Section 3. The results of the experimental tests are analyzed in Section 4, and in Section 5 we

discuss directions for future research.

1.4 Notation

Lower-case bold symbols are used for column vectors and upper-case bold symbols denote matrices. For

subsets I ⊆ {1, ...,m} of row indices and J ⊆ {1, ..., n} of column indices, the submatrix of A with rows

indexed by I and columns indexed by J is denoted AIJ . Similarly, AI· is the set of rows of A indexed by

I, A·J is the set of columns of A indexed by J , and xJ is the subvector of variables corresponding to A·J .

The vector of all zeros with dimension dictated by the context is denoted 0, and AT is the transpose of A.

2 A Generic Decomposition Algorithm Taking Advantage of
Degeneracy

IPS was designed to start from an extreme solution of the feasible domain, assuming nonnegative variables.

We adapt it to any allow feasible starting solution, and we consider an LP with bounded variables:
min cTx

s. t. Ax = b

l ≤ x ≤ u,

(P)

where x ∈ Rn is the vector of decision variables, c ∈ Rn is the cost vector, A ∈ Rm×n is the constraint

matrix, b ∈ Rm is the right-hand side vector, and l,u ∈ R ∪ {±∞}, l ≤ u, are respectively the lower- and

upper-bound vectors. We assume that A is of full rank m with m ≤ n and that the feasible domain FP is

nonempty.

Given a feasible solution x ∈ FP, the indices of its components can be partitioned into four sets, P,

L, U , and M. L and U respectively designate the set of indices of variables that are at their lower and

Les Cahiers du GERAD G–2014–13 3

upper bounds. For the remaining variables—all of them being strictly within their bounds—P designates a

maximal subset such that A·P is linearly independent, while M gathers all the others. Note that |P| ≤ m,

but nothing can be inferred for |M|. For the sake of readability, we drop the index on x for P, L, U , andM
and the other sets introduced later (C, I, etc.). With this decomposition and a convenient reordering of the

columns, x = (xP ,xL,xU ,xM) with lP < xP < uP , xL = lL, xU = uU , and lM < xM < uM, and

A·PxP +A·LlL +A·UuU +A·MxM = b. (1)

A·P is a basis of the linear span of {A·P ,A·M}, denoted Span(A·P ,A·M), and P is therefore called the

reduced or working basis. Its indices and the variables of xP are respectively referred to as basic indices and

basic variables, and p = |P| denotes the cardinality of this working basis. Finally, the set of all nonbasic

indices is denoted N : N = L ∪ U ∪M.

2.1 A Primal Algorithm for Degenerate Problems

Like the primal simplex or gradient-descent methods, IPS is a primal algorithm: it starts from an initial

feasible solution and iteratively improves it until optimality is reached. Primal algorithms mainly differ from

each other in the improvement procedure, i.e., the way of finding a better solution. Some of them guarantee

a strict improvement in the objective function, whereas others do not. Typically, Dantzig’s primal simplex

cannot guarantee this strict improvement when the instances are degenerate. As for IPS, it was designed to

avoid nonimproving steps, although in practice degenerate pivots are still performed. The purpose of this

section is to describe a general decomposition algorithm yielding a strict improvement at each step; IPS may

be seen as one of its possible implementations. Moreover, we give a theoretical insight based on a purely

primal approach. This approach both gives a rather geometric understanding of the algorithm and eases the

proof of optimality.

In the rest of this paper, x0 ∈ FP denotes the current feasible solution of (P). To guarantee a strict

improvement, the following problem must be addressed:

Improvement Problem (Imp): Given a feasible solution x0, either supply a strictly improving

vector y ∈ Rn, i.e., a vector such that x0 + y ∈ FP and cTy < 0, or assert that x0 is optimal

for (P).

Note that in the case of a maximization problem, cTy < 0 becomes cTy > 0 since the aim is to increase

the objective function. Although Augmentation is often found in the literature on integer programming,

Improvement is more general than Augmentation or Diminution since it applies to both maximization and

minimization problems. Given the current solution x0, Imp comes down to finding an improving feasible

direction as introduced below.

Definition 1 Vector d ∈ Rn is a feasible direction at x0 if there exists a step ρ > 0 such that x0 +ρ ·d ∈ FP.

Moreover, d is an improving direction if cTd < 0, i.e., if taking a positive step along d yields an improvement

in the objective value.

An improving vector y is therefore characterized by a couple (d, ρ) ∈ Rn×R+ where d can be normalized

at will as long as x0 + y = x0 + ρ · d ∈ FP. The set of all feasible directions at x0 can be described as the

following cone section:

∆ =

{
d ∈ Rn |Ad = 0 , dU ≤ 0 , dL ≥ 0 ,

∑
i∈N

wi |di| = 1

}
(2)

where w ∈ Rn, wP ≥ 0, wN > 0.
∑

i∈N wi|di| = 1 geometrically represents a normalization constraint.

Without this constraint, ∆ is a cone and if x0 is an extreme point of FP, the extreme directions of this cone

are the directions of the edges of FP at x0.

4 G–2014–13 Les Cahiers du GERAD

The normalization constraint can be written in a way that makes it closer to a linear equality, which will

prove useful later. With wL > 0, wU < 0 (and wP ≥ 0, wM > 0 as previously), Equation (2) reads:

∆ =

{
d ∈ Rn |Ad = 0 , dU ≤ 0 , dL ≥ 0 ,

∑
i∈P∪M

wi |di|+wT
UdU +wT

LdL = 1

}
. (3)

Moreover, given a feasible improving direction d, the maximal step along d at x0, defined as r(d) =

max
{
ρ|x0 + ρd ∈ FP

}
, is the most interesting step to take since it yields the greatest possible improvement

along d.

Remark 1 In Dantzig’s simplex algorithm, every pivot corresponds to taking a step in some extreme improving

direction. However, what the simplex cannot guarantee is the feasibility of this direction. On the one hand,

a degenerate pivot corresponds to a nonfeasible direction d and, therefore, a step r(d) = 0. On the other

hand, nondegenerate simplex pivots exactly correspond to taking maximal steps in directions that have only

one nonbasic nonzero entry.

One way to tackle the improvement problem is to minimize the chosen objective over the domain ∆.

Typically, that objective is related to the improvement in the objective function given by d ∈ ∆. Imp may

thus come down to solving the following greatest normalized improvement program:

z?Gni = min
d∈Rn

{
cTd |d ∈ ∆

}
. (Gni)

Proposition 1 x0 is optimal for (P) if and only if z?GNI ≥ 0.

Proof. By construction of Gni, there exists a feasible improving direction if and only if z?GNI ≥ 0. Therefore,

the proposition holds.

Based on Proposition 1, the iterative procedure of Algorithm 1 is guaranteed to reach optimality. More-

over, each step r(dk) · dk taken during this procedure yields a strict improvement in the objective function

since all the improving directions dk are feasible, thus r(dk) > 0 and each improvement is zk+1 − zk =

r(dk) · cTdk < 0. Degeneracy is therefore avoided.

Algorithm 1 Nondecomposed Primal Improvement Procedure

1. Find an initial solution x0; k ← 0;

2. If z?Gni ≥ 0, return xk;

3. If z?Gni < 0: let dk be an optimal solution of Gni; xk+1 ← xk + r(dk) · dk; k ← k + 1; GOTO 1.

2.2 Of Compatibility and Decomposition: Turning Degeneracy into an Asset

Algorithm 1 not only avoids degeneracy but turns it into an asset by decomposing Gni into two smaller

problems that, even if they are solved separately, assert that x0 is optimal or provide a feasible improving

direction. This decomposition is the main topic of the present subsection. The main idea is to sequentially

find nondegenerate improving simplex pivots if they exist, and otherwise to solve a more complicated problem

similar to Gni. This decomposition relies on the notion of compatibility.

Definition 2 Given a working basis P, a vector v ∈ Rm is compatible (with P) if and only if v ∈ Span(A·P).

This notion is extended to the nonbasic columns of A·N , their indices, and the corresponding variables.

