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Abstract: In 1971, Graham and Pollack established a relationship between the number of negative eigenval-
ues of the distance matrix and the addressing problem in data communication systems. They also proved that
the determinant of the distance matrix of a tree is function of the number of vertices only. Since then several
mathematicians were interested in studying the spectral properties of the distance matrix of a connected
graph. Computing the distance characteristic polynomial and its coefficients was the first research subject
of interest. Thereafter, the eigenvalues attracted much more attention. In the present paper, we report on
the results related to the distance matrix of a graph and its spectral properties.

Key Words: Distance matrix, eigenvalues, largest eigenvalue, characteristic polynomial, graph.

Résumé : En 1971, Graham et Pollack ont établi un lien entre le nombre de valeurs propres negatives de
la matrice des distances et le problème d’adressage dans les systèmes de communication de données. Ils ont
aussi prouvé que le déterminant de la matrice des distances d’un arbre s’écrit en fonction du nombre de ses
sommets uniquement. Depuis, plusieurs mathématiciens se sont intéressés à l’étude des propriétés spectrales
de la matrice des distances d’un graphe connexe. Au début, l’intérêt fut porté sur le calcul du polynôme
caractéristique et de ses coefficients. Puis, les valeurs propres ont succité beucoup plus d’intérêt. Dans le
présent article, nous proposons une vue d’ensemble des résultats sur la matrice des distances et ses propriétés
spectrales.

Mots clés : Matrice des distances, valeurs propres, plus grande valeur propre, polynôme caractéristique,
graphe.
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1 Introduction

There are mainly two versions of the distance matrix of a graph: graph–theoretical and geometric. For a
connected graph, the distance matrix, in the case of graph–theoretical version, is a natural generalization,

with more specificity, of the adjacency matrix. The distance between two vertices is defined as the length

(number of edges) of a shortest path between them. In the case of the geometric version, we consider points

in a plane and the distances correspond to the Euclidean distance. In this case, we speak more about points

in a metric space than about vertices in a graph. The origins of the distance matrix goes back to the very first
paper of Cayley [34] in 1841. However, its study began formally during the 20th century [118, 141]. Graph

theory researchers were first interested in the problem of realizability of the distance matrix. Namely, for a

given real symmetric n× n–matrix D = (di,j) such that di,i = 0 and 0 ≤ di,j ≤ di,k + dk,j , 1 ≤ i, j, k ≤ n, is

there a graph G for which D is the distance matrix. This problem was first posed by Hakimi and Yau [69], and
then studied by many mathematicians among which we cite Simões–Pereira [120, 122, 124, 125], Buneman

[28], Simões–Pereira and Zamfirescu [126], Varone [137], Boesch [18], Patrinos and Hakimi [107], Bandelt [13],

and Nieminen [104]. Dress [52] proved that any shortest path distance matrix can be realized by a minimum

weight graph. In the case of trees, efficient algorithms stating how to find this optimal solution have been

developed [18, 40, 107, 126]. However, in the case of general graphs, only a few results are known concerning
the structure of optimal realizations (see e.g. [53, 72, 80, 89]), and dealing with the problem is much harder.

Indeed, although it is well–known that an optimal realization exists [52, 123], Althöfer [1] and Winkler [140]

showed that the problem is NP–complete if the distance matrix has integer entries. Actually, many heuristic

methods were proposed [53, 72, 104, 120, 121, 126, 136], however, computing optimal realizations of general
distance matrices is still difficult.

The second aspect of distance matrix that kept the attention of the mathematicians is the study of its

spectral properties. In this case, the focus was more on the graph theoretical version of the matrix. The

interest began during the 70’s with the appearance of the paper [64] by Graham and Pollack. In that paper

the authors established a relationship between the number of negative eigenvalues of the distance matrix
and the addressing problem in data communication systems. In the same paper [64], it was proved that

the determinant of the distance matrix of a tree is function of the number vertices only. This impressive

result made distance matrix spectral properties a research subject of great interest. Graham and Lovász [62]

computed the inverse of the distance matrix of a tree. Edelberg, Garey and Graham [55], Graham and Lovász

[62], and Hosoya, Murakami and Gotoh [74] studied the characteristic polynomial. Actually, they calculated
certain, and in some cases all, the coefficients of the distance characteristic polynomial. Merris [100] provided

the first estimation of the distance spectrum of a tree. Many other authors studied the distance spectrum of

a graph, we report about their works below. Recently, the maximum or the minimum values of the distance

spectral radius of a given class of graphs has been studied extensively.

Several domains of application of the distance matrix, in an implicit or an explicit form, are known: the
design of communication networks [56, 64], network flow algorithms [51, 59], graph embedding theory [49, 55,

62, 63, 65] as well as molecular stability [74, 152]. Balaban, Ciubotariu and Medeleanu [9] proposed the use of

the distance spectral radius as a molecular descriptor (see also [39, 134]). Gutman and Medeleanu [68] used

the distance spectral radius to infer the extent of branching and model boiling points of an alkane (see also
[19]). For other applications in chemistry see [73, 101, 113, 114, 115] as well as the books [8, 86, 135], and the

references therein. Among other branches of sciences where the notion of distance in graphs (thus the distance

matrix in an implicit form), we can cite psychology [41], phylogenetic [48, 92], software compression [93],

analysis of Internet infrastructures [35], modeling of traffic [29, 30], and social networks [60, 87, 117, 119, 139].

In the present survey, we focus on the research related to the spectral properties of the distance matrix in its
graph–theoretical version. We begin by recalling some definitions.

We consider only simple, finite and connected graphs, i.e, graphs on a finite number of vertices without

multiple edges or loops and in which any two vertices are linked by a sequence of edges. A graph is (usually)

denoted by G = G(V,E), where V is its vertex set and E its edge set. The order of G is the number n = |V |
of its vertices and its size is the number m = |E| of its edges. The adjacency matrix of G is a 0–1 n×n–matrix
indexed by the vertices of G and defined by aij = 1 if and only if ij ∈ E. For details on the adjacency matrix
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and its spectrum see the books [26, 42, 43, 44, 133]. The degree di of the vertex i ∈ V is the number of

vertices adjacent to i, i.e., the sum of the ith row (column) of the adjacency matrix of G. Let ∆ and δ denote

the maximum and minimum degrees of G, respectively. If G = (V,E) is a graph, v ∈ V and e ∈ E, then v
(resp. e) is a cut vertex (resp. edge) of G if G− v (resp. G− e) is disconnected. As usual, we denote by Pn

the path, by Cn the cycle, by Sn the star, by Ka,n−a the complete bipartite graph and by Kn the complete

graph, each on n vertices.

The distance matrix D of a graph G is the matrix indexed by the vertices of G where Di,j = dij = d(vi, vj)

and dij = d(vi, vj) denotes the distance between the vertices vi and vj , i.e, the length of a shortest path

between vi and vj (for properties of distances in graphs see the book by Bukley and Harary [27] and the

references therein). The maximum distance between two vertices is called the diameter of G and denoted by
D = D(G), i.e., D = D(G) = max{d(u, v) : u, v ∈ G}. The characteristic polynomial of D(G) is defined by

PD(t) = PD(G)(t) = Det (tI −D(G)), where I is n×n identity matrix. It is called the distance characteristic

polynomial of G. Since D(G) is a real symmetric matrix, all its eigenvalues, called distance eigenvalues of

G, are real. The spectrum of D is denoted by {∂1, ∂2, . . . , ∂n} and indexed such that ∂1 ≥ ∂2 ≥ · · · ≥ ∂n.
It is called the distance spectrum of the graph G. An example of a graph and its distance spectrum are

given in Figure 1. From matrix theory (see e.g. [42, Theorem 0.2 and 0.3]) and since D is an irreducible,

non–negative, real and symmetric matrix, ∂1 is a simple eigenvalue and satisfies ∂1 ≥ |∂i|, for i = 2, 3, . . . , n,

and there exists a positive eigenvector corresponding to ∂1. The largest eigenvalue ∂1 is called the distance

spectral radius or distance index. The index of D is the most studied among the distance eigenvalues.

Figure 1: A graph with a distance spectrum {7, 0, 0,−2,−2,−3}.

The Wiener index W (G) of a graph is the sum of the distances between all unordered pairs of vertices of G,

in other words W (G) is half the sum of all the entries of the distance matrix of G, i.e.,

W (G) =
∑

1≤i<j≤n

Di,j .

The transmission Tr(v) of a vertex v in G is the sum of the distances from v to all other vertices in G, i.e.,

Tr(v) =
∑

u∈V

d(u, v).

Note that the transmission of a vertex is the sum of the entries of D in the column (row) corresponding to v.
For short, we write Tri for Tr(vi), when the vertices are labeled. We say that G is a k–transmission regular

graph if Tr(v) = k for every v ∈ V . Note that there exist graphs which are transmission regular but not

(degree) regular. Indeed, the graph on 9 vertices illustrated in Figure 2 is 14–transmission regular but not

degree regular. For more examples of transmission regular but not degree regular graphs see [5, 7].

The remainder of the present paper is organized as follows. In the next section, we give an overview of the first

papers devoted to the distance spectra of graphs. These papers deal mainly with the distance characteristic

polynomials and their coefficients, and the problem of characterizing the graphs whose distance spectra
contain exactly one positive eigenvalue. Section 3 is devoted to the results related to the entries of the Perron

vector. In Section 4, we report on the distance spectra of some particular classes of graphs; the distance
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Figure 2: The smallest transmission regular but not degree regular graph.

characteristic polynomial of a graph obtained by means of operations involving two graphs or more; the

behavior of some distance eigenvalues, especially the distance spectral radius, when some transformations

are done on the graph. Section 5 is devoted to results involving the distance spectral radius, such as lower
and upper bounds over the class of graphs with given order n. Results related to the distance spectral spread

are presented in Section 6. The papers dealing with the distance energy (the sum of the absolute values of

the distance eigenvalues) are overviewed in Section 8.

2 The distance matrix and its characteristic polynomial

Among the first results related to the distance matrix figures the remarkable theorem proved by Graham and
Pollack [64] that gives a formula for the determinant of the distance matrix of a tree depending only on the

order n.

Theorem 2.1 ([64]) If T is a tree on n ≥ 2 vertices with distance matrix D, then

Det(D) = (−1)n−1(n− 1)2n−2.

The generalization of the above theorem for general graphs is that the determinant of the distance matrix

depends only on the blocks of the graph. This generalization was first conjectured by Hosoya, Murakami and
Gotoh [74] and then proved by Graham, Hoffman and Hosoya [61]. Before the statement of the result recall

the following definitions. A graph that has no cut vertices is called a block. A block of a graph is a subgraph

that is a block and maximal with respect to this property. Every graph is the union of its blocks. For a

square matrix M , denote by cof(M) the sum of its cofactors.

Theorem 2.2 ([61]) If G is a (strongly connected directed) graph with blocks G1, G2, . . . Gk, then

cof(D(G)) =

k∏

i=1

cof(D(Gi)) and det(D(G)) =

k∑

i=1

det(D(Gi))

k∏

i=1,j 6=i

cof(D(Gj)).

The inertia of a square matrix M with real eigenvalues is the triplet (n+(M), n0(M), n−(M)), where n+(M)

and n−(M) denote the number of positive and negative eigenvalues of M , respectively, and n0(M) is the

(algebraic) multiplicity of 0 as an eigenvalue of M .

An immediate consequence of Theorem 2.1 is that the inertia of the distance matrix is the same for all trees

on n ≥ 2 vertices.

Corollary 2.3 ([64]) If T is a tree on n ≥ 2 vertices with distance matrix D, then the inertia of D is

(1, 0, n− 1).
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The above corollary is related to and stated in the context of the addressing problem in communication

systems.

Consider the characteristic polynomial of D of a tree T on n vertices,

PD(T )(t) =
n∑

k=0

akt
k.

The determinant of D is given by the distance characteristic polynomial at 0, i.e., Det(D) = (−1)nPD(0) =

(−1)na0. Considering this point of view, Theorem 2.1 gives the value of a coefficient of the distance charac-

teristic polynomial. Thus, the study of the coefficients of PD is a natural extension of the work done in [64].
Edelberg, Garey and Graham [55], and Graham and Lovász [62] were the first authors to do such extensions.

Edelberg, Garey and Graham [55] computed some coefficients and determined the sign of each coefficient.

In order to state the next results, we recall the following notations. The unique tree on 5 vertices with a

diameter D = 3 is denote by Y . For a given tree T and a subtree H , NH(T ) denotes the number of subtrees
of G isomorphic to H . As usual, sgn(t) denotes the sign of a real number t.

Theorem 2.4 ([55]) For any tree on n vertices, we have

sgn(ak) = (−1)n−1, for 0 ≤ k ≤ n− 2,

an−1 = 0,

an = (−1)n,

an−2 = (−1)n−1
∑

i<j

d2ij ,

an−3 = (−1)n−1
∑

i<j<k

dijdjkdki,

ak ≡ 0(mod 2n−k−2) for 0 ≤ k ≤ n− 2

a0 = (−1)n−12n−2NS2(T ),

a1 = (−1)n−12n−3 (2nNS2(T )− 2NS3(T )− 4) ,

a2 = (−1)n−12n−4
(
2(n2 − n− 4)NS2(T )− (5n− 7)NS3(T ) + 6NS4(T )− 2NP3(T )

)
,

a3 = (−1)n−12n−5

[
4

3
(n2 − 4)(n− 3)NS2(T )− 2(3n2 − 11n+ 9)NS3(T ) + 2(7n− 22)NS4(T )

−4(n− 3)NP3(T )− 2NP4(T )− 24NS5(T ) + 4NY (T ) + 2(NS3(T ))
2
]
.

Note that the results in the above theorem, except sgn(ak) and a3, have been found independently by Hosoya,

Murakami and Gotoh [74].

In [62], Graham and Lovász showed, in a generalization of the above theorem, that the coefficients of the

distance characteristic polynomial of a tree T depend only on the number of occurrences of subforests of T .

Theorem 2.5 ([62]) Let T be a tree on n ≥ 2 vertices. The coefficients of the distance characteristic poly-
nomial of T can be written in the form

ak = (−1)n−12n−k−2
∑

F

A
(k)
F NF (T ),

where F ranges over all subforests of T with k − 1, k or k + 1 edges and no isolated vertices, and A
(k)
F is an

integer depending only on k and F .

Explicit formulas for the integers A
(k)
F are given in [62]. They turn out to depend only on the number of

occurrences of various paths in the connected components of F .

The above theorem was generalized to the case of weighted trees by Collins in [38].
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In [62], Graham and Lovász conjectured that the sequence of the distance characteristic polynomial is uni-

modal with the maximum value occurring for k = ⌊n/2⌋. Collins [37] confirmed the conjecture for the star Sn

and showed that, in the case of a path Pn, the sequence is unimodal with a maximum value at
(
1− 1/

√
5
)
n.

Thus, Collins [37] reformulated the conjecture as follows.

Conjecture 2.6 ([37]) The coefficients of the distance characteristic polynomial of any tree T with n vertices
are unimodal with peak between n/2 and

(
1− 1/

√
5
)
n.

No more results are known about that conjecture.

The problem of finding the coefficients of the characteristic polynomial of the distance matrix was also studied
by Mihalić et al. [101] in the context of the use of the distance matrix in Chemistry. Computer programs for

calculating the distance characteristic polynomials of graphs were developed by Balasubramanian [10, 11].

The first application of the distance eigenvalues was expressed in terms of the number of positive and negative

eigenvalues n+(G) and n−(G), respectively, of a graph G = (V,E). Suppose one wishes to label each vertex

v of G with an N -tuple A(v) = (a1, a2, . . . , aN ), where ai ∈ {0, 1, ∗}, so that

d(A(v), A(v′)) = dG(v, v
′) for all v, v′ ∈ V,

and where dG(v, v
′) denotes the distance between v and v′ in G, and d(A(v), A(v′)) = |{i : {ai, ai′} = {0, 1}}|

(also called Hamming distance). Such a labeling exists for any simple connected graph, provided N is large

enough. The problem is to determine the smallest N = N(G) satisfying that property. The following result

is proved in [64].

Theorem 2.7 ([64]) For any graph G, we have

N(G) ≥ max{n+(G), n−(G)}.

Graham and Lovász [62] proved that it is possible to compute the inverse of the distance matrix of a tree in
terms of the degrees and the entries of the adjacency matrix.

Theorem 2.8 ([62]) If T is a tree on n ≥ 2 vertices with distance matrix D = (dij), then the inverse matrix

of D, D−1 =
(

d
(−1)
ij

)

is given by

d
(−1)
ij =

(2− di)(2 − dj)

2(n− 1)
+







− di

2 if i = j

aij

2 if i 6= j,

where di denotes the degree of the vertex vi and A = (aij) is the adjacency matrix of T .

Theorem 2.1 and Theorem 2.8 were generalized to the case of trees with attached graphs (trees with graphs
defined on its partitions) by Bapat [15], and to the case of weighted trees by Collins [38], and Bapat, Kirkland

and Neumann [16]. Since the formulae in [15] are the same as in [62, 64], we only recall the results related

to weighted trees.

Theorem 2.9 ([16, 38]) Let T be a weighted tree on n vertices with edge weights α1, α2, . . . , αn−1 and let D
be the corresponding distance matrix. Let L denote the Laplacian matrix for the weighting of T that arises
by replacing each edge weight by its reciprocal. For each i = 1, . . . , n, let di be the degree of the vertex i, let

δi = 2− di , and set δ = [δ1, . . . , δn]
T . Then

D−1 = −1

2
L+

1

2
∑n−1

i=1 αi

δδT . (1)

Observe that using the notation defined in Theorem 2.9, the inverse defined in Theorem 2.8 can be written

as

D−1 = −1

2
L+

1

2(n− 1)
δδT ,
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and then the generalization becomes clear. Note also that Theorem 2.9 is formulated in [38] using a notation

similar to that of Theorem 2.8.

The second generalization concerns the determinant of the distance matrix, however instead of calculating
it in a straightforward way, the authors of [16] first proved more general results and then deduced the

determinant. These are the results and then the determinant as a corollary.

Theorem 2.10 ([16]) Let G be a t–transmission regular and weighted graph on n vertices with distance matrix

D. Form G∗ from G by adding weighted branches to G on a total of p new vertices, with positive weights
α1, . . . , αp on the new edges. Let D∗ be the distance matrix for G∗. Then for each x ∈ IR,

det(D∗ + xJ) = (−2)pdet(D)

(
p
∏

i=1

αi

)(

1 +
nx

t
+

n

2t

p
∑

i=1

αi

)

.

Further, n0(D) = n0(D∗) and if, in addition, D is non–singular, then n+(D) = n+(D∗).

Theorem 2.11 ([16]) Let T be a weighted tree on n ≥ 2 vertices with edge weights αi, for i = 1, . . . , n− 1.
Let D be the distance matrix of T . Then for any real number x,

det(D + xJ) = (−1)n−12n−2

(
p
∏

i=1

αi

)(

2x+

p
∑

i=1

αi

)

.

Further, the inertia of D is (n+(D), n0(D), n−(D)) = (1, 0, n− 1).

The result about the inertia of D in the above theorem was also given in [14]. The next result was first

proved in [14, 38] and then obtained in [16] as a corollary from the above theorem.

Corollary 2.12 ([14, 16, 38]) Let T be a weighted tree on n vertices with edge weights αi, for i = 1, . . . , n−1.

Let D be the distance matrix of T . Then

det(D) = (−1)n−12n−2

(
n−1∏

i=1

αi

)(
n−1∑

i=1

αi

)

.

Bapat, Kirkland and Neumann [16] extended their results about the distance matrix of a tree to that of a

unicyclic graph, i.e., a connected graph containing exactly one cycle. The first result they proved is a formula

for the inverse of the distance matrix of an odd cycle.

