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Abstract: This work describes the application of a direct search method to the optimization of problems of
real industrial interest, namely three new material science applications designed with the FactSage software.
The search method is BiMADS, the biobjective version of the mesh adaptive direct search (MADS) algorithm,
designed for blackbox optimization. We give a general description of the algorithm, and, for each of the three
test cases, we describe the optimization problem, discuss the algorithmic choices, and give numerical results
to demonstrate the efficiency of BiMADS for real cases of alloy and process design.

Key Words: Blackbox optimization, derivative-free optimization, biobjective optimization, mesh adaptive
direct search, material science, alloy design, process design.
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1 Introduction

We consider the following biobjective problem:

min
x∈Ω

F (x) =
(
f (1)(x), f (2)(x)

)
(1)

where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn defines the feasible region; f (1), f (2), cj : X → R ∪ {∞} for all
j ∈ J = {1, 2, . . . ,m}; and X is a subset of Rn.

Problem (1) is a blackbox optimization problem because the objectives and constraint functions are seen as
blackboxes or as functions of the outputs of a blackbox. No analytical expression is available for a blackbox;
it is typically the result of a computer simulation. It may have several characteristics that are problematic
for optimization, including noise and uncertainty, nonsmoothness, the presence of many local optima, and
hidden constraints that cause the simulation to fail for otherwise feasible designs. It can also be expensive to
execute. In this context, we must find a feasible solution in Ω with minimal values for the objectives, given
a limited budget of evaluations. Gradient-based methods are inappropriate because first-order information is
unavailable, and approximating this information is not practical since the approximation may be inaccurate
and/or too expensive to obtain with regard to the number of evaluations.

Hence, derivative-free optimization [14] may be considered, and in particular the biobjective variant of
the mesh adaptive direct search (MADS) [4] algorithm, called the BiMADS algorithm [7]. These methods
are specialized for blackbox optimization and are available through the NOMAD solver [1, 26]. This choice
was motivated by considering a number of requirements for the solver. It had to be freely available, easily
coupled with the FactSage software [9], and applicable to biobjective problems. It also had to provide default
values for all the algorithmic parameters and handle constraints via a built-in strategy,

Several freely distributed solvers satisfy some of these requirements, including the genetic algorithms
NSGA-II [16] and AMGA2 [35] and the direct multisearch (DMS) method [15]. If in addition we consider that,
ideally, the algorithm underlying the solver should possess a mathematical proof of convergence, then only
NOMAD satisfies all the requirements. We will however compare NOMAD to the NSGA-II heuristic in one of
the examples.

In the present study, we are interested in the application of BiMADS to three new problems in material
science with two conflicting objectives. They all use the FactSage software, which consists of a series of
calculation and manipulation modules accessing various pure-substance and solution databases. Users have
access to databases of thermodynamic data for thousands of compounds, as well as optimized databases
for hundreds of metallic, oxide, and salt solutions (solid and liquid). The databases were developed by the
modeling and optimization of phase equilibria and thermodynamic data. The FactSage software accesses these
databases to calculate phase diagrams and the conditions for phase equilibria in multicomponent systems.
The software has many useful features. It can for example follow the course of equilibrium or Scheil–
Gulliver cooling, predict the freezing range, segregate the alloying elements and phase formation with the
accompanying volume and enthalpy changes, and calculate the amounts of the various precipitates during
the subsequent annealing. For instance, one can search for alloys within a given composition range, with
various options such as a liquidus temperature below a certain limit, a desired freezing range, a maximum
or minimum amount of precipitate after annealing at a given temperature, or a density or shrinkage ratio
within a given range. One can also search for optimal annealing or rolling temperatures. However, for a
multicomponent alloy, launching thousands of calculations over a grid of compositions is time-consuming or
even impossible depending on the number of components. In previous work [21–23] we have demonstrated
the ability of the MADS and BiMADS algorithms to solve simple alloy design problems with two objectives
subject to several nonlinear constraints. In this work, we develop a similar approach for alloy/process design
in real industrial applications.