The set of indices of the compatible columns of A·N is denoted C. Every other column of I = N \ C is said

to be incompatible, and (C, I) forms a partition of N .

Proposition 2 M⊂ C.

Les Cahiers du GERAD G–2014–13 5

Proof. By definition of P, for every index j ∈M, the corresponding column A·j is in Span(A·P).

According to Proposition 2, C = CL ∪ CU ∪ M and I = IL ∪ IU , where for any pair of sets (X ,Y),

XY = X ∩ Y. All incompatible variables are thus at their lower or upper bounds. The following proposition

indicates the value of compatible columns when solving Imp.

Proposition 3 Compatible columns are exactly those that yield nondegenerate pivots if inserted into the work-

ing basis P.

Proof. Let j ∈ N . Pivoting A·j into the working basis leads to a solution x1 ∈ FP (where x1 may or may

not be different from x0). Since only A·j has been pivoted, for all k ∈ N \ {j}, x1
k = x0

k. The constraints of

(P) written for both x0 and x1 are A·Px0
P +A·jx0

j = A·Px1
P +A·jx1

j , so if d = x1 − x0

A·jdj = A·PdP . (4)

Since A·P is of full rank, dP = 0 if and only if dj = 0. Therefore, A·j yields a nondegenerate pivot if and

only if x1 6= x0, that is, if and only if dj 6= 0. Finally, dj 6= 0 and Equation (4) are simultaneously satisfied

if and only if A·j ∈ Span(A·P), so the result holds.

Note that bounds are not mentioned in the above proof. Since all the variables in P are strictly within

their bounds, they can increase or decrease without violating their bounds. Therefore, if |dj | is sufficiently

small, for all i ∈ P, li ≤ x1
i ≤ ui.

From the perspective of the simplex algorithm, it will be efficient to give priority to the compatible columns

since they are exactly those that yield nondegenerate pivots when inserted into the working basis P. Based

on the compatible-incompatible partition of the variables, Gni can be decomposed into the Reduced -Gni

problem (R-Gni) and the Complementary-Gni problem (C-Gni) that respectively focus on the compatible

and incompatible variables:

z?R-Gni = min
(dP ,dC)

cTPdP + cTC dC

s.t. A·PdP + A·CdC = 0∑
i∈P wi |di| +

(∑
i∈M wi |di|+wT

CLdCL +wT
CUdCU

)
= 1

dCL ≥ 0 , dCU ≤ 0

(R-Gni)

z?C-Gni = min
(dP ,dI)

cTPdP + cTIdI

s.t. A·PdP + A·IdI = 0
wT
PdP + wT

IdI = 1
dIL ≥ 0 , dIU ≤ 0

(C-Gni)

R-Gni and C-Gni are both smaller than Gni, so solving them separately must be much faster than

solving Gni. The only remaining issue is to ensure that the search space for an improving direction ∆ can be

split into that of the compatible columns (FR-Gni) and that of the incompatible columns (FC-Gni), i.e., that

solving Gni is equivalent to solving R-Gni and C-Gni.

Lemma 1 A column A·j is compatible if and only if there exists v ∈ Rp such that A·j = A·Pv. In this case,

v is unique.

Proof. This lemma is a consequence of the definition of compatibility and of the fact that A·P is a full-rank

matrix.

Theorem 1 Assume wP = 0, then z?Gni = min {z?R-Gni, z
?
C-Gni}.

6 G–2014–13 Les Cahiers du GERAD

Proof. Recall that wL > 0, wU < 0, C = CL ∪ CU ∪M, and I = IL ∪ IU . Let d = (dP ,dC ,dI) be a solution

of Gni. If dC = 0 or dI = 0, d is respectively a solution of C-Gni or R-Gni and the result clearly holds.

Suppose now that dC 6= 0 and dI 6= 0. We first prove that d can be written as a convex combination

of u′, the solution of R-Gni, and v′, the solution of C-Gni. For every j ∈ C, A·j ∈ Span(A·P), so linear

combinations of compatible columns A·CdC are also compatible. According to Lemma 1, there exists uP ∈
R|P| such that A·PuP = A·CdC . Let u = (uP ,dC ,0) and v = d−u = (vC ,0,dI). Let αu =

∑
i∈Mwi|di|+

wT
CLdCL +wT

CUdCU and αv = wTv = 1−αu. Thus, 0 < αu, αv < 1. Moreover, let u′ = u/αu and v′ = v/αv
be the corresponding normalized directions. With these definitions, d = αuu

′ + αvv
′. By construction, u′

(resp. v′) is a solution of R-Gni (resp. C-Gni) and αu + αv =
∑

i∈M wi |di|+wT
LdL +wT

UdU = 1, because

d ∈ ∆. Therefore, d = αuu
′ + αvv

′ is a convex combination of a solution of R-Gni (u′) and a solution of

C-Gni (v′).

Looking at the objective function, the convex combination reads cTd = αu(cTu′) + αv(cTv′). Either

cTd ≥ cTu′ or cTd ≥ cTv′. However, since every solution of R-Gni and C-Gni is also a solution of Gni and

d is optimal for Gni, cTd ≤ cTu′ and cTd ≤ cTv′. One of the two inequalities is thus an equality and the

second follows from cTd = αu(cTu′) + αv(cTv′). Therefore, cTd = cTu′ = cTv′, and since d is an optimal

solution of Gni, z?Gni = z?R-Gni = z?C-Gni.

Theorem 1 extends a theorem established by Rosat et al. (2013) for the set partitioning problem to

general linear programming, and it has no equivalent in past presentations of IPS. It gives strong theoretical

support to the compatible-incompatible partition and to the R-Gni/C-Gni decomposition of Gni: it states

that one of the optimal solutions of Gni is an optimal solution of one of the decomposed problems. Solving

them separately is thus equivalent to solving Gni, i.e., to determining whether or not x0 is optimal (see

Proposition 1). Since the theorem requires that wP = 0, we retain this assumption in the rest of this paper.

This last condition is not overly restrictive. It is only natural that the emphasis is put on the nonbasic

variables during the search for an improving direction. The same assumption is made by Elhallaoui et al.

(2011) and by most pricing rules designed for the simplex algorithm.

Corollary 1 If, for a current solution x and the associated partition (P, C, I), the optimal values of R-Gni

and C-Gni are both nonnegative, then x is optimal for (P).

This corollary is a straightforward consequence of Theorem 1 and Proposition 1.

One other key aspect of the decomposition is that R-Gni may be further reduced by observing that the

rank of its constraint matrix A·P∪I is the same as the rank of A·P , i.e., p. Since R-Gni is feasible by

construction, it contains m − p redundant constraints that may be removed without harm. Assuming that

the rows are permuted so that the first p constraints are independent, these rows are indexed by P while the

redundant ones have their index set denoted P = {p + 1, . . . ,m}. Since we also have wP = 0, R-Gni may

be equivalently rewritten:

z?R-Gni = min
(dP ,dC)

cTPdP + cTC dC

s.t. APPdP + APCdC = 0∑
i∈M wi |di|+wT

CLdCL +wT
CUdCU = 1

dCL ≥ 0 , dCU ≤ 0

This new form clearly emphasizes the potential advantage of solving R-Gni instead of Gni to find an

improving feasible direction.

The previous results canonically lead to the procedure described in Algorithm 2. The main idea is to first

look at compatible columns to perform nondegenerate pivots (R-Gni), and if no suitable columns are found,

to look for a collection of incompatible columns that globally supplies an improvement (C-Gni).

Les Cahiers du GERAD G–2014–13 7

Algorithm 2 Compatibility-based Decomposed Primal Improvement Procedure

1. Let x be an initial feasible solution;

2. Build the partition (P, C, I) corresponding to x;

3. Solve R-Gni: if z?R-Gni ≥ 0, GOTO 6; else update x by following the direction found by R-Gni;

4. If some criterion is satisfied, GOTO 2;

5. Build the partition (P, C, I) corresponding to x;

6. Solve C-Gni: if z?C-Gni ≥ 0, GOTO 8; else update x by following the direction found by C-Gni;

7. If some criterion is satisfied, z?R-Gni ← −1, GOTO 5;

8. If z?R-Gni ≥ 0 and z?C-Gni ≥ 0 RETURN x; else GOTO 2.

At Step 7, z?R-Gni is arbitrarily set to -1 to ensure that z?R-Gni ≥ 0 and z?C-Gni ≥ 0 (Step 8) can be satisfied

only with R-Gni and C-Gni built from the same (P, C, I) decomposition. With this precaution, Corollary 1

provides a proof of optimality for the algorithm.