Theorem 2.13 ([16]) Let D be the distance matrix for the cycle on 2k + 1 vertices. Then

D−1 = −2I − Ck − Ck+1 +
2k + 1

k(k + 1)
J

where C is the cyclic permutation matrix of order 2k + 1 having Ci,i+1 = 1 for i = 1, . . . , 2k + 1, taking

indices modulo 2k + 1.

An immediate corollary of the above theorem is the following result about the spectrum of an odd cycle.

Corollary 2.14 ([16]) The distance matrix for a cycle on 2k+1 vertices has exactly one positive eigenvalue.

They [16] also calculated the determinant, as well as the inertia, of the distance matrix of a unicyclic graph

with an odd cycle.

Theorem 2.15 ([16]) Let G be a unicyclic graph on 2k+1+ p vertices and cycle length 2k+1. Let D be the

distance matrix of G. Then

det(D) = (−2)p
(

k(k + 1) +
(2k + 1)p

2

)

,

while the inertia of D is given by (n+(D), n0(D), n−(D)) = (1, 0, 2k + p).



Les Cahiers du GERAD G–2013–81 7

The inertia of a unicyclic graph with an even cycle is as follows.

Theorem 2.16 ([16]) Let G be a unicyclic graph on 2k + p vertices with an even cycle of length 2k. Let D
be the distance matrix of G. Then the inertia of D is (n+(D), n0(D), n−(D)) = (1, k − 1, k + p).

Note that to prove the above theorem, Bapat, Kirkland and Neumann [16] used the following lemma.

Lemma 2.17 ([16]) Let G0 be a graph with distance matrix D0 and suppose that for all x > 0, D0 + xJ has

a single positive eigenvalue (namely the Perron value). Form Gp from G0 by adding unweighted branches at

various vertices of G0, on a total of p new vertices. If D is the corresponding distance matrix, then Dp + xJ

has just one positive eigenvalue for any x > 0.

Corollary 2.3 stated that trees have exactly one positive distance eigenvalue. This fact motivated the search

and study of graph families having one positive distance eigenvalue. Ramane et al. [112] stated sufficient
conditions on a graph such that its line graph L(G) has exactly one positive distance eigenvalue. First, recall

the following definition. Let G be a graph. The line graph L(G) of G is the graph whose vertices correspond

to the edges of G with two vertices of L(G) being adjacent if and only if the corresponding edges in G have

a vertex in common. For instances, the line graph of a cycle on n vertices is a cycle on n vertices, i.e.,
L(Cn) ∼= Cn; the line graph of a path on n vertices is a path on n− 1 vertices, i.e., L(Pn) ∼= Pn−1; and the

line graph of a star on n vertices is the clique on n− 1 vertices, i.e., L(Sn) ∼= Kn−1.

Theorem 2.18 ([112]) If G is a k–regular graph on n vertices with diameter D ≤ 2 such that none of the

graphs F1, F2 and F3 (Figure 3) is an induced subgraph of G, then L(G) has exactly one positive distance

eigenvalue ∂1(L(G)) = k(n− 2).

Figure 3: Some forbidden graphs.

The next corollary follows from and generalizes, in some way, the above theorem.

Corollary 2.19 ([112]) Let G be a k–regular graph on n vertices with diameter D ≤ 2 and let none of the

four graphs of Figure 3 be an induced subgraph of G. Let np and kp be the order and degree, respectively, of

the p–th iterated line graph Lp(G) of G, p ≥ 1. Then Lp(G) has exactly one positive distance eigenvalue

∂1(L
p(G)) = np−1kp−1 − 2kp−1 = 2np − kp − 2 = 2n

p−1
∏

i=1

(2i−1k − 2i + 1)− (2pk − 2p+1 + 4)

Let G = (V,E) be a graph. Let i, j, k be non–negative integers. G = (V,E) is called distance–regular if for

any choice of u, v ∈ V with d(u, v) = k, the number of vertices w ∈ V such that d(u,w) = i and d(v, w) = j

is independent of the choice of u and v. All the cubic (3–degree regular) distance–regular graphs on at most

10 vertices are illustrated in Figure 4. For more details about distance–regular graphs see the book [25].

All the distance–regular graphs that have exactly one distance positive eigenvalue are characterized by Koolen

and Shpectorov [90]. We first define the graphs and then state the result. The cocktail party graph CPk on
2k vertices, also called the hyperoctahedral graph [17], is the graph obtained from the complete graph K2k

by the deletion of k disjoint edges, i.e., the complement of the graph consisting of k disjoint edges. See

Figure 7 for an illustration of the cocktail party graph CP3. The Gosset graph (see e.g. [25]) has as vertices

all the vectors of length 8, either consisting of two 1’s and six 0’s, or consisting of six 1
2 and two − 1

2 ; e.g.

(1, 1, 0, 0, 0, 0, 0, 0), (12 ,
1
2 ,− 1

2 ,− 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) and (12 ,− 1

2 ,− 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) are vertices of the Gosset graph.

Two vertices are adjacent if and only if their inner product is exactly 1 (so the first and the second, as well as

the second and the third vector of the above three are adjacent). See Figure 5 for a projection of the Gosset
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Figure 4: All the cubic distance–regular graphs on at most 10 vertices.

graph on a plane. The Schläfli graph (see e.g. [25]) is the subgraph of the Gosset graph consisting of the

(0, 1)–vectors with one 1 at the last two places and the (12 ,− 1
2 )–vectors with minus signs at the first six places

only. The Schläfli graph is illustrated in Figure 6. Let Qk be the k–cube and let V1 ∪ V2 be its bipartition

as a bipartite graph. Then the halved cube Q′
k ([25]) is the graph with V (Q′

k) = V1, where u is adjacent to

v in Q′
k if and only if dQk

(u, v) = 2. Clearly, Q′
k has 2k−1 vertices and is (k(k − 1)/2)–regular. Note that

Q′
3 is isomorphic to K4 and that Q′

4 is isomorphic to the cocktail party graph on 8 vertices. The Johnson

graph J(n, k) is defined on the set of vertices composed of the k–element subsets of an n–element set, and
where two vertices are adjacent if and only they share k − 1 elements. For instances, J(n, 1) is the complete

graph Kn, J(4, 2) is the tripartite graph K2,2,2; and J(5, 2) is the complement graph of the Petersen graph or

equivalently the line graph of K5. A k–regular graph G on n vertices is said strongly regular if there exist two

integers p and q such that any two adjacent vertices in G have p common neighbors and any non adjacent
vertices have q common neighbors. In this case n, k, p and q are the called the parameters of G, and then

we speak about an (n, k, p, q)–strongly regular graph. There are exactly four (28, 12, 6, 4)–strongly regular

graphs, one of which is the line graph of the complete graph K8 and the three others are known as Chang

graphs. The Chang graphs are implemented in Mathematica as ”GraphData[{”Chang” , n}]” for n = 1, 2, 3.

Figure 5: A projection of the Gosset graph. Note
that two vertices coincide in the center of this graph.
Edges also coincide with this projection.

Figure 6: The Schläfli graph.

The Cartesian product G1�G2 of two graphs G1 and G2 is the graph whose vertex set is the (set) Cartesian

product V (G1)× V (G2), and in which two vertices (u, u′) and (v, v′) are adjacent if and only if either u = v
and u′ is adjacent with v′ in G2, or u

′ = v′ and u is adjacent with v in G1.

The Hamming graph H(D, p), D ≥ 2 and p ≥ 2, of diameter D and characteristic p is the graph whose vertex

set consists of all D-tuples of elements taken from a p–element set, in which two vertices are adjacent if and

only if they differ in exactly one coordinate. H(D, p) can also be defined as the Cartesian product of the
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Figure 7: The cocktail party graph
CP3.

Figure 8: The Johnson graph
J(5, 2).

Figure 9: The halved cube Q′
8.

complete graph Kp by itself D times, i.e.,

H(D, p) = Kp�Kp� · · ·�Kp
︸ ︷︷ ︸

D times

.

The Shrikhande graph is the graph whose vertex set is {0, 1, 2, 3}×{0, 1, 2, 3} and in which two vertices (a, b)
and (c, d) are adjacent if and only if (a, b)− (c, d) ∈ {±(0, 1),±(1, 0),±(1, 1)}. A Doob graph D(m,n) is the

Cartesian product of m copies of the Shrikhande graph and the Hamming graph H(n, 4).

A double odd graph DOk is a graph whose vertices are k–element or (k + 1)–element subsets of a (2k + 1)–

element set, where two vertices u and v are adjacent if and only if u ⊂ v or v ⊂ u, as subsets.

Figure 10: The Hamming graph
H(2, 3).

Figure 11: The Shrikhande graph. Figure 12: The double odd graph
DO2.

Theorem 2.20 ([90]) Let G be a distance–regular graph. The distance matrix of G has exactly one positive

eigenvalue if and only if G is one of the following graphs: a cocktail party graph; the Gosset graph; the Schläfli

graph; a halved cube; a Johnson graph; one of the three Chang graphs; a Hamming graph; a Doob graph; the

icosahedron (see Figure 13); a polygon (cycle); a double odd graph; the Petersen graph (see Figure 4); the
dodecahedron (see Figure 14).

Figure 13: The icosahedron. Figure 14: The dodecahedron.



10 G–2013–81 Les Cahiers du GERAD

In [100], Merris studied the distance spectrum of a tree with a given number of vertices. In order to estimate

the distance eigenvalues of a tree on n vertices and m = n− 1 edges, he associated the matrix K = K(T ) =

QTQ = 2Im + A(T ∗) to the tree T , where Q is the incidence matrix of T (arbitrarily oriented), Im is the
unit m×m–matrix, and A(T ∗) denotes the adjacency matrix of the line graph T ∗ of T . Note the similarity

between the matrix K and the Laplacian of T defined by L(T ) = QQT = Diag(T )−A(T ). The main result

proved in [100] is the following:

Theorem 2.21 ([100]) Let T be a tree. Then the eigenvalues of −2K−1 interlace the distance eigenvalues

of T .

To prove the above theorem, the following lemma was used.

Lemma 2.22 ([100]) If T is a tree on n vertices and m = n−1 edges, then QTDQ = −2Im, where D denotes

the distance matrix of T .

A pendent vertex (also written pendant vertex) of T is a vertex of degree 1. A pendent neighbor is a vertex

adjacent to a pendent vertex. Suppose T has n1 pendent vertices and n′
1 pendent neighbors. A series of

corollaries for Theorem 2.21 were proved and they are gathered below.

Corollary 2.23 ([100]) Let T be a tree with n1 pendent vertices and n′
1 pendent neighbors.

• Let ∂ be a distance eigenvalue of T of multiplicity k. Then k ≤ n1.

• Among the distance eigenvalues of T , ∂ = −2 occurs with multiplicity at least n1 − n′
1 − 1.

• If D denotes the diameter of T , then

(i) ∂n ≤ −1

1− cos
(

π
D+1

) ;

(ii) ∂⌊D
2 ⌋ > −1;

(iii) ∂n′

1
> −1 (provided n > 2n′

1);

(iv) ∂n−n′

1+2 < −2;

(v) ∂n1+2 ≥ −2;

(vi) ∂n−n1+2 ≤ −2.

The second point of the above corollary was improved by Collins [36].

Theorem 2.24 ([36]) Let T be a tree with n1 pendent vertices and n′
1 pendent neighbors. Then, among the

distance eigenvalues of T , ∂ = −2 occurs with multiplicity at least n1 − n′
1.

In some cases, it is possible to deduce some graph eigenvalues from the graph structure. It is the case for the

distance matrix whenever the graph contains two vertices sharing the same neighborhood, as proved in the

next theorem.

Theorem 2.25 ([91]) If there are two vertices with the same neighborhood in a graph G, then one root of the

distance polynomial is either −1 (if the two vertices are adjacent) or −2 (if the two vertices are not adjacent).

The results gathered in the next theorem and dealing with the characteristic polynomial of the distance

matrix of a graph, were proved by McKay in [99]. First, recall that the cone Ĝ of a graph G is the graph

obtained from G by adding a new vertex joined to each vertex of G.

Theorem 2.26 ([99]) Let G be a graph on n vertices.

• If G is a tree, then

PD(x) = −xn

4
·
[

PL∗

(
2

x

)

+

(

n− 1− 2

x

)

· P−L

(
2

x

)]

,
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where L is the Laplacian matrix of G and L∗ is the symmetric (n+ 1)× (n+ 1)–matrix obtained from

L by adding, as the first row and first column, the (n + 1)–vector q with q1 = 0 and qi+1 = 2 − di for

i = 1, . . . , n.

• If G has diameter 2, then

PD(G)(x) = PÂ(x+ 1)− xPA(x+ 1),

where Â denotes the adjacency matrix of the cone graph of G.

In the same paper, McKay [99] studied the problem of finding cospectral but non–isomorphic graphs. He
constructed an infinite family of pairs of cospectral but non–isomorphic trees. A pair of these trees is given

in Figure 15. First, we recall the definition of an operation on two trees. Let S and T be two rooted trees

on m1 + 1 and m2 + 1 vertices respectively. The coalescence S • T of S and T is the (m1 +m2 + 1)–vertex

tree formed by identifying the roots of S and T . The rooted trees S and T are called limbs of S • T .

Figure 15: The smallest two cospectral non–isomorphic trees (on 17 vertices).

Theorem 2.27 ([99]) Let Si = S • Ti for i = 1, 2, where S is any rooted tree on at least two vertices and T1

and T2 are the trees of Figure 16 rooted at the white vertices. Then, S1 and S2 are not isomorphic and

PD(S1)(x) = PD(S2)(x) and PD(S1)
(x) = PD(S2)

(x).

Figure 16: The trees T1 and T2 of Theorem 2.27.

McKay [99] also studied the proportion of trees on n vertices that can be characterized by their characteristic
polynomial.

Theorem 2.28 ([99]) Let p(n) be the proportion of the trees on n vertices which are characterized (amongst

trees) by the characteristic polynomial of their distance matrix or that of their complements. Then p(n) → 0
as n → ∞.

Despite the fact proved in the above theorem, it seems that the distance spectral radius determines the

spectrum of a tree. Stevanović and Indulal [132] experimentally confirmed it for all trees on at most 22
vertices, and for all chemical trees (trees with maximum degree at most 4) on at most 24 vertices. Then they

suggested the following conjecture.
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Conjecture 2.29 ([132]) There exist no two distance non–cospectral trees T1 and T2 with ∂1(T1) = ∂1(T 2).

3 The Perron vector of the distance matrix

In this section, we give a survey of the results related to (the entries of) the Perron vector of the distance

matrix. By the Perron–Frobenius theorem, the distance spectral radius ∂1 has a unique unit positive eigen-
vector x, called the Perron vector or principal eigenvector (sometimes it is not required to be a unit vector,

in which case, it is not unique).

Let G = (V,E) be a graph containing a bridge (an edge whose removal disconnects the graph) e = uv. Let

Vu = {w ∈ V : d(u,w) < d(v, w)} and Vv = {w ∈ V : d(v, w) < d(u,w)}. In fact Vu and Vv define a partition

of V and are the vertex sets of the connected components of G− e containing u and v respectively. The first
result in this section provides a relationship between the sum of the Perron vector entries over Vu and the

sum of those over Vv.

Theorem 3.1 ([130, 131]) Let G be a graph containing a bridge e = uv. Let x be the distance principal

eigenvector of G. Assume that the entries of x are indexed by the vertices of G. Then

∂1 · (xu − xv) =
∑

w∈Vv

xw −
∑

w∈Vu

xw =
∑

w∈V

xw − 2
∑

w∈Vu

xw.

The next result is about the Perron vector entries corresponding to three vertices forming two consecutive

edges one of which is a bridge.

Theorem 3.2 ([116]) Let vi−1, vi and vi+1 be vertices in a graph G such that vi−1vi, vivi+1 ∈ E(G), and let

x be the Perron vector of G. If xi−1 < xi and one of the edges vi−1vi and vivi+1 is a bridge, then xi < xi+1.

The proof of the above theorem led to the next result.

Corollary 3.3 ([116]) If vi−1 is a pendant vertex attached to a vertex vi, then xi−1 > xi.

For the particular case of a tree, and since any of its edges is a bridge, Theorem 3.2 is stated as follows.

Theorem 3.4 ([116]) Let T be a tree on n ≥ 3 vertices with a Perron vector x. If xi−1 < xi, then the entries

of x along any path of the form vi−1vi · · · form an increasing sequence of positive numbers.

As a corollary of the above theorem, Ruzieh and Powers [116] stated

Corollary 3.5 ([116])

• For a tree, the minimum value among the Perron vector entries occurs at an interior vertex. Moreover,

this minimum may occur at two vertices at most, in which case they are adjacent.

• For a tree, the maximum value among the Perron vector entries occurs at a pendant vertex and may

occur at several vertices.

Let G be a graph and v a vertex in G. For k ≥ 1, denote by G(v, k) the graph obtained from G ∪ Pk by

adding an edge between v and an endpoint of Pk. For such a graph, we have the following result.

Theorem 3.6 ([131]) Let x be the Perron vector of G(v, k), k ≥ 1, and ∂1 the distance spectral radius of

G(v, k). Denote by x0 the component of x at v and x1, x2, . . . , xk the components of x along Pk starting from

the endpoint adjacent to v. Then, there exist constants a and b depending on ∂1, x0, k and the sum of the
entries of x such that

xi = ati + bsi, for 0 ≤ i ≤ k,

where

t = 1 +
1

∂1
−

√
2∂1 + 1

∂1
and s = 1 +

1

∂1
+

√
2∂1 + 1

∂1
.
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The next two theorems are stated for the entries of the Perron vector of the distance matrix of a graph that

contains (at least) two pending paths.

Consider the graph G(v, k, l) obtained from a graph G on at least two vertices and two paths Pk and Pl by

joining one endpoint of each path to a fixed vertex v from G (see Figure 17), where k and l are two integers.

Theorem 3.7 ([131]) Let x be the Perron vector of G(v, k, l), k, l ≥ 1 and ∂1 the distance spectral radius
of G(v, k, l). Denote by x0 the component of x at v, x1, x2, . . . , xk the components of x along Pk starting

from the endpoint adjacent to v, and y1, y2, . . . , yl the components of x along Pl starting from the endpoint

adjacent to v (see Figure 17). If k ≥ l, then

k∑

i=1

xi ≥
l∑

i=1

yi.

Figure 17: The graph of Theorem 3.7.

Zhang and Godsil [149] proved that the above result remains true if the vertex v is replaced by an edge in

which each end vertex is an endpoint of one of the attached paths (see Figure 18).

Theorem 3.8 ([149]) Let vk and vl be two adjacent vertices of a graph G. Let Pk and Pl be two paths

attached to G at vk and vl, respectively. If k > l, then
∑

i∈V (Pk)

xi >
∑

i∈V (Pl)

xi.

Figure 18: The graph of Theorem 3.8.

The above theorems are stated for graphs with attached paths. If instead of two attached paths we have

two sets of pendent vertices to the endpoints of a path, then the components of the Perron vector are also

comparable. The related result was proved by Yu, Jia, Zhang and Shu [143].

Theorem 3.9 ([143]) Let G be the graph obtained by attaching pendent vertices vn−r+1, vn−r+2, . . ., vn−r+s

to the vertex v1 of a path P = v1v2 · · · vn−r and attaching pendent vertices vn−r+s+1, vn−r+s+2, . . ., vn to

the vertex vn−r. Let X = (x1, x2, . . . , xn)
T be the Perron eigenvector corresponding to ∂1(G), in which xi

corresponds to vi. Let

S1 =

n−r+s∑

i=n−r+1

xi and S2 =

n∑

i=n−r+s+1

xi.

If s ≥ p, then S1 ≥ S2, but xn−r+1 ≤ xn−r+s+1. In particular, xn−r+1 > xn−r+s+1 if s > p.

In a graph G, if the neighborhood of a vertex contains the neighborhood of another vertex, then the entries
of the Perron vector of D(G) corresponding to the two vertices are comparable as stated in the following

theorem.
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Theorem 3.10 ([94]) Let G be a graph on n vertices and let x be a Perron vector of the distance matrix D
of G. Consider two vertices u and v in G.

