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Abstract: The integral simplex using decomposition (ISUD) algorithm [22] is a dynamic constraint reduc-
tion method that aims to solve the popular set partitioning problem (SPP). It is a special case of primal
algorithms, i.e. algorithms that furnish an improving sequence of feasible solutions based on the resolution,
at each iteration, of an augmentation problem that either determines an improving direction, or asserts that
the current solution is optimal. To show how ISUD is related to primal algorithms, we introduce a new aug-
mentation problem, MRA. We show that MRA canonically induces a decomposition of the augmentation
problem and deepens the understanding of ISUD. We characterize cuts that adapt to this decomposition and
relate them to primal cuts. These cuts yield a major improvement over ISUD, making the mean optimality
gap drop from 33.92% to 0.21% on some aircrew scheduling problems.

Key Words: Integer programming, primal algorithms, cutting planes, primal cuts, constraint aggregation,
decomposition, set partitioning.

Résumé : Le Simplexe en Nombres Entiers avec Décomposition (Integral Simplex Using Decomposition,
ISUD) [22] est un algorithme de résolution du problème de partitionnement d’ensembles (Set Partitioning
Problem, SPP) basé sur la réduction dynamique des contraintes. Il fait partie de la famille des algorithmes pri-
maux : à partir d’une première solution réalisable, une suite de solutions d’objectif décroissant est déterminée.
Pour passer d’une solution à la suivante, il suffit de résoudre le problème dit d’augmentation : déterminer une
direction d’amélioration, ou bien certifier que la solution courante est optimale. Pour exhiber le lien entre
ISUD et les algorithmes primaux, nous introduisons un nouveau problème d’augmentation, MRA. Nous
montrons que la décomposition canoniquement associée à MRA est celle utilisée dans ISUD, ce qui permet
d’approfondir la compréhension générale d’ISUD. Nous caractérisons les familles de coupes adaptées à cette
décomposition et mettons en évidence leur lien avec les coupes primales. L’ajout de telles coupes permet
un gain en performance par rapport à ISUD et fait notamment passer le gap d’optimalité moyen de 33.92%
0.21% sur certains groupes d’instances en planification d’horaires d’équipages aériens.

Acknowledgments: The authors thank Matthieu Delorme for his help with the implementation, Jean-
Bertrand Gauthier for numerous fruitful discussions and Cem Unlubayrak who completed an internship
under the supervision of Samuel Rosat.
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1 Introduction

1.1 The set partitioning problem

We consider the set partitioning problem (SPP):

min c rx
s.t. Ax = e

x ∈ Bn
(P)

where B = {0, 1}, A is an m× n binary matrix, c ∈ Rn, and e = (1, . . . , 1) ∈. M and N respectively denote

the set of indices of the rows and columns of A. P′ is the linear program obtained from P by replacing the

binary constraint x ∈ Bn by a nonnegativity constraint xj > 0, j ∈ {1, . . . , n}. We can assume without loss

of generality that A has no zero or identical rows or columns. Aj is the jth column of A, and for any set of

columns T and rows U , AUT is the submatrix (Aij)i∈U,j∈T . Moreover, for any optimization program P , FP
designates its feasible set.

In this paper, we present an efficient and promising primal framework for the solution of P. It combines

and extends previous work concerning primal algorithms on the one hand and constraint aggregation on the

other hand.

1.2 Primal algorithms

As noted by Letchford and Lodi [10], algorithms for integer programming can be divided into three classes:

dual fractional, dual integral, and primal. Dual fractional algorithms maintain optimality and linear-constraint

feasibility at every iteration, and they stop when integrality is reached. They are typically standard cutting

plane procedures such as Gomory’s algorithm [8]. Dual integral methods maintain integrality and optimality,

and they terminate once the primal linear constraints are satisfied. Letchford and Lodi give a single example,

another algorithm of Gomory [9]. Finally, primal methods maintain feasibility (and integrality) throughout

the process and stop when optimality is reached. These are in fact descent algorithms for which the decreasing

sequence (xk)k=1...K satisfies:

(H0) xk ∈ FP (incl. integrality constraints);

(H1) xK is optimal;

(H2) c rxk+1 < c rxk (decreasing sequence).

In this review, we give an overview of the context of our work only (for a more extensive review, see [16]).

