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Abstract: We study the number P(G) of non-equivalent ways of coloring a given graph G. We show some
similarities and differences between this graph invariant and the well known chromatic polynomial. Relations
with Stirling numbers of the second kind and with Bell numbers are also given. We then determine the value
of this invariant for some classes of graphs. We finally study upper and lower bounds on P(G) for graphs
with fixed maximum degree.

Key Words: Non-equivalent colorings, number of colorings, chromatic polynomial.

Résumé : Nous étudions le nombre P(G) de colorations non-équivalentes des sommets d’un graphe G. Nous
montrons quelques similarités et différences entre ce nouvel invariant et le très célèbre polynôme chromatique.
Nous indiquons également quelques relations intéressantes entre cet invariant et les nombres de Stirling du
deuxième type et les nombres de Bell. Nous déterminons ensuite la valeur de cet invariant pour quelques
classes de graphes. Finalement, nous présentons des bornes inférieures et supérieures sur P(G) pour des
graphes ayant un degré maximum fixé.
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Les Cahiers du GERAD G–2013–82 1

1 Introduction

A question which probably sounds familiar for many researchers in graph theory is: what is the number of

ways of coloring a given graph G? For the path P3 on three vertices, an answer that makes sense is two as

depicted in Figure 1. Indeed, at least two colors are needed, and there is only one coloring with two colors

(the two extremities share the same color while the central vertex has its own color), and only one coloring

with three colors (each vertex has its own color).

a b a a b c

Figure 1: The 2 non-equivalent colorings of P3 (using any number of colors).

However, since more than 100 years, the common answer to the above question for P3 is not two but

twelve. To understand why, we recall the notion of chromatic polynomial which was introduced by Birkhoff

in an attempt to prove the four-color theorem. In a paper published in 1912 [1] Birkhoff1 proves that

“The number of ways of coloring a given map M in k colors (k = 1, 2, . . .) is given by a polynomial

P (k) of degree n, where n is the number of regions in the map M .”

Birkhoff started the study of this polynomial by defining a quantity mi as “the number of ways of coloring

the map by using exactly i colors when mere permutations of the colors are disregarded”. Then, he used this

quantity to define

mi
k!

(k − i)!
as the “number of ways of coloring the given map in exactly i of the k colors, counting two colorings as distinct

when they are obtained by a permutation from the other”. Denoting G the planar graph corresponding to

the map M , we can therefore define

Π(G, k) =

k∑
i=1

mi
k!

(k − i)!

as the number of ways of coloring G with at most k colors, counting two colorings as distinct when they are

obtained by a permutation from the other. The same definition also applies for non-planar graphs G. The

chromatic polynomial is the polynomial of degree n passing by points (k,Π(G, k)) for k = 0, 1, . . . , n. For

example, for the path P3 we have

Π(P3, k) = k(k − 1)2.

Indeed, Π(P3, 0) = Π(P3, 1) = 0; Π(P3, 2) = 2 (take for instance the first two colorings in the left column of

Figure 2) and Π(P3, 3) = 12 as shown in Figure 2.

The number of vertex colorings of a graph G is nowadays commonly interpreted as Π(G,n), where n is

the number of vertices in G. However, we argue that the quantity mi defined by Birkhoff, i.e., the number

of non-equivalent colorings with an exact number i of used colors is also of interest. This is especially the

case when a set of elements has to be partitioned into a given number of non-empty subsets, subject to some

constraints.

In the next section we fix some notations and give a formal defnition of the number P(G) of non-equivalent

vertex colorings of a graphG. Similarities and differences between this invariant and the chromatic polynomial

are studied in Section 3. In Section 4, we address the problem of computing P(G), and we give exact values

for some particular graphs in Section 5. Then, in Section 6, we prove some bounds on P(G) for graphs of

bounded maximum degree and let other bounds as open problems.

1We replaced λ used in [1] by k to unify notations, even in the quotes from this paper.
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a b a

b a b

a c a

c a c

b c b

c b c

a b c

a c b

b a c

b c a

c a b

c b a

Figure 2: The 12 colorings of P3 (using 3 colors) as defined by the chromatic polynomial.

2 Notations

For basic notions of graph theory that are not defined here, we refer to Diestel [3]. Let G = (V,E) be a

simple undirected graph. We denote by n = |V | the order of G and by m = |E| its size. We write G ' H if

G and H are two isomorphic graphs.

Let Kn (resp. Cn and Pn) be the complete graph (resp. the cycle and the path) of order n. The wheel

Wn is the graph of order n obtained by connecting a vertex to all vertices of Cn−1. Also, we write Ka,b for

the complete bipartite graph where a and b are the cardinalities of the two sets of vertices of the bipartition.

Finally, let Sn be the star on n vertices, that is K1,n−1.