(1) If N(u) \ {v} ( N(v) \ {u}, then xu > xv.

(2) If N(u) \ {v} = N(v) \ {u}, then xu = xv.

Note that (2) of Theorem 3.10 was also proved in [98].

Das [45] investigated the problem of finding upper and lower bounds on the minimal and maximal entries of

the Perron vector of distance matrix. The results of these investigations [45] are gathered in the next theorem.

First, we need the following definition. The independence number of a graph G, denoted by α = α(G), is

the size of a maximum independent set (a set of pairwise non–adjacent vertices) of G. A complete split graph
with parameters n, q (q ≤ n), denoted by CS(n, q), is a graph on n vertices consisting of a clique (a set of

pairwise adjacent vertices) on q vertices and an independent set on the remaining n − q vertices in which

each vertex of the clique is adjacent to each vertex of the independent set.

Theorem 3.11 ([45]) Let G be a graph on n vertices with p–norm normalized principal eigenvector x =
(x1, x2, . . . xn)

T . Assume that the vertices of G indexed such that x1 ≥ x2 ≥ · · · ≥ xn. Let α, D, δ and

S denote the independence number, the diameter, the minimum degree and the sum of the squares of the

distances between all unordered pairs of vertices of G. Then

xn ≤ min

{(
(∂1 − n+ α+ 1)p

(n− α)αp + α(∂1 − n+ α+ 1)p

) 1
p

,

(
(∂1 − 2α+ 2)p

(n− α)(∂1 − 2α+ 2)p + α(n− α)p

) 1
p

}

with equality if and only if G is the complete split graph CS(n, n− α);

xn ≤ min













(√
2(n−1)S

n − n+ α+ 1

)p

(n− α)αp + α

(√
2(n−1)S

n − n+ α+ 1

)p







1
p

,







(√
2(n−1)S

n − 2α+ 2

)p

(n− α)

(√
2(n−1)S

n − 2α+ 2

)p

+ α(n− α)p







1
p







with equality if and only if G is the complete graph Kn;

(

∂p−2
1

∂p−2
1 + ((n− 1)D − (D − 1)δ)p−1

) 1
p

≤ x1 ≤
(

D(∂1 − n+ 2)p−1

∂1 +D(∂1 − n+ 2)p−1

) 1
p

with equality at both bounds if and only if G is the complete graph Kn;

(
(n− 1)p−2

(n− 1)p−2 + ((n− 1)D − (D − 1)δ)p−1

) 1
p

≤ x1 ≤








D

(√
2(n−1)S

n − n+ 2

)p−1

√
2(n−1)S

n +D

(√
2(n−1)S

n − n+ 2

)p−1








1
p

with equality at both bounds if and only if G is the complete graph Kn.

A comet, also called a broom, COn,∆ is the tree obtained from a star S∆+1 and a path Pn−∆ by the coalescence

of an endpoint of Pn−∆ with a pendent vertex of S∆+1. A double comet, also called a double broom and

dumbbell, DCn,∆1,∆2 is the tree obtained from a path Pn−∆1−∆2+2 by attaching ∆1 − 1 pendent vertices to

one endpoint of the path and ∆2 − 1 pendent vertices to the other endpoint.

In order to characterize the graphs maximizing the distance spectral radius over the class of graphs with given
matching number (see Theorem 5.50), Nath and Paul [102] proved a series of results about the components

of the distance Perron vector of a double comet.
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Theorem 3.12 ([102]) Let G = DCn,k+t+1,k+1 be a double comet of diameter D = 2d and v0v1 · · · v2d a

diametrical path in it, where t ≥ 0. If X = (x0, . . . x0
︸ ︷︷ ︸

k

, x1, x2, . . . , x2d−1, x2d, . . . x2d
︸ ︷︷ ︸

k+t

)T is the distance Perron

vector of G, then xd−i ≥ xd+i, for 1 ≤ i ≤ d, with equality if and only if t = 0. Moreover, if t ≥ 1, then

(xd−i − xd+i) > (xd−i+1 − xd+i−1), for 1 ≤ i ≤ d− 1, and (x0 − x2d)(∂1(G) + 2) = (x1 − x2d−1)∂1(G).

Theorem 3.13 ([102]) Let G = DCn,k+t+1,k+1 be a double comet of diameter D = 2d+1 and v0v1 · · · v2d+1

a diametrical path in it, where t ≥ 0. If X = (x0, . . . x0
︸ ︷︷ ︸

k

, x1, x2, . . . , x2d, x2d+1, . . . x2d+1
︸ ︷︷ ︸

k+t

)T is the distance

Perron vector of G, then xd−i ≥ xd+i+1, for 1 ≤ i ≤ d, with equality if and only if t = 0. Moreover, if t ≥ 1,

then (xd−i − xd+i+1) > (xd−i+1 − xd+i), for 1 ≤ i ≤ d− 1, and (x0 − x2d+1)(∂1(G) + 2) = (x1 − x2d)∂1(G).

The above two theorems were generalized by Wang and Zhou [138] to the class of all graphs as follows.

Theorem 3.14 ([138]) Let u and v be two vertices in a graph G. Let u′ and v′ be two pendent neighbors of

u and v, respectively. Then (∂1(G) + 2)(xv′ − xu′) = ∂1(G)(xv − xu), where xw denote the component of the

distance Perron vector corresponding the vertex w.

4 Transformations, operations and particular Spectra

In this section, we give the distance spectra of some particular families of graphs. We also give an overview of

the results about the distance spectrum of a graph obtained by means of some transformations from another

graph. Of course, the distance spectrum of the new graph is given in function of that of the original graph.

Similar overview is furnished for the graphs obtained using operations involving two graphs. Note that the

results are stated as theorems, but most of them were originally stated as lemmas.

First, since the diagonal entries of the distance matrix are all 0, the distance spectrum of any graph contains

at least two distinct eigenvalues. Indulal [82] showed that Kn is the only graph that contains exactly two

distinct distances eigenvalues. The distance matrix of the complete graph coincides with its adjacency matrix,

and therefore, the distance spectrum of Kn equals its adjacency spectrum.

Hosoya, Murakami and Gotoh [74] calculated the distance characteristic polynomial for a path Pn:

PD(Pn)(t) = (−1)ntn + (−1)(n−1)
n∑

k=2

2(k−2)(k − 1)
n2(n2 − 1)(n2 − 2) · · · (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) · · · (k − (k − 1)2)
t(n−k).

Hosoya, Murakami and Gotoh [74] computed the distance characteristic polynomial for the even cycles and
Graovac [66] did it for both odd and even cycles (see also [58]):

If n = 2p (i.e., even)

PD(Cn)(t) = tp−1 ·
(

t− n2

4

)

·
p
∏

j=1

(

t+ csc2
(
π(2j − 1)

n

))

.

If n = 2p+ 1 (i.e., odd)

PD(Cn)(t) =

(

t− n2 − 1

4

)

·
p
∏

j=1

(

t+
1

4
sec2

(
πj

n

))

·
p
∏

j=1

(

t+
1

4
csc2

(
π(2j − 1)

2n

))

.

Caporossi, Chasset and Furtula [32] computed partially the distance spectrum of a multipartite graph.

Theorem 4.1 ([32]) For the complete multipartite graph Kn1,...,nk
, let mj = |{i : ni = j}|, j ≥ 1. Whenever

mj ≥ 2, the distance spectrum of Kn1,...,nk
contains the eigenvalue j − 2 with multiplicity at least mj − 1,

and eigenvalue −2 with multiplicity at least
∑

i≥2 mj(j − 1).
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The cocktail party graph CPp on n = 2p vertices can be considered as a p–partite graph K2,...,2. Then,

as a consequence of Theorem 4.1, the eigenvalues of CPp are 2p, 0 with multiplicity p − 1, and −2 with

multiplicity p.

Collins [36] computed the distance characteristic polynomial of the star Sn on n vertices:

PD(Sn)(t) = (−1)n−1
(
t2 − 2(n− 2)t− n+ 1

)
(t+ 2)n−2.

A double star S∆1,∆2 is the tree obtained from a K2 by attaching ∆1 − 1 pendent vertices to one vertex and

∆2 − 1 pendent vertices to the other vertex (see Figure 19 for the double star S6,4). The double star S∆1,∆2

contains n = ∆1+∆2 vertices among which n−2 are pendent, and the two non pendent vertices have degrees
∆1 and ∆2 respectively. The distance characteristic polynomial of the double star S∆,∆ on n = 2∆ vertices

was computed by Collins [36]:

PD(S∆,∆)(t) = (t+ n)(t+ 1)
(
t2 − (5n− 1)t− 9n

)
(t+ 2)2∆−4.

Figure 19: The double star S6,4.

The full k–ary tree of length r, denoted Fr,k, is defined recursively by: F1,k is the star Sk+1 on k+1 vertices,
and Fr,k is obtained from Fr−1,k by attaching k new edges to each pendent vertex (see Figure 20 for F2,4).

Collins [36] computed the distance characteristic polynomial of the full k–ary tree to be

PFr,k
(t) = Qr+1,k(t) ·

k∏

i=1

R
(k−1)kk−i

i,k (t),

where Qr+1,k(t) is the polynomial of degree r + 1, defined by

Q1,k(t) = −t and

∞∑

p=1

Qp,k(t)x
p =

N(k, t, x)

M(k, t, x)

with

N(k, t, x) = −(ktx)5+k3t3x4((3k+1)t+(2k+2))+k2tx3((3k+3)t2+(2k+6)t+3)+kx2((k+3)t2+4t+1)+tx,

M(k, t, x) = (ktx+ 1)(kt2x2 + x(2 + (k + 1)t) + 1) · (k3t2x2 + kx(2 + (k + 1)t) + 1),

and the polynomials Ri,k(t) are defined recursively by
R0,k(t) = 1; R1,k(t) = −t− 2; Ri+1,k(t) = −((k + 1)t+ 2)Ri,k(t)− kt2Ri−1,k(t).

The distance matrix of a graph G with diameter 2 can be written in terms of the adjacency matrices of G

and its complement G: D = A + 2A. Such a relationship does not exist between the spectra of D, A and

A in general. However, if in addition to have a diameter 2, G is regular, the distance spectrum of G can be

obtained from its adjacency spectrum as stated in the next theorem.

Theorem 4.2 ([56, 85]) Let G be a k–regular graph on n vertices with diameter at most 2 and adjacency

spectrum λ1 = k, λ2, λ3, . . . , λn. Then the distance spectrum of G is 2n−2−k,−(2+λ2),−(2+λ3), . . . ,−(2+

λn).
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Figure 20: The full 4–ary tree of length 2: F2,4.

An n× n–matrix C is circulant [47] if it takes the following form:

C =
















C1 Cn Cn−1 . . . C3 C2

C2 C1 Cn . . . C4 C3

C3 C2 C1 . . . C5 C4

...
...

...
. . .

...
...

Cn−1 Cn−2 Cn−3 . . . C1 Cn

Cn Cn−1 Cn−2 . . . C2 C1
















.

A graph is called circulant if its adjacency matrix is circulant. A graph is called integral if all eigenvalues of
its adjacency matrix are integers. For more about integral graphs see [12] as well as the references therein.

An integral circulant graph is a circulant graph with an integral adjacency spectrum (see e.g. [127]). Let

Div be a set of positive, proper divisors of the integer n ≥ 1. Define the graph ICGn(Div) to have vertex

set V = {0, 1, . . . , n − 1} and edge set E = {{a, b} | a, b ∈ V, gcd(a − b, n) ∈ Div}. In the particular case
Div = {1}, the graph ICGn(1) is called the unitary Cayley graph. Figure 21 illustrates the unitary Cayley

graph ICG10(1). Its distance spectrum is (15, 1, 0, 0, 0, 0,−4,−4,−4,−4).

Figure 21: The unitary Cayley graph ICG10(1).

Ilić [78] proved that the distance eigenvalues of an integral circulant graph are integers.

Theorem 4.3 ([78]) An integral circulant graph ICGn(Div), where Div is an arbitrary set of divisors of n,

has integral distance spectra.

Ilić [78] also calculated the spectrum of the unitary Cayley graph ICGn(1) on n vertices according to the

values of n.
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• If n is a prime, then ICGn(1) is the complete graph Kn and therefore its distance spectrum is its

adjacency spectrum: ∂1 = n− 1 and ∂2 = · · · = ∂n = −1.

• If n is a power of 2, then ICGn(1) is the complete bipartite graph Kn
2
,n
2
and its distance spectrum is

∂1 = 3n
2 − 2, ∂2 = n

2 − 2 and ∂3 = · · · = ∂n = −2.

• If n is odd composite number, then the distance spectrum of ICGn(1) is ∂1 = 2(n − 1) − k and

∂i = −2− c(i − 1, n), for i = 2, . . . , n, where k denotes the degree of any vertex in (the regular) graph
ICGn(1), and

c(r, n) =

n∑

a = 1
gcd(a, n) = 1

ωa·r
n

and where ωn denotes a complex primitive nth root of unity.

• If n is even with an odd prime divisor, using the same notation as the previous case, the distance

spectrum of ICGn(1) is ∂1 = 5n
2 −2(k+1), ∂2 = 2(k−1)− n

2 , ∂i = −2− c(i−2, n), for i = 2, . . . , n2 +1,

and ∂i = −2− c(i − 1, n), for i = n
2 + 2, . . . , n.

Some families of graphs are defined using operations on other graphs. We next give descriptions of distance

spectra of graphs obtained using operations, involving two graphs or more. We give the distance spectra of

certain families.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Take another copy of G with set of vertices

{u1, u2, . . . , un} labelled such that ui corresponds to vi for each i. Make ui adjacent to all the vertices in
N(vi) in G, for each i. The resulting graph, denoted by D2G, is called the double graph of G (see Figure 22

for the double graph of the cycle C5). The distance spectrum of the double graph of G was derived from the

distance spectrum of G by Indulal and Gutman [84].

Figure 22: The double graph of the cycle C5: D2C5.

Theorem 4.4 ([84]) Let G be a graph on n vertices with distance spectrum {∂1, ∂2, . . . , ∂n}. Then the distance
eigenvalues of D2G are 2∂1 + 2, 2∂2 + 2, . . . , 2∂n + 2, and −2 with multiplicity n.

The distance spectrum of the Cartesian product G1�G2 of two transmission regular graphs G1 and G2 was

derived from the distance spectra of G1 and G2 by Indulal [81].

Theorem 4.5 ([81]) Let G1 and G2 be two transmission regular graphs on n1 and n2 vertices with transmis-

sion regularity k1 and k2 respectively. Let (k1, ∂
1
1 , ∂

1
2 , . . . , ∂

1
n1
) and (k1, ∂

2
1 , ∂

2
2 , . . . , ∂

2
n2
) be the distance spectra

of G1 and G2, respectively. Then the distance spectrum of G1�G2 is {n1k2 + n2k1, n1∂
2
i , n2∂

1
j , 0}, where

i = 2, . . . , n1, j = 2, . . . , n2 and 0 is with multiplicity (n1 − 1)(n2 − 1).

Note that Indulal and Gutman [84] proved the above theorem in the particular case where G2
∼= K2. The

next result proved Caporossi, Chasset and Furtula [32] can also be obtained as a corollary of the above
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theorem, since the graph for which the result is stated can be considered as the Cartesian product of a clique

on k vertices and K2.

Corollary 4.6 ([32]) Let G be a graph made of two k–cliques connected in such a way that each vertex of a
clique is connected to exactly one vertex of the other, then the distance spectrum of G consists of 3k− 2, −k,

0 with multiplicity k − 1, and −2 with multiplicity k − 1.

Using Theorem 4.5, Indulal [81] computed the distance eigenvalues of the Hamming graph H(D, p) which are

D(p− 1)pD−1, 0 and −pD−1 with multiplicities 1, pD −D(p− 1)− 1 and D(p− 1) respectively. Another well–

known graph defined using the Cartesian product of two cycles is the nanotorus Ck�Cm. To illustrate, the
nanotorus C3�C4 is given in Figure 23. The distance eigenvalues of the nanotorus Ck�Cm were computed,

also as a consequence of Theorem 4.5, by Indulal [81] when k and m are odd:

(m+ k)(mk − 1)

4
, −m

4
sec2

(
πj

2k

)

, −m

4
cosec2

(πr

2k

)

, −k

4
sec2

(
πt

2m

)

, −k

4
cosec2

(
πl

2m

)

,

where j ∈ {1, 2, . . . , k − 1} and even, r ∈ {1, 2, . . . , k − 1} and odd, t ∈ {1, 2, . . . ,m − 1} and even, l ∈
{1, 2, . . . ,m− 1} and odd, together with 0 of multiplicity (m− 1)(k − 1).

Figure 23: The nanotorus C3�C4.

The lexicographic product or graph composition G ◦H of two graphs G and H is the graph whose vertex set

is the (set) Cartesian product V (G)× V (H), and in which two vertices (u, u′) and (v, v′) are adjacent if and
only if either u is adjacent with v in G or u = v and u′ is adjacent with v′ in H . Indulal [81] showed that the

distance spectrum of G ◦ H , whenever H is regular, can be deduced from the distance spectrum of G and

the adjacency spectrum of H .

Theorem 4.7 ([81]) Let G and H be two graphs on p and n vertices respectively. Assume that H is k–regular.
Let {∂1, ∂2, . . . , ∂p} and {λ1 = k, λ2, . . . , λn} be the distance and adjacency spectra of G and H respectively.

Then the distance eigenvalues of G ◦H are n∂i+2n− k− 2 with multiplicity 1 and −λj − 2 with multiplicity

p, for i = 1, 2, . . . , p and j = 2, 3, . . . , n.

Note that Indulal and Gutman [84] proved the above theorem in the particular case where H ∼= K2.

Let G be a graph. Attach a pendant vertex to each vertex of G. The resulting graph, denoted by Cor(G), is

called the corona of G with K1 (see Figure 24 for Cor(C6)). Indulal and Gutman [84] computed the distance
spectrum of the corona of a transmission regular graph G from its distance spectrum.

Theorem 4.8 ([84]) Let G be a k–transmission regular graph on n vertices with distance spectrum {∂1 =

k, ∂2, . . . , ∂n}. Then the distance spectrum of Cor(G) consists of ∂i − 1+
√

∂2
i + 1 and ∂i− 1−

√

∂2
i + 1, for

i = 2, 3, . . . , n together with n+ k − 1−
√

(n+ k)2 + (p− 1)2 and n+ k − 1 +
√

(n+ k)2 + (p− 1)2.

To prove the above theorem, Indulal and Gutman [84] first established the next result.

Theorem 4.9 ([84]) Let D be the distance matrix of a k–transmission regular graph G on n vertices. Let

∂1 = k, ∂2, . . . , ∂n be the distinct distance eigenvalues of G. Then D is irreducible and there exists a polynomial
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Figure 24: The corona graph of the cycle C6 with K1:Cor(C6).

P (x) such that P (D) = J , where J is the all 1’s n× n matrix. In this case

P (x) =
n(x− ∂2)(x − ∂3) · · · (x− ∂n)

(k − ∂2)(k − ∂3) · · · (k − ∂n)
.

Let G be a graph on the vertex set {v1, v2, . . . , vn}. Define the bipartite graph EDC(G), called extended

double cover graph of G, with vertex set {v1, v2, . . . , vn, u1, u2, . . . , un} in which vi is adjacent to ui for each

i = 1, 2, . . . , n and vi is adjacent to uj if vi is adjacent to vj in G. For instance, the extended double cover

graph of the complete graph Kn is the complete bipartite graph Kn,n. The graph EDC(C4) is illustrated in
Figure 25.

Figure 25: The extende double cover graph of C4: EDC(C4).

Indulal and Gutman [84] calculated the distance spectrum of the extended double cover graph of a k–regular

graph of diameter 2 from its adjacency spectrum.