Primal methods are sometimes classified as augmenting algorithms and include the so-called integral simplex

procedures. They were first introduced in [2] and [20] and improved in [21] and [6]. In Young’s method

[20, 21], at iteration k, a simplex pivot is considered: if it leads to an integer solution, it is performed.

Otherwise, cuts are generated and added to the problem, thereby changing the underlying structure of

the constraints. Young also developed the concept of a decreasing vector (sometimes called an improving

direction) at xk, i.e., a direction z ∈ Rn s.t. xk + z is integer, feasible, and of lower cost than xk. From this

notion comes the primal augmentation problem (AUG) that involves finding such a direction if it exists or

asserting that xk is optimal. Traditionally, papers on constraint aggregation and integral simplex algorithms

deal with minimization problems, whereas authors usually present generic primal algorithms for maximization

problems. We therefore draw the reader’s attention to the following: to retain the usual classification,

we call the improving direction problem AUG, although it supplies a decreasing direction.

Recently, there has been a renewed interest in primal integer algorithms, inspired by Robert Weismantel

(a.o.). Many recent works specifically concern 0/1-programming. However, only a few papers have addressed

the practical solution of AUG; most of them consider it an oracle.

Most of the rare computational work since 2000 on primal algorithms concerns the primal separation

problem (P-SEP): given xk a current solution of P and an infeasible point x? (typically a vertex of the

linear relaxation), is there a hyperplane that separates x? from FP and is tight at xk? In 2003, Eisenbrand

et al. [3] proved that the primal separation problem is as difficult as the integral optimization problem
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for 0/1-programming. It is therefore expected to be a “complicated” problem because 0/1-programming

is NP-hard. Letchford and Lodi [10, 11] and Eisenbrand et al. [3] adapt well-known algorithms for the

standard separation problem to primal separation. To the best of our knowledge, very few papers present

computational experiments using primal methods [13, 17, 10]. All these papers present results on relatively

small instances. Only Letchford and Lodi presented results for an algorithm using primal cutting planes and,

interestingly, they stated that degeneracy prevented them from solving larger instances.

Last but not least, integral simplex methods were first proposed for the SPP by Balas and Padberg [1].

They were the first to propose an augmenting method, specific to SPP, that yields a sequence of feasible

solutions (xk) satisfying (H0)–(H2) and also

(H3) xk+1 is a neighbor of xk in FP′ .

This property does not prevent the algorithm from reaching optimality since the SPP is quasi-integral [19],

i.e., every edge of Conv(FP) is also an edge of its linear relaxation FP′ . Balas and Padberg were therefore

able to base their algorithm on a sequence of well-chosen simplex pivots for the linear relaxation P′. Other

integral simplex methods have since been presented [22, 18, 14, 12].

The integral simplex using decomposition (ISUD) of Zaghrouti et al. [22] adapts Elhallaoui et al.’s

work on constraint reduction for linear programming [5, 4] to the SPP. Zaghrouti et al. present promising

numerical results for much larger instances than those in [10]. However, ISUD uses neither cutting planes

nor exhaustive branching procedures and sometimes stops prematurely, often far from optimality. We will

adapt primal cutting to ISUD to obtain an efficient primal algorithm for large (degenerate) SPPs. Note

that despite the strong theoretical framework, implementation techniques prevent to reach optimality when

solving problems that are too large to be solved with commercial solvers, which is precisely the ultimate goal

of our study.

1.3 Objectives and contributions

This paper, which focuses on the SPP, is organized as follows. In Section 2, we introduce the maximum

reduced-mean augmentation problem (MRA), which is a variant of the standard maximum mean augmenta-

tion problem (MMA); we show that MRA corresponds to the subproblem of ISUD, and thus we demonstrate

the link between ISUD and primal algorithms. We show (Theorem 1) that MRA yields a canonical decompo-

sition of the search space of AUG, and we underline the difference between MRA and MMA. In Section 3,

we show how to add a cutting-plane procedure to ISUD and demonstrate that only primal cuts adapt to

this factoring. We also give a procedure to transfer the cuts to the decomposed problems. In Section 4, we
present computational results for the instances in [22] and obtain considerable improvements, particularly on

those for which the best solution found was far from optimality where the mean optimality gap drops from

33.92% to 0.21%. These instances are much larger than those of [10].