Let N(v) denote the neighbors of a vertex v in G. Vertex v is said to be simplicial if N(v) induces a

clique in G. A graph is chordal (or triangulated) if every cycle of length larger than 3 has a chord. The

degree of a vertex v is denoted d(v) (i.e., d(v) = |N(v)|). A vertex v is isolated if d(v) = 0 and is dominating

if d(v) = n− 1. The maximum degree of G is denoted ∆(G).

Let u and v be two vertices in a graph G of order n, we denote G \uv the graph (of order n− 1) obtained

by identifying (merging) the vertices u and v and, if uv ∈ E(G), by removing edge uv. Also, if uv ∈ E(G),

we note G − uv the graph obtained from G by removing edge uv, while if uv /∈ E(G), the graph G + uv is

the graph obtained by adding uv in G. For a vertex v of G, we denote G− v the graph obtained from G by

removing v and all its incident edges.

A vertex coloring (or simply a coloring in the sequel) is an assignment of colors to the vertices of G. A

proper coloring is a coloring such that adjacent vertices have different colors. The chromatic number χ(G)

of a graph G is the minimum numbers of colors in a proper coloring of G. Two colorings are equivalent if

they induce the same partition of the vertex set. We define P (G, k) as the number of proper non-equivalent

colorings of a graph G that use exactly k colors. The total number P(G) of non-equivalent colorings of a

graph G is then defined as:

P(G) =

n∑
k=χ(G)

P (G, k). (1)

As mentioned in the previous section, Π(G, k) is the number of proper colorings of a graph G that use

at most k colors, counting two non-identical colorings as distinct when they are obtained by a permutation

from the other.
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3 Similarities and Differences

According to their definitions, Π(G, k) and P (G, k) are linked with the following relations:

Π(G, k) =

k∑
j=χ(G)

k!

(k − j)!
P (G, j), (2)

and

P (G, k) =
Π(G, k)− kΠ(G, k − 1)

k!
. (3)

Observe that unlike P (G, k), Π(G, k) also counts colorings with strictly less than k colors. Moreover, while

P(G) and Π(G,n) might appear as similar concepts (since they both count colorings with at most n colors),

they differ in various ways. We have already mentioned that only non-equivalent colorings are counted in

P(G), which means that P(G) corresponds to the number of partitions of the vertex set of G, taking into

account constraints that prevent some pairs of vertices of belonging to the same subset of the partition. To

accentuate these differences, observe that if Π(G,n) < Π(H,n) for two graphs G and H of order n, this does

not necessarily imply that P(G) < P(H) (and conversely) as shown in Figure 3.

• •

••
• •

P(G) = 18

Π(G, 6) = 8520

• •
•

••

•
P(H) = 17

Π(H, 6) = 9000

Figure 3: Two graphs G and H with 6 vertices such that Π(G, 6) < Π(H, 6) and P(G) > P(H).

Also, there exist pairs of graphs (G, H) such that P(G) = P(H) but Π(G,n) 6= Π(H,n), and conversely

(see examples in Figure 4).

• •

••
•

P(G) = 4

Π(G, 5) = 420

• • •
•

•

P(H) = 4

Π(H, 5) = 480

• •

••
•

P(G′) = 6

Π(G′, 5) = 600

• • •
•

•

P(H ′) = 5

Π(H ′, 5) = 600

Figure 4: Two pairs of graphs with 5 vertices showing that equality for one way to counts the colorings does
not imply equality for the other.

There are also differences at a computational level. Giving a graph G with a dominating vertex v, the

following property states that the computation of P(G) can be reduced to that of P(G− v). A similar trivial

reduction does not hold for Π(G).

Property 1 If a graph G has a dominating vertex v, then P(G) = P(G− v).
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Proof. Since v is a dominating vertex, it must have its own color in all colorings of G, which means that the

number of proper non-equivalent colorings of G remains the same when v is removed.

Conversely, if G is the disjoint union of two graphs G1 and G2, it is easy to compute Π(G1∪G2) by taking

product of Π(G1) and Π(G2). However, the following property shows that the computation of P(G1 ∪G2) is

more intricate.

Property 2 Let G = G1 ∪G2 be a graph that is the disjoint union of two graphs G1 and G2. Then,

P(G) =

n∑
k=1

k∑
i=1

i∑
j=0

P (G1, i)P (G2, k − j)
(

i

i− j

)(
k − j
i− j

)
(i− j)!

Proof. The first sum on k comes simply from the definition (1) of P(G). The two inner sums compute

P (G, k) as follows. Let i ≤ k be the number of colors used for G1. Let j bet an integer such that i − j
represents the number of colors that are used both in G1 and in G2. The value of j can vary from 0 (that

is i colors are shared) to i (that is no color are shared). Observe that in order to use exactly k colors for G,

G2 must be colored with exactly k − j colors. Finally, the term
(
i
i−j
)

counts the numbers of ways to choose

the i − j shared colors into G1, the term
(
k−j
i−j
)

does the same for G2 and (i − j)! counts all the possible

permutations for this shared colors.