Theorem 4.10 ([84]) Let G be a k–regular graph on n vertices with diameter 2 and adjacency spectrum
{λ1 = k, λ2, . . . , λn}. Then the distance eigenvalues of EDC(G) are 5n − 2k − 4, 2k − n, −2(λi + 2), and

2λi for i = 2, 3, . . . , n.

The join G∇H of two vertex–disjoint graphs G and H is the graph obtained from the union G∪H by adding
all possible edges between each vertex of G and each vertex of H . Stevanović and Indulal [132] proved that

it is possible to deduce the distance spectrum of the join of two regular graphs from their adjacency spectra.

Theorem 4.11 ([132]) For i = 1, 2, let Gi be a ki–regular graph on ni vertices with adjacency eigenvalues

λi,1 = ki, λi,2, . . . , λi,ni
. The distance spectrum of G1∇G2 consists of −λi,ji − 2, i = 1, 2 and 2 ≤ ji ≤ ni,
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and two more eigenvalues of the form

n1 + n2 − 2− k1 + k2
2

±
√
(

n1 − n2 −
k1 − k2

2

)2

+ n1n2

Stevanović and Indulal [132] computed (as a corollary of Theorem 4.11) the distance eigenvalues of a complete

bipartite graph Kp,q. They are p+ q − 2±
√

p2 − pq + q2 and −2 with multiplicity p+ q − 2.

The wheel graph Wn on n ≥ 4 vertices is the join graph of Cn−1 and K1 (see Figure 26 for W10).

Figure 26: The wheel graph W10.

The distance spectrum of a wheel graph Wn, first calculated in [85], can be deduced from the adjacency
eigenvalues of Cn−1, say t1 = 2 > t2 ≥ · · · ≥ tn−1, using Theorem 4.11. The distance eigenvalues of Wn are

n− 3±
√
n2 − 5n+ 8 and −ti − 2 for 2 ≤ i ≤ n− 1.

Also, as a consequence of Theorem 4.11, the distance eigenvalues of the complete split graph CS(n, q) =

Kq∇Kn−q are −1 with multiplicity q − 1, −2 with multiplicity n− q − 1 and

n− q + 3

2
±
√

(n− 3q + 1)2

4
+ q(n− q).

Note that a particular case of Theorem 4.11, namely the distance characteristic polynomial of the join of two
graphs of diameter at most 2, was provided by Ramane, Gutman and Revankar [109].

Concerning the join of a graph with the union of two graphs Stevanović and Indulal [132] proved the next

theorem.

Theorem 4.12 ([132]) For i = 0, 1, 2 let Gi be a ki–regular graph on ni vertices with adjacency eigenvalues

λi,1 = ki ≥ λi,2, . . . , λi,ni
. If k1 6= k2, the distance spectrum of G0∇(G1∪G2) consists of −λi,ji −2, i = 0, 1, 2

and 2 ≤ ji ≤ ni, and three more eigenvalues which are solutions of the cubic equation in t

(2n0 − k0 − 2− t)(t+ k1 + 2)(t+ k2 + 2) + (2(t+ k0 + 2)− 3n0)(n1(t+ k2 + 2) + n2(t+ t1 + 2)) = 0.

Stevanović [129] generalized the notion of join of graphs to that of joined union of graphs as follows. Let
G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}, and for i = 1, 2, . . . , n, let Gi = (Vi, Ei) be a

graph of order ni. The joined union graph of G1, G2, . . . , Gn with respect to G, denoted G[G1, G2, . . . , Gn],

is the graph whose vertex set W and edge set F are

W =
n⋃

i=1

Vi and F =

(
n⋃

i=1

Ei

)
⋃




⋃

vivj∈E

Vi × Vj



 .
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Theorem 4.13 ([129]) Let G be a graph with vertex set V = {v1, v2, . . . , vn}, and for i = 1, 2, . . . , n, let Gi be

a ki–regular graph on ni with adjacency eigenvalues λi,1 = ki ≥ λi,2 ≥ . . . ≥ λi,ni
. The distance spectrum of

the joined union G[G1, G2, . . . , Gn] consists of the eigenvalues −λi,j−2 for i = 1, 2, . . . , n and j = 2, 3, . . . , ni

and the eigenvalues of the matrix









2n1 − k1 − 2 d(v1, v2)n2 d(v1, v3)n3 . . . d(v1, vn)nn

d(v2, v1)n1 2n2 − k2 − 2 d(v2, v3)n3 . . . .
d(v3, v1)n1 d(v3, v2)n2 2n3 − k3 − 2 . . . .

...
...

...
. . .

...
d(vn, v1)n1 d(vn, v2)n2 d(vn, v3)n3 . . . 2nn − kn − 2










.

A graph G is said to be self–complementary if G ∼= G, where G denotes the complement of G. For a given

graph G, consider the graph P4(G) obtained from a path P4 by replacing each of its endpoints by a copy

of G, and each of its internal vertices by a copy of G, and then joining the vertices of these graphs by all
possible edges whenever the corresponding vertices of P4 are adjacent (see Figure 27 for P4(K3)). The graph

P4(G) is a self–complementary graph.

Figure 27: The self–complementary grap P4(K3).

Theorem 4.14 ([83]) Let G be a k–regular graph on n vertices, with adjacency spectrum {λ1, λ2, . . . , λn}.
Then the distance spectrum of P4(G) consists of −λi− 2 and λi− 1, for i = 2, 3, . . . , n, each with multiplicity

2, together with

7n− 3±
√

(2k + 1)2 + 45n2 − 12nk − 6n

2
and

n+ 3±
√

(2k + 1)2 + 5n2 + 4nk + 2n

2
.

Now, we turn to the description of the behavior of the distance spectral radius of a graph when some

transformations are performed within the graph itself. We begin with the transformation consisting of

deletion or addition of an edge.

Let e = uv be an edge of a graph G such that G′ = G − e is connected. The removal of e increases some

distances and does not change some others, thus by the Perron–Frobenius theorem, one can conclude that

∂1(G) < ∂1(G
′). In particular, for any spanning tree T of G, we have that ∂1(T ) ≥ ∂1(G) with equality if

and only if G is a tree, i.e., T = G. Similarly, adding a new edge to G decreases the distance spectral radius.

As immediate consequences of that fact,

• the complete graph Kn minimizes the distance spectral radius among all graphs of order n;

• the complete bipartite graph Kp,q minimizes the distance spectral radius among all bipartite graphs

with a partition into two sets of p and q vertices respectively.

Let u, v and w three vertices in a graph G = (V, V ) such that uv ∈ E and uw 6∈ E. The rotation of the edge

uv to uw is the operation that consists of the deletion of uv and then the addition of uw. Under certain

conditions, the rotation of a pendent edge increases the distance spectral radius.

Stevanović and Ilić [131] used Theorem 3.6 and Theorem 3.7 to prove the next result, stated using the

notations of those theorems.
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Theorem 4.15 ([131]) Let G be a graph and v one of its vertices. If k ≥ l ≥ 1, then

∂1(G(v, k, l)) < ∂1(G(v, k + 1, l− 1)).

Ning, Ouyang and Lu [105] used the above result to prove the next one.

Theorem 4.16 ([105]) If a tree T minimizes the distance spectral radius over the set of all trees of order n
with r pendent vertices, the lengths of any two adjacent pendent paths in T are almost the same.

Zhang and Godsil [149] showed that Theorem 4.15 remains true if the vertex v is replaced by an edge, i.e.,

two paths are attached to two adjacent vertices instead of to the same vertex.

Theorem 4.17 ([149]) Let u and v be two adjacent vertices of a graph G and for positive integers k and l,

let Gk,l denote the graph obtained from G by adding paths of length k at u and length l at v. If k > l ≥ 1,
then ∂1(Gk,l) < ∂1(Gk+1,l−1); if k = l ≥ 1, then ∂1(Gk,l) < ∂1(Gk+1,l−1) or ∂1(Gk,l) < ∂1(Gk−1,l+1).

Instead of the rotation of an endedge of an appended path to an endedge of another appendent path, Bose,

Nath and Paul [22] considered the rotation of a pendent edge belonging to a set of pendent edges with a

common neighbor to another similar edge. They get the following result.

Theorem 4.18 ([22]) Let G be a graph with a clique Ks of order s ≥ 2 and u, v be two vertices on the clique

with p, q pendent vertices, respectively, where d(v) = q + s − 1 in G. If G′ = G − vw + uw (see Figure 28),

where w is a pendent vertex adjacent to v in G then for p ≥ q ≥ 1, ∂1(G) > ∂1(G
′).

Figure 28: The graphs G and G′ in Theorem 4.18. Figure 29: The graphs G and G′ in Theorem 4.19.

Bose, Nath and Paul [22] proved a result similar to that of Theorem 4.18 for a particular rotation.

Theorem 4.19 ([22]) Let H1 be a path P ∼= uvw with p and q (p ≥ q) pendent vertices adjacent to u and w,

respectively, one pendent vertex z adjacent to v, and H2 is any graph. If G is a graph obtained by identifying
the vertex v with any vertex of H2 and G′ = G− vz + wz (see Figure 29), then ∂1(G

′) > ∂1(G).

Theorem 4.20 ([21]) If G′ is the graph obtained from G by the rotation of the edge v1v2 to v1v4 as illustrated

in Figure 30, then ∂1(G) > ∂1(G
′).

Figure 30: The graphs G and G′ of Theorem 4.20. Figure 31: The graphs G and G′ of Theorem 4.22.

Theorem 4.21 ([21]) Let v1v2v3 · · · vgv1 be a chain in a graph G of length at least 4. For 1 ≤ i ≤ g, let Gi

be the graph attached at vi, and Si be the sum of the components of the Perron vector of G corresponding to

the vertices in Gi. If S1 = max{Sj|1 ≤ j ≤ g} and G′ = G− v1vg + vgvg−2, then ∂1(G
′) > ∂1(G).
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Theorem 4.22 ([21]) If G and G′ are the graphs as shown in Figure 31, then ∂1(G) > ∂1(G
′).

Another particular case of an rotation is considered by Wang and Zhou [138] in the next theorem.

Theorem 4.23 ([138]) Consider a comet COn,n−2d+1 with an odd diameter 2d+1 whose vertices are labeled
as in Figure 32. Let G be the graph obtained form COn,n−2d+1 by the coalescence of the central vertex of its

diametrical path with a vertex of a nontrivial connected graph H (see Figure 4.23. Let G′ = G − ud−1ud +

vd−1ud. Then ∂1(G
′) < ∂1(G).

Figure 32: The graphs G and G′ im Theorem 4.23.

A natural generalization of the rotation of an edge is the rotation of two or more edges incident with the

same vertex to edges incident to another vertex. The behavior of the spectral distance radius under this

generalized rotation subjected to additional conditions was also studied. We begin by the particular case
proved by Zhang and Godsil [149].

Theorem 4.24 ([149]) Let C1 be a component of G−u and v1, . . . , vk, with 1 ≤ k ≤ dG(u)−dC1(u), be some

vertices of NG(u) \NC1(u). Suppose NC1(u) \ {v} = NC1(v), where v is a vertex of C1 adjacent to u. Let G′

be the graph obtained from G by deleting the edges uvs and adding the edges vvs (1 ≤ s ≤ k). If there exists
a vertex w ∈ V (G) \ (V (C1)∪ {u}) such that dG(w, vs) < dG′(w, vs), for all 1 ≤ s ≤ k, then ∂1(G) < ∂1(G

′).

Bose, Nath and Paul [21] generalized Theorem 4.18, which is their own theorem but in another paper [22],

to the next one. The generalization consists in replacing the pendent edge attached to a vertex belonging to

a clique by a subgraph attached to a vertex, also belonging to the clique.

Theorem 4.25 ([21]) Let G be a graph on n vertices with a clique Ks such that G − E(Ks) has exactly
s components of which at least two, say G1 and G2, are not trivial. Let u ∈ V (Ks) ∩ V (G1) and v ∈
V (Ks) ∩ V (G2). If G′ = G− {vw,w ∈ NG2(v)} + {uw,w ∈ NG2(v)}, then ∂1(G) > ∂1(G

′).

Figure 33: The graphs G and G′ of Theorem 4.25.

The above theorem can also be seen as a generalization of the next two results.

Theorem 4.26 ([21]) If G and G′ are the graphs as shown in Figure 34, where both Gu and Gv are non

trivial graphs and Gv has at least three vertices, then ∂1(G) > ∂1(G
′).

Theorem 4.27 ([21]) If G and G′ are the graphs as shown in Figure 35, where G1 is non trivial, then
∂1(G) > ∂1(G

′).

The next three theorems are stated on the behavior of the distance spectral radius under rotation of a set of

edges, all incident with the same vertex, under conditions on the components of the Perron vector.
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Figure 34: The graphs G and G′ of Theorem 4.26. Figure 35: The graphs G and G′ of Theorem 4.27.

Theorem 4.28 ([143]) Suppose the graph G = ∪3
i=1Gi satisfies that Gi ∩Gj = {v0} for 1 ≤ i, j ≤ 3, i 6= j,

and that |V (Gi)| ≥ 2 for i = 1, 2, 3 (see Figure 36 (a)). Let X = (x0, x1, . . . , xn−1)
T be the Perron eigenvector

corresponding to ∂1(G), in which xi corresponds to vi. Let

S1 =
∑

vi∈V (G1)

xi, S2 =
∑

vi∈V (G2)

xi

and for a vertex va ∈ V (G2), va 6= v0, let H = G− {v0vi, vi ∈ NG3(v0)} + {vavi, vi ∈ NG3(v0)}. If S1 ≥ S2,
then ∂1(H) > ∂1(G).

Figure 36: Transformations in Theorem 4.28 and Theorem 4.29.

Theorem 4.29 ([143]) Assume that the graph G shown in Figure 36 (b) satisfies G1 ∩ G3 = {v1} and v1v2
is a cut edge. Let X = (x0, x1, . . . , xn−1)

T be the Perron eigenvector corresponding to ∂1(G), in which xi

corresponds to vi. Let

S1 =
∑

vi∈V (G1)

xi, S2 =
∑

vi∈V (G2)

xi,

and let H = G − {v1vi, vi ∈ NG3(v1)} + {v2vi, vi ∈ NG3(v1)}. If S1 ≥ S2 and |V (G3)| ≥ 2, then ∂1(H) >

∂1(G).

In [144], Yu, Wu and Shu considered the rotation of the edges incident to the same vertex and satisfying a

given condition.

Theorem 4.30 ([144]) Let G be a graph such that G = Gp∪G0∪G′ with Gp∩G0 = Gp∩G′ = G0∩G′ = {v0}
and Gp consisting of pendent edges v0v1, v0v2, . . . , v0vk (k ≥ 4). Let S′ = V (G′) and suppose that NG′(v0) =

N1 ∪N2 satisfying that N1 6= ∅, N2 6= ∅, N1 ∩N2 = ∅. Let

H = G−
∑

vi∈N1

viv0 +
∑

vi∈N1

vivk or H = G−
∑

vi∈N2

viv0 +
∑

vi∈N2

vivk.

For any vertex vj ∈ S′ \ {v0}, if all paths from v0 to vj with a length of dG(v0, vj) pass only through N1 or

only through N2, then ∂1(H) > ∂1(G).

In the nest two theorems, Yu, Wu and Shu [144] considered the rotation of a set of edges incident to the same

vertex to two different vertices: the edges satisfying a given condition to one vertex and the other edges to

another vertex.

Theorem 4.31 ([144]) Let G be a graph such that G = Gp∪G0∪G′ with Gp∩G0 = Gp∩G′ = G0∩G′ = {v0}
and Gp consisting of pendent edges v0v1, v0v2, . . . , v0vk (k ≥ 3). Let S′ = V (G′) and suppose that NG′(v0) =



26 G–2013–81 Les Cahiers du GERAD

N1 ∪N2 satisfying that N1 6= ∅, N2 6= ∅, N1 ∩N2 = ∅. Let

H = G−
∑

vi∈N1

viv0 −
∑

vi∈N2

viv0 +
∑

vi∈N1

vivk−1 +
∑

vi∈N2

vivk.

If there exists vertex vj ∈ S′ \ {v0} such that there exist two different paths P1 and P2 from v0 to vj with the

same length dG(v0, vj), where P1 passes through N1 and P2 passes through N2, then ∂1(H) > ∂1(G).

Theorem 4.32 ([144]) Let G be a graph such that G = Gp∪G0∪G′ with Gp∩G0 = Gp∩G′ = G0∩G′ = {v0}
and Gp consisting of pendent edges v0v1, v0v2, . . . , v0vk (k ≥ 4). Let S′ = V (G′) and suppose that NG′(v0) =
N1 ∪N2 satisfying that N1 6= ∅, N2 6= ∅, N1 ∩N2 = ∅. Let

H = G−
∑

vi∈N1

viv0 −
∑

vi∈N2

viv0 +
∑

vi∈N1

vivk−1 +
∑

vi∈N2

vivk.

For any vertex vj ∈ S′ \ {v0}, if all paths from v0 to vj with a length of dG(v0, vj) pass only through N1 or

only through N2, then ∂1(H) > ∂1(G).

Now, we consider the rotation of two sets of edges incident to two different vertices. First, we consider the

transformation on a tree.

Let T be an arbitrary tree and let v be a vertex with degree p+ q + 1. Suppose that w is a parent of v and

that there are p paths P3 (two additional vertices) and q paths P2 (pendent edges) attached at v. We form

two trees T ′ (see Figure 37) and T ′′ (see Figure 38) in the following way: T ′ has p pendent paths P3 and
q + 1 pendent paths P2 attached at w, while T ′′ has p + 1 pendent paths P3 and q − 1 pendent paths P2

attached at w. Let G be the maximal subtree of T rooted at w, that does not contain the vertex v. Thus we

have the following results.

Figure 37: The transformation of T to T ′ in Theo-
rem 4.33.

Figure 38: The transformation of T to T ′′ in Theo-
rem 4.33.

Theorem 4.33 ([77]) Let T be a tree and T ′ and T ′′ the trees obtained from T as described above and

illustrated in Figure 37 and Figure 38, respectively. Let G be the maximal subtree of T rooted at w, that does

not contain vertex v. Then

• if G is a nontrivial graph, then ∂1(T ) > ∂1(T
′);

• if G has a pendent path P3 attached at some vertex u of G, or at least three pendent vertices, then

∂1(T ) > ∂1(T
′).

A weaker version of the above theorem, where only pendent edges are considered, is proved by Ilić [76] (see
also [130, 131]).

Theorem 4.34 ([76, 131]) Let T be a tree on n vertices and consider the tree T ′ obtained from T as illustrated

in Figure 39. Then ∂1(T
′) ≤ ∂1(T ) with equality if and only if T (and T ′) is the star Sn.

A generalization, in someway, of the above result is proved by Du, Ilić and Feng [54].

Theorem 4.35 ([54]) Let T be a tree on n vertices and consider the tree T ′ obtained from T as illustrated
in Figure 40, where P and Q are subtrees of T (and T ′). If dT (u), dT (v) ≥ 2, then ∂1(T ) > ∂1(T

′).

The behavior of the distance spectral radius under the replacement of non–pendent edge by a pendent one

was studied by Wang and Zhou [138]. Their result is next stated.
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Figure 39: The transformation of T into T ′ in Theo-
rem 4.34.

Figure 40: The transformation of T into T ′ in Theo-
rem 4.35.

Theorem 4.36 ([138]) Let G be a graph and uv be a non–pendent cut edge of G. Let G′ be the graph
obtained from G by contracting uv to a vertex u and attaching a pendent vertex v to u (see Figure 41). Then

∂1(G
′) < ∂1(G).

Figure 41: The transformation of G into G′ in Theorem 4.36.

A closed necklace is a unicyclic graph, in which every vertex not on the cycle, is a pendent vertex. If G

is a closed necklace with cycle v1v2 · · · vkv1 and mi (mi ≥ 0) pendent vertices at vi, then we denote G
by N(m1,m2, . . . ,mk). A chain in a graph G is a cycle C in G, such that G − E(C) has exactly |V (C)|
components. A generalized closed necklace is a graph with a chain. The length of the chain is the length of

the cycle C.