2 An integral simplex for SPP

Suppose a decreasing sequence of P-feasible solutions ending at xk is known. We want to determine a direction

d ∈ Rn and a step r > 0 s.t. xk+1 = xk + rd is P-feasible and of lower cost than xk or to assert that xk is

optimal.

From now on, xk will always denote the current (binary) solution, P = {j|xkj = 1} the set of positive-

valued variables, and Z = {j|xkj = 0} the set of null variables. AP is the reduced basis. For the sake of

readability, P, Z, d, and r (and later C and I) will not be indexed on k although they depend on xk.

The next solution xk+1 must satisfy Axk+1 = e and be integer. In the first part, we will require xk+1 to

satisfy only the linear constraints of P′ (the linear relaxation of P). In the second part we will give conditions

under which integrality is maintained when the algorithm takes a step r along d from xk to reach xk+1.
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2.1 Relaxing the integrality constraints

Considering only the linear constraints, AUG consists in determining d s.t.

(i) d is a feasible direction: ∃ρ > 0 |xk + ρd ∈ FP′ ;

(ii) d is an improving direction: c rd < 0.

It is easy to see that such a d exists iff the program

z?MRA = min c rd
s.t. Ad = 0, e rdZ = 1, dP 6 0, dZ > 0

(MRA)

satisfies z?MRA < 0. On the one hand, any optimal solution of MRA yields a solution to AUG; on the other

hand, if z?MRA is nonnegative, xk is optimal.

Remark 1 The specific augmentation problem MRA is close to the classical MMA (which is itself an ex-

tension of the minimum mean cycle [7] to more general linear programs; see [16]). It differs only in the

normalization constraint: that of MRA concerns only the extra-basic variables, while that of MMA is

e rd = 1. This slight difference allows us to decompose the search space FMRA into two smaller subspaces

and still guarantee MRA-optimality, as will be shown in Theorem 1. Theorem 1 does not hold for MMA
(simple counterexamples are easy to find).

Given xk and P, the corresponding reduced basis, we refer to any vector of its linear span (span(AP)) as

a compatible vector. This is extended to the columns of A: for any nonbasic index j ∈ Z, Aj is a compatible

column if it lies in span(AP); otherwise, Aj is incompatible. C (resp. I) denotes the set of the indices of

compatible (resp. incompatible) columns at the current iteration. If we partition N into (P, C, I) and reorder

the rows of A, we can write:

A =

[
Ip AP

C AP
I

ANP ANC ANI

]
. (1)

From the constraints Ad = 0 of MRA, one can easily see that the aggregation of all the increasing columns

(for which dj > 0) w = AZdZ is compatible. As in a reduced-gradient algorithm, we are in fact looking for

an aggregate column w that can enter the reduced basis with a positive value by lowering only some variables

(R) of P. We introduce the following problems (called the Restricted-MRA and the Complementary-MRA):

z?R-MRA = min
x∈Rn

cP rdP + cC rdC
s.t. APdP + ACdC = 0

e rdC = 1
dP 6 0 dC > 0

(R-MRA)

z?C-MRA = min
x∈Rn

cP rdP + cI rdI
s.t. APdP + AIdI = 0

e rdI = 1
dP 6 0 dI > 0

(C-MRA)

Lemma 1 For all j ∈ Z, Aj is compatible iff ∃!Rj ⊂ P |Aj =
∑
r∈Rj

Ar.

Theorem 1 z?MRA = min {z?R-MRA, z
?
C-MRA}.

Proof. Let d = (dP , dC , dI) ∈ Rn be an optimal solution of MRA. Suppose that the support of (dC , dI) is

neither in C nor in I. By Lemma 1, the surrogate column ACdC can be written as a linear combination of

columns of P: ACdC = −APu
′
P , u′P 6 0. Let u′ = (u′P , dC , 0), and u′′ = d − u′ and denote d′ = u′/‖dC‖1,

d′′ = u′′/‖dI‖1. Here d′ and d′′ are both feasible for MRA and resp. for R-MRA and C-MRA. d =