The paper is organized as follows. Section 2 describes the BiMADS algorithm for biobjective optimization.
Sections 3, 4, and 5 each discuss an application. The example in Section 3 demonstrates the applicability
of BiMADS to optimizations involving phase equilibria, and the other two examples are realistic biobjective
applications. Finally, Section 6 presents a discussion.

http://www.factsage.com
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2 The BiMADS algorithm for biobjective optimization

We focus on BiMADS, which uses the MADS algorithm to solve the biobjective problem (1). MADS is
designed for single-objective optimization and is briefly presented in Section 2.1. The NOMAD [1,26] software
package implements both algorithms and is freely available under the LGPL license at www.gerad.ca/nomad.
All the algorithmic features presented in this section are available in NOMAD and have been applied to
the three applications described in Sections 3, 4, and 5. We used NOMAD version 3. NOMAD is coded
in standard C++ and does not depend on any external library, so it was straightforward to link it to the
FactSage software using the NOMAD library mode and an interface based on Windows DLLs.

2.1 The MADS algorithm

The MADS algorithm [4] is designed for single-objective optimization. It is a direct search method generalizing
the coordinate search (CS) [19] and the generalized pattern search (GPS) [36] algorithms. At each iteration
of the algorithm, trial points, or candidates, are generated on a spatial discretization called the mesh, and
the functions defining the blackbox are evaluated at these locations. Depending on the success of these
evaluations, the coarseness of the discretization is updated.

Each iteration is decomposed into two main steps: the poll and the search. The poll generates mesh trial
points using directions from the current best solution. When normalized, the set of all MADS directions
forms a dense set in the unit sphere.

While the poll step is rigidly defined in order to ensure convergence, the search step is more flexible. It
generates mesh trial points using any appropriate method, provided these candidates are finite in number
and on the current mesh. We used four types of searches for this work. First, speculative search [26] is the
simplest and probably the most efficient strategy. It occurs after a successful poll in the previous iteration,
and it generates a trial point further along the same successful direction. Other strategies include latin
hypercube sampling (LHS) search, variable neighborhood search (VNS) [3], and quadratic-model search [13].
The speculative and quadratic-model searches are enabled by default in NOMAD and are used in all the tests
of this paper. The LHS and VNS searches are used when specified.

Finally, constraints are handled by the progressive barrier (PB) approach [5]. PB is not a penalty method
but is instead based on a constraint-violation function that defines a filter inspired by [20]. For further details
of the MADS algorithm see [2–6,13,26].

2.2 The BiMADS algorithm

The BiMADS algorithm is described in [7]; it focuses on the biobjective optimization problem (1). Typically,
the two objectives f (1) and f (2) are contradictory: a decrease in one causes an increase in the other, and it is
unlikely that a unique point in Ω optimizes both objectives. A solution is then represented as a set of points
in Ω called the trade-off solution or the Pareto set.

We use the following definition of dominance: x ∈ Ω dominates y ∈ Ω, denoted x ≺ y, if and only if
F (x) ≤ F (y) and f (q)(x) < f (q)(y) for at least one index q in {1, 2}. A solution x ∈ Ω is said to be Pareto
optimal if there is no point y ∈ Ω such that y ≺ x. The Pareto set is the set of Pareto solutions in Ω, and its
image under F in the objective space in R2 is called the Pareto front.

The BiMADS method is a general framework that provides a set of nondominated solutions approximating
the Pareto set. It does so by iteratively applying MADS to a series of single-objective reformulations of (1).
The purpose of each of these reformulations is to improve a specific part of the approximated Pareto front.
This has the following form:

φr(F (x)) =


−

2∏
q=1

(
rq − f (q)(x)

)2
if F (x) ≤ r,

2∑
q=1

(
(f (q)(x)− rq)+

)2
otherwise,

https://www.gnu.org/licenses/lgpl.html
https://www.gerad.ca/nomad
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where r = (r1, r2) ∈ R2 is the reference point defined in the objective space. This reformulation is such that
φr(x) = 0 if x1 = r1 or x2 = r2, with x = (x1, x2); φr(x) > 0 if r ≺ x; and φr(x) < 0 if x ≺ r.

As a consequence, the optimization of φr on Ω, with r as a starting solution, potentially generates a
solution that dominates r. This optimization is performed by MADS with the PB to treat the constraints of
Ω. This concept is illustrated in Figure 1.
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Figure 1: Illustration of the single-objective reformulation in the objective space. The curves represent the
φr contours. At the reference point r, φr(r) = 0, and for any point x ∈ Ω that dominates r, φr(x) < 0.
Red circles represent the evaluations performed by the single-objective optimization of φr. Filled red circles
correspond to the new nondominated points, and filled black circles are the previous nondominated points.