Remark 2 No theoretical ground requires R-Gni to be given priority over C-Gni. The order in which steps

3 and 6 are performed in Algorithm 2 is based on common sense: R-Gni is easier to solve than C-Gni

because compatible columns guarantee nondegenerate pivots. Steps 3 and 6 could possibly be switched. Also,

the criteria that appear in steps 4 and 7 may be set to allow for several instances of R-Gni or C-Gni to be

solved consecutively. They may thus be used to emphasize the preference for one or the other problem.

Algorithm 2 provides a strong basis for an efficient algorithm for degenerate LPs. Yet it is too generic to

be implemented as such, and choices are necessary to make it a practical LP solver. Matters such as how

to find an initial solution, when to update the (P, C, I) partition, or when to switch from solving R-Gni to

solving C-Gni are more than just implementation details. They are critical features of the algorithm that can

dramatically change its computational behavior and the resulting running time. The next section thoroughly

addresses the evolution from this theoretical scheme to a numerically efficient procedure.

3 Implementing the Framework: IPS

Practical implementations of Algorithm 2 already exist, even though the associated generic theory was never

presented. One of them is, as already mentioned, the IPS algorithm of Elhallaoui et al. (2011). IPS includes

practical implementation techniques, but it also makes implicit choices. In particular, all the weights in

the normalization constraint are set to 1, and the complementary problem is transformed through a costly
algebraic operation to reduce its size. These choices are discussed below, together with the most important

implementation issues. Although some of them are discussed in Elhallaoui et al. (2011) and Raymond et al.

(2010b), we adapt the presentation to emphasize the relationship between IPS and the aforementioned generic

framework. New details are also needed because of the efficient treatment of upper-bounded and unbounded

variables. Moreover, our intent to diversify the benchmark and the general view provided by the previous

section give rise to several improvements.

3.1 Starting the Algorithm with an Initial Feasible Solution

One important improvement is that the theoretical presentation in the previous section does not assume that

the initial feasible solution is basic. We use a simplex phase I to generate the initial solution in our tests,

but IPS could start from a feasible solution generated, for instance, by an external heuristic procedure. The

only additional work is to identify a maximal linearly independent set of columns within their bounds. This

can be done, for instance, by performing Gaussian eliminations until reduction to row echelon form. The

operation simultaneously provides the set P and the m− p redundant constraints of R-Gni.

3.2 Identifying Compatible Variables and Transforming the Complementary Problem

The efficiency of Algorithm 2 relies on the ability to quickly update the partition (P, C, I). Once P is known,

identifying C is equivalent to finding the set of nonbasic columns that belong to Span(A·P). A straightforward

8 G–2014–13 Les Cahiers du GERAD

way to do this is to complete the columns of A·P with vectors of Rm to form a basis B of Rm. Since the

columns ofA·P are the first p columns, any vector v ∈ Rm is written in the basisB as
((
B−1v

)
P ,
(
B−1v

)
P

)
,

with
(
B−1v

)
P ∈ Span(A·P). This decomposition being unique, it follows that v ∈ Span(A·P) if and only if(

B−1v
)
P = 0.

Elhallaoui et al. (2011) and Raymond et al. (2010b) always assume a complete basis is available because

the initial solution comes from a simplex phase I. Here, the computations are minimized by choosing the

simplest possible completion, i.e.,

B =

[
APP 0
APP Im−p

]
⇔ B−1 =

[
A−1
PP 0

−APPA
−1
PP Im−p

]
.

As a consequence, the set of compatible columns is determined by forming the matrix−APPA
−1
PPAPN+APN .

Only for xM may this calculation be skipped, since those columns are known to be compatible.

In contrast to the identification of compatible columns, the transformation of C-Gni is not necessary for

the execution of the algorithm. It is however an essential element of IPS. In C-Gni, the linear constraints

A·PdP +A·IdI = 0 can be interpreted as follows: the weighted combination of the columns A·IdI that

potentially enter the basis must be compatible. These constraints are equivalent to A·IdI ∈ Span(A·P). As

stated above, another way of putting this condition is(
−APPA

−1
PPAPI +AP·I

)
dI = 0. (5)

Moreover, since A·P is a full-rank matrix, for a given dI satisfying (5), there is a unique dP such that

A·PdP + A·IdI = 0. This vector is given by dP = −A−1
PPAPIdI . Denoting c̄T = cT − cTPA

−1
PPAP· to

extend the usual notation of the reduced cost, the solution of C-Gni is thus equivalently found by solving a

smaller LP that involves only the variables of dI :

z?C-Gni = min
dI

c̄TIdI

s.t.
(
−APPA

−1
PPAPI +AP·I

)
dI = 0

wT
IdI = 1

dIL ≥ 0,dIU ≤ 0

(Cr-Gni)

This transformation of the complementary problem C-Gni into a smaller problem Cr-Gni is similar to

that performed in the reduced-gradient algorithms as presented by Kallio and Porteus (1978). That is, the

reduction of a problem with p + |I| variables to |I| variables in such a way that (dP ,dI) is easily inferred

from dI resembles the reduced-gradient approach. However, the reduction in the number of constraints

presented here is not mentioned in either the theory (see Kallio and Porteus (1978)) or the MINOS imple-

mentation of Wolfe’s reduced-gradient (see Murtagh and Saunders (1978)), and neither work suggests adding

a normalization constraint that could influence the objective.

Although the density of the constraint matrix changes as we transform C-Gni, in a way that is impossible

to predict in the general case, it seems that an important reduction in the computational time could be

achieved by considering an LP with fewer variables and constraints. In IPS, R-Gni has p constraints and

p + |C| variables, and Cr-Gni has m − p constraints and n − p − |C| variables. If the number of simplex

pivots is similar for the two problems, one would expect IPS to perform best on problems with p ≈ 0.5m and

approximately as many compatible as incompatible variables.

Focusing now on the computational burden of the algebraic operations described above, we see that

the method used to determine C is closely linked to the choice of whether or not to transform C-Gni. If

−APPA
−1
PPAPN +APN is computed to check the compatibility of the nonbasic variables, there is no other

costly operation to execute in order to form Cr-Gni. Therefore, solving Cr-Gni should be faster than

solving C-Gni. On the other hand, if a fast method for identifying the compatible columns is available,

much of the time spent computing the constraints of Cr-Gni would potentially be saved by keeping the

original constraints in C-Gni. With this in mind, Raymond et al. (2010a) recently proposed a stochastic

compatibility test that does approximately as many operations as the computation of a reduced cost and

identifies all the compatible columns with an extremely small probability of error.

Les Cahiers du GERAD G–2014–13 9

3.3 Setting the Normalization Constraint in the Complementary Problem

The second important implementation choice considered as a part of IPS by Elhallaoui et al. (2011) and

Raymond et al. (2010b) is the normalization constraint of C-Gni. For simplicity, all the weights are set to

±1 in IPS.

To better understand the effect of this choice, one may observe that Cr-Gni could be equivalently

solved by removing the normalization constraint and minimizing the normalized criterion c̄TIdI/w
T
IdI . A

normalized solution of Cr-Gni would then be obtained as d?I/w
T
Id

?
I . This shows that the normalization

constraint actually impacts the criterion guiding the search for an improving compatible combination of

columns. For instance, even if it cannot lead to a compatible direction, if the search is restricted to solutions

with one nonzero variable, c̄i/wi, i ∈ I will be minimized. Setting all the weights to ±1 thus leads to an

extension of Dantzig’s original pricing criterion (see Dantzig (1955)) to improving directions with more than

one nonzero nonbasic variable. The main advantage of Dantzig’s pricing is that the weights are easy to

compute and do not introduce additional risks of numerical instability. On the other hand, there is no reason

why they should lead to good directions.