‖dC‖1d′ + ‖dI‖1d′′ is a convex combination since ‖dC‖1 + ‖dI‖1 = ‖dZ‖1 = 1. Therefore, d is an extreme

point of FMRA iff d = d′ or d = d′′. It is well known that one can always find an optimal solution of a linear

program that is also an extreme point of the feasible domain, which concludes the proof.
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Theorem 1 extends the results of Elhallaoui et al. [4] and Zaghrouti et al. [22], and it also justifies their

procedures in a trivial way. This purely primal interpretation of their less-intuitive dual approach allows us

to state a precise factoring of MRA. This factoring naturally leads to a sequential resolution of R-MRA

and C-MRA that avoids the direct solution of MRA. As noted in Remark 1, it also accurately describes

the differences between the classical MMA and the algorithms of [4] and [22].

As a consequence of Theorem 1, we will consider the pair of problems R-MRA and C-MRA instead of

the more complicated MRA, and we will solve them sequentially. In particular, we will not solve C-MRA

if z?R-MRA < 0 because we already know an improving direction. In the next section, we discuss how to

solve R-MRA and C-MRA and in particular how to ensure that xk+1 is an integer solution or that xk is

optimal.

2.2 Taking integrality into account

2.2.1 Integrality issues in R-MRA

An advantage of R-MRA is that it deals in a trivial way with the integrality constraints. For j ∈ C, by

Lemma 1, ∃!Rj ⊂ P |Aj =
∑
r∈Rj

Ar. Therefore, any extreme point of FR-MRA is of the form djk = 1 if k = j,

−1 if k ∈ Rj , 0 otherwise. Thus, taking a step in this direction is strictly equivalent to entering Aj into the

reduced basis by performing a single simplex pivot. The cost of such a solution is c rdj = cj −
∑
r∈R cr = c̄j ,

i.e., the reduced cost of column j as computed in the simplex algorithm (c̄ = c − πTA, with π being the

dual-variable vector).

The optimal value of a linear program is always at an extreme point of its domain, so we can rewrite the

problem as

z?R-MRA = min
j∈P

c̄j (2)

and given j ∈ P s.t. c̄j is minimal, the corresponding optimal solution is dj . This formulation yields a search

strategy equivalent to the Dantzig criterion in the simplex algorithm. Furthermore, the restriction of the

search space to span(AP) prevents degenerate pivots (step r = 1) and, as Proposition 1 states, preserves

integrality. Note that this formulation is close to that of a reduced gradient.

Proposition 1 If j is optimal for (2) and r is the maximum feasible step along dj at xk, then xk+1 = xk+rdj

satisfies the conditions (H0)–(H3).

Proof. xk+1 is reached by performing a single simplex pivot (entering Aj into the basis), thus (H3) holds.

Since r = 1 (trivial), (H0)–(H2) are straightforward.

2.2.2 Integrality issues in C-MRA

AUG is as difficult as SPP [15]. Since SPP is NP-complete and R-MRA is polynomial, C-MRA has to

be hard and no simple formulation can be expected. However, we will show that C-MRA can be reduced

to an (m − p) × |I| linear program with specific additional constraints, and we will address the solution of

this new formulation RC-MRA.

In C-MRA, the first p constraints are dP = −AP
I dI . As in a reduced-gradient algorithm, the modification

of the basic variables occurs via a linear transformation of the increasing nonbasic variables. With d = Dδ,

the transfer matrix D summarizes the relationship between the reduced direction dI = δ ∈ R|I| and the

corresponding direction d = Dδ in the original space Rn. C-MRA becomes (Reduced Complementary-

MRA):
z?RC-MRA = min

δ∈R|I|
c r(Dδ)

s.t. ANP,I(Dδ) = 0, e rδ = 1, δ > 0
(RC-MRA)

The set of all feasible directions at xk is a cone whose extreme directions are those of all the edges of FP′

that go through xk. Since SPP is quasi-integral, any reduced direction δ s.t. d = Dδ satisfies (H0) and (H3)
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is an extreme point of FRC-MRA. Let ∆ = {δ ∈ FRC-MRA | d = Dδ satisfies (H0) and (H3)}. We will now

give a simple characterization of ∆. A set of indices U (or columns AU ) is called column-disjoint if no pair

of columns Ai, Aj ∈ AU , i 6= j has a common nonzero entry, i.e., ∀i, j ∈ U, i 6= j ⇒ Ai rAj = 0.