The advantage of this reformulation based on a reference point is that any part of the Pareto front can be
reached with some appropriate reference point; this is not the case when weights are placed on the objectives.

For efficiency, the reference point must be chosen such that the minimization of the associated reformula-
tion will generate as many nondominated solutions as possible. BiMADS identifies the largest “hole” in the
front, by first ordering the set of current nondominated solutions by f (1) value, and then for each triplet of
successive points (x, y, z) finding the one that maximizes the distance ‖y− x‖2 + ‖z− y‖2. When this triplet
(x̃, ỹ, z̃) has been identified, the reference point is taken as r = (z̃1, x̃2), with x̃ = (x̃1, x̃2) and z̃ = (z̃1, z̃2).
In addition, a weight is associated with the reference point so that it is unlikely that the same point will be
chosen again in the case of disconnected Pareto fronts.

In contrast to the other elements of the algorithm, the selection of the reference point is specific to the
biobjective case, and thus BiMADS cannot be applied to problems with more than two objectives. A more
general approach is the MultiMADS algorithm [8].

The general BiMADS framework is given in Figure 2. It begins with the individual minimizations of f (1)

and f (2) so that a first rough approximation is available to help us choose the first reference point for the
third single-objective optimization.

The convergence theory for MADS and BiMADS is explained in [4,5,7]. The analyses are presented as a
hierarchy of results depending on the degree of smoothness of the problem. Most of these results are based
on the Clarke calculus for nonsmooth functions [12]. Under some assumptions, in the single-objective case,
global convergence to points satisfying local optimality conditions is achieved. With two objectives, it can
be proved that moving in a feasible direction deteriorates at least one objective.
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[0] Initialization
solve min

x∈Ω
f (q)(x) for q ∈ {1, 2}

k ← 0

[1] Iteration k
[1.1] Reference point determination

use the set of feasible ordered nondominated points generated so far
to generate a reference point r

[1.2] Single-objective minimization

solve the single-objective problem min
x∈Ω

φr

(
f (1)(x), f (2)(x)

)
[2] Updates

scan the cache of evaluations and update the approximated Pareto front
k ← k + 1
goto [1] if no stopping condition is met

Figure 2: General description of the BiMADS algorithm.

3 Overall composition for minimum liquidus temperature and maximum
heat capacity per volume

Recently, interest in molten salts has heightened. This is primarily due to research into sustainable solutions
for renewable and green energies because of both environmental concerns and the decrease of the fossil-
fuel reserve. Molten salts can be used in technology for latent heat energy storage, which is one of the
most important components of a solar-energy installation. The choice of the material is critical for design
considerations and for optimal performance. Usually we want to maximize the heat storage capacity (HSC)
and minimize the liquidus temperature. The HSC is defined as the ability of the system to store energy per
unit volume. In practice, the HSC is defined by the ratio

HSC =
Cm,P

Vm

where Cm,P =
∂H

∂T
is the molar heat capacity at constant pressure describing the change in the energy

at atmospheric pressure, H, with temperature, and Vm is the molar volume. HSC is in general a smooth
function of the composition, but it may exhibit abrupt changes in the vicinity of a phase transition.

The liquidus temperature Tliq is the temperature above which a chemical system is completely in the
liquid state. Below Tliq, one or more solid phases (stoechiometric or nonstoechiometric or solutions) are in
thermodynamic equilibrium with the liquid. Above Tliq, the system is a homogeneous liquid solution.

From the optimization point of view, the determination of the composition of the minimum liquidus
temperature is a good example for testing the capability of a blackbox optimization algorithm for which
the blackbox is FactSage. Indeed, the liquidus temperature is a complex function of the global composition,
especially when a large number of solid phases are involved in the system. From a mathematical point of view,
Tliq is a continuous nonsmooth function of the composition. In addition, Tliq may have many local extrema
and saddle points. It is usually almost impossible to give a clear graphical representation of the topology of
Tliq for a system with more than three constituents. Tliq is also a typical blackbox function because it results
from the Gibbs energy minimization of the system, which is a search for the temperatures at which the liquid
phase is in equilibrium with the solid phases. For further information on these calculations see [32].

In the current example, we consider the six-component system of chlorides: LiCl−NaCl−KCl−MgCl2−
CaCl2−MnCl2. Note that the main FactSage limitation is actually a database limitation, and extrapolation
methods are used for the thermodynamic description of the systems for which no data are available. These
methods are described in [25,28].