As a corollary, we get the following result which will be useful in later sections.

Corollary 3 Let G = Kp ∪ Kq be the disjoint union of two cliques of sizes p and q such that p ≤ q. Then,

P(G) =

p+q∑
k=q

(
p

k − q

)(
q

p+ q − k

)
(p+ q − k)!

Proof. We apply Property 2 knowing that P(Kp, i) = 1 if and only if i = p and P(Kq, k − j) = 1 if and only

if j = k − q. For all other values of i and j, the inner products being equal to zero. Also, observe that if

k < q, there are not enough colors for a proper coloring of G.

4 Counting the colorings recursively

As for several other algorithms in graph coloring, the deletion-contraction rule is a well known method to

compute the chromatic polynomial. More precisely, we have:

Π(G, k) = Π(G− uv, k)−Π(G \ uv, k),

where uv is any edge of G, and

Π(G, k) = Π(G+ uv, k) + Π(G \ uv, k),

for any pair of distinct vertices u and v such that uv /∈ E(G).

These recurrences, which are often called the Fundamental Reduction Theorem [4], are also valid to

compute P (G, k) and P(G). More precisely, let u and v be any pair of distinct vertices of G, we have,

P (G, k) = P (G− uv, k)− P (G \ uv, k), (4)

if uv ∈ E(G), and

P (G, k) = P (G+ uv, k) + P (G \ uv, k), (5)

if uv /∈ E(G). Similarly, if uv ∈ E(G), we have,
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P(G) = P (G− uv)− P (G \ uv), (6)

and

P(G) = P (G+ uv) + P (G \ uv), (7)

if uv /∈ E(G).

Since there is only one possible coloring for Kn (using exactly n colors), we have

P (Kn, k) =

{
1 if k = n,
0 otherwise,

and P(Kn) = 1. This constitutes a base case for a straightforward recursive algorithm to compute P(G) for

any graph G using relation (7). Another recursive procedure can be obtained from (6) using the empty graph
Kn to define the base case. Indeed, we have

P (Kn, k) =

{ {
n
k

}
∀k ≤ n,

0 ∀k > n,

where {
n

k

}
=

1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn

is a Stirling number of the second kind, that is the number of ways to partition a set of n elements into k

non-empty subsets. It follows that

P(Kn) =

n∑
k=1

{
n

k

}
= Bn,

where Bn is the nth Bell number (sequence A000110 in OEIS [8]). This is not surprising since Bn represents

the number of partitions of a set of n elements which is obviously the same as the number of non-equivalent

colorings in a graph without any edge.

Of course, the complexities of the two above recursive algorithms are exponential in general. However, we

will see in the next section that it can be refined to give a polynomial algorithm for some particular classes

of graphs.

Generalized Stirling and Bell numbers have been defined and studied in [2] and are also linked to the new

proposed invariant. More precisely, let

Sr(n, k) =
1

k!

k∑
j=r

(−1)k−j
(
k

j

)(
j!

(j − r)!

)n
.

Consider n sets E1, E2, . . . , En of r elements. The generalized Stirling number Sr(n, k) is the number of

different partitions of these nr elements into k non-empty subsets such that each subset contains at most

one element of each Ei. In other words, Sr(n, k) = P (nKr, k). The Generalized Bell numbers Br,n are then

defined as follows:

Br,n =

rn∑
k=r

Sr(n, k).

They represent the number of partitions of the nr elements so that each subset contains at most one element

of each Ei. Hence, Br,n = P(nKr).
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5 Determining some numbers of colorings

In this section, we determine the value of P(G) for several classes of graphs. We start with k-trees which

are chordal graph with all maximal cliques of size k + 1 and all minimal clique separators of size k. Thus,

a 1-tree is a tree. Note that every k-tree can be constructed from a complete graph on k + 1 vertices by

adding vertices iteratively such that each new vertex has exactly k neighbors forming a clique [7]. To avoid

confusion with the number of colors k we use the notation r-tree in the sequel.

Theorem 4 Let T rn be a r-tree of order n ≥ r + 1. Then,

P (T rn , k) =

{
n− r
k − r

}
,

for all k = r + 1, . . . , n.

Proof. If n = r + 1, then T rn is a clique of size r + 1 and P (T rn , n) = 1 =
{
n−r
n−r
}

. Otherwise, let v be a

simplical vertex of T rn . We consider two cases when counting the colorings of T rn : either v has its own color,

or v has one color already used by other vertices of T rn . The first case gives P (T rn−1, k− 1) colorings and the

latter one (k− r)P (T rn−1, k) colorings since the color of v cannot be the same than the r colors already used

by its neighbors. Altogether we have

P (T rn , k) = P (T rn−1, k − 1) + (k − r)P (T rn−1, k).