Proposition 2 (Propositions 6 and 7, Zaghrouti et al. [22]) Given δ a vertex of FC-MRA, d = Dδ

is an integral feasible direction iff S (the support of δ) is column-disjoint. In this case, the maximal feasible

step along d is r = |S|.

2.3 Algorithmic framework

From Proposition 2, ∆ = {δ | δ is a vertex of FC-MRA and S is column-disjoint}. Therefore, if we can solve

z?(3) = min
δ∈∆

c r(Dδ) = min
δ∈Conv(∆)

c r(Dδ) (3)

then we can use Algorithm 1 to solve P.

Algorithm 1 Integral Simplex Using Decomposition for SPP

1. Find an initial solution of SPP x0; k ← 0;

2. If z?R-MRA < 0: perform a single compatible pivot to obtain xk+1; k ← k + 1; GOTO 2;

3. If z?(3) < 0: given δ (optimal solution of (3)) and r (maximum feasible step along Dδ at xk):

xk+1 ← xk + rDδ; k ← k + 1; GOTO 2;

4. Return xk, the optimal solution of P.

3 Solving RC-MRA with cutting planes

3.1 Theory and generic cutting-plane procedure

In this section, we characterize cutting planes for RC-MRA. Given δ? an optimal solution of RC-MRA

that is not column-disjoint, we want to determine an inequality Γ̄ that separates δ? from F(3) = ∆ to tighten

the relaxation. We will show that Γ̄ can always be obtained from a primal cut (in the sense of [10]).

Consider Γ̄ : ᾱ rδ 6 β̄, a valid inequality for ∆. Since Conv(∆) ⊂ {δ | e rδ = 1}, we can assume

ᾱ /∈ Span({e}). Then {e rδ = 1} ∩ {ᾱ rδ = β̄} = F is of dimension |I| − 2 (the intersection of two nonparallel

hyperplanes). Thus, span(F ∪ {0}) is a hyperplane of R|I| that yields the same valid inequality as Γ̄ within
FRC-MRA and that reads ᾱ′ rδ 6 0 for some ᾱ′. Without loss of generality, from now on, we consider ᾱ = ᾱ′

and thus β̄ = 0.

We will now characterize Γ̄ in terms of the original SPP formulation. Let α ∈ Rp+|I| be such that

ᾱ = Dα. (4)

Such an α always exists since (0, ᾱ) is a trivial solution of (4). Γ̄ is valid for (3) iff for all δ ∈ ∆ and all r > 0,

α r(xk + rDδ) 6 α rxk. Since {d = Dδ | δ ∈ ∆} is the cone of all feasible directions at xk within Conv(FP),

this is equivalent to the inequality

Γ : α r(x− xk) 6 0 (Γ)

being a valid inequality for SPP. Since a primal valid inequality is a valid inequality that is tight at xk, Γ is

obviously a primal valid inequality.

Consider now the case where the optimal solution δ? of RC-MRA is not column-disjoint (δ? /∈ ∆). x? is

the new fractional solution found by taking a maximal step r? along Dδ? at xk: x? = xk + r?Dδ?. We now

address the problem of separating δ? from ∆.

Proposition 3 Γ̄ is a valid inequality for (3) that separates δ? from ∆ iff Γ is a primal valid inequality for

the SPP that separates x? from FP. In this case, Γ̄ is a cut for (3) and Γ is a primal cut for P in the sense

of [10].
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Proof. Most of the proof has been given in the previous paragraphs. We need to prove only the separation.

Γ̄ separates δ? from ∆ iff ᾱ rδ? > 0. Equivalently, α r(xk + rDδ?) > α rxk or α r(x?−xk) > 0, which concludes

the proof.

What we have shown must now be seen the other way round to take advantage of previous work on primal

separation. Assume that we have a primal cut Γ for the SPP that separates x? from FP. Then, the inequality

Γ̄ : α rDδ 6 0 (Γ̄)

is a cut for RC-MRA that separates δ? from Conv(∆). Moreover, we have shown that any cut for RC-

MRA can be obtained in this way. This enables us to develop a procedure based on P-SEP: Given xk and

x?, is there a valid inequality for FP, tight at xk, that separates x? from FP? If it exists, it will be transferred

to RC-MRA to tighten the relaxation of F(3), as in Algorithm 2.