Theorem 4.37 ([21]) Let G be a generalized closed necklace with a chain of even length. If G′ is the graph
obtained from G by identifying two adjacent vertices on that chain, one of which has degree at least three,

and creating a new pendent vertex at the identified vertex (see Figure 42), then ∂1(G) > ∂1(G
′).

Figure 42: The graphs G and G′ of Theorem 4.37.

The above theorem was generalized by the same authors to next one.

Theorem 4.38 ([21]) Let G be a generalized closed necklace with a chain of odd length l with l ≥ 5. If

G′ is the graph obtained from G by identifying three consecutive vertices on that chain, one of which has

degree at least three, and creating two new pendent vertices at the identified vertex (see Figure 43), then

∂1(G) > ∂1(G
′).

In the next theorem, the rotation in question is done on three sets of edges incident to three vertices and all

these edges are transformed into edges incident to the same vertex.

Theorem 4.39 ([21]) If G and G′ are the graphs as shown in Figure 44, where G0 is non trivial. If at least

one of the remaining Gi’s is non trivial, then ∂1(G) > ∂1(G
′).
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Figure 43: The graphs G and G′ of Theorem 4.38.

Figure 44: The graphs G and G′ of Theorem 4.39.

We finish this section with a result where the considered rotation transforms several sets of pendent edges

incident to different vertices to a set of pendent edges incident to a same vertex.

Theorem 4.40 ([144]) Let G1 be a complete graph with V (G1) = {v0, vk+1, vk+2, . . . , vn−1} (n−k ≥ 3). Let

G be the graph consisting of G1 and the pendent edges v0v1, v0v2, . . . , v0vk. Let H be the graph on n vertices
consisting of G1 and pendant stars Sti attached at each vertex vi (vi is the center of Sti) of the complete

graph G1 where stars can be trivial (with only one vertex). Then we have

• if k = 0, 1, then ∂1(H) = ∂1(G);

• if k ≥ 2 and 2 ≤ t0 ≤ k, then ∂1(H) > ∂1(G).

5 The largest distance eigenvalue

In the present section, we give a survey of the results related to lower or upper bounding the distance spectral

radius of a graph. The bounds are expressed using several graph invariants. In most cases, the order n of

the graph is involved. The problem of bounding the distance largest eigenvalue is, in some way, a recent

research subject. Actually, first bounds on ∂1 go back to the paper [116] by Ruzieh in 1990. Since then,

many researchers were interested in bounding the largest distance eigenvalue of a graph. We begin with the
bound proved by Ruzieh [116].

Theorem 5.1 ([116]) If G is a graph of order n, then n− 1 ≤ ∂1(G) ≤ ∂1(Pn). Moreover, the lower bound

is reached if and only if G is the complete graph Kn, and the upper is reached if and only if G is the path Pn.

In the same paper, Ruzieh computed the spectrum as well as the eigenspaces of the distance matrix of the

path Pn.

Zhou and Ilić [151] proved some bounds on the distance spectral radius of a graph. First, they established a

lower bound in terms of the order n, the maximum degree ∆1 and second maximum degree ∆2.
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Theorem 5.2 ([151]) Let G be a graph on n vertices with maximum degree ∆1 and second maximum degree

∆2. Then

∂1 ≥
√

(2n− 2−∆1)(2n− 2−∆2)

with equality if and only if G is a regular graph with diameter less than or equal to 2.

Then, they proved an upper bound in terms of the order n, diameter D, the minimum degree δ1 and second

minimum degree δ2.

Theorem 5.3 ([151]) Let G be a graph on n vertices with diameter D, minimum degree δ1 and second
minimum degree δ2. Then

∂1 ≤
√
(

Dn− D(D − 1)

2
− 1− δ1(D − 1)

)(

Dn− D(D − 1)

2
− 1− δ2(D − 1)

)

with equality if and only if G is a regular graph with diameter less than or equal to 2.

Let S = S(G) denote the sum of the squares of the distances between all unordered pairs of vertices in the

graph, i.e.,

S = S(G) =
∑

1≤i<j≤n

d2ij .

Zhou and Trinajstić [153] proved a lower bound on the distance spectral radius of a graph using only the

sum of the squares of the distances S(G). They also proved an upper bound using the order n in addition

to the sum of the squares of the distances S(G). Both bounds are over the set of graphs with exactly one
positive distance eigenvalue.

Theorem 5.4 ([153]) Let G be a graph on n ≥ 2 vertices with sum of the squares of the distances between

all unordered pairs of vertices S(G). If G has exactly one positive distance eigenvalue, then

∂1(G) ≥
√

S(G)

with equality if and only if G is K2, and

∂1(G) ≤
√

2(n− 1)S(G)

n

with equality if and only if G is the complete graph Kn.

Note that the bounds in the above theorem, as well as the third bound in the next theorem, were first proved

by Zhou [150] in the case of trees.

Zhou and Trinajstić [153] proved a series of bounds on the distance spectral radius ∂1 of a graph in terms

number of vertices n, number of edges m, Wiener index W and transmissions Tri, for i = 1, . . . , n. These
bounds are gathered in the next theorem.

Theorem 5.5 ([153]) Let G be a graph on n ≥ 2 vertices and m edges with Wiener index W and transmission

sequence {Tr1, Tr2, . . ., Trn}. Then

∂1(G) ≤ max
1≤i≤n

n∑

j=1

Dij

√

Trj
Tri

with equality if and only if G is a transmission regular graph;

∂1(G) ≥

√
√
√
√

1

n

n∑

i=1

Tr2i
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with equality if and only if G is a transmission regular graph;

∂1(G) ≥ 2

n
W (G)

with equality if and only if G is a transmission regular graph;

∂1(G) ≥ 2(n− 1)− 2m

n
,

where m denotes the number of edges in G, with equality if and only if G is a regular graph with diameter

D ≤ 2.

Note that the second and third inequalities in the above theorem were also proved by Indulal [82].

In another paper, Zhou and Trinajstić [154] gave further bounds on the largest distance eigenvalue of a

graph. The following theorem gives an upper bound on the distance spectral radius of a graph that is not

transmission regular.

Theorem 5.6 ([154]) Let G be a graph on n ≥ 2 vertices with distance spectral radius ∂1. Suppose the

transmission sequence {Tr1, T r2, . . . , T rn} is labeled such that Tr1 ≥ Tr2 ≥ · · · ≥ Trn and Tr1 > Trn−k+1

with 1 ≤ k ≤ n− 1. Then

∂1 ≤ Tr1 − 1

2
+

√

(Tr1 + 1)2

4
− k(Tr1 − Trn−k+1)

with equality if and only if k ≤ n− 2, G is a graph with k vertices of degree n− 1 and the remaining n − k

vertices have degree less than n− 1.

The next theorem gives a lower bound on the distance spectral radius of a graph that is not transmission

regular.

Theorem 5.7 ([154]) Let G be a graph on n ≥ 2 vertices with distance spectral radius ∂1. Suppose the

transmission sequence {Tr1, T r2, . . . , T rn} is labeled such that Tr1 ≥ Tr2 ≥ · · · ≥ Trn and Trl > Trn with

1 ≤ l ≤ n− 1. Then

∂1 >
Trn − 1

2
+

√

(Trn + 1)2

4
− l(Trl − Trn).

Combining the Wiener index W and the transmissions {Tr1, T r2, . . . , T rn}, Indulal [82] proved the following

bound.

Theorem 5.8 ([82]) Let G be a graph on n vertices with Wiener index W and transmission sequence {Tr1,
Tr2, . . ., Trn}. Then

∂1(G) ≥ max
i

1

n− 1

(

(W − Tri) +
√

(W − Tri)2 + (n− 1)Tr2i

)

.

Indulal [82] proved a lower bound on ∂1 using, besides the squares of the transmissions, the second distance

degree sequence. For a vertex vi ∈ V , the second distance degree is defined by

Tr
(2)
i =

n∑

j=1

dijTrj,

where dij denote the distance between vi and vj in G.

A graph G is said to be pseudo k–distance regular if Tr
(2)
i = kT ri for i = 1, 2, . . . , n.

Theorem 5.9 ([82]) Let G be a graph on n vertices with transmission and second distance degree sequences

{Tr1, T r2, . . . , T rn} and {Tr(2)1 , T r
(2)
2 , . . . , T r

(2)
n }, respectively. Then

∂1(G) ≥

√
√
√
√

∑n
i=1

(

Tr
(2)
i

)2

∑n
i=1 Tr

2
i

with equality if and only if G is pseudo distance regular.
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Güngör and Bozkurt [67] obtained the above theorem as a corollary of a more general result. First, they

generalized the notion of transmission and second distance degree as follows. For each i ∈ {1, 2, . . . , n} and

fixed real number t, define the sequence {M (1)
i ,M

(2)
i , . . . ,M

(k)
i , . . .} by

M
(1)
i = (Tri)

t
; M

(k)
i =

n∑

j=1

Di,jM
(k−1)
j for k ≥ 2.

For the particular case t = 1, we have M
(1)
i = Tri and M

(2)
i = Tr

(2)
i .

Theorem 5.10 ([67]) Let G be a graph on n vertices, t be a real number and k be an integer. Then

∂1(G) ≥

√
√
√
√
√
√

∑n
i=1

(

M
(k+1)
i

)2

∑n
i=1

(

M
(k)
i

)2 .

Equality holds for particular values of t and k if and only if
M

(k+1)
1

M
(k)
1

=
M

(k+1)
2

M
(k)
2

= · · · = M(k+1)
n

M
(k)
n

.

He, Liu and Zhao [71] also used the transmission and second distance degree sequences for lower and upper

bounding the distance spectral radius. First, they [71] used the minimum (resp. maximum) of the ratios

Tri/T r
(2)
i , for i = 1, . . . , n, for a lower (resp. an upper) bound.

Theorem 5.11 ([71]) Let G be a graph on n ≥ 2 vertices with transmission and second distance degree

sequences {Tr1, T r2, . . . , T rn} and {Tr(2)1 , T r
(2)
2 , . . . , T r

(2)
n } respectively. Then

min
1≤i≤n

Tri

Tr
(2)
i

≤ ∂1(G) ≤ max
1≤i≤n

Tri

Tr
(2)
i

.

Moreover, any equality holds if and only if G is pseudo distance regular.

Second, they [71] used the minimum (resp. maximum) of the square roots

√

Tr
(2)
i , for i = 1, . . . , n, for a

lower (resp. an upper) bound.

Theorem 5.12 ([71]) Let G be a graph on n ≥ 2 vertices with distance spectral radius ∂1 and second distance

degree sequences {Tr(2)1 , T r
(2)
2 , . . . , T r

(2)
n }. Then

min
1≤i≤n

√

Tr
(2)
i ≤ ∂1 ≤ max

1≤i≤n

√

Tr
(2)
i .

Moreover, any equality holds if and only if G has same value of Tr
(2)
i for all i.

Finally, they [71] used the maximum of the square roots of the products of the transmissions and the second

distance degrees

√

Tri · Tr(2)i , for i = 1, . . . , n, for an upper bound.

Theorem 5.13 ([71]) Let G be a graph on n ≥ 2 vertices with transmission and second distance degree

sequences {Tr1, T r2, . . . , T rn} and {Tr(2)1 , T r
(2)
2 , . . . , T r

(2)
n }, respectively. Then

∂1(G) ≤ max
1≤i,j≤n

√

Tri · Tr(2)i .

Moreover, any equality holds if and only if G is pseudo distance regular.

The average distance degree of a vertex vi is defined as Tri = Tr
(2)
i /T ri. Thus, a graph is pseudo k–distance

regular if Tri = k for i = 1, 2, . . . , n.

Lin and Shu [95] proved lower and upper bounds on the distance spectral radius in terms of average distance

degrees.
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Theorem 5.14 ([95]) Let G be a graph on n vertices with distance spectral radius ∂1 and average distance

degree sequence {Tr1, T r2, . . . , T rn}. Then

min
1≤i,j≤n

√

Tri · Trj ≤ ∂1(G) ≤ max
1≤i,j≤n

√

Tri · Trj .

Equalities hold if and only if G is pseudo distance regular.

Zhang [147] characterized the graphs minimizing the distance spectral radius among the class of graphs with

given diameter. First, consider the following two graphs (see Figure 45). For two fixed integers n and k, whit
2k ≤ n, let H1 be the graph obtained from two paths, each on k vertices and two cliques on ⌊n/2⌋ − k and

⌈n/2⌉ − k vertices respectively, by adding all possible vertices between

• an endpoint of one path and all the vertices of one clique,

• an endpoint of the other path and all the vertices of the other clique,

• each vertex of one clique and all the vertices of the other clique.

In a similar way, let H2 be the graph obtained from two paths, each on k vertices and a clique on n − 2k

vertices, by adding all possible vertices between

• an endpoint of one path and all the vertices of the clique,

• an endpoint of the other path and all the vertices of the clique.

Figure 45: The graphs H1 and H2 in Theorem 5.15.

Theorem 5.15 ([147]) Let G be a graph on n vertices with diameter D, and let k = ⌊D/2⌋. Then

• if D = 2k + 1, ∂1(G) ≥ ∂1(H1) with equality if and only if G ∼= H1;

• if D = 2k, ∂1(G) ≥ ∂1(H2) with equality if and only if G ∼= H2.

A matching in a graph is a set of disjoint edges. The maximum possible cardinality of a matching in a graph

G is called the matching number of G and denoted by µ = µ(G). A matching is perfect if it contains exactly

n/2 edges.

For the general case, Liu [98] proved that complete split graphs minimize ∂1 among all graphs with a given

matching number µ.

Theorem 5.16 ([98]) Let G be a graphs on n vertices with matching number µ. Then

• if µ = ⌊n/2⌋, then ∂1(G) ≥ n− 1 with equality if and only if G ∼= Kn;

• if 2 ≤ µ ≤ ⌊n/2⌋ − 1, then ∂1(G) ≥ ∂1(CSn,µ), with equality if and only if G ∼= CSn,µ.

The complete split graphs minimize ∂1 among all graphs with a given independence number α as shown by

Ilić [76] in the next theorem.

Theorem 5.17 ([76]) Among all graphs on n vertices with given independence number α, the complete split
graph CSn,n−α has the minimum value of distance spectral radius.

Recall that the chromatic number χ = χ(G) of a graph G is the smallest number of colors to be assigned to

G’s vertices such that no pair of adjacent vertices have the same color. A subset of vertices assigned to the

same color is called a color class, every such class forms an independent set. A graph in which the vertex set

can be partitioned into two independent sets is bipartite; three sets tripartite; k sets k-partite or multipartite
with k independent sets. A k-partite graph is said to be complete if any two vertices are adjacent if and only

if they belong to different partition classes. A k-partite graph is said to be balanced, and denoted by Tk(n),
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if for any two partition classes V ′ and V ′′, ||V ′| − |V ′′|| ≤ 1. It is also called Turán’s graph. Liu [98] studied

the problem of characterizing the graphs with minimum distance spectral radius over the class of graphs with

given number n of vertices and chromatic number χ, and showed the following.

Theorem 5.18 ([98]) Let G be a graph on n vertices with chromatic number χ, where 2 ≤ χ ≤ n− 1. Then

∂1(G) ≥ ∂1(Tk(n)) with equality if and only if G ∼= Tk(n).

The clique number ω = ω(G) of a graph G is the maximum cardinality of a clique in G. Recall that a kite

Kin,ω is the graph obtained from a clique Kω and a path Pn−ω by adding an edge between a vertex from the

clique and an endpoint of the path. The problem of finding extremal values for the distance spectral radius
of a graph was studied by Zhai, Yu and Shu [146].

Theorem 5.19 ([146]) Let G be a graph on n vertices with clique number ω. Then

∂1(Tω(n)) ≤ ∂1(G) ≤ ∂1(Kin,ω)

with equality for the lower (resp. upper) bound if and only if G ∼= Tω(n) (resp. Kin,ω).

Bose, Nath and Paul [22], and Yu, Jia, Zhang and Shu [143] studied the problem of characterizing graphs
minimizing the distance spectral radius on the class Gr

n of graphs on n vertices with r pendent vertices. First

recall the following definitions. A pineapple with parameters n, q (q ≤ n), denoted by PAn,q, is a graph on n

vertices consisting of a clique on q vertices and an independent set on the remaining n− q vertices, in which

each vertex of the independent set is adjacent to a unique and the same vertex of the clique.

Theorem 5.20 ([22, 143]) For n ≥ 4 and 0 ≤ r ≤ n−1, there is a unique graph in Gr
n with minimal distance

spectral radius, namely the pineapple PAn,n−r for r 6= n− 2 and the double star Sn−2,2 for r = n− 2.

The authors of [22], as well as those of [143], were also interested in characterizing the graphs maximizing

the distance spectral radius on the class Gr
n. Their results are gathered in the next theorem.

Theorem 5.21 ([22, 143])

• The kite Kin,3 is the unique graph with maximal distance spectral radius in G1
n, for n ≥ 4.

• The path Pn is the unique graph with maximal distance spectral radius in G2
n, for n ≥ 3.

• The comet COn,3 has the largest distance spectral radius in G3
n, for n ≥ 4.

• The double comet DCn,⌈(n−1)/2⌉,⌊(n−1)/2⌋ has the largest distance spectral radius in Gn−3
n , for n ≥ 6.

• The double star S⌈n/2⌉,⌊n/2⌋ uniquely maximizes the distance spectral radius in Gn−2
n , for n ≥ 4.

The case where r is assumed to be in an interval was solved in [143].

Theorem 5.22 ([143]) If a graph G maximizes ∂1 over Gr
n with 2 ≤ r ≤ n − 2, then G is a double comet

DCn,s+1,p+1.

The above theorem was first stated for the class of trees (see Theorem 5.45 below). Finally, Yu et al. [143]

made the following conjecture.

Conjecture 5.23 ([143]) The maximum value of ∂1 over Gr
n, 2 ≤ r ≤ n− 2, is reached for the double comet

DCn,⌊r/2⌋,⌈r/2⌉.

The above conjecture follows from a similar result proved by Nath and Paul [102] (see Theorem 5.51).

For the next result, we need the following definition. Let n, p, q be integers such that n ≥ p+q ≥ 6. The double

lollipop DLn,p,q is the graph obtained form two cycles Cp and Cq and a path Pn−p−q+2 by the coalescence

of one vertex from the cycle Cp and one endpoint of the path, and the coalescence one vertex from the cycle

Cq with the other end point of the path. In the particular case where p = q = 3, we speak about a double
long lollipop DLn,3,3 [4] (see Figure 46).

After proving a series of lemmas, Bose, Nath and Paul [20] determined the family of graphs that maximize

the distance spectral radius among the graphs without pending vertices, i.e., over the class G0
n.
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Figure 46: The double long lollipop DL10,3,3.

Theorem 5.24 ([20]) If n ≥ 6, then DLn,3,3 is the unique graph with maximal distance spectral radius in

G0
n.

Recall that the vertex connectivity of a graph G, denoted by ν = ν(G), is the minimum number of vertices

whose deletion disconnects the graph. For given integers n and ν, with 1 ≤ ν ≤ n− 1, define Kν
n−1 to be the

graph obtained from the complete graph Kn−1 and an isolated vertex by adding ν edges. The lower bound

on ∂1 among all graphs with fixed vertex connectivity was proved in [98].

Theorem 5.25 ([98]) Let G be a graph on n vertices with vertex connectivity ν. Then ∂1(G) ≥ ∂1(K
ν
n−1)

with equality if and only if G is the graph Kν
n−1.

For ν = 1, as a result of Theorem 5.1, Pn is the only graph that maximizes ∂1. For ν = 2, Lin et al. [96]

proved that the maximum of ∂1 is reached only for the cycle Cn.

Recall that the edge connectivity of a graph G, denoted by κ = κ(G), is the minimum number of vertices

whose deletion disconnects the graph. Li, Fan and Wang [94] characterized the graphs that minimize the

distance spectral radius with given order n and edge connectivity κ.