The optimization problem is to simultaneously minimize the liquidus temperature and maximize the
HSC (f (1) = Tliq and f (2) = − HSC). The n = 5 optimization variables are the weight percentages of the
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composition, denoted Xe with e ∈ {LiCl, NaCl, KCl, MgCl2, CaCl2} and bounds [0, 100]. The weight
percentage of MnCl2 is implicitly determined via 100 −

∑5
i=1Xi; it is not controlled by BiMADS. Two

linear constraints 0 ≤ 100 −
∑5

i=1Xi ≤ 100 ensure that the quantity is feasible. We have compared the
results obtained by BiMADS and the popular NSGA-II genetic algorithm [16] with a budget of 3,000 blackbox
evaluations. The two approximated Pareto fronts are plotted in Figure 3, and the compositions minimizing
the liquidus temperature are listed in Table 1. The table also gives the improved composition (in terms of
Tliq) obtained after 50,000 LHS evaluations.

Figure 3: Approximated Pareto fronts of alloy compositions, obtained by the BiMADS and the NSGA-II
methods, simultaneously minimizing the liquidus temperature (Tliq = f (1)) and maximizing the heat storage
capacity (HSC= −f (2)).

Table 1: Compositions minimizing the liquidus temperature obtained along the approximated Pareto front
of Figure 3, along with the two objective functions and the number of blackbox evaluations, for the LiCl −
NaCl−KCl−MgCl2 − CaCl2 −MnCl2 system.

XXXXXXXXAlgo.
Values

XLiCl XNaCl XKCl XMgCl2 XCaCl2 MnCl2 Tliq (f (1)) HSC (−f (2)) Blackbox

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (K) (MJ.K −1.m−3) evaluations

BiMADS 5.938 18.067 14.719 14.235 15.300 31.740 606.7 1.941 3,000
NSGA-II 5.747 20.457 13.467 14.464 16.729 29.135 617.7 1.943 3,000

LHS 24.000 9.000 41.000 11.000 10.000 5.000 653.0 1.905 50,000

From Figure 3, BiMADS generated more nondominated points for smaller values of Tliq, providing a
richer approximation to the Pareto front than NSGA-II achieved. NSGA-II could however generate a few
nondominated solutions with better values for HSC. However, from an industrial point of view, these solutions
do not improve on other solutions found by BiMADS with better Tliq values: to increase the HSC by 1%
(from 1.96 to 2.00) we must increase the liquidus temperature by 20 K.

We now consider the solution quality. There is no physical criterion for the existence of an extremum for
HSC. However, it is particularly significant that the best solution found by BiMADS, for the first objective,
is a local minimum of the liquidus temperature in the thermodynamic sense. Such a minimal value of Tliq is
called the eutectic temperature, denoted TE .
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The proof is as follows: According to classical thermodynamic rules, for a given real ε > 0, at TE−ε, only
solid phases can be present, while at TE + ε, the system must be a homogeneous liquid phase. A heat release
must also be observed at this minimum, i.e., ∆H(Tliq + ε)−∆H(Tliq − ε) must be a relatively large value of
several kJ.kg−1. At the composition found by BiMADS, for ε = 0.66K, we found that 1 kg of liquid gives 6
solids in equilibrium with a corresponding heat release of 256 kJ.kg−1, which proves the phase transition from
a single liquid phase to solids, and thus that BiMADS has provided a eutectic temperature. The solutions
found by LHS and NSGA-II that minimize the liquidus temperature are not local minima because below the
obtained minimum temperature, solids are found to be in equilibrium with the liquid.

4 Production of aluminum in Hall–Héroult cells

Aluminum is produced by the electro-reduction of alumina (Al2O3) in Hall–Héroult cells. The alumina fed
to the electrolysis cell dissolves in a bath consisting mainly of molten cryolite (Na3AlF6) at an operating
temperature of about 960◦C. Upon electrolysis, Al3+ ions are reduced to liquid Al at the cathode, and O2−

ions through oxidation and reaction with the carbon of the consumable anodes form CO2(gas) at the anode.
A Hall–Héroult electrolysis cell is shown schematically in Figure 4. The global reaction of the electrolysis is:

2Al2O3(cryolite) + 3C(solid) =⇒ 4Al(liquid) + 3CO2(gas).