3.4 Solving the Reduced Problem

The practical solution of R-Gni results from the immediate computation of its optimal solution, as indicated

by the proposition below.

Proposition 4 R-Gni admits an optimal solution (d?P ,d
?
C) such that

d?j =
1

wj
, for some j ∈ arg min

({
c̄i
wi

: i ∈ CL ∪ CU
}
∪
{
−|c̄i|
wi

: i ∈M
})

d?i = 0 , for all i ∈ C \ {j}

d?P = − 1

wj
A−1
PPA·j .

(6)

Proof. Let zmin = min
({

c̄i
wi

: i ∈ CL ∪ CU
}
∪
{
− |c̄i|wi

: i ∈M
})

. For any feasible solution d of R-Gni, dP =

−A−1
PPA·CdC , so the objective function cTPdP + cTC dC is equivalently written∑

i∈C
c̄idi =

∑
i∈C

c̄i
wi
widi

≥
∑

i∈CL∪CU

c̄i
wi
widi +

∑
i∈M

− |c̄i|
wi

wi |di|

≥ min

{
c̄i
wi

: i ∈ CL ∪ CU
} ∑

i∈CL∪CU

widi + min

{
−|c̄i|
wi

: i ∈M
}∑

i∈M
wi |di|

≥ zmin ×

(
wT
CLdCL +wT

CUdCU +
∑
i∈M

wi |di|

)
= zmin.

One can easily verify that a vector d? satisfying (6) is a feasible solution of R-Gni whose objective value is

equal to zmin, so it is optimal.

The consequence of Proposition 4 is that solving R-Gni and following the optimal solution until a bound

is reached is equivalent to pivoting a compatible column into the working basis. As long as the variables

of xP are strictly within their bounds, those pivots are guaranteed to be nondegenerate. In practice, this

guarantee may be costly since it implies that variables at one of their bounds must be removed from P and C
after each pivot. As a consequence, IPS solves R-Gni several times without updating the partition (P, C, I)

10 G–2014–13 Les Cahiers du GERAD

by running the primal simplex on the following reduced problem until a stopping criterion is reached:
min cTPxP + cTCxC

s. t. APPxP +ACPxCx = b̃P

lP ≤ xP ≤ uP , lC ≤ xC ≤ uC

(Red)

Here b̃P = bP −A·ILlIL −A·IUuIU is used instead of bP to ensure the feasibility of the current solution.

The choice of the weights wC determines the pricing criterion used to solve Red. For instance, if all the

weights are set to ±1, the primal simplex selects entering variables according to Dantzig’s criterion.

The stopping criterion is that determined by Raymond et al. (2010b): the simplex is stopped after m

iterations if optimality is not reached earlier. In contrast to Raymond et al. (2010b), because identifying the

compatible variables can be costly, Red is built anew only if at least 10% of the variables in P are equal

to one of their bounds and if 30% of P has changed since the last update of (P, C, I). These modifications

ensure that some progress is made between two consecutive manipulations of the constraints, and they keep

the size of Red constant provided the degeneracy remains low enough.

3.5 Solving the Complementary Problem

Once an optimal solution of Red has been found, new improving directions are found or optimality is proved

by solving Cr-Gni. Theoretically, each time that Cr-Gni is solved it provides a feasible descending direction.

However, this property requires that the partition (P, C, I) is updated each time. Furthermore, following

the improving direction found by Cr-Gni usually results in only a small modification of the current solution

and the associated Red. For these reasons, the strict theoretical framework described in Algorithm 2 is

usually inefficient in practice. As stated at the end of Subsection 3.4, the decomposition is thus updated only

when the solution is degenerate enough and P has changed significantly since the last update. Following the

procedure of Raymond et al. (2010b), we then solve the complementary problem several times in a row. Each

time we remove the variables that appear in the resulting direction from the problem and solve Cr-Gni again

to find a new direction involving different nonbasic variables. These directions are not directly followed; the

nonzero variables are instead included in C together with the other variables belonging to Span (P ∪ C). This

is done to grant the simplex more flexibility in choosing the order of the pivots when solving the resulting

Red. In our tests, complementary problems were solved until at least 10% of the columns of I were selected

to be appended to the reduced problem.

As in Raymond et al. (2010b), Cr-Gni is solved with the dual simplex algorithm. An improvement is
added to ensure that this process starts from a dual feasible solution. With that in mind, consider the dual

formulation of Cr-Gni with slack variables s:

z?C-Gni = max
(π,y)

y

s.t. wiy + πT
(
−APPA

−1
PPAPi +APi

)
+ si = c̄i, ∀i ∈ IL

wiy + πT
(
−APPA

−1
PPAPi +APi

)
− si = c̄i, ∀i ∈ IU

s ≥ 0,π ∈ Rm−p, y ∈ R

(7)

With j ∈ arg min{c̄i/wi : i ∈ I}, a feasible solution of (7) is obtained by setting π = 0, y = c̄j/wj , sj = 0,

and si = c̄i/wi − c̄j/wj (≥ 0),∀i ∈ I \ {j}. The associated basis is made up of y and {si}{i∈I\{j}}, while π

and sj are nonbasic. Clearly, this solution is not optimal since the complementarity conditions would lead to

only one nonzero variable in dI , which contradicts the definition of an incompatible variable. On the other

hand, giving this solution to a LP solver helps to avoid a potentially time-consuming phase I.

Once an optimal solution d?I of Cr-Gni has been found, all the variables such that d?i 6= 0, i ∈ I, are

removed from Cr-Gni, which is equivalent to removing the associated constraints and slack variables in (7).

As a consequence, the solution remains dual feasible and can be used to efficiently warm-start the solution

process for this smaller Cr-Gni.

Les Cahiers du GERAD G–2014–13 11

3.6 Summary of the Algorithm

The choices and adaptations that are included in IPS to obtain an efficient practical implementation are

summarized in Algorithm 2. We denote by P+ the subset of P indexing the variables strictly within their

bounds. Immediately after an update of (P, C, I), P = P+, but this may change after pivots are performed.

The variables selected by Cr-Gni to be included in Red are temporarily stored in J .

Algorithm 3 Improved primal simplex with upper and lower bounds

1. Let x be an initial feasible solution;

2. Build the partition (P, C, I) corresponding to x; P0 ← P;

3. Solve Red for m iterations or until optimality is reached; update the current solution x;

4. If |P+| < 0.9 |P| and |P0 ∩ P+| < 0.7 |P|, GOTO 2;
else if Red is not solved to optimality, GOTO 3;

6. Solve Cr-Gni: let d?I and z?Cr-Gni be the optimal solution and objective value;

7. If z?Cr-Gni ≥ 0, GOTO 10;
else I+ ← {i ∈ I : d?i 6= 0}, J ← J ∪ I+;

8. If |J | < 0.1 |I|, remove xI+ from Cr-Gni, GOTO 6;

9. A·J ← A·I ∩ Span (A·P ,A·J); C ← C ∩ J , I ← I \ J ; J ← ∅; GOTO 3;

10. x is optimal, RETURN x.

4 Extended Computational Analysis of IPS

4.1 Solution of the LPs

The optimization library cplex 12.41 is called for the solution of every LP. The initial primal feasible solution

is generated through a simplex phase I; the primal simplex is used to solve Red while the dual simplex is

used for Cr-Gni. IPS is then evaluated by comparing its performance with a direct solution of the complete

problem P by the primal simplex of cplex, starting from the same initial primal feasible solution. It should

be noted that, although both IPS and the direct solution process warm-start from feasible solutions, no

presolve is done by cplex to take advantage of this warm start. For convenience, this direct primal simplex

approach is referred to as DPS in the following discussion.