Theorem 5.26 ([94]) For given integer κ and n such that 1 ≤ κ ≤ n−1, the graph Kκ
n−1 is the unique graph

with minimum distance spectral radius among the graphs on n vertices with edge connectivity κ.

Zhang and Godsil [149] studied the problem of characterizing the graphs with k cut vertices (resp. edges)

with minimum distance index.

Let Gn,k be the graph obtained by adding paths Pl1+1, . . . , Pln−k+1 of almost equal lengths, i.e. such that
|li − lj | ≤ 1 for all 1 ≤ i, j ≤ n− k, to the vertices of the complete graph Kn−k.

Zhang and Godsil [149] used Theorem 4.17 to prove the next result.

Theorem 5.27 ([149]) Of all the graphs with n vertices and k cut vertices, the minimal distance spectral
radius is obtained uniquely at Gn,k.

Again in [149], the authors used Theorem 4.24 to characterize the graphs minimizing the distance index when

the numbers of vertices and cut edges are fixed.

Theorem 5.28 ([149]) Of all the graphs with n ≥ 4 vertices and k cut edges, the minimal distance spectral
radius is obtained uniquely at the pineapple PAn,n−k.

Now, we consider the problem of lower and upper bounding the distance spectral radius over the class of

bipartite graphs.

Zhou and Ilić [151] characterized extremal graphs for the lower bound on ∂1 over all bipartite graphs with

given number of vertices.

Theorem 5.29 ([151]) Among bipartite graphs with n vertices, K⌊n/2⌋,⌈n/2⌉ has minimum distance spectral

radius.

In addition to the order n, Das [46] used the cardinalities of the partition sets of a bipartite graph to obtain

a lower bound on its distance spectral radius.
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Theorem 5.30 ([46]) Let G be a bipartite graph with bipartition V (G) = A ∪ B with |A| = p, |B| = q and

p+ q = n. Then

∂1(G) ≥ n− 2 +
√

n2 − 3pq

with equality if and only if G is a complete bipartite graph Kp,q.

Zhou and Ilić [151] added the maximum degrees within the partition sets to their cardinalities and the order
to improve the lower bound on ∂1 provided in the above theorem.

Theorem 5.31 ([151]) Let G be a bipartite graph with bipartition V (G) = A ∪ B with |A| = p, |B| = q and

p+ q = n. Let ∆A and ∆B be maximum degrees among vertices from A and B, respectively. Then

∂1(G) ≥ n− 2 +
√

n2 − 4pq + (3q − 2∆A)(3p− 2∆B)

with equality if and only if G is a complete bipartite graph Kp,q or G is a semi–regular graph with every vertex

eccentricity equal to 3.

To the parameters used in Theorem 5.30, Das [46] added the diameter D to prove an upper bound on the

distance spectral radius of a bipartite graph.

Theorem 5.32 ([46]) Let G be a bipartite graph on n vertices with diameter D, minimum degree δ and

bipartition V (G) = A ∪B such that |A| = p, |B| = q. Then

∂1(G) ≤ 1

2

(

D(n− 2) +
√

D2n2 − 4pq(2D− 1)
)

for even D, and

∂1(G) ≤ 1

2

(

(D − 1)(n− 2) +
√

(D − 1)2n2 − 4(D − 1)2(pq − δ2) + 4D2pq − 4D(D − 1)δn
)

for odd D. Moreover, the equality holds in the case of even D if and only if G is the complete bipartite graph

Kp,q.

Again, Zhou and Ilić [151] added the minimum degrees δA and δB within the partition sets of a bipartite

graph to improve the bounds given in Theorem 5.32.

Theorem 5.33 ([151]) Let G be a bipartite graph on n vertices with diameter D and bipartition V (G) = A∪B
such that |A| = p, |B| = q. Let δA and δB be minimum degrees among vertices from A and B, respectively.

Then

∂1 ≤ D(n− 1)

2
− D2

4
+

√

D2n2 + 4δAδB(D − 2)2 − 4pq(2D − 1)− 4(D − 1)(D − 2)(pδA + qδB)

2

for even D, and

∂1 ≤ D(n− 1) + 1

2
− D2

4
+

√

(D − 1)2n2 + 4δAδB(D − 1)2 − 4pq(2D− 1)− 4D(D − 1)(pδA + qδB)

2

for odd D.

The problem of finding the extremal values of the distance spectral radius over the class of bipartite graphs

with a fixed invariant was also considered by Nath and Paul [103]. They studied the cases fixed matching,

independence, vertex covering and edge covering numbers. A vertex (resp. edge) cover of a graph G is a set

of vertices (resp. edges) such that each edge (resp. vertex) of G is incident with at least one vertex (resp.

edge) of the set. The vertex (resp. edge) cover number of G, denoted by β = β(G) (resp β′ = β′(G)), is the
minimum cardinality over all vertex (resp. edge) covers. The results proved in [103] are next gathered.

Theorem 5.34 ([103]) The complete bipartite graph Kk,n−k is the unique graph that minimizes the distance
spectral radius among the bipartite graphs on n vertices with given matching number, independence number,

vertex covering number or edge covering number k.
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Note that for any bipartite graph G, from König’s theorem [88], α(G) = β′(G) and µ(G) = β(G). Thus, the

above theorem can be restricted to independence and matching numbers.

For k = 1, . . . , 4 and any integers p and s with s ≤ p, consider the bipartite graph Bp,p+k,s obtained from the

complete bipartite graph Kp,p+k−1 and an isolated vertex v by adding s edges between v and s vertices from
the partition of Kp,p+k−1 that contains p vertices. Nath and Paul [103] considered the problem of finding a

lower bound on ∂1 over the class of bipartite graphs with fixed vertex connectivity.

Theorem 5.35 ([103]) Let G be a bipartite graph on n = 2p+ k vertices, where 1 ≤ k ≤ 4, with fixed vertex

connectivity ν = s. Then
∂1(G) ≥ ∂1(Bp,p+k,s)

with equality if and only if G ∼= Bp,p+k,s.

We consider now the problem of bounding the distance spectral radius over the class of trees.

Among the first bounds on the largest distance eigenvalue of graphs, the lower and upper bounds proved by
Gutman and Medeleanu [68] over the class of trees.

Theorem 5.36 ([68]) Let T be a tree on n vertices. Denote by S the sum of the squares of all the distances

between all unordered pairs of vertices of T . Then

√

1

2
S + n(n− 1)

(
n− 1

4

) 2
n

≤ ∂1(T ) ≤

√

n− 1

2
S + n

(
n− 1

4

) 2
n

.

In [131], Stevanović and Ilić used an operation on trees that increases the value of the distance spectral radius

(see Theorem 4.34) to give a new proof of Theorem 5.1 (first proved in [116]). They used the same technique

to prove an upper bound on ∂1 over the class of trees with given order n and maximum degree ∆. They also

characterized the corresponding extremal trees.

Theorem 5.37 ([131]) Let T be a tree on n vertices with maximum degree ∆ such that T 6∼= COn,∆. Then

∂1(T ) < ∂1(COn,∆).

Ilić [76] (see also [54, 131]) ordered the double stars according to their distance spectral radius.

Theorem 5.38 ([54, 76, 130]) Let a and b be two integer with a ≥ b ≥ 1. Then

∂1(Sa,b) > ∂1(Sa+1,b−1).

The above result was used by Du, Ilić and Feng [54] to characterize the trees with the three first minimal

distance spectral radii.

Theorem 5.39 ([54]) Let T be a tree on n ≥ 6 vertices such that T 6∈ {Sn−1,1, Sn−2,2, Sn−3,3}. Then

∂1(T ) > ∂1(Sn−3,3) > ∂1(Sn−2,2) > ∂1(Sn−1,1).

Ilić [76] and Stevanović and Ilić [131] also investigated the problem of finding lower bounds on the distance

spectral radius over the class of trees. Their first lower bound was expressed in terms of the order n.

Theorem 5.40 ([76, 131]) Let T be a tree on n vertices. Then

∂1(T ) ≥ n− 2 +
√

(n− 2)2 + (n− 1)

with equality if and only if T is the star Sn.
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Stevanović and Ilić [131] also proved a lower bound on ∂1 over the class of starlike trees. A ∆–starlike

tree T (n1, n2, . . . , n∆) is a tree that consists of a root vertex v, and ∆ paths P 1, P 2, . . . , P∆ of lengths

n1, n2, . . . , n∆ attached at v. Therefore, the number of vertices of T (n1, n2, . . . , n∆) is n = n1+n2+· · ·+n∆+1.
The ∆–starlike tree is balanced if all paths have almost equal lengths, i.e., |ni−nj | ≤ 1 for every 1 ≤ i, j ≤ ∆

(see Figure 47 for the balanced starlike tree T (5, 4, 4, 4)). Note that the broom or comet COn,∆ is the ∆–

starlike tree T (1, 1, . . . , 1, n − ∆ − 1), which is balanced if and only if ∆ = n − 2 or ∆ = n − 1. The case

∆ = n− 1 corresponds to the star Sn.

Figure 47: The balanced starlike tree T (5, 4, 4, 4) on 18 vertices and the complete 3–ary tree on 19 vertices.

Theorem 5.41 ([131]) The balanced ∆–starlike tree has the minimum distance spectral radius among ∆–

starlike trees of order n.

The complete ∆–ary tree is a tree on n vertices with maximum degree ∆ constructed as follows. Fix a vertex

to be a root. The root composes the level 0. Form level 1 by adding ∆ neighbors (children) to the root.

Form level 2 by adding ∆ − 1 children to each vertex of level 1. We continue the construction of the levels

till the n vertices are attached and such that (i) all the vertices that do not belong to the two last levels have

degree ∆, (ii) at most one vertex of the level before the last one has degree different from ∆ and from 1, and
and all the remaining vertices are pendent (see Figure 47 for the complete 3–ary tree on 19 vertices).

Finally, Stevanović and Ilić [131] conjectured that the ∆–ary trees minimizes ∂1 over the class of trees on n

vertices with maximum degree ∆.

Conjecture 5.42 ([131]) The complete ∆–ary tree has the minimum distance spectral radius ∂1 among all

trees on n vertices with maximum degree ∆.

Note that the authors of the above conjecture showed it to be true for trees on up to 24 vertices using

computational experiments.

The problem of bounding the distance spectral radius over the set of trees with given order and diameter,

was partially solved by Du, Ilić and Feng [54] and [148].

Theorem 5.43 ([54, 148]) Among trees with n vertices and even diameter D, where 2 ≤ D ≤ n − 1, Tn,D

is the unique tree with minimal distance spectral radius, where Tn,D is the tree obtained from a path P =

v0v1 · · · vD by attaching n−D − 1 pendent vertices to the vertex vD
2
.

For the case on an odd diameter, only a conjecture is stated by the authors of [54] and [148].

Conjecture 5.44 ([54, 148]) Among trees with n vertices and odd diameter D, where 3 ≤ D ≤ n − 1,

Tn,D is the unique tree with minimal distance spectral radius, where Tn,D is the tree obtained from a path
P = v0v1 · · · vD by attaching n−D − 1 pendent vertices to the vertex v⌊D

2 ⌋.

The investigations of Yu, Jia, Zhang and Shu [143] on the problem of finding an upper bound on the distance
spectral radius over all trees on n vertices with fixed number of pendent vertices led to the following result.

Theorem 5.45 ([143]) The maximum of ∂1 over all trees on n vertices r pendent vertices (2 ≤ r ≤ n− 2) is

reached for a double comet DCn,s,p for some integers s and p with r = s+ p.

Note that the above result was also proved by Du, Ilić and Feng [54].
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The problem of finding a lower bound on the spectral radius over the set of trees with fixed order n and

number of pendent vertices r was solved by Du, Ilić and Feng [54], and Ning, Ouyang and Lu [105]. They

independently proved the next theorem.

Theorem 5.46 ([54, 105]) Let T be a tree on n ≥ 6 vertices with r ≥ 3 pendent vertices. Then ∂1(T ) ≥
∂1(ST (l1, l2, . . . , lr)), where ST (l1, l2, . . . , lr) is the r-starlike tree with ⌊(n − 1)/r⌋ ≤ li ≤ ⌈(n − 1)/r⌉ for

i = 1, 2, . . . , r. Moreover, equality holds if and only if T ∼= ST (l1, l2, . . . , lr).

A spur Spn,p is the tree on n (n ≥ 2p) vertices obtained from the star Sn−p+1 by attaching a pendent vertex

to each of p− 1 non–central vertices of Sn−p+1. In fact, the spur pn,p is the balanced n− p–starlike tree with
n ≥ 2p. Note that the matching number of a spur Spn,p is µ = p. It is known [75] that the spur Spn,µ is the

only graph maximizing the (adjacency) spectral radius among the class of trees on n vertices with matching

number µ. Ilić [77] studied the problem of finding extremal values of the distance spectral radius on the class

of tree with given order n and matching number µ. For the minimum, he proved the following result.

Theorem 5.47 ([77]) Let T be a tree on n ≥ 3 vertices with matching number µ. Then

∂1(T ) ≥ ∂1(Spn,µ)

with equality if and only if T ∼= Spn,µ.

It is well–known that for a bipartite graph on n vertices with matching number µ and independence number

α, µ+ α = n (a consequence of König’s Theorem [88]). Thus the next results follows immediately from the

above theorem.

Corollary 5.48 ([77]) Among trees on n vertices and with independence number α, Spn,n−α is the unique

tree that has minimal distance spectral radius.

Instead of applying the condition of a fixed maximum degree to the class of all trees, Ilić [77] considered it
on restricted class of trees with a perfect matching. He proved the following theorem.

Theorem 5.49 ([77]) Among trees on n vertices with perfect matching and maximum degree ∆, the starlike

tree T (1, n− 2∆+ 2, 2, 2, . . . , 2) has maximal distance spectral radius.

After experimental results on the set of all trees on at most 24 vertices, Ilić [77] stated a conjecture about
the trees that maximize ∂1 when the order and the matching number are fixed. The conjecture was proved

by Nath and Paul [102] in the next theorem.

Theorem 5.50 ([102]) Over all trees on n vertices with matching number µ, the dumbbell DCn,∆1,∆2 is the

unique tree that maximizes the distance spectral radius, where

∆1 =

⌈
n+ 1

2

⌉

− µ+ 1 and ∆2 =

⌊
n+ 1

2

⌋

− µ+ 1.

Besides the above theorem, Nath and Paul [102] proved that the dumbbells also maximize the ∂1 over trees

with given order and number of pendent vertices.

Theorem 5.51 ([102]) Over all trees of order n with p pendent vertices, the dumbbell DCn,∆1,∆2 is the

unique tree that maximizes the distance spectral radius, where

∆1 =
⌈p

2

⌉

+ 1 and ∆2 =
⌊p

2

⌋

+ 1.

In order to prove Theorem 5.50 and Theorem 5.51, Nath and Paul [102] first proved Theorems 3.12 and 3.13

as well as the next lemma, that gives an ordering of the dumbbells with same number of pendent vertices,

according to their distance spectral radii.
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Lemma 5.52 ([102]) If k ≥ 3, then

• ∂1(DCn,k,k) > ∂1(DCn,k+1,k−1) > · · · > ∂1(DCn,2k−2,2);

• ∂1(DCn,k+1,k) > ∂1(DCn,k+2,k−1) > · · · > ∂1(DCn,2k−1,2).

Regarding the ordering of the double comets using their distance spectral radii, Wang and Zhou [138] com-

pleted, in someway, the above lemma with the following result.

Theorem 5.53 ([138]) Let n,m1 and m2 be integers such that m1 < m2 < n/2− 1. Then

∂1

(

DCn,⌈n+1
2 ⌉−m1,⌊n+1

2 ⌋−m1

)

< ∂1

(

DCn,⌈n+1
2 ⌉−m2,⌊n+1

2 ⌋−m2

)

.

A dominating set of a graph G is a set S of vertices such that each vertex in V (G) \ S is adjacent to at

least one vertex in S. For a graph G, the minimum cardinality of a dominating set is called the domination
number of G and is denoted by γ(G). Denote by STn,m the n−m–starlike T (2, . . . , 2

︸ ︷︷ ︸

m−1

, 1, . . . , 1
︸ ︷︷ ︸

n−2m+1

). It is easy to

see that γ(STn,m) = m.

Wang and Zhou [138] investigated the problem of bounding the distance spectral radius of trees with given

order and domination number. For the lower bound, they proved the next theorem.

Theorem 5.54 ([138]) Let T be a tree on n vertices with domination number γ. Then ∂1(T ) ≥ ∂1(STn,γ)

with equality if and only if T is the starlike STn,γ.

The problem of upper bound is solved in the next result. First, we need some definitions. A caterpillar is

the tree in which removal of all pendent vertices gives a path. For integers n, a and b such that n ≥ 2(a+ b),

denote by CAn,a,b the particular caterpillar obtained from a path P = v1v2 · · · vn−a−b by attaching a pendent
edge to each of the a first vertices of P , and a pendent edge to each of the b last vertices of P .

Theorem 5.55 ([138]) Let T be a tree on n vertices with domination number γ.

• If 1 ≤ γ < ⌈n/3⌉, then
∂1(T ) ≤ ∂1

(

DCn,⌈n−3γ+2
2 ⌉,⌊n−3γ+2

2 ⌋

)

with equality if and only if T is the double comet DCn,⌈n−3γ+2
2 ⌉,⌊n−3γ+2

2 ⌋.

• If ⌈n/3⌉ < γ ≤ ⌊n/2⌋, then
∂1(T ) ≤ ∂1

(

CAn,⌈ 3γ−n
2 ⌉,⌊ 3γ−n

2 ⌋

)

with equality if and only if T is the caterpillar CAn,⌈ 3γ−n
2 ⌉,⌊ 3γ−n

2 ⌋.

The validity of the upper bound in the above theorem was extended [138] to the class of all connected graphs

on n vertices with domination number γ such that 1 ≤ γ < ⌈n/3⌉.
To prove the above theorem, Wang and Zhou [138] used Theorem 3.14 as well as the next two lemmas.

Lemma 5.56 ([138]) Let n, a and b be integers with n ≥ 2(a+ b). Then

∂1 (CAn,a+1,b−1) > ∂1 (CAn,a,b) .

Lemma 5.57 ([138]) Let T be a caterpillar of order n with p pendent vertices such that 2 ≤ p ≤ ⌊n/2⌋ and

each vertex of T has at most one pendent neighbor. Then

∂1(T ) ≤ ∂1

(

CAn,⌈ p
2⌉,⌊ p

2⌋
)

with equality if and only if T is the caterpillar CAn,⌈ p
2 ⌉,⌊p

2 ⌋. Also, for p1 > p2,

∂1

(

CAn,⌈ p1
2 ⌉,⌊ p1

2 ⌋
)

< ∂1

(

CAn,⌈ p2
2 ⌉,⌊p2

2 ⌋
)

.
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Du, Ilić and Feng [54], and Wang and Zhou [138] considered also the problem of bounding the distance

spectral radius of trees with fixed bipartition size (number of vertices in each partition).

Theorem 5.58 ([54, 138]) Let T be a tree with bipartition size (p, q) such that 2 ≤ p ≤ q. Then

∂1(T ) ≥ ∂1(DCp+q,p,q)

with equality if and only if T is the double comet DCp+q,p,q. Moreover, if p ≤ q − 2, then

∂1(T ) ≤ ∂1

(

DCp+q,⌈ q−p+3
2 ⌉,⌊ q−p+3

2 ⌋
)

with equality if and only if T is the double comet DCp+q,⌈ q−p+3
2 ⌉,⌊ q−p+3

2 ⌋.

The validity of the upper bound in the above theorem was extended [138] to the class of all connected bipartite

graphs with fixed bipartition size.

We saw above that over the class of all trees on n vertices, the distance spectral radius is maximum only for

the path Pn (see Theorem 5.1) and is minimum only for the star Sn (see Theorem 5.40). The natural extention

of these results, namely the characterization of the extremal trees with the second and third minimum and
maximum values of the distance spectral radius, was investigated by Wang and Zhou [138]. Regarding the

second minimum and maximum values, they proved the following.