Using induction, we get

P (T rn , k) =
{
n−1−r
k−1−r

}
+ (k − r)

{
n−1−r
k−r

}
=
{
n−r
k−r
}
.

The last equality comes from the known recurrence relations obeyed by Stirling numbers.

Theorem 5 Let T rn be a r-tree of order n ≥ r + 1. Then,

P(T rn) = Bn−r.

Proof. By Theorem 4, and since any coloring of T rn has at least r + 1 colors,

P(T rn) =
∑n
k=r+1 P (T rn , k),

=
∑n
k=r+1

{
n−r
k−r
}
,

=
∑n−r
k=1

{
n−r
k

}
= Bn−r.

Note that if r = 0, then r-trees are empty graphs and Theorem 5 is another way to show that P(Kn) = Bn.

Another interesting particular case of r-trees are trees.

Corollary 6 Let T be a tree of order n ≥ 1. Then,

P(T ) = Bn−1.

The decomposition used in the proof of Theorem 4 allows to compute the number of non-equivalent

colorings of a chordal graph in polynomial time (using dynamic programming). Indeed, if v is a simplicial

vertex of G with r neighbors, then

P (G, k) = P (G− v, k)(k − r) + P (G− v, k − 1).

Corollary 7 If G is a chordal graph, then there exists a polynomial algorithm to compute P(G).



Les Cahiers du GERAD G–2013–82 7

Notice the same results also holds for the computation of the chromatic polynomial [6].

Theorem 8 Let K2,n be a complete bipartite graph on n + 2 vertices such that V = V1 ∪ V2 and |V1| = 2.

Then,

P(K2,n) = 2Bn.

Proof. Let H be the graph obtained from K2,n with an additional edge between the two vertices of V1.

Observe that H has a dominating vertex. Thus, applying (5), and then Property 1 and Corollary 6 gives

P(K2,n) = P(K1,n) + P(H) = 2P(K1,n) = 2Bn.

Theorem 9 Let Cn be a cycle of order n ≥ 3. Then,

P(Cn) =

n−1∑
j=1

(−1)j+1Bn−j .

Proof. Note that the result holds for C3 = K3 since B2 − B1 = 1. Applying (6) gives

P(Cn) = P(Pn)− P(Cn−1).

Then, by Corrolary 6 and the induction on n,

P(Cn) = Bn−1 −
∑n−2
j=1 (−1)j+1Bn−1−j ,

= Bn−1 −
∑n−1
j=2 (−1)jBn−j ,

= Bn−1 +
∑n−1
j=2 (−1)j+1Bn−j ,

=
∑n−1
j=1 (−1)j+1Bn−j .

Corollary 10 Let Wn be a wheel of order n ≥ 4. Then,

P(Wn) =
n−2∑
j=1

(−1)j+1Bn−j−1.

Proof. By Property 1, we have P(Wn) = P(Cn−1), and the result follows from Theorem 9.

Observe that Bell numbers appear repeatedly in the above results. Recall that Bn is the number of

partitions of a set of n labeled elements without any constraint on the fact that two elements can be in the

same partition or not. From a graph theoretical point of view, the partitions are the colors of the vertices and

adding an edge represents such a constraint. In particular, it is of interest to note that the sequence P(Cn)

for n = 2, 3, . . . determined by Theorem 9 corresponds to sequence A000296 in OEIS [8]. This sequence is

known to be the number of cyclically spaced partitions.

Given two graphs G and H of order n, we note G >P H and say that G strictly dominates H for the

number of non-equivalent colorings if P (G, k) ≥ P (H, k) for all k = 1, 2, . . . , n, and there exists some integer

k such that P (G, k) > P (H, k). By Property 2, the following corollary is straightforward.

Corollary 11 Let G, G′ and H be three graphs such that G and G′ have the same order. If G >P G′, then,

P(G ∪H) > P(G′ ∪H).
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6 Bounding the number of colorings of graphs with fixed maximum
degree

In this section, we study upper and lower bounds on P(G) for graphs G with bounded maximum degree.

We note that the following results were first conjectured with the help of the conjecture-making system

GraPHedron [5].

The upper bound is straightforward. We define G>n,∆ to be the graph of order n and with a maximum

degree ∆ that is composed of a star S∆+1 and n−∆− 1 isolated vertices (see Figure 5 for an example).

•

•

•

•
•

•
•
•

Figure 5: The graph G>8,4.

Theorem 12 Let G be a graph of order n and maximum degree ∆. Then,

P(G) ≤
∆∑
i=0

(−1)i
(

∆

i

)
Bn−i,

with equality if and only if G is isomorphic to G>n,∆.

Proof. The graph G>n,∆ is clearly the graph minimizing the number of edges among all graphs of order n

with maximum degree ∆. Adding edges to G>n,∆ (in such a way that the maximum degree is not increased)

will add new constraints between pairs of vertices, and this will therefore strictly decrease the number of

colorings. Hence P(G) ≤ P(G>n,∆), with equality if and only G is isomorphic to G>n,∆. It remains to prove

that

P(G>n,∆) =

∆∑
i=0

(−1)i
(

∆

i

)
Bn−i for all n and ∆.