The default options of cplex are used for all the parameters except the pricing method. With default

pricing, cplex automatically switches between the different criteria implemented for the primal simplex,

depending on indicators that are unfortunately not documented or available to the user. There are several

disadvantages to this automatic pricing. First and foremost, iteratively starting and stopping cplex has a

strong undesirable impact on the choices it makes with regards to the selected criterion. As a consequence,

the differences between the DPS and IPS performance could originate from the differing pricing methods,

which would make interpretation difficult. Second, the choice of the pricing has important consequences on

the number of pivots performed while solving an LP and the computational time for each pivot, as illustrated

in Table 1. The automatic pricing would thus invalidate any comparison of the number of pivots. We

therefore chose a specific pricing method for all the calls to cplex, both in DPS and IPS. To choose the

method, we tested the three usually most efficient pricing methods implemented in cplex on the benchmark

detailed in the next section. These methods are the automatic pricing, the devex method of Harris (1973),

and an approximate version of the steepest-edge criterion first described by Goldfarb and Reid (1977). These

methods respectively correspond to the values 0, 1, and 3 for the CPX PARAM PRIIND parameter. Table 1
shows the average runtime and the number of pivots for each problem family. For an easier comparison, we

present the results for devex and steepest-edge as ratios relative to the default option. The results show that

the approximate steepest-edge is neither systematically better nor worse than the automatic pricing, and so

we used it in all the tests.

1cplex is freely available for academic and research purposes under the IBM academic initiative: http://www-03.ibm.com/

ibm/university/academic

http://www-03.ibm.com/ibm/university/academic
http://www-03.ibm.com/ibm/university/academic

12 G–2014–13 Les Cahiers du GERAD

Table 1: Comparison of three pricing criteria in cplex

default devex (ratios) steepest-edge (ratios)

Instance pivots cpu pivots cpu pivots cpu

ACP 17920 1.13 s 0.31 0.75 0.14 0.57
UBFA 128165 192.00 s 1.08 0.66 0.40 0.38
UFL 52926 17.56 s 1.66 1.00 0.77 0.77
VCS 169552 62.78 s 1.68 6.95 0.56 1.77
Mittelmann 672386 255.92 s 1.30 3.20 0.47 1.33

4.2 Description of the Benchmark

The performance of IPS was tested on five families of problems. The first four sets of instances correspond

to specific types of problems: airline crew pairing problems (ACP), combined fleet assignment and aircraft

routing problems (UBFA), uncapacitated warehouse location problems (UFL), and simultaneous vehicle and

crew scheduling problems (VCS). Instances of these problems were used by Elhallaoui et al. (2011) because

they exhibit significant degeneracy. We made two noteworthy modifications to this benchmark. The ten VCS

instances of Elhallaoui et al. (2011) all had 2084 constraints and about 6000 to 10000 variables. We kept only

the largest two, and we added three others involving two to fifty times more variables to observe the sensitivity

of the algorithm to variations in the number of variables. Also, to evaluate how the algorithm performs when

the variables are bounded, we derived the UBFA instances from the five largest fleet assignment instances of

Elhallaoui et al. (2011) by explicitly adding upper bounds on the variables. The set-partitioning constraints

implicitly constrain the variables to be less than or equal to one; we added the upper bound xi ≤ 1 to every

variable xi.

The instances used by Elhallaoui et al. (2011) and Raymond et al. (2010b) share common features that

motivated their choice. They are all highly degenerate, their sizes are reasonable, the variables are all bounded

below (by 0) but not above, and they include similar types of constraints. For instance, the ACP, UBFA, and

VCS problems all contain a majority of set-partitioning constraints. Although we made some changes to the

benchmark by considering larger instances and adding finite upper bounds to the fleet-assignment instances,

it is difficult to make a thorough analysis of the strengths and weaknesses of IPS for such a homogeneous

benchmark. We therefore added fifteen instances selected from Mittelmann’s benchmark2, which was built

to enable a rigorous evaluation of the commercial and open implementations of the most efficient algorithms

for LP. Testing IPS on these instances should help to confirm its strengths and identify its limits. Since

the computational burden of the algebraic operations needed to identify compatible variables and transform

C-Gni grows much more quickly with the number of constraints than with the number of variables, the dual

form of the instances, containing significantly more constraints than variables, was solved by both IPS and

DPS. This choice is also usually justified by efficiency concerns when solving an LP with the primal simplex.

Table 2 summarizes the characteristics of the thirty-six instances that we used. It focuses on three aspects

of the instances: their sizes, the performance of DPS, and indicators of degeneracy. The header ρA stands

for the density of the original constraint matrix A. To characterize the degeneracy during the solution of

the instances, we recorded both the average number of degenerate variables and the number of degenerate

pivots. The instances were simply numbered from 1 to the number of instances for each type. The Mittelmann

instances for which we solved the dual form are indicated with a ′ symbol.

4.3 Experimental Results

The tests were all performed on an OpenSuse operating system with an Intel(R) Core(TM) i7-3770 CPU @

3.40 GHz processor.

IPS as summarized in Algorithm 3 was called on the benchmark to obtain the results in Table 3. These

results are relevant to a first analysis of the IPS performance. The headers are partitioned into three types of

2These instances are available online: http://plato.asu.edu/ftp/lpcom.html

http://plato.asu.edu/ftp/lpcom.html

Les Cahiers du GERAD G–2014–13 13

Table 2: Characteristics of the benchmark

size of P DPS solve degeneracy

Instance m: rows n: cols ρA piv cpu var piv

ACP1 823 8904 9.96E-03 3148 0.81 59.8% 66.4%
ACP2 531 5198 1.32E-02 1276 0.17 79.2% 76.8%
ACP3 825 8627 9.95E-03 3994 1.13 76.6% 86.6%
ACP4 426 7195 1.70E-02 1244 0.25 48.1% 43.2%
ACP5 801 8308 9.91E-03 3262 0.87 70.3% 84.0%
ACP6 646 7292 1.10E-02 2283 0.46 71.2% 73.8%

UBFA1 5182 23650 2.51E-03 11129 8.78 74.0% 65.2%
UBFA2 5182 23990 2.50E-03 15566 13.05 74.5% 66.9%
UBFA3 5182 24282 2.49E-03 67792 93.72 76.2% 68.5%
UBFA4 5182 24517 2.49E-03 142550 255.36 76.5% 73.2%
UBFA5 5182 24875 2.48E-03 53591 73.42 76.9% 85.8%

UFL1 7965 15330 2.41E-04 20327 5.31 57.3% 45.6%
UFL2 10440 20380 1.87E-04 36072 8.94 69.7% 60.2%
UFL3 15476 30452 1.27E-04 54069 17.57 75.1% 61.3%
UFL4 20534 40568 9.62E-05 60587 23.72 76.7% 71.4%
UFL5 25931 51462 7.65E-05 58382 23.21 80.2% 84.3%

VCS1 2084 10343 1.51E-02 21091 20.26 41.8% 70.3%
VCS2 2084 10150 1.57E-02 22980 21.65 44.5% 72.3%
VCS3 2085 26350 1.66E-02 42341 93.07 64.8% 47.9%
VCS4 1200 133572 1.70E-02 12479 68.43 50.2% 66.3%
VCS5 1600 570983 1.20E-02 25849 607.08 62.7% 66.9%

dano3 3202 15851 1.61E-03 13785 5.22 33.6% 60.1%
dfl001 6071 12230 4.80E-04 21895 8.77 48.8% 70.8%
fome12 24284 48920 1.20E-04 78964 66.61 49.6% 66.6%
l30 2701 16281 1.18E-03 123704 136.77 30.6% 98.0%
lp22 2958 16392 1.41E-03 36250 20.38 29.3% 80.0%
mod2 34774 66409 8.65E-05 38023 43.79 21.6% 12.1%
neos1’ 1892 133473 1.86E-03 33580 111.98 85.8% 99.0%
neos2’ 1560 134128 2.65E-03 39460 149.87 80.7% 99.2%
nug15 6330 22275 6.73E-04 92087 257.49 24.9% 55.6%
qap12 3192 8856 1.36E-03 20727 17.21 22.3% 32.8%
qap15 6330 22275 6.73E-04 108918 339.23 25.5% 60.6%
rail2586 2586 923269 3.36E-03 45855 1248.37 31.3% 36.0%
rail4284 4284 1096890 2.40E-03 88617 2520.75 29.2% 52.4%
rlfprim’ 8052 74970 4.67E-04 3224 2.31 48.5% 100.0%
world 34506 67147 8.58E-05 44387 56.85 22.7% 13.7%

information. The first two columns record the number of times the partition (P, C, I) was updated (“PCI”)

and the number of times the reduced problem was expanded by solving Cr-Gni several times (“EXP”). The

following columns give the proportion of the runtime spent in computing the partitions (P, C, I), solving

Red, and solving Cr-Gni, as well as the total runtime of IPS. For an easier comparison, the last four

columns contain the ratios of the performance measures of DPS relative to those of IPS, thus indicating the

improvement factor of IPS. The headers “pivRed” and “deg piv” respectively stand for the total number of

primal simplex pivots and the proportion of degenerate pivots, and “cpu” stands for the total runtime. The

quantity in the “cpuRed” column is the ratio of the time spent solving Red relative to the DPS runtime.