Remark 2 Γ̄ is obtained from Γ by multiplying α and the transfer matrix D, as RC-MRA was obtained

from C-MRA by multiplying the objective and the constraints by D. This shows the role played by D in the

transformation from the directions in Rn to the reduced directions in R|I|.

Algorithm 2 Cutting-plane procedure for (3)

1. δ? ← an optimal solution of RC-MRA;

2. If stopping conditions are met, return δ? although it may not be (3)-feasible;

3. If δ? is not column-disjoint, find a solution to P-SEP Γ : α r(x− xk) 6 0; transfer it to RC-MRA
as Γ̄ : α rDδ 6 0; GOTO 1;

4. Return δ?, the optimal solution of (3).

Algorithm 2 requires a primal separation procedure that can solve P-SEP. Note that any primal algo-

rithm, by its nature, can provide cuts only in a given family O and actually solves O-P-SEP (a primal

separation but in a given cut family).

Remark 3 There exist families of cuts for which no stopping criterion is required (e.g., Gomory–Young’s cuts

[20]). These families guarantee δ? ∈ ∆ after a finite number of O-P-SEP problems have been solved.

Remark 4 For the stopping criterion, a maximal number of iterations can be fixed prior to running the

algorithm. For families for which no cut may exist even if δ? /∈ ∆, the algorithm stops whenever O-P-SEP
yields no new cut. In this case, δ? may not be column-disjoint, and either a branching procedure is used or

the primal algorithm stops prematurely at xk.

3.2 Primal clique cut separation: Q-P-SEP

In this section, we present a well-known cutting-plane family Q, called the clique cuts, for which there exists

a relatively simple procedure that solves Q-P-SEP. Unlike Gomory–Young cuts, Q-P-SEP may have no

solution although δ? /∈ ∆. However, clique inequalities are usually sufficient to reach ∆-optimality and yield

deep cuts. Consider G = (N , E), the conflict graph obtained from matrix A, i.e., {i, j} ∈ E iff Ai rAj 6= 0.

Given a clique W in this graph, any binary solution of SPP satisfies∑
j∈W

xj 6 1. (QW)

QW is called the clique inequality associated with W, and it is valid for FP. Moreover, given x?, a fractional

extreme point of FP′ , finding a clique cut is equivalent to finding a clique of total weight greater than 1 in a

weighted graph G, with weight function wj = x?j , j ∈ N .

In our case, x? is typically the fractional vertex of FP′ that would be reached if a step were taken in

direction Dδ?, where δ? is an extreme optimal solution of FRC-MRA that is not column-disjoint (δ? /∈ ∆).
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For QW to be tight at xk, it must satisfy
∑
l∈W∩P x

k
l = 1, or equivalently |W ∩ P| = 1. Therefore, with

Gl being the subgraph of G with the vertices l and all neighbors of l, a primal separation for the clique cuts

can be found using Algorithm 3.

Algorithm 3 Q-P-SEP

1. K ← ∅ (set of all primal cliques found);

2. For all l ∈ R = support(Dδ?) ∩ P: Find a clique Wl of maximal weight in Gl; K ← K ∪ {QWl
};

3. Return K.

4 Experimentation

4.1 Algorithm and instances

4.1.1 Algorithm.

To solve SPP, we use Algorithm 1 with Zaghrouti et al.’s multi-phase strategy. Problem (3) is solved using

Algorithm 2. If the solution of RC-MRA is not column-disjoint, we generate primal clique inequalities using

Algorithm 3 and transfer them to RC-MRA to tighten the relaxation of F(3). For each solution δ? /∈ ∆,

at most 70 Q-P-SEP are solved. However, note that this number is seldom reached (usually, before the

70th separation procedure is launched, either δ? is column-disjoint or Q-P-SEP has no solution). When the

cutting planes do not manage to ensure δ? ∈ ∆, the nonexhaustive branching procedure of [22] is used. After

each branch, new cutting planes may be generated.

4.1.2 Cut pool.

As in a standard branch-and-bound, all the generated cuts are kept in a pool. Before generating any supple-

mentary cuts, we transfer any cuts in the pool that can be used to eliminate δ? /∈ ∆ at the current iteration

to RC-MRA.