The equality holds for ∆ = 0 since P(G>n,∆) is then isomorphic to Kn and we have already observed that

P(Kn) = Bn. For larger values of ∆, we proceed by induction using the following equality obtained from (6):

P(G>n,∆) = P(G>n,∆−1)− P(G>n−1,∆−1).

We then have
P(G>n,∆) =

∑∆−1
i=0 (−1)i

(
∆−1
i

)
Bn−i −

∑∆−1
i=0 (−1)i

(
∆−1
i

)
Bn−1−i

=
∑∆−1
i=0 (−1)i

(
∆−1
i

)
Bn−i +

∑∆
i=1(−1)i

(
∆−1
i−1

)
Bn−i

= Bn +
∑∆−1
i=1 (−1)i(

(
∆−1
i

)
+
(

∆−1
i−1

)
) + (−1)∆Bn−∆

=
∑∆
i=0(−1)i

(
∆
i

)
Bn−i.

A lower bound on P(G) for graphs of order n and bounded maximum degree ∆ is easy to obtain for some

values of ∆, but more intricate or still open for the other ones. In the rest of this section, we say that a

graph G∗ is extremal if P(G∗) ≤ P(G) for all graphs G of order n such that ∆(G) = ∆(G∗). The following

property will be used intensively in the ongoing proofs.

Property 13 Let G be a graph with two vertices v and w such that vw /∈ E and

max(d(v), d(w)) < ∆(G).

Then, G is not extremal.
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Proof. Adding the edge vw will not change the value of ∆(G) but will strictly decrease the number of

colorings of G.

We start by defining a graph of order n and with maximum degree equals to 1. If n is even, then G<n,∆=1

is the disjoint union of n2 copies of K2; if n is odd, it is the disjoint union of G<n−1,∆=1 and an isolated vertex.

The graph G<7,∆=1 is drawn on the left-hand side of Figure 6.

•

• •

• •

• • • •

•

• •

••

•

• •

•

••

•

Figure 6: The graphs G<7,∆=1, G<7,∆=2 and K6 ∪ K1 (from left to right).

Theorem 14 Let G be a graph of order n such that ∆(G) = 1. Then,

P(G) ≥
bn/2c∑
i=0

(−1)i
(
bn/2c
i

)
Bn−i,

with equality if and only if G is isomorphic to G<n,∆=1.

Proof. Since ∆(G) = 1, G is a disjoint union of several copies of K2 and isolated vertices. If G has at least

two isolated vertices v and w, we know from Property 13 that it cannot be extremal. Thus, if G is extremal

it must be isomorphic to G<n,∆=1.

Consider now the disjoint union of p K2 and q K1. We prove that

P(pK2 ∪ qK1) =

p∑
i=0

(−1)i
(
p

i

)
B2p+q−i.

The equality holds for p = 0 since the graph is then isomorphic to Kq and we have P(Kq) = Bq. For larger

values of p, we proceed by induction using the following equality obtained from (6):

P(pK2 ∪ qK1) = P((p− 1)K2 ∪ (q + 2)K1)− P((p− 1)K2 ∪ (q + 1)K1).

We then have

P(pK2 ∪ qK1) =
∑p−1
i=0 (−1)i

(
p−1
i

)
B2p+q−i −

∑p−1
i=0 (−1)i

(
p−1
i

)
B2p+q−1−i

=
∑p−1
i=0 (−1)i

(
p−1
i

)
B2p+q−i +

∑p
i=1(−1)i

(
p−1
i−1

)
B2p+q−i

= B2p+q +
∑p−1
i=1 (−1)i(

(
p−1
i

)
+
(
p−1
i−1

)
) + (−1)pBp+q

=
∑p
i=0(−1)i

(
p
i

)
B2p+q−i.

To conclude, it is sufficient to observe that G<n,∆=1 is isomorphic to pK2 ∪ qK1 with p = bn/2c and q =

n− 2p.

We now consider graphs G with maximum degree ∆(G) = 2. Before giving a lower bound on P(G) for

such graphs, we prove some useful lemmas.