This column gives a measure of the improvement that could be expected for IPS if (P, C, I) was updated

rapidly and the solution of C-Gni was fast even if the problem is not transformed (since the transformation

of C-Gni comes with costly updates of (P, C, I)). Average values are provided for the improvement factors

of the first four types of problems, but given the heterogeneity of the Mittelmann instances it did not seem

relevant to base an interpretation on average values. The analysis of the Mittelmann instances is instead

done on a case-by-case basis.

The solution was on average 3.34 times faster with IPS than with DPS for the VCS instances. Similar

results were observed by Elhallaoui et al. (2011) and Raymond et al. (2010b) for instances whose sizes are

comparable with those of VCS1 and VCS2. The interesting point is that IPS remains efficient on VCS3,

14 G–2014–13 Les Cahiers du GERAD

Table 3: Evaluation of IPS against cplex

phase count cpu allocation improvement factors

PCI EXP PCI Red Cr-Gni cpu pivRed deg piv cpuRed cpu

VCS1 3 13 4.2% 87.5% 6.5% 8.01 s 1.40 1.72 2.89 2.53
VCS2 4 14 5.7% 82.3% 9.8% 8.24 s 1.45 1.71 3.19 2.63
VCS3 5 14 10.4% 40.7% 45.4% 15.72 s 2.94 1.01 14.53 5.92
VCS4 2 1 8.0% 89.1% 2.4% 23.37 s 1.67 1.41 3.29 2.93
VCS5 3 6 5.8% 64.5% 27.9% 226.42 s 1.87 1.40 4.15 2.68
Average 1.87 1.45 5.61 3.34

ACP1 1 3 22.4% 70.9% 4.0% 0.48 s 1.50 1.25 2.40 1.70
ACP2 1 5 17.7% 60.8% 15.2% 0.16 s 1.10 0.97 1.79 1.09
ACP3 1 5 23.3% 55.5% 15.3% 0.34 s 2.78 1.42 6.03 3.35
ACP4 1 3 19.9% 71.1% 4.3% 0.21 s 1.16 1.36 1.69 1.20
ACP5 1 3 22.1% 66.9% 7.8% 0.34 s 2.00 1.29 3.89 2.60
ACP6 1 6 19.4% 56.8% 16.5% 0.28 s 1.64 1.16 2.92 1.66
Average 1.70 1.24 3.12 1.93

UBFA1 1 7 17.4% 45.3% 34.3% 6.08 s 1.12 1.90 3.19 1.44
UBFA2 1 8 16.5% 44.4% 35.6% 6.47 s 1.49 1.86 4.54 2.02
UBFA3 1 8 16.0% 48.5% 32.3% 6.72 s 5.94 1.56 28.74 13.94
UBFA4 1 8 14.6% 43.0% 39.4% 7.77 s 11.41 1.97 76.43 32.86
UBFA5 1 10 14.9% 49.3% 32.5% 7.26 s 4.26 1.89 20.53 10.12
Average 4.84 1.84 26.68 12.08

UFL1 3 15 18.4% 57.0% 21.3% 3.79 s 1.76 1.43 2.46 1.40
UFL2 3 13 25.9% 38.4% 31.8% 4.37 s 3.21 1.47 5.32 2.04
UFL3 4 12 32.6% 37.4% 26.8% 9.00 s 2.80 1.56 5.22 1.95
UFL4 3 11 32.2% 33.7% 31.4% 14.23 s 2.51 2.32 4.94 1.67
UFL5 4 10 43.8% 19.8% 33.9% 18.44 s 2.82 1.78 6.36 1.26
Average 2.62 1.71 4.86 1.66

dano3 3 6 10.6% 73.4% 13.7% 3.73 s 1.14 1.46 1.91 1.40
dfl001 3 13 11.1% 52.0% 35.0% 9.95 s 1.03 1.37 1.69 0.88
fome12 3 29 9.0% 29.9% 59.5% 187.39 s 0.70 1.03 1.19 0.36
l30 1 2 1.1% 55.3% 42.9% 28.56 s 4.66 1.03 8.66 4.79
lp22 3 10 4.1% 88.1% 7.3% 14.40 s 1.48 1.67 1.61 1.41
mod2 1 13 7.7% 82.7% 8.8% 64.42 s 0.73 1.20 0.82 0.68
neos1’ 3 7 25.8% 2.3% 65.7% 8.10 s 20.33 1.20 602.02 13.82
neos2’ 3 3 18.7% 4.9% 74.2% 12.77 s 11.62 1.14 237.88 11.74
nug15 4 7 7.6% 81.3% 10.9% 262.59 s 1.17 1.29 1.21 0.98
qap12 3 6 9.3% 79.3% 10.6% 23.49 s 0.84 0.93 0.92 0.73
qap15 4 8 7.0% 71.5% 21.3% 311.34 s 1.30 1.49 1.52 1.09
rail2586 6 13 13.8% 39.8% 44.5% 619.64 s 1.09 1.07 5.06 2.01
rail4284 5 12 7.6% 26.3% 65.2% 2048.01 s 1.14 0.93 4.67 1.23
rlfprim’ 1 1 80.3% 0.6% 17.0% 2.49 s 1612.00 988.14 153.73 0.93
world 1 14 7.3% 82.5% 9.3% 73.27 s 0.78 1.23 0.94 0.78

VCS4, and VCS5, where the number of variables is two to fifty times larger. As expected, the total number

of pivots and the proportion of degenerate pivots are lower for IPS than for DPS, and an important indicator

of efficiency is that the time spent in transforming and solving Cr-Gni remains a small part of the total

runtime. The instance VCS4 seems to be an exception, but this is because that IPS performed many fewer

pivots in Red, thus giving more importance to the partition updates and Cr-Gni. For the ACP instances

the global trends were similar to those for the VCS instances, which is consistent with the fact that both

VCS and ACP mostly contain set-partitioning constraints.

Referring to Table 2, it appears that around 75% of the basic variables were degenerate for the UBFA

instances. About one third of these variables are at their upper bounds (xi = 1) while the rest are at their

lower bounds (xi = 0). Because of this high number of degenerate variables, 65% to 80% of the pivots of DPS

are degenerate, and there is a great variability in the number of pivots although the instances all derive from

the same problem and have similar sizes. The impressive average improvement by a factor of 12 for this class

of problem reflects a stabilization of the solution process for these highly degenerate problems: as expected,

the IPS runtimes are close for these instances, ranging from 6.1 s to 7.8 s, and they globally increase with the

Les Cahiers du GERAD G–2014–13 15

instance sizes. These positive results validate the potential usefulness of IPS for degenerate problems with

bounded variables.