4.1.3 Instances.

Tests were run on an aircrew scheduling problem from OR-Lib of size m = 823, n = 8, 904. The different

instances correspond to different initial solutions x0. These initial solutions are created to resemble typical

initial solutions for aircrew scheduling problems and are far from optimality. We chose to focus on the hardest

instances, i.e., those for which the solutions in [22] were furthest from optimality. See [22] for more details

on these instances.

4.2 Numerical results

Table 1 shows that for the ten hardest instances, adding primal Q-inequalities reduces the average optimality

gap from 33.92% to 0.21% and decreases the maximal gap from 200.63% to 2.06%. This improvement comes

with an increase in the number of steps and a small increase in the computational time.

On the nonoptimal instances (instances 3, 5, 8, and 10), ISUD Clique finds a slightly worse solution for

instance 5, the same solution for instance 8, and greatly improved solutions for instances 3 and 10. Note that

the improvement comes with a higher number of steps: +6 (resp. +11) for instance 3 (resp. 10). This means

that the cutting planes allow the algorithm to find column-disjoint combinations whereas the nonexhaustive

branching did not. When the cuts worsen the solution (instance 5), the algorithm performs five additional

steps but reaches a more expensive solution. This indicates that the cuts changed the path (xk)k earlier in

the process by taking an improving direction that locally seemed better than that taken by ISUD NoCut.

Tables 1 and 2 indicate that solving the separation problems is not very time-consuming. The cuts add

iterations (K increases). The extra primal cuts, and the corresponding reoptimizations, increase the time

per iteration by 24% (on average) while reducing the average gap from 33.9% to 0.21%.
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Table 1: Comparison of performance of ISUD with and without clique cuts on aircrew scheduling problems. Opt.
val. 56, 137.

ISUD NoCut ISUD Clique

Instance Init. gap Gap (%) Steps Time (s) Gap (%) Steps Time (s)

1 570.22 0 42 8.75 0 42 10.27
2 560.97 0 46 13.44 0 46 16.56
3 559.92 138.08 27 12.15 0.03 33 17.20
4 557.67 0 45 9.96 0 45 11.47
5 562.5 0.5 54 19.88 2.06 59 24.98
6 561.03 0 35 9.85 0 39 13.84
7 573.09 0 42 7.98 0 42 9.738
8 569.64 0.02 42 9.58 0.02 43 10.98
9 569.29 0 53 11.62 0 54 13.39
10 573.74 200.63 33 6.78 0.01 44 17.75

Avg. 565.81 33.92 41.9 11.00 0.21 44.7 14.62

Table 2: Performance of ISUD Clique on the aircrew scheduling instances.

Instance Gap (%) Steps Cuts Sep. Fails Tot. (s) Sep. (s)

1 0 42 266 64 3 10.27 1.01
2 0 46 490 94 4 16.56 2.02
3 0.03 33 440 130 9 17.20 1.99
4 0 45 281 70 4 11.47 1.00
5 2.06 59 536 155 19 24.98 2.64
6 0 39 473 142 6 13.84 1.42
7 0 42 314 78 4 9.74 1.17
8 0.02 43 339 69 7 10.98 1.07
9 0 54 299 80 5 13.39 1.12
10 0.01 44 496 132 12 17.75 1.62

Avg. 0.21 44.7 393.4 101.4 7.3 14.62 1.50

Note that branching prior to cutting would have allowed ISUD Clique to always find a better solution

than that found by ISUD NoCut. However, it seems logical to begin with cuts that do not discard any feasible

solution rather than to begin with a heuristic branching. Therefore, we took the risk that the solution would

deteriorate on some instances, as happened for instance 5.

5 Conclusions and future work

We have introduced MRA to show the link between the ISUD constraint reduction algorithm and primal

algorithms. The factoring of MRA into R-MRA and C-MRA has been explained and justified, and the

result is an efficient primal cutting-plane algorithm for the SPP. A proof of concept of this algorithm was

provided by using the Q-cuts family.

In future work, we plan to apply our algorithm to larger instances (1, 600× 570, 000 as in [22]) to obtain

a more complete benchmark. Other families of cuts such as primal cycle cuts will be added to improve the

performance of the algorithm.
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