Theorem 5.59 ([138]) Let T be a tree on n ≥ 5 vertices such that T 6∼= Sn and T 6∼= Pn. Then ∂1(COn,n−2) ≤
∂1(T ) ≤ ∂1(COn,3) with equality if and only if T is the comet COn,n−1 for the lower bound, and if and only

if T is the comet COn,3 for the upper bound.

Note that the upper bound in the above theorem can be seen as a corollary of Theorem 5.37.

Regarding the third minimum and maximum value of ∂1, Wang and Zhou used Theorem 4.23 to prove the

following result.

Theorem 5.60 ([138]) Let T be a tree on n ≥ 6 vertices such that T 6∈ {Sn, Pn, COn,n−2, COn,3}. Then

∂1(Sn−3,3) ≤ ∂1(T ) ≤ ∂1(Tn), where Tn is the tree obtained from a path P = v1v2v3 . . . vn−1 by attaching a
pendent vertex vn to v3, with equality if and only if T is the double star Sn−3,3 for the lower bound, and if

and only if T is Tn for the upper bound.

After a survey of the results related to the broblem of bounding the distance spectral radius over general

graphs, bipartite graphs and trees, we turn to some particular classes of graphs.

A lollipop Ln,p is the unicycle graph obtained from a a cycle Cp and and a path Pn−p by adding an edge

between an endpoint of the path and a vertex form the cycle. Ln,3 is called the long lollipop and illustrated

in Figure 48 in the case n = 8. Yu, Wu, Zhang and Shu [144] characterized the extremal graphs for ∂1 over
the unicyclic graphs i.e., connected graphs on n vertices with n edges.

Theorem 5.61 ([144]) Let G be a unicyclic graph on n ≥ 4 vertices. Then we have

• if n ≥ 6, ∂1(G) ≥ ∂1(PAn,3) with equality if and only if G is the pineapple PAn,3;

• if n = 4, 5, ∂1(G) ≥ ∂1(Cn), with equality if and only if G ∼= Cn;

• ∂1(G) ≤ ∂1(Ln,3) with equality if and only if G is the long lollipop Ln,3.

Paul [108] investigated the problem of upper bounding the distance spectral radius of a bicyclic graph, i.e.,

a connected graph containing exactly two cycles.

Theorem 5.62 ([108]) The bicyclic graph graph obtained by attaching a path on n− 4 vertices at a vertex of

degree 2 of a K4 − e (see Figure 49) is the unique graph with maximal distance spectral radius over the class
of all bicyclic graph on n ≥ 5 vertices.

To prove the above theorem, Paul first proved that the bicyclic graph maximizing ∂1 must contain K4 − e as

an induced subgraph, and then used lemmas among which Theorem 4.15 and Theorem 4.17.
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Figure 48: The long lollipop DL8,3.

Figure 49: The bicyclic graph in Theorem 5.62

The first Zagreb index M1(G) is defined to be the sum of squares of the degrees of all vertices in G, i.e.

M1(G) =

n∑

i=1

d2i .

Zhou and Trinajstić [153] proved a lower bound on ∂1(G) in terms of n, m and M1(G) for the class of
triangle–free and quadrangle–free graphs, i.e., graphs that do not contain C3 or C4.

Theorem 5.63 ([153]) Let G be a triangle–free and quadrangle–free graph with n ≥ 2 vertices and m edges.

Then

∂1(G) ≥ 3(n− 1)− M1(G)

n
− 2m

n

with equality if and only if G is a transmission regular graph with diameter at most 3.

A hexagonal system is a 2–plane graph every interior face of which is bounded by a regular hexagon of unit

length. A vertex of a hexagonal system belongs to, at most, three hexagons. A vertex shared by three

hexagons is called an internal vertex of the respective hexagonal system. A hexagonal system H is said to be

catacondensed if it does not possess internal vertices, otherwise H is said to be pericondensed. A hexagonal
chain is a catacondensed hexagonal system which has no hexagon adjacent to more than two hexagons. A

linear hexagonal chain denoted by Lh is a chain of h hexagons arranged in a linear manner. Zhang [147]

characterized the graph with maximum distance spectral radius among the hexagonal systems with a fixed

number of hexagons.

Theorem 5.64 ([147]) Among all the catacondensed hexagonal systems on h hexagons, the linear hexagonal

chain Lh has the maximum distance spectral radius.

A cactus is a graph in which any two cycles have at most one common vertex. If all the cycles in a cactus

have exactly one common vertex, then the graph is called a bundle. Let C(n, k) be a bundle of k triangles
and n− 2k − 1 pendent vertices all attached at the common vertex.

Theorem 5.65 ([21]) If n ≥ 6, then C(n, k) minimizes the distance spectral radius among all cacti on n

vertices with k cycles.

The proof of the above theorem uses Theorems 4.25, 4.37 and 4.38. The technique of the proof led to the

following corollary.
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Corollary 5.66 ([21]) If n ≥ 6, then {C(n, k)|k =
⌊
n
2

⌋
,
⌊
n
2

⌋
− 1, . . . , 2, 1, 0} is the sequence of graphs with

1st, 2nd, . . . , (
⌊
n
2

⌋
+ 1)th smallest distance spectral radius, respectively, among the class of all cacti on n

vertices.

Theorem 5.67 ([21]) Among the cacti of order n with r pendent vertices, the graph with minimal distance

spectral radius is G0, when the parities of n and r are different; and G1, when the parities of n and r are the

same, where G0 and G1 are the graphs as shown in Figure 50.

Figure 50: The graphs G and G′ of Theorem 5.67.

Figure 51: A saw graph.

A saw graph of order n and length k is a cactus obtained from a path Pn−k by replacing k of its blocks by k

triangles, where 0 ≤ k ≤ ⌊(n − 1)/2⌋ (see Figure 51). A saw graph of length k and order 2k + 1 is a proper

saw graph. An end in a proper saw graph is a vertex of degree 2, with a neighbor of degree 2. The saw graph
obtained by joining an end of a proper saw graph of length p with an end of another proper saw graph of

length q by a path of length l is denoted by Sw(p, q; l). If l = 0, then we have the proper saw graph of length

p+ q. Note that the Pn is a saw graph of length 0.

Theorem 5.68 ([21]) If G is a graph with maximal distance spectral radius in among the class of cacti on n

with k triangles, then G ∼= Sw(p, q; l) for some p and q such that p+ q = k and where l = n− 2k − 1.

Concerning the values of p and q (in the above theorem) for which the distance spectral radius is reached

Bose et al. [21] conjectured the following.

Conjecture 5.69 ([21]) Sw(⌊k/2⌋, ⌈k/2⌉; 2n− k− 1) uniquely maximizes the distance spectral radius among

all cacti on n vertices with k triangles.

To end this section, we state some Nordhaus–Gaddum type inequalities for distance spectral radius. First,

what a Nordhaus–Gaddum type inequality is?

In 1956, Nordhaus and Gaddum [106] gave lower and upper bounds on the sum and the product of the

chromatic number of a graph and its complement, in terms of the order of the graph, namely, the following

theorem.

Theorem 5.70 ([106]) If G is a graph of order n, then

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1 and n ≤ χ(G) · χ(G) ≤ (n+ 1)2

4
.

Furthermore, these bounds are best possible for infinitely many values of n.
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Since then, relations of a similar type are called Nordhaus–Gaddum type inequalities and have been proposed

for many other graph invariants, in several hundred papers. For a survey of such inequalities see [6].

Zhou and Trinajstić [153] proved Nordhaus–Gaddum type inequalities for the distance spectral radius of a
graph and its complement.

Theorem 5.71 ([153]) Let G be a graph on n ≥ 4 vertices with a connected complement G. Then

3(n− 1) ≤ ∂1(G) + ∂1(G) <
n(n+ 3)

2
− 3

with left equality if and only if G and G are both regular graphs of diameter two. Moreover, if G or G has
exactly one positive distance eigenvalue, then

∂1(G) + ∂1(G) <

√

(n+ 1)n(n− 1)2

6
+ 2n− 3.

The lower bound in the above theorem can be obtained as a corollary of a more general lower bound involving,

besides the order n, the diameter D. Actually, this bound is proved by Das [45].

Theorem 5.72 ([45]) Let G be a graph, with a connected complement, on n ≥ 4 vertices with diameter D.

Then

∂1(G) + ∂1(G) ≥ 3(n− 1) +
D(D − 1)(D − 2)

3n
≥ 3(n− 1)

with equality if and only if G and G are both regular graphs with diameter 2.

6 The distance spectral spread

The distance spectral spread sD(G) of a graph G is the difference between its largest and smallest eigenvalues,

i.e., sD(G) = ∂1(G)−∂n(G). Yu, Zhang, Lin, Wu and Shu [145] studied the problem of bounding the distance
spectral spread of a graph. This problem remains to be explored.

The first result about the distance spectral spread is a lower bound in terms of the order n, maximum degree

∆, Wiener index W and average distance degree Tri with 1 ≤ i ≤ n.

Theorem 6.1 ([145]) Let G be a graph on n vertices with maximum degree ∆ and Wiener index W . Suppose
that the vertices of G are labeled such that the degree sequence satisfies d1 = d2 = · · · = dk = ∆ > dk+1 ≥
dk+2 ≥ · · · ≥ dn, for some k. He have:

(i) if ∆ ≤ n− 2, then

sD ≥ max
1≤i≤k

√

x2
i − 4yi(∆ + 1)(n−∆− 1)

(∆ + 1)(n−∆− 1)

where xi = 2(n − Tri − 1)∆2 + 2(W − Tri − 1)∆ + 2W and yi = ∆2(4W − Tr
2

i − 2Tri − 1) and Tri
denotes the average distance degree of the vertex vi;

(ii) if ∆ = n− 1, then

sD =







0 if n = 1,
2 if n = 2,

n+
√
n2 − 3n+ 3 if n ≥ 3.

For the particular case of graphs on n vertices with a given clique number ω, Yu et al. [145] proved the

following bounds.

Theorem 6.2 ([145]) Let G be a graph on n vertices with a clique number ω and Wiener index W . Suppose

that G1, G2, . . . , Gk are all the cliques of G of order ω. For 1 ≤ i ≤ k, let Wi =
∑

vj∈Gi
Trj and W i =

∑

vj 6∈Gi
Trj. We have:

(i) if ω = n, then sD(G) = n;
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(ii) if ω ≤ n− 1, then

sD(G) ≥ max
1≤i≤k

√

x2
i − 4y2i ω(n− ω)

ω(n− ω)

where xi = ω(W i −Wi + n(ω − 1)) and yi = 2Wω(ω − 1)−W 2
i .

Using the above theorem, Yu et al. [145] deduced the next result (stated using the same notation).

Corollary 6.3 ([145]) Let G be a graph on n vertices with clique number ω ≤ n− 1. Then

∂1(G) ≥ max
1≤i≤k

xi +
√

x2
i − 4y2i ω(n− ω)

2ω(n− ω)
and ∂n(G) ≤ max

1≤i≤k

xi −
√

x2
i − 4y2i ω(n− ω)

2ω(n− ω)
.

The bounds given in Theorem 6.1 and 6.2 are not sharp, but Yu et al. [145] provided sharp bounds under

different conditions. First, the next result is a lower on the distance spectral spread over all graphs with

given order.

Theorem 6.4 ([145]) Let G be a graph on n vertices. Then sD(G) ≥ n with equality if and only if G is the
complete graph Kn.

For the case of bipartite graphs, we have

Theorem 6.5 ([145]) Let G be a bipartite graph on n vertices. Then

sD(G) ≥
√
⌊n

2

⌋2

−
⌊n

2

⌋ ⌈n

2

⌉

+
⌈n

2

⌉2

with equality if and only if G is the complete bipartite graph K⌊n
2 ⌋,⌈n

2 ⌉
For the class of trees on n vertices, the bound is the following.

Theorem 6.6 ([145]) Let T be a tree on n vertices. Then

sD(T ) ≥ n+
√

n2 − 3n+ 3

with equality if and only if T is the star Sn.

Finally, a lower bound on the class of graphs with given order n and independence number α.

Theorem 6.7 ([145]) Let G be a graph on n ≥ 2 vertices with independence number α ≥ 2. Then

sD(G) ≥ n+ α+ 1 +
√

(n− α+ 1)2 + 2α(α− 1)

2

with equality if and only if G is the complete split graph CS(n, n− α).

7 Other distance eigenvalues and frequencies

In this section, we report on the results related to the distance eigenvalues of a connected graph, other that the

largest eigenvalue. We also report about results related to the frequencies of the distances eigenvalues. Note

that those topics attracted the attention of the researchers less than the spectral radius or the characteristic
polynomial did.

In a recent paper, Yu [142] studied some classes of graph that are characterized by their lest distance eigenvalue

∂n.

Theorem 7.1 ([142]) Let G be a graph on n vertices with least distance eigenvalue ∂n. Then we have

(a) ∂n = 0 if and only if G ∼= K1;
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(b) for n ≥ 2, ∂n = −1 if and only if G ∼= Kn;

(c) for n ≥ 3, ∂n = −2 if and only if G ∼= Kn1,n2,...,ns
for some 2 ≤ s ≤ n− 1 with n1 + n2 + . . .+ ns = n;

(d) for n ≥ 3, if G 6∼= Kn and G 6∼= Kn1,n2,...,ns
for some 2 ≤ s ≤ n − 1 with n1 + n2 + . . . + ns = n,

∂n < −2.383.

In the same paper [142], the author also stated analogous results for the class of bipartite graphs and for the
class of trees. Regarding the bipartite graphs the differences are that in part (b) the only complete graph

that is bipartite is K2; in part (c) s must be 2; and finally in part (d) we have ∂n < −3.414 instead of

∂n < −2.383. Thereafter, for the class of trees compared to bipartite graphs, the only difference is in part

(c) in the theorem, since the only complete bipartite graph which is also a tree is the star Sn.

As a consequence of the above results the following corollary.

Corollary 7.2 ([142])

(i) There exists no graph with ∂n ≥ −2.383 and ∂n 6∈ {−2,−1, 0}.
(ii) There exists no bipartite graph with ∂n ≥ −3.414 and ∂n 6∈ {−2,−1, 0}.

Using his computer program Graffiti, designed for conjecture making in graph theory, Fajtlowicz [57] gener-
ated a series of conjectures relating graph invariants. In some of these conjectures the distance eigenvalues

and/or their frequencies in the distance spectrum were involved. We next list and comment some of those

conjectures.

The first conjecture we list is an inequality between the largest negative distance eigenvalue and the matching
number of a connected graph.

Conjecture 7.3 (WOW-32 in [57]) For a connected graph G, −max{∂i : ∂i < 0} ≤ µ, where µ denotes the

matching number of G.

As far as we known, the above conjectures remains open. Experiments using the AutoGraphiX system (a

software devoted to conjecture–making in graph theory, see [2, 3, 31, 33]) confirm the above conjecture and

suggest that the extremal graphs are the complete bipartite Kn−2,2, n ≥ 4. For n = 8, AutoGraphiX found

two graphs K6,2 and the cube graph Q3.

The next Graffiti conjectures is an inequality between the largest negative distance eigenvalue and the diam-

eter of a connected graph.

Conjecture 7.4 (WOW-35 in [57]) For a connected graph G, D ≤ −max{∂i : ∂i < 0}, where D denotes the

diameter of G.

It is mentioned in [57] that the above conjecture was proved by James B. Shearer (no reference provided),

however there is certainly a mistake. Indeed, as stated the conjecture is not true and there are so many
families of graphs for which it does not hold. Even if we reverse the inequality the result is not true since for

any integer p ≥ 4, the graph Kp,p −M , where M is a perfect matching, is a counterexample. Also, the cube

graphs Qp are counterexamples for p ≥ 3.

Along these lines, we compared the diameter D with the negative of the least distance eigenvalue and get

the following conjecture.

Conjecture 7.5 For a connected graph G, D ≤ −∂n, where D denotes the diameter of G. Equality holds if
and only if G is a multipartite graph.

The inequality in the above conjecture is true. Indeed, the leat eigenvalue is the minimum of the Rayleigh

quotient, i.e.,

∂n = min
X 6=0

XTDX

XTX
.

If we consider the vector X with Xi = 1 and Xj = −1 for for two vertices i and j such that d(i, j) = D, and

Xk = 0 for k 6= i, j, then the quotient equals −D and the inequality follows.
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The above statement is the best we can conjecture since there exist graphs with D ≤ −∂n−1 and others with

D ≥ −∂n−1. For instance, the path Pn satisfies D ≥ −∂n−1 for n ≤ 14 and D ≤ −∂n−1 for n ≥ 15.

Conjecture 7.6 (WOW-313 in [57]) For a connected triangle free graph G, m/α ≤ p−(D), where m, α and
p−(D) denote respectively the size, the independence number and the number of positive distance eigenvalues

of G.

Experiments with AutoGraphiX confirm the above conjectures. It seems that equality holds only when n is

even, in which case, the extremal graphs are Kn
2 ,n2

−M , where M is a perfect matching for n ≥ 8.

Conjecture 7.7 (WOW-404 in [57]) For a connected graph G, with independence number α ≤ 2, ∂2 ≤ tr,

where tr denotes the number of triangles in G.

This conjecture was confirmed with AutoGraphiX and the gap between tr and ∂2 is arbitrarily large. Indeed,

in the case of an even number of vertices n = 2p with p ≥ 3, the experiments suggest that the extremal
graph is the Cartesian product of a clique Kp and K2 denoted Kp�K2 (see Figure 52 for K5�K2), for which

∂2 = 0 (see Corollary 4.6) and tr = p(p− 1)(p− 2)/3 = n(n− 2)(n− 4)/24.

Figure 52: The graph K5�K2.

We list some proved Graffiti conjectures related to the distance spectrum.

The temperature of a vertex v in a graph G is defined as Tp(v) = d(v)/(n − d(v), where d(v) denote the

degree of v. The average temperature in a graph G is denote by Tp = Tp(G).

Theorem 7.8 (WOW-25 in [57]) Let G be a connected graph on n ≥ 2 vertices with average temperature Tp

and distance matrix D. Then Tp ≤ p−(D), where p−(D) denotes the number of negative distance eigenvalues.

As mentioned in [57], the above result is by Shearer. The extremal graphs for the above conjecture seem to
be only the complete graphs.

Conjecture 7.9 (WOW-36 in [57]) For a connected graph G, D ≤ p−(D), where D denotes the diameter of

G.

The paths are among the extremal graphs for the above conjecture, and among the trees they are the only

extremal trees. Indeed, the path Pn is the only tree (graph) with diameter D = n − 1, and according to

Corollary 2.3, the path Pn has exactly n− 1 negative distance eigenvalues.

The dual degree d∗(v) of a vertex v is the average degree of its neighbors. The minimum dual degree in a

graph is denoted by δ∗. The girth g = g(G) of a graph G is the length of a smallest cycle in G, if any.

Conjecture 7.10 (WOW-284 in [57]) Let G be a connected graph on n ≥ 3 vertices with girth g ≥ 5 and

minimum dual degree δ∗. Then δ∗ ≤ −∂n, where ∂n denote the least distance eigenvalue of G.

As far as we know, the above conjecture remains open. The Petersen graph is among the graphs for which

δ∗ = −∂n (= 3) and g = 5.

Finally, we list some refuted Graffiti conjectures related to the distance spectrum.
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The Randić index Ra = Ra(G)of a graph G = (V,E) is defined by

Ra = Ra(G) =
∑

uv∈E

1

d(u) · d(v)

where d(u) denotes the degree of u in G.

Conjecture 7.11 (WOW-29 in [57]) Let G be a connected graph on n ≥ 2 vertices with Randić index Ra.

Then Ra ≤ p−(D).

Counterexamples for the above conjecture with 9 and 10 vertices are illustrated in Figure 53.