The UFL instances clearly illustrate the impact of the partition updates on the overall execution of

IPS. Although IPS achieves a considerable reduction in the number of pivots, leading to an average 2.6

improvement factor and a proportion of degenerate pivots that is 1.7 times smaller than that for DPS,

the total improvement is not as good as that for the other families of problems. This is mostly due to

the computational time spent in the update of (P, C, I) (see column “PCI”), which seems to grow much

faster than the time spent solving Red as the number of constraints increases. As a consequence, the

column “cpuRed” shows a large improvement factor (4.9 on average) over DPS. This shows the potential

for improvement in IPS if the partition can be updated quickly and the ensuing transformation of C-Gni

avoided in such cases.

In contrast to the previously examined families of instances, the performance of IPS is much less homoge-

neous for the Mittelmann instances. A significant improvement (greater than 20%) was achieved for 7 of the

15 instances (dano3, l30, lp22, neos1’, neos2’, rail2586, rail4284), the computational time was significantly

worse for 4 instances (fome12, mod2, gap12, world), and it was similar for the remaining 4 instances (dfl001,

nug15, qap15, rlfprim’).

Starting with the largest improvements, we see that the success of IPS on the two similar instances neos1’

and neos2’ and on l30 is clearly due to the massive proportion of degenerate pivots (98% to 99%) when

executing the primal simplex in DPS (see Table 2). IPS avoids most of the degenerate pivots by solving

Cr-Gni, and Red is extremely small. These results are consistent with the purpose of IPS.

The other four instances for which IPS performed significantly better than DPS (dano3, lp22, rail2586,

rail4284) share several attributes: they have comparable constraint matrix densities and numbers of con-

straints, and the proportion of degenerate variables is close to 30%. Since the computational time spent

updating (P, C, I) depends on the number of constraints and the number of degenerate variables, it is logical

that it is responsible for only a small part of the total computational time. On the other hand, although

the overall cpu improvement factors are close (ranging from 1.2 to 2.0), the solution of Cr-Gni represents

a much greater proportion of the total runtime for the rail instances. As a consequence, a significant gain

could be achieved if the solution of Cr-Gni could be sped up for these instances; an improvement factor

close to 5 was recorded for the solution of Red alone. Since rail2586 and rail4284 are instances of a set

covering problem, it would be interesting to investigate the development of an algorithm specialized for such

problems, comparable to the dynamic constraint-aggregation technique of Elhallaoui et al. (2005) for the set

partitioning problem.

The remaining eight Mittelmann instances did not lead to a significant improvement. The possible

identification of probable causes is supported by Table 4. This table is restricted to these eight instances.

The bold font highlights the information most relevant to explaining the low improvement factors, and the

instances with similar features are grouped in adjacent rows. The columns related to degeneracy and the

improvement factors reproduce the corresponding columns of Tables 2 and 3. The second group of columns

focuses on the reduction of P. To better emphasize the comparison with DPS, the computational time spent

in the reduction is divided by the DPS runtime. The second column (“|C| / |P|”) displays the maximum value

of the ratio of the cardinality of C and P found after the partition updates. This value is an indicator of the

potential progress made when solving Red: if it is large, there is a greater probability that many cheap pivots

are performed. The third group of columns focuses on the solution of Cr-Gni. The first column indicates

the impact of the transformation of C-Gni on the density of its constraint matrix. The second column shows

the Cr-Gni computational time divided by the DPS runtime.

The first group of instances, mod2, qap12, and world, exhibit low proportions of degenerate variables and

pivots when solved by DPS. Since the main benefits of IPS are the opportunity to solve a reduced problem and

to perform fewer degenerate pivots, these two instances leave little room for improvement. The IPS runtime

is larger than that for DPS, and so is the time spent solving Red. It appears that IPS is not appropriate for

such instances. A simple adaptation would be to wait for an important proportion of degenerate pivots to

16 G–2014–13 Les Cahiers du GERAD

Table 4: Focus on the unimproved sets cplex

degeneracy reduction solve Cr-Gni improvement factors

var piv IPS/DPS |C| / |P| ρCr-Gni/ρA IPS/DPS cpuRed cpu

mod2 21.6% 12.1% 11.3% 76.9% 2.23 12.9% 0.82 0.68
qap12 22.3% 32.8% 4.1% 185.6% 85.7 14.5% 0.92 0.73
world 22.7% 13.7% 9.3% 78.6% 2.1 12.0% 0.94 0.78

nug15 24.9% 55.6% 2.9% 248.0% 442.5 11.1% 1.21 0.98
qap15 25.5% 60.6% 2.0% 237.5% 95.1 19.5% 1.52 1.09

dfl001 48.8% 70.8% 4.8% 35.9% 2.5 39.7% 1.69 0.88
fome12 49.6% 66.6% 9.7% 21.9% 1.8 167.3% 1.19 0.36

rlfprim’ 48.5% 100.0% 85.9% 2.5% 3.4 18.3% 153.73 0.93

be performed before starting the algorithm. With such a modification, IPS would be equivalent to DPS on

such instances.

The following two instances, nug15 and qap15, also have low proportions of degenerate variables, but

their proportions of degenerate pivots respectively reach 55.6% and 60.6%. As expected, the improvement

column “cpuRed” thus displays a potential improvement for IPS. The second prominent point relates to the

increase in the constraint matrix density after the transformation. It appears that the matrix of Cr-Gni is

respectively about 95 and 440 times denser than A for nug15 and qap15. This certainly affects the solution

of Cr-Gni and is another motivation for IPS not to resort to the transformation of A.

Remark 3 Overall, we observed that the transformation of C-Gni leads to a less dense matrix only for the

ACP, VCS, and UBFA instances, which concurs with the global deduction that IPS has a special affinity with

certain classes of problems, such as set partitioning problems.

Regarding the third group (dfl001 and fome12), the most probable cause of the mediocre performance

of IPS is the number of compatible variables after each reduction. The direct consequence is that after

the reduction, a large majority of the variables in Red belong to the working basis, leaving little hope

for important progress toward optimality. This also has a direct impact on the time spent solving the

complementary problem since many variables have to be returned to Red before it includes a sufficient

number of variables. A simple adaptation would be to estimate the number of compatible variables before

starting IPS. However, that is currently costly since it requires the computation of −APPA
−1
PPAPN +APN ,

so a faster method would need to be used.

Finally, rlfprim’ is a special case because the initial feasible solution is optimal. With DPS, 3224 degenerate

pivots are performed before proving optimality, whereas IPS solves Cr-Gni once before declaring that the

solution is optimal. This extreme efficiency is sadly counterbalanced by the fact that the sole partition update

takes more than 85% of the DPS runtime. Once again, the only possible fix for such situations would be to

run IPS with fast partition updates and no transformation of C-Gni.

5 Conclusion

We have developed a new decomposition-based primal algorithm for degenerate LPs. The decomposition

relies on the partition of the nonbasic variables into compatible (C) and incompatible variables (I), the first

group containing the variables that can be pivoted into the working basis P with a strict improvement in the

objective value. This separates the overall improvement problem, Gni, into two smaller problems, R-Gni

and C-Gni, respectively focusing on C and I. We have shown that solving R-Gni and C-Gni is equivalent

to solving Gni, and we have proposed a decomposition procedure to find the optimum of the LP.

Among the multiple possible implementations of this generic framework is the IPS algorithm, first de-

scribed by Elhallaoui et al. (2011). The following developments focus on the choices to be made and the

issues to be addressed when moving from the theoretical procedure to IPS. Some new insight into the solution

Les Cahiers du GERAD G–2014–13 17

of R-Gni and C-Gni results from this approach that considers IPS as a particular implementation of a much

more general algorithm. We make a link between the normalization weights and the pricing criterion; we

explain how the algorithm can start from any feasible solution, whether or not it is basic; and we highlight

the importance of warm-starting the solution of C-Gni. It appears that the most important choices relate

to the identification of the compatible variables, the transformation of the constraint matrix in C-Gni, and

the choice of the weights appearing in its normalization constraint. For instance, the first two choices involve

costly algebraic operations, while the normalization weights are simply set to ±1, thus extending the Dantzig

pricing criterion to improving directions with multiple nonbasic nonzero variables.