Figure 4: Simplified representation of the Hall–Héroult electrolysis cells and the chemical composition of the
cryolitic bath.

4.1 Problem description

The base electrolyte is Na3AlF6−AlF3−CaF2−Al2O3 (i.e., NaF−AlF3−CaF2−Al2O3 system). Additions
of AlF3 and CaF2 decrease the liquidus temperature of the electrolyte [24], thus lowering the operating
temperature. According to Chrenkova et al. [11], a typical electrolyte consists of Na3AlF6 with additions
of (6–13) weight percentage (wt.%) AlF3, (3–8) wt.% CaF2, and (2–5) wt.% Al2O3, with an operating
temperature lying between 945◦C and 970◦C. The bath ratio (BR), defined as the NaF/AlF3 mass ratio,
usually lies in the range 0.9–1.3. Consider a “typical” base electrolyte with BR=1.1, 5 wt.% CaF2, and
2.5 wt.% Al2O3 at 960◦C. Its calculated density is about 2.08 g.cm−3 [29] whereas the density of pure
liquid aluminum is about 2.30 g.cm−3 [24] at the same temperature. As emphasized by Haupin [24], the
difference in density between the electrolyte and liquid aluminum is small, and therefore small disturbances
can cause considerable movement of the aluminum-electrolyte interface. Increasing the density difference by
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reducing the electrolyte density will ensure a good aluminum/electrolyte separation. Moreover, an increase
in the electrical (ionic) conductivity of the electrolyte will improve the energy efficiency of the electrolytic
process. Therefore, it is highly desirable to simultaneously minimize the density and maximize the electrical
conductivity of the electrolyte.

We define an optimization model in which the variables correspond to the weight percentages of the
components of the system NaF, AlF3, CaF2, and Al2O3, giving n = 3 variables denoted Xe with e ∈
{NaF,AlF3,CaF2}. The remaining element (Al2O3) is determined implicitly since the sum of the weight
percentages must equal 100.

A thermodynamic model for the NaF − AlF3 − CaF2 − Al2O3 base system was developed in [10]. The
modified quasichemical model (MQM) in the quadruplet approximation [27], which evaluates the coupled
first-nearest-neighbor and second-nearest-neighbor short-range order, was used for the molten salt phase.
The model parameters were obtained mainly by the critical evaluation and optimization of available thermo-
dynamic and phase-equilibrium data for the binary and ternary subsystems [10]. The model was then used
to estimate the thermodynamic properties of the multicomponent system from these assessed binary and
ternary parameters using interpolation methods. In particular, the liquidus temperature, Al2O3 solubility,
and vapor pressure were calculated. More recently, theoretical models based on the MQM have been devel-
oped for the density [29–31] and electrical conductivity (unpublished results) of multicomponent inorganic
liquids. These have been successfully applied to the NaF−AlF3 −CaF2 −Al2O3 electrolyte [29]. Given the
developed thermodynamic and physical-property databases, the liquidus temperature, density, and electrical
conductivity of the electrolyte can be calculated. This is done by the FactSage software (and its databases),
which is seen as a blackbox.

We used the BiMADS algorithm and NOMAD to simultaneously minimize the density and maximize the
electrical conductivity, while respecting the following constraints on the operating temperature and on the
global composition of the electrolyte:

Operating temperature (T ) = liquidus temperature + 5◦C ≤ 970◦C.
0.6 ≤ BR = XNaF/XAlF3

≤ 1.3.

Bounds on the quantity of Al2O3: 2 ≤ 100−XNaF −XAlF3
−XCaF2

≤ 5.

The two variables Xe with e ∈ {NaF,AlF3} are taken in [0, 100] and XCaF2
must be in [3, 10].

4.2 Numerical results

In this example, we used the VNS and LHS searches with a budget of 500 evaluations. Of the 500 calculations,
100 were performed in an initial LHS search. The approximated Pareto front, maximum ionic conductivity
versus minimum density, is shown in Figure 5. The composition (and thus the liquidus temperature) of the
electrolyte changes along this front. The calculated composition (expressed as a weight percentage) along
the front as a function of the calculated optimal density and ionic conductivity is shown in Figures 6 and 7.
Finally, the calculated compositions and operating temperatures of the characteristic points A, B, C, and D
defined in Figure 5 are given in Table 2.

Table 2: Calculated compositions and operating temperatures of the characteristic points of the approximated
Pareto front in Figure 5.