Lemma 15 Consider a cycle Cn of order n ≥ 6. Then,

P (Cn, k) > P (Cn−3 ∪ C3, k) for k = 3, 4, . . . , n− 2;
P (Cn, k) = P (Cn−3 ∪ C3, k) for k = n− 1, n.
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Proof. The values in the following table show that the result holds for n = 6.

k 3 4 5 6
P (C6, k) 10 20 9 1
P (2C3, k) 6 18 9 1

For larger values or n, the following equalities are obtained from (4)and (5):

P (Cn−3 ∪ C3, k) = P (Pn−3 ∪ C3, k)− P (Cn−4 ∪ C3, k)

= P (Pn−3 ∪ P3, k)− P (Pn−3 ∪ P2, k)− P (Cn−4 ∪ C3, k)

= (P (Pn, k) + P (Pn−1, k))− (P (Pn−1, k) + P (Pn−2, k))
−P (Cn−4 ∪ C3, k)

= P (Pn, k)− P (Pn−2, k)− P (Cn−4 ∪ C3, k)

Clearly, P (Pn−2, k) > 0 for k = 3, 4, . . . , n − 2 and P (Pn−2, k) = 0 for k = n − 1, n. Also, by induction, we

have P (Cn−4∪C3, k) < P (Cn−1, k) for k = 3, 4, . . . , n−2, and P (Cn−4∪C3, k) = P (Cn−1, k) for k = n−1, n.

Hence, P (Cn−3 ∪C3, k) ≤ P (Pn, k)−P (Cn−1, k), with equality only if k = n− 1, n. To conclude, we observe

from (4) that P (Pn, k)− P (Cn−1, k) = P (Cn, k).

Since P (Cn, 2) ≥ 0 while P (Cn−3 ∪ C3, 2) = 0 for n ≥ 6, the following corollary is straightforward.

Corollary 16 Consider a cycle Cn of order n ≥ 6. Then Cn >P Cn−3 ∪ C3.

Lemma 17 Consider a cycle Cn of order n ≥ 3. Then,

P (Cn ∪ K1, k) = P (Pn+1, k) for k = 3, 4, . . . , n+ 1.

Proof. The result is valid for n = 3 since P (C3 ∪ K1, 3) = P (P4, 3) = 3 and P (C3 ∪ K1, 4) = P (P4, 4) = 1.

For larger values or n and k ≥ 3, we proceed by induction and apply (4) and (5) to obtain:

P (Cn ∪ K1, k) = P (Pn ∪ K1, k)− P (Cn−1 ∪ K1, k)

= P (Pn+1, k) + P (Pn, k)− P (Cn−1 ∪ K1, k)

= P (Pn+1, k)

Corollary 18 Consider a cycle Cn of order n ≥ 4. Then

Cn ∪ K1 >P Cn+1 if n is even;
Cn ∪ K1 >P Cn−2 ∪ C3 if n is odd.

Proof. Since P (Pn+1, k) > P (Cn+1, k) for k = 3, 4, . . . , n, it follows from Lemma 17 that P (Cn ∪ K1, k) >

P (Cn+1, k) for k = 3, 4, . . . , n.

• If n is even, then P (Cn ∪ K1, 2) = 2 > 0 = P (Cn+1, 2) and P (Cn ∪ K1, n + 1) = P (Cn+1, n + 1) = 1,

which implies Cn ∪ K1 >P Cn+1.

• If n is odd, then we know from Lemma 15 that P (Cn+1, k) ≥ P (Cn−2 ∪C3, k) for k = 3, 4, . . . , n. Since

P (Cn ∪ K1, 2) = P (Cn−2 ∪ C3, 2) = 0 and P (Cn ∪ K1, n + 1) = P (Cn−2 ∪ C3, n + 1) = 1, we have

Cn ∪ K1 >P Cn−2 ∪ C3.

Lemma 19 Consider a cycle Cn of order n ≥ 5. Then, Cn−2 ∪ K2 >P Cn.
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Proof. By applying (4) and (5), we obtain the following equalities which are valid for all k ≥ 2:

P (Cn−2 ∪ K2, k) = P (Pn−2 ∪ K2, k)− P (Cn−3 ∪ K2, k)

= P (Pn, k) + P (Pn−1, k)− P (Pn−3 ∪ K2, k)

+P (Cn−4 ∪ K2, k)

= P (Pn, k) + P (Pn−1, k)− P (Pn−1, k)− P (Pn−2, k)

+P (Cn−4 ∪ K2, k)

= P (Pn, k)− P (Pn−2, k) + P (Cn−4 ∪ K2, k). (8)

We now analyse three different cases.

• If k ≥ 4, we first show that P (Cn−2 ∪K2, k) = P (Pr, k). This is true for n = 5, 6 since P (C3 ∪K2, 4) =

P (P5, 4) = 6, P (C3 ∪ K2, 5) = P (P5, 5) = 1, P (C4 ∪ K2, 4) = P (P6, 4) = 25, P (C4 ∪ K2, 5) = P (P6, 5) =

10, and P (C4 ∪ K2, 6) = P (P6, 6) = 1. For larger values or n, the equality is obtained by induction,

using equation (8), since P (Cn−4 ∪ K2, k) is then equal to P (Pn−2, k).

Since P (Cn, k) ≤ P (Pn, k) for all k, we have P (Cn, k) ≤ P (Cn−2 ∪ K2, k) for k = 4, 5, . . . , n.