Figure 53: Counterexamples for Conjecture 7.11
and 7.14

Figure 54: Counterexamples for Conjecture 7.12

Conjecture 7.12 (WOW-30 in [57]) Let G = (V,E) be a connected graph on n ≥ 2. Then

p+(D) ≤
∑

v∈V

Tp(v).

Counterexamples for the above conjecture with 10 and 12 vertices are illustrated in Figure 54.

Conjecture 7.13 (WOW-31 in [57]) Let G be a connected graph on n ≥ 2 vertices with independence number

α and distance spectrum ∂1, ∂2, . . . , ∂n. Then α ≥ −max{∂i : ∂i < 0}.

The complement of the Petersen graph, which is also the line graph of the complete graph K5, is a coun-

terexample for the above conjecture.

Conjecture 7.14 (WOW-33 in [57]) Let G be a connected graph on n ≥ 2 vertices with chromatic number

χ and distance spectrum ∂1, ∂2, . . . , ∂n. Then χ ≥ −max{∂i : ∂i < 0}.

Conjecture 7.15 (WOW-166 in [57]) Let G be a connected graph on n ≥ 2 vertices and m edges. Then√
m ≤ p−(D) + p0(D).

Conjecture 7.15 was refuted in [24] and three counterexamples on 9 are illustrated in Figure 55, where the

sign + means add an edge between each vertex on the right and each vertex on the left.

Figure 55: Counterexamples for Conjecture 7.15 on 9 vertices.

The energy En = En(G) of a graph is the sum of the absolute values of the adjacency eigenvalues of G, i.e.,

En = En(G) =
∑n

i=1 |λi|, where λ1, λ2, . . . , λn denote the adjacency eigenvalues of G.



48 G–2013–81 Les Cahiers du GERAD

Conjecture 7.16 (WOW-48 in [57]) Let G be a connected regular graph on n ≥ 2 vertices with energy En.

Then En ≤ 2∂1.

A counterexample for the above conjecture is the complement of the graph on 15 vertices composed of the

Petersen graph together with 5 isolated vertices.

Conjecture 7.17 (WOW-281 in [57]) Let G be a connected graph on n ≥ 3 vertices. Then max{µ, µ} ≤
p−(D), where µ and µ denote the matching number in G and G, respectively, and p−(D) denotes the number

of negative distance eigenvalues of G.

In Figure 56 are illustrated two counterexamples for Conjecture 7.17 on 8 and 10 vertices.

Figure 56: Counterexamples for Conjecture 7.17 on 8 and 10 vertices.

Conjecture 7.18 (WOW-283 in [57]) Let G be a connected graph on n ≥ 3 vertices and m ≥ n edges with

girth g ≥ 5. Then α ≤ p−(D) + p0(D), where α, p−(D) and p0(D) denote respectively the independence

number, the number of negative distance eigenvalues and the multiplicity of 0 as an eigenvalue of G.

Conjecture 7.19 (WOW-405 in [57]) Let G be a connected graph on n ≥ 3 vertices with independence num-
ber α ≤ 2. Then −∂n ≤ µ+ µ, where µ and µ denote the matching number in G and G, respectively, and ∂n
denotes the least distance eigenvalue of G.

The above conjectures was first disproved in [50]. Figure 57 shows counterexamples on 7 and 8 vertices.

Figure 57: Counterexamples for Conjecture 7.19

8 The distance energy

Introduced by Indulal, Gutman and Vijayakumar [85], the distance energy of a graph G is defined as the sum

of the absolute values of its distance eigenvalues, i.e.,

ED(G) =

n∑

i=1

|∂i(G)|.

Most of theorems given in Section 4 can be used to calculate the distance energy of some particular graphs.

In [84], the authors computed the distance energy of
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• the double graph of an even cycle from Theorem 4.4: ED(D2C2k) = 4k(k + 1);

• the corona of the cycle from Theorem 4.8:

ED (Cor(Cn)) =







2
(

(n− 1)2 +
√

(n− 1)4 + 6n2
)

if n is even

2
(

n(n+ 3) +
√

n2(n+ 3)2 + 6n(n+ 1) + 1
)

if n is odd;

• the Cartesian product of any graph G on p vertices with K2 from Theorem 4.5: ED(G�K2) =
2(ED(G) + p);

• the composition of the even cycle C2k with K2 from Theorem 4.7: ED(C2k ◦K2) = 2k(2k + 1);

• the extended double cover of Cp∇Cp from Theorem 4.10:

ED(EDC(Cp∇Cp)) =

{
40 if p = 3,
4(E(Cp) + 5p− 10) if p ≥ 4,

where E(Cp) denotes the adjacency energy of Cp.

Since the diagonal entries of the distance matrix are 0’s, the sum of all the distance eigenvalues of a graph is

0, i.e., ∂1 + ∂2 + · · ·+ ∂n = 0. Thus, we have

ED(G) =

n∑

i=1

|∂i(G)| = 2
∑

∂i>0

∂i(G) = 2
∑

∂i<0

|∂i(G)|.

As an immediate consequence of the above relation, ED(G) ≥ 2∂1, and therefore any lower bound on ∂1 is

also a lower bound on ED(G)/2. This fact is more important for the class of graphs with only one positive
distance eigenvalue such as trees. Indeed, for such a graph G, ED(G) = 2∂1(G). Using this fact and a lower

bound on ∂1 proved by Das [46], Zhou and Ilić [151] stated the following theorem.

Theorem 8.1 ([151]) Let G be a graph on n ≥ 2 vertices. Then

ED(G) ≥ 2

√
√
√
√

1

n

n∑

i=1

Tr2i

with equality if and only if G a transmission regular graph wit exactly one positive distance eigenvalue.

In the same paper [151] and again using bounds on ∂1, the authors provided lower bounds on ED: one in

terms of the order and the Wiener index of G, and another in terms of the order and the size of G.

Theorem 8.2 ([151]) Let G be a graph on n ≥ 2 vertices and m edges with Wiener index W . Then

ED(G) ≥ 4W

n

with equality if and only if G a transmission regular graph wit exactly one positive distance eigenvalue.
Moreover,

ED(G) ≥ 4(n− 1)− 4m

n

with equality if and only if either G ∼= Kn or G is a (transmission) regular graph of diameter two with exactly

one positive distance eigenvalue.

Note that the second bound in Theorem 8.2 was conjectured in [32].

In 2008, Ramane et al. [110] conjectured that among graphs on n vertices, the complete graph Kn minimizes

the distance energy. In virtue of Theorem 8.2, the conjecture is true.

Ramane et al. [110] proved a series of upper and lower bounds on the distance energy of a graph on n vertices.

These bounds are given in the next three theorems.
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Theorem 8.3 ([110]) Let G be a graph on n vertices and m edges. Then

√

2M + n(n− 1)|det(D)| 2
n ≤ ED(G) ≤

√
2Mn,

where M = 2n(n− 1)− 3m.

In virtue of Graham’s result, Theorem 2.1, in the case of a tree T , the bounds in the above theorem depends

only on the order n of T , i.e.

√

(4n− 6)(n− 1) + 4n(n− 1)

(
n− 1

4

) 2
n

≤ ED(T ) ≤
√

(4n− 6)n(n− 1).

The next theorem provides a lower and an upper bounds depending only on the order n and size m of G.

Theorem 8.4 ([110]) Let G be a graph on n vertices and m edges. Then

2
√
M ≤ ED(G) ≤

√

M
(

1 +
√
1 + 8M

)

,

where M = 2n(n− 1)− 3m.

The last theorem in [110] gives a lower and an upper bounds on ED in terms of the order n only.

Theorem 8.5 ([110]) Let G be a graph on n vertices and m edges. Then

√

n(n− 1) ≤ ED(G) ≤
√

n3(n2 − 1)

6
.

Romane et al. [111] proved a series of lower and upper bounds on the distance energy using the sum of the

squares of the distances in addition to the order.

Theorem 8.6 ([111]) Let G be a graph on n vertices. Then

√

2
∑

1≤i<j≤n

(dij)2 + n(n− 1)|det(D)| 2
n ≤ ED(G) ≤

√

2n
∑

1≤i<j≤n

(dij)2.

The upper bound in the above Theorem 8.6 was improved by Bozkurt, Güngör and Zhou [23].

Theorem 8.7 ([23]) Let G be a graph on n vertices. Then

ED(G) ≤
√

2(n− 1)
∑

1≤i<j≤n

(dij)2 + n|det(D)| 2
n .

Note that the bounds corresponding to those of Theorem 8.6 and Theorem 8.7 for the case of trees, obtained

using Theorem 2.1, were given in [111] and [23], respectively.

Another upper bound on ED was proved by Ramane et al. [111].

Theorem 8.8 ([111]) Let G be a graph on n vertices and m edges. Then

ED(G) ≤ 2

n

∑

1≤i<j≤n

(dij)
2 +

√
√
√
√
√
√(n− 1)




2

∑

1≤i<j≤n

(dij)2 −




2

n

∑

1≤i<j≤n

(dij)2





2



.

For the case of graphs of diameter 2, the next corollary follows from Theorem 8.8.
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Corollary 8.9 ([111]) Let G be a graph on n vertices and m edges with diameter at most 2. Then

ED(G) ≤ 4n(n− 1)− 6m

n
+

√
√
√
√(n− 1)

[

4n(n− 1)− 6m−
(
4n(n− 1)− 6m

n

)2
]

.

Using the transmission and the second distance degree sequences, Indulal [82] proved a sharp upper bound

on the distance energy ED(G) of a graph G.

Theorem 8.10 ([82]) Let G be a graph on n vertices with distance energy ED(G) and transmission and

second distance degree sequences {Tr1, T r2, . . . , T rn} and {Tr(2)1 , T r
(2)
2 , . . . , T r

(2)
n } respectively. Then

ED(G) ≤
√
∑n

i=1(Tr
(2)
i )2

∑n
i=1 Tr

2
i

+

√
√
√
√(n− 1)

(

2S −
∑n

i=1(Tr
(2)
i )2

∑n
i=1 Tr

2
i

)

,

where S denotes the sum of the squares of all the distances between all unordered pairs of vertices of G.

Equality holds if and only if G is the complete graph or a pseudo k–distance regular graph with three distinct

eigenvalues k,
√

S−k2

n−1 and −
√

S−k2

n−1 .

Similarly to the generalization of Theorem 5.9 to Theorem 5.10, Güngör and Bozkurt [67] generalized the

above theorem.

Theorem 8.11 ([67]) Let G be a graph on n vertices, t be a real number and k be an integer. Then

ED(G) ≤

√
√
√
√
√
√

∑n
i=1

(

M
(k+1)
i

)2

∑n
i=1

(

M
(k)
i

)2 +

√
√
√
√
√
√(n− 1)




2S −

∑n
i=1

(

M
(k+1)
i

)2

∑n
i=1

(

M
(k)
i

)2




,

where S denotes the sum of the squares of all the distances between all unordered pairs of vertices of G.

Equality holds if and only if G is the complete graph or a graph satisfying

M
(k+1)
1

M
(k)
1

=
M

(k+1)
2

M
(k)
2

= · · · = M
(k+1)
n

M
(k)
n

= ℓ ≥ 2S

n

with three distinct eigenvalues ℓ,
√

S−k2

n−1 and −
√

S−k2

n−1 .

Caporossi, Chasset and Furtula [32], after experiments using the AutoGraphiX system (a software devoted
to conjecture–making in graph theory, see [2, 3, 31, 33]), suggested the following conjecture. Before stating

the conjecture, we need to recall the definition of the Soltés graph [128]. Let u be an isolated vertex or one

end vertex of a path. Let us join u with at least one vertex of a complete graph. The graph so obtained is

the Soltés graph PKn,m, also called the path–complete graph, where n is its order and m its size. There is

exactly one PKn,m for given n and m such that 1 ≤ n− 1 ≤ m ≤ n(n− 1)/2. Among all graphs with given
order n and size m, PKn,m maximizes (non uniquely) the diameter [70] and (uniquely) the average distance

[128].

Conjecture 8.12 ([32]) Among all graphs of order n and size m with n ≤ m ≤ (n − 2)(n− 3)/2, the path–
complete graph PKn,m maximizes the distance energy.

Now, we turn to the survey of the results about bounding the distance energy over the class of graphs with

diameter 2. First, we give lower and upper bounds on ED(G) in terms of order n and size m of G.

Theorem 8.13 ([85]) Let G be a graph on n vertices and m edges of diameter 2. Then

√

4n(n− 1)− 6m+ n(n− 1)|det(D)| 2
n ≤ ED(G) ≤

√

2n (2n2 − 3m− 2n).
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Note that Theorem 8.13 can be obtained as a corollary from Theorem 8.3 or from Theorem 8.6.

Another upper bound in terms of the order n and size m is the following.

Theorem 8.14 ([85]) Let G be a graph on n vertices and m edges with diameter 2. Then

ED ≤ 1

n

(

2n2 − 2m− 2n+
√

(n− 1) ((2n+m)(2n2 − 4m)− 4n2)
)

In addition to have diameter 2, the graphs in the next result are assumed to be degree regular.

Theorem 8.15 ([85]) Let G be a k–regular graph on n vertices with diameter 2. Then

Ed(G) ≤ 2n− k − 2 +
√

(n− 1) (n(k + 4)− (k + 2)2)

Note that over the class of diameter 2, degree regular is equivalent to transmission regular.

The following result follows form Theorem 2.18 using the fact that if a graph has exactly one positive distance

eigenvalue ∂1 then its distance energy is ED = 2∂1.

Theorem 8.16 ([112]) If G is a k–regular graph on n vertices with diameter D ≤ 2 such that none of the

graph F1, F2 and F3 (Figure 58) is an induced subgraph of G, then the D–energy of L(G) is

ED(L(G)) = 2k(n− 2).

Figure 58: Some forbidden graphs.

The next corollary follows from and generalizes, in some way, the above theorem.

Corollary 8.17 ([112]) Let G be a k–regular graph on n vertices with diameter D ≤ 2 and let none of the

four graphs of Figure 58 be an induced subgraph of G. Let np and kp be the order and degree, respectively, of

the p–th iterated line graph Lp(G) of G, p ≥ 1. Then the D–energy of Lp(G) is

ED(Lp(G)) = 2np−1kp−1 − 4kp−1 = 4np − 2kp − 4 = 4n

p−1
∏

i=1

(2i−1k − 2i + 1)− 2(2pk − 2p+1 + 4).

Zhou and Ilić [151] proved an upper bound on the distance energy of a graph G of diameter 2 using the

adjacency energy E(G) of its complement G.

Theorem 8.18 ([151]) Let G be a graph on n vertices with diameter at most 2. Then

ED(G) ≤ 2(n− 1) + E(G),

where E(G) denotes the (adjacency) energy og G, the complement of G.

Two graphs G1 and G2 are said to be distance equienergetic or D–equienergetic if they have the distance en-

ergy, i.e., E(G1) = ED(G2). Evidently, two distance cospectral, or D–cospectral graphs are D–equienergetic.
Thus the study of D–equienergetic focusses on non D–cospectral graphs. Several authors were interested in

the problem of finding D–equienergetic but non D–cospectral graphs. Some infinite families of such graphs

were constructed.

In order to construct D–equienergetic but non D–cospectral graphs, Ramane et al. [112] proved the following

lemma.
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Lemma 8.19 ([112]) Let G1 and G2 be two k–regular graphs on n vertices each, with diameters D1, D2 ≤ 2.

Assume that none of the four graphs of Figure 58 is an induced subgraph of Gi, i = 1, 2. Then for any p ≥ 1,

the following holds:

• Lp(G1) and Lp(G2) are of the same order, same degree and have the same number of edges.

• Lp(G1) and Lp(G2) are D–cospectral if and only if G1 and G2 are cospectral.

Using Corollary 8.17 and Lemma 8.19, Ramane et al. [112] deduced the next theorem which a way for

constructing D–equienergetic but non D–cospectral graphs.

Theorem 8.20 ([112]) Let G1 and G2 be two k–regular graphs on n vertices each, with diameters D1, D2 ≤ 2.
Assume that none of the four graphs of Figure 58 is an induced subgraph of Gi, i = 1, 2. Then for any p ≥ 1,

the iterated line graphs Lp(G1) and Lp(G2) form a pair of non D–cospectral, D–equienergetic graphs of equal

order and of equal number of edges.

Ramane, Gutman and Revankar [109] computed the distance energy of the join of two regular graphs with
diameters at most 2.

Theorem 8.21 ([109]) For i = 1, 2, let Gi be a ki–regular graph on ni vertices, with respective diameters

D1, D2 ≤ 2. For i = 1, 2, let ti = 2ni − ki − 2. Then

ED(G1∇G2) =

{
ED(G1) + ED(G2) if t1t2 ≥ n1n2

ED(G1) + ED(G2)− (t1 + t2) +
√

(t1 + t2)2 − 4(t1t2 − n1n2) if t1t2 < n1n2.

The authors of the above theorem used it to construct an infinite family of D–equienergetic but non D–
cospectral graphs.

Stevanović and Indulal [132] computed the distance energy of the join of two regular graphs whose smallest

eigenvalue is at least −2.

Theorem 8.22 ([132]) For i = 1, 2, let Gi be a ki–regular graph on ni vertices, whose smallest eigenvalue of

the adjacency matrix is at least −2 and such that Gi 6∼= Kn. Then

ED((G1∇G2) = 4(n1 + n2)− 2(k1 + k2)− 8.

Using the above result and Theorem 4.12, Stevanović and Indulal [132] constructed an infinite family of sets

of D–equienergetic but non D–cospectral graphs. For a fixed integer n, let Pn the set of integer partitions of

n into parts of size at least three. For P = {p1, p2, . . . , pk} ∈ Pn, we denote CP the union of cycles of sizes

p1, p2, . . . , pk.

Corollary 8.23 ([132]) Let G be a k–regular graph. Then, the graphs K1∇(CP ∪ G), P ∈ Pn, are D–

equienergetic but non D–cospectral.

Using Theorem 4.13, Stevanović [129] deduced a method for constructing an infinite family of pairs of D–

equienergetic but non D–cospectral graphs. This construction uses joined union of regular graphs.

Theorem 8.24 ([129]) Let G be a graph with vertex set V = {v1, v2, . . . , vn, and for i = 1, 2, . . . , n, let
Gi and Hi be ki–regular graphs of order ni whose smallest adjacency eigenvalue is at least −2. Then

ED(G[G1, G2, . . .Gn]) = ED(G[H1, H2, . . . Hn]).

Indulal and Gutman [84] constructed an infinite family of pairs of D–equienergetic non D–cospectral bipartite

graphs from pairs of non A–cospectral cubic graphs.

Theorem 8.25 ([84]) Let G1 and G2 be two cubic non A–cospectral graphs 2n vertices each. Then the
extended double cover graphs EDC(L2(G1)∇L2(G1)) and EDC(L2(G1)∇L2(G1)) are D–equienergetic but

non D–cospectral graphs on 24n vertices each.
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After computing the D–energy of complete bipartite graphs, Liu [97] showed that for any three integers n, a

and b such that n− b ≥ b > a ≥ 2, the two complete bipartite graphs Ka,n−a and Kb,n−b are D–equienergetic

but non D–cospectral. In the same paper [97], it was also shown that for any integer p ≥ 4, the two graphs
Kp,p and Kp,p −M , where M is a perfect matching, are D–equienergetic but non D–cospectral.

Ilić, Bašić and Gutman [79] constructed a family of pairs of integral circulant graphs equienergetic but non

cospectral with respect to the adjacency, Laplacian and distance spectra simultaneously.

To end this section, and therefore the present paper, we give a Nordhaus–Gaddum type inequality for the

distance energy of a graph and its complement. It is proved by Zhou and Ilić [151].

Theorem 8.26 ([151]) Let G be a graph on n ≥ 4 vertices with a connected complement G. Then

ED(G) + ED(G) ≥ 6(n− 1)

with equality if and only if G and G are both regular graphs of diameter two and both have exactly one positive

distance eigenvalue.
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