Quantity A B C D
“typical”
electrolyte

BR 0.62 0.88 1.09 1.30 1.10
XCaF2

(wt.%) 3.5 3.0 3.0 10.0 5.0

Al2O3 (wt.%) 5.0 3.7 2.0 2.0 2.5
T (◦C) 944 890 970 969 964
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Figure 5: Approximated Pareto front representing the optimal composition that minimizes the density (f (1))
and maximizes the ionic conductivity (−f (2)) of the NaF−AlF3 − CaF2 −Al2O3 electrolyte.

Figure 6: Calculated compositions of the NaF − AlF3 − CaF2 − Al2O3 electrolyte along the approximated
Pareto front shown in Figure 5 as a function of density. Black squares correspond to NaF, red circles to AlF3,
blue triangles to CaF2, and inverted triangles to Al2O3.

The dramatic increase in ionic conductivity observed between points B and C in the Pareto front is due
to the following combined effects: (1) increase in BR (i.e., increase in the basicity of the electrolyte), (2)
decrease in the Al2O3 content, and (3) increase in the operating temperature.
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Figure 7: Calculated compositions of the NaF − AlF3 − CaF2 − Al2O3 electrolyte along the approximated
Pareto front shown in Figure 5 as a function of ionic conductivity. Black squares correspond to NaF, red
circles to AlF3, blue triangles to CaF2, and inverted triangles to Al2O3.

On the one hand, these three effects are cumulative for the ionic conductivity (they all increase it), which
explains the important ionic conductivity change (about 0.47 S.cm−1) observed between points B and C. On
the other hand, the three effects partly cancel each other for the density: effects (1) and (2) both increase the
density while effect (3) decreases it. Hence, the density change observed between points B and C is moderate
(only about 0.04 g.cm−3). Also, the range of density values accessible to the electrolyte is much more limited
than the range of ionic conductivity values. As shown in Figure 5, we were able to obtain alternative operating
conditions. In particular, the electrolyte at point C seems promising compared to the “typical” electrolyte.
Although it is slightly poorer in Al2O3 (2.0 instead of 2.5 wt.%), it contains less CaF2 (3.0 instead of 5.0
wt.%) and has virtually the same BR value (1.09 instead of 1.10). It has a liquidus temperature only about
6◦C higher, along with a lower density (by about 0.02 g.cm−3) and a higher electrical conductivity (by about
0.03 S.cm−1).

5 Design of new steel

In recent years, as the price of fossil-fuel energy has increased, and because of environmental concerns,
the automotive industry has shown more and more interest in designing lighter engines and body parts.
Accordingly, an important research area is the manufacture of ultra-high-strength steels for automotive
panel applications using precipitation hardening. Significant precipitation hardening can be achieved in a
martensite matrix [17]. Martensite is a form of steel crystalline structure that crystallizes in a body-centered
tetragonal structure. It results from the distortion of the face-centered cubic lattice of austenite during
the quenching. Maraging steel [18, 33] is such a potential new steel; however, it requires large quantities of
expensive additives such as Co and Ni, which is not viable for the automotive industry. Can we make a
low-cost precipitation-hardenable alloy starting from a martensite matrix?
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5.1 Problem description

The optimization formulation is based on an approach communicated to us by two metallurgical experts,
Christopher Hutchinson (christopher.hutchinson@monash.edu) and Chad Sinclair (chad.sinclair@ubc.ca).
This approach is based on the development of a two-phase mixture that is inherently resistant to coars-
ening. The minor phase (austenite) was found to coarsen at a very slow rate that is controlled by the bulk
diffusion of substitutional elements in the parent phase. Grain growth within the predominant phase (ferrite)
was fixed by the minor phase. To take advantage of the two-phase mixture, it is necessary to develop a
chemistry for which the austenite and ferrite phases co-exist over a wide range of temperatures.

The simulation tool used for this application is organized around two blackboxes corresponding to two in-
dependent software packages running in parallel and wrapped into a single blackbox interfaced with NOMAD.
The first component is the FactSage software and its databases, and the second is the Sourmail neural net-
work blackbox for the estimation of Ts, the martensite start temperature in ◦C [34]. The overall optimization
scheme is presented in Figure 8.

Figure 8: Optimization scheme using two blackboxes.