• If k = 3, we first show that P (Cn−2 ∪ K2, 3) = P (Pn, 3) + (−1)n. This is true for n = 5, 6 since

P (C3 ∪ K2, 3) = 6, P (P5, 3) = 7, P (C4 ∪ K2, 3) = 16, and P (P6, 3) = 15. For larger values or n, the

equality is obtained by induction, using equation (8), since P (Cn−4∪K2, k) is then equal to P (Pn−2, 3)+

(−1)n−2 = P (Pn−2, 3) + (−1)n.

Since P (Cn−1, 3) > 1 for all n ≥ 5, we conclude that P (Cn, 3) = P (Pn, 3)−P (Cn−1, 3) ≤ P (Pn, 3)−2 <

P (Pn, 3) + (−1)n = P (Cn−2 ∪ K2, 3).

• If k = 2 then P (Cn, 2) ≤ P (Cn−2 ∪ K2, 2) since both P (Cn, 2) and P (Cn−2 ∪ K2, 2) equal 0 if n is odd,

while P (Cn, 2) = 1 < 2 = P (Cn−2 ∪ K2, 2) if n is even.

The graph G<n,∆=2 is defined as follows:

• it is the disjoint union of n
3 copies of K3 if n ≡ 0 (mod 3);

• it is the disjoint union of G<n−4,∆=2 and C4 if n ≡ 1 (mod 3);

• it is the disjoint union of G<n−5,∆=2 and C5 if n ≡ 2 (mod 3).

The graph G<7,∆=2 is illustrated in the middle of Figure 6. We now give a lower bound on P(G) for graphs G

with maximum degree ∆(G) = 2 and order n ≥ 5. This is not restrictive because if n ≤ 4 and ∆ = 2, then

∆ = n− 2 or ∆ = n− 1 and these cases are treated later.

Theorem 20 Let G be a graph of order n ≥ 5 such that ∆(G) = 2. Then,

P(G<n,∆=2) ≤ P(G),

with equality if and only if G is isomorphic to G<n,∆=2.

Proof. Suppose G is extremal. Since ∆(G) = 2, G is the disjoint union of cycles and paths. It follows from

Property 13 that at most one connected component of G is a path, and such a path can only be K1 or K2.

Case 1: K1 is a connected component of G.

Let Cr (r ≥ 3) be a longest cycle of G. If r = 3, then G is the disjoint union of K1 and at least two copies

of C3 (because n ≥ 5). Thus, G = 2C3 ∪ K1 ∪ H where H is a (possibly empty) disjoint union of C3. The

following table shows that G is not extreme since 2C3 ∪ K1 >P C3 ∪ C4, a contradiction.



12 G–2013–82 Les Cahiers du GERAD

k 2 3 4 5 6 7
P (K1 ∪ 2C3, k) 0 18 78 63 15 1
P (C3 ∪ C4, k) 0 18 66 55 14 1

If r ≥ 4, then we know from Corollary 18 that either Cr+1 (if r is even) or Cr−2 ∪ C3 (if r is odd) is strictly

dominated by Cr ∪ K1. Hence, G is not extremal, a contradiction.

Case 2: K2 is a connected component of G.

Let Cr be any cycle in G. We know from Lemma 19 that Cr ∪ K2 >P Cr+2, which means that G is not

extremal, a contradiction.

Case 3: G is the disjoint union of cycles.

Since G is extremal, we know from Corollary 16 that these cycles are copies of C3, C4 or C5. The following

tables show that 2C5 >P 2C3 ∪ C4, C5 ∪ C4 >P 3C3, and 2C4 >P 2C5 ∪ C3. Hence, since G is extremal, it

contains no more than one C4 or one C5, which means that G is isomorphic to G<n,∆=2.

k 2 3 4 5 6 7 8 9 10
P (2C5, k) 0 150 2250 6345 6025 2400 435 35 1
P (2C3 ∪ C4, k) 0 108 1908 5838 5790 2361 433 35 1

k 2 3 4 5 6 7 8 9
P (C5 ∪ C4, k) 0 90 750 1415 925 246 27 1
P (3C3, k) 0 36 540 1242 882 243 27 1

k 2 3 4 5 6 7 8
P (2C4, k) 2 52 241 296 126 20 1
P (C5 ∪ C3, k) 0 30 210 285 125 20 1

Since C3 = K3, we can link the above result with the generalized Bell numbers mentioned in Section 4.

Corollary 21 Let G be a graph of order n such that n ≡ 0 (mod 3) and ∆(G) = 2. Then

P(G) ≥ B3,n3

We now give a lower bound on P(G) for graphs G of order n and maximum degree n− 2.

Theorem 22 Let G be a graph of order n ≥ 2 such that ∆(G) = n− 2. Then,

P(G) ≥ n

with equality if and only if G is isomorphic to Kn−1 ∪K1 when n 6= 4, and G is isomorphic to K3 ∪K1 or C4

otherwise.