Finally, we conducted experiments on a diversified version of the instances of Elhallaoui et al. (2011)

extended with fifteen data sets from Mittelmann’s benchmark. IPS outperformed direct solution with the

primal simplex on several classes of problems including set partitioning, set covering, and warehouse location

problems. It also achieved impressive gains for some very degenerate instances from Mittelmann’s benchmark.

On the other hand, it gave no improvement on half of Mittelmann’s benchmark. A thorough analysis of these

results identified criteria that should be checked before switching from the standard simplex algorithm to

IPS. It is necessary to observe a sufficiently large number of degenerate variables and pivots, otherwise there

is no reason why IPS should perform better than the primal simplex. Moreover, the number of compatible

variables must be large enough, or solving Red will not make significant progress toward optimality. As for

the pricing criteria, perturbations, bound shifting, and other techniques included in efficient implementations

of the simplex algorithm, IPS should not used blindly but only when certain criteria are met.

We also demonstrated the limits of the current update of the partition (P, C, I), the most important

one being that it may be time consuming. This indicates the necessity for an implementation of IPS that

would update (P, C, I) quickly and solve C-Gni efficiently even without transformation of its constraint

matrix. The positive-edge criterion described by Raymond et al. (2010a) could be considered since it is a fast

method for the identification of compatible variables. Moreover, we noticed that although the transformation

leads to a much smaller form of C-Gni, it may also increase the density of the constraint matrix. Further

experimentation will be needed to get more insight into this issue.

Our theoretical and experimental analyses suggest numerous interesting directions for further research.

For instance, since solving C-Gni or R-Gni does not always provide feasible improving directions in IPS, the

important nondegeneracy property of the generic theoretical scheme is lost for the sake of practical efficiency.

As a consequence, it is also interesting to interpret IPS as an analytical—as opposed to systematic—partial

pricing strategy for the primal simplex algorithm. Let J ⊂ N be the set of nonbasic variables that are

considered during the pricing. This set is initialized with the set of compatible variables C. Later on, J goes

through several consecutive phases of expansions and reductions respectively triggered by insufficient progress

or problematic degeneracy. The reduction is done by keeping in P only the variables strictly within their

bounds and updating C accordingly. The expansion is performed by solving a sequence of complementary

problems, as described in Subsection 3.5. This expansion is an unusually complex procedure for a partial

pricing, which is why we qualified it as “analytical.” This interpretation could certainly be fruitful for further

improvements of IPS.

McCormick and Shioura (2000) proved that a particular choice of the weights appearing in the normaliza-

tion constraints makes the primal improving procedure polynomial if the improvement problem is considered

as an oracle. This result underlines the special attention that should be given to this constraint in future

developments. With additional calculations, the weights could be modified to emulate the steepest-edge rule

of Goldfarb and Reid (1977), the devex of Harris (1973), or any other normalized pricing rule. One may also

devise another normalization resulting in a faster solution of C-Gni.

From a more practical point of view, using an open optimization library would be valuable. As in

Towhidi et al. (2012), the integration of IPS as an internal procedure of the COIN-OR CLP solver would

have several benefits. The extended control over the simplex algorithm would allow us to adapt the choices

made during the solution process to the particularities of IPS. Moreover, with complete information on the

simplex algorithm available, it would be possible to fill some gaps in the interpretation of the performance

of IPS.

18 G–2014–13 Les Cahiers du GERAD

Finally, we have focused on the primal version of the simplex algorithm. However, better results are often

reported for the dual simplex, and it is also a powerful reoptimization tool used for instance in mixed integer

programming to explore the branch-and-bound tree. For these reasons, it would be interesting to develop a

dual version of IPS to take advantage of dual degeneracy when solving LPs with the dual simplex.

References
Benichou, M., J.M. Gauthier, G. Hentges, G. Ribiere. 1977. The efficient solution of large-scale linear programming

problems: Some algorithmic techniques and computational results. Mathematical Programming 13 280–322.
doi:10.1007/BF01584344.

Dantzig, G.B. 1955. The general simplex method for minimizing a linear form under inequality constraints. Pacific
Journal of Mathematics 5 183–195.

Elhallaoui, I., A. Metrane, G. Desaulniers, F. Soumis. 2011. An improved primal simplex algorithm for degenerate
linear programs. INFORMS Journal on Computing 23 569–577.

Elhallaoui, I., D. Villeneuve, F. Soumis, G. Desaulniers. 2005. Dynamic aggregation of set-partitioning constraints in
column generation. Operations Research 53 632–645.

Gill, P.E., W. Murray, M.A. Saunders, M.H. Wright. 1989. A practical anti-cycling procedure for linearly constrained
optimization. Mathematical Programming 45 437–474. doi:10.1007/BF01589114.

Goldfarb, D., J. Reid. 1977. A practicable steepest-edge simplex algorithm. Mathematical Programming 12 361–371.

Greenberg, H.J. 1978. Design and Implementation of Optimization Software, chap. Pivot selection tactics. Sijthoff &
Noordhoff, 109–142.

Harris, P.M.J. 1973. Pivot selection method of the devex LP code. Mathematical Programming 5 1–28.

Kallio, M., E.L. Porteus. 1978. A class of methods for linear programming. Mathematical Programming 14 161–169.
doi:10.1007/BF01588963.

Maros, I. 2003. Computational Techniques of the Simplex Method . International Series in Operations Research and
Management Science, Kluwer Academic Publishers.

McCormick, S.T., A. Shioura. 2000. Minimum ratio canceling is oracle polynomial for linear programming but not
strongly polynomial even for networks. Operations Research Letters 27 199–207.

Metrane, A., F. Soumis, I. Elhallaoui. 2010. Column generation decomposition with the degenerate constraints in the
subproblem. European Journal of Operational Research 207 37–44.

Murtagh, B.A., M.A. Saunders. 1978. Large-scale linearly constrained optimization. Mathematical Programming 14
41–72. doi:10.1007/BF01588950.

Pan, P.-Q. 2008. A primal deficient-basis simplex algorithm for linear programming. Applied Mathematics and
Computation 196 898–912.

Perold, A.F. 1980. A degeneracy exploiting LU factorization for the simplex method. Mathematical Programming 19
239–254.

Raymond, V., F. Soumis, A. Metrane, J. Desrosiers. 2010a. Positive edge: A pricing criterion for the identification of
non-degenerate simplex pivots. Les Cahiers du GERAD G–2010–61, HEC Montréal, Canada.

Raymond, V., F. Soumis, D. Orban. 2010b. A new version of the improved primal simplex for degenerate linear
programs. Computers & Operations Research 37 91–98.

Rosat, S., I. Elhallaoui, F. Soumis, A. Lodi. 2013. Integral simplex using decomposition with primal cuts. Les Cahiers
du GERAD G–2013–79, HEC Montréal, Canada.

Towhidi, M., J. Desrosiers, F. Soumis. 2012. The positive edge pivot rule within COIN-OR’s CLP. Les Cahiers du
GERAD G–2012–77, HEC Montréal, Canada.

	CdG-AccesLibre-enCours
	G1413
	Introduction
	Degeneracy in the Primal Simplex
	Dealing with Primal Degeneracy: A Short State of the Art
	Contribution Statement
	Notation

	A Generic Decomposition Algorithm Taking Advantage of Degeneracy
	A Primal Algorithm for Degenerate Problems
	Of Compatibility and Decomposition: Turning Degeneracy into an Asset

	Implementing the Framework: IPS
	Starting the Algorithm with an Initial Feasible Solution
	Identifying Compatible Variables and Transforming the Complementary Problem
	Setting the Normalization Constraint in the Complementary Problem
	Solving the Reduced Problem
	Solving the Complementary Problem
	Summary of the Algorithm

	Extended Computational Analysis of IPS
	Solution of the LPs
	Description of the Benchmark
	Experimental Results

	Conclusion

	Citation complète: Omer, J., Rosat, S., Raymond, V., Soumis, F., Improved primal simplex: A more general theoretical framework and an extended experimental analysis, 27(4) 773-787, 2015.
	Numéro de Cahier et mois de publication: G-2014-13March 2014Revised: november 2015