The associated optimization problem maximizes the following two objectives:{
f (1) = −MFe
f (2) = −MPmart

where MFe is the mass of iron for 100 g of alloy, in g, and MPmart is the mass of precipitate in martensite
per 100 g of alloy at 25◦C, in g. The first objective is a linear function of the compositions; maximizing the
amount of Fe decreases the cost of the alloy. The second objective is obtained by the blackbox.

There are n = 12 optimization variables corresponding to the weight percentage (wt.%) of the possible
alloy elements. They are expressed as Xe for element e, and they are listed in Table 3, along with their
bounds (the composition ranges).

Since we want to keep the carbon content low to avoid problems with welding, the upper bound of XC
is set to 0.03. Note also that elemental iron, which is associated with the first objective, does not appear as
a variable. As in the first two examples, since the compositions must sum to 100%, it is implicitly expressed

in the interface of the blackbox as 100 −
12∑
i=1

Xi. Its range is expressed not as a bound but as two linear

constraints.

Other constraints are given by the blackbox. First, we must be able to get 100% austenite at temperatures
somewhere in the range 800–1200◦C, so that when we quench we get a martensite matrix to start with. We
model this constraint by Maust ≥ 99.99% where Maust is the mass of austenite per 100 g of alloy, in g. Second,

Christopher.Hutchinson@monash.edu
chad.sinclair@ubc.ca
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Table 3: Optimization variables: Possible alloy elements and their composition ranges.

Element (wt.%) Lower bound Upper bound

XC 0 0.03
XMn 0 4
XV 0 2
XNi 0 10
XTi 0 2
XMo 0 6
XCu 0 3
XCo 0 10
XAl 0 3
XSi 0 2
XNb 0 0.5
XCr 0 10

we need to form a significant amount of precipitate (at least 3–5%) in an intermetallic second phase in the
martensite matrix, so we have the potential for precipitate hardening, in the temperature range 400–600◦C.
This is modeled by Mmart +MPmart ≥ 99.99% where Mmart is the mass of martensite for 100 g of alloy, in g.
Finally, for kinetic reasons the martensite start temperature has to be above 400◦C: Ts ≥ 400.

5.2 Numerical results

The optimization is quite tedious, because 12 variables are involved and each calculation with FactSage can
take several minutes because of the many phases involved. A brute-force method, i.e., an explicit enumeration
with an accuracy of 0.5 wt.% (lower than the maximum limit of C and the quantity of N), would require
about 6 million FactSage calculations. This is not possible in a reasonable time.

In NOMAD, we set the maximum number of blackbox calculations to 20,000. Of these, 5,000 were
performed in an initial LHS search. This represents roughly one week of calculations on a standard desktop
computer. The approximation of the Pareto front provided by NOMAD is shown in Figure 9.

Figure 9: Approximated Pareto front of alloy compositions, simultaneously maximizing the wt.% of Fe and
the mass of precipitate in the ferrite matrix at room temperature.
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NOMAD generated 23 nondominated compositions. This number may appear low given that the Pareto
front is not densely populated. This can be explained by the fact that “only” 20,000 calculations were
performed. NOMAD was able to identify the regions where the constraints are satisfied and to generate
nondominated compositions within these regions. In this example, the most important task was to identify
the narrow composition region where the constraints are satisfied. In this sense, the result of this optimization
is remarkable. Future work could improve the optimization by replacing the initial LHS search with starting
points that belong to the previous approximation of the Pareto front, thus obtaining even more compositions
in the targeted regions.

6 Discussion

We have described complex industrial applications involving new alloys and process design. Each uses a
blackbox based on the FactSage software; no derivative information is available for the optimization. The
other characteristics include two objectives and nonlinear blackbox constraints. We applied the BiMADS
algorithm to these examples using the NOMAD software. In the first example (Section 3), it cannot be
rigorously proved that a global minimum in terms of liquidus temperature was achieved, but thermodynamics
arguments provided some information. In the second example (Section 4), we found a new composition for the
cryolitic bath that can potentially improve the efficiency of Hall–Héroult cells. The third example (Section 5)
is very difficult because of the large number of potential alloy elements and the very narrow single-phase
region constraint. The fact that BiMADS could find feasible compositions is useful information. Overall,
the BiMADS algorithm was found to be efficient and robust for these real applications, in the presence of
functions with a complex structure, several local minima, singularities, and rapid variation over a narrow
range of compositions. The first example also justified our choice of BiMADS over the popular genetic
algorithm NSGA-II.
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