Proof. The proof is by induction on n and the result is clearly valid for n = 2. Notice first that P(Kn−1∪K1) =

n because either the isolated vertex of K1 has its own color, or it uses one of the n − 1 colors in Kn−1. So

let G be an extremal graph of order n > 2 with ∆(G) = n − 2. We then have P(G) ≤ P(Kn−1 ∪ K1) = n.

Let x be any vertex of degree n− 2, and let y be the unique vertex that is not adjacent to x. It follows from

Property 13 that if two vertices v and w distinct from x and y are non-adjacent, then they are both adjacent

to y. Hence, if y is an isolated vertex in G, then G is isomorphic to Kn−1 ∪ K1.
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So suppose d(y) ≥ 1 and let v be one of its neighbors. Since v is not dominating, there exists at least one

vertex w not adjacent to v. As observed above, w is necessarily adjacent to y. Let W be the set of vertices

adjacent to y. We therefore have |W | ≥ 2 and, by Property 13, every vertex non-adjacent to y has degree

n− 2. Let G′ be the graph induced by W . No vertex of G′ is dominating (else it would also be dominating

in G), and since at least one of v and w has degree n− 2 in G (and thus has degree |W | − 2 in G′), we have

∆(G′) = |W | − 2. By induction, P(G′) ≥ |W |.

Given any coloring of G′, we can construct n − |W | non-equivalent colorings of G by copying the colors

on the vertices of W , assigning new colors to all vertices non-adjacent to y, and either assigning one of these

n− |W | − 1 new colors to y, or a new one not shared by any other vertex. Hence,

n ≥ P(G) ≥ P(G′)(n− |W |) ≥ |W |(n− |W |). (9)

Then, n−|W | ≥ |W |(n−|W |− 1) ≥ 2(n−|W |− 1), which implies n−|W | ≤ 2. Since x and y do not belong

to W , we have n − |W | = 2. Hence, equation (9) becomes |W | + 2 ≥ 2|W |, which is equivalent to |W | ≤ 2.

Since v and w belong to W , we have |W | = 2. In summary, P(G) = n = 4 and G is isomorphic to C4.

Finally, notice that the lower bound on P(G) for graphs G with ∆(G) = n − 1 is trivial since Kn has

clearly the minimum number of colorings among all graph of order n.

7 Concluding remarks and open problems

We have defined a graph invariant that corresponds to the number of non-equivalent proper vertex colorings

of a graph. We have shown similarities and differences between this invariant and the famous chromatic

polynomial. We have also determined the value of this invariant for several classes of graphs and have given

lower and upper bounds on its value for graphs with bounded maximum degree.

It would be interesting to determine a lower bound on P(G) for graphs G of order n and with maximum

degree in {3, 4, . . . , n − 3}. The extremal graphs in this case do not seem to have a simple structure, as

was the case for ∆(G) = 1, 2, n − 2, n. We have determined some of them by exhaustive enumeration. For

example, we have drawn in Figure 7 the only graphs G of order n = 6, 7, 8, 9 with minimum value P(G) when

∆(G) = 3, 4, 5.

Notice also that several graphs with minimum value P(G) are non-connected. It would be interesting to

determine these extremal graphs with the additional constraint that G must be connected. Also, it could be

interesting to characterize the graphs G that minimize or maximize P(G) when the order and the size of G

are fixed.
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n = 6

n = 7

n = 8

n = 9

∆(G) = 3 ∆(G) = 4 ∆(G) = 5

•
• •
•

••

P(G) = 18

• •
•
••

•

P(G) = 6

•
• •

•
••

•

P(G) = 70

•
•

•
• •

•

•
•

P(G) = 209

•
•

•
• •

•

•
•
•

P(G) = 1274

•
• •

•
•

•
•

P(G) = 29

•
• •

•
•
••

•

P(G) = 106

•
•

•
• •

•

•
•

•

P(G) = 456

•
•

•

•

••
•

•

•
P(G) = 202

• •
•
••

•

P(G) = 1

• •
•
••

• •

P(G) = 7

• •
•
••

•
•
•

P(G) = 43

Figure 7: Unique graphs G of order n = 6, 7, 8, 9 and maximum degree ∆(G) = 3, 4, 5 with minimum value
for P(G).

References

[1] Birkhoff, G.D. A Determinant Formula for the Number of Ways of Coloring a Map. Ann. Math. Harvard
Coll. 14 (1912), 42–46.

[2] Blasiak, P., Penson, K.A., Solomon, A.I. The Boson Normal Ordering Problem and Generalized Bell
Numbers Annals of Combinatorics 7 (2003), 127–139 .

[3] Diestel, R. Graph Theory, second edition, Springer-Verlag, 2000.

[4] Dong, F.M., Koh, K.M., Teo, K.L. Chromatic Polynomials and Chromaticity of Graphs, World Scientific
Publishing Company, 2005, ISBN 981-256-317-2.
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