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Abstract: The characterization of the spatial continuity of categorical variables, such as geological units, is a
longstanding subject in geostatistics. Indicator covariances and variograms are used to measure spatial rela-
tionships of categorical data between pairs of points. Alternatively, transition probabilities, or transiograms,
have been proposed to measure the probability of transition from one category to another as a function of
distance. Recently, high-order moments and cumulants built from them have been proposed as measures
of complex non-linear spatial relationships for arrangements of multiple points in 3D space. This paper ex-
tends the spatial high order statistics, originally conceived for continuous data, to the analysis of categorical
spatial datasets. In addition the concept of two-point conditional transition probabilities is expanded to
multiple point conditioned probabilities. The algorithm for high-order statistics, HOSC, has been updated to
allow for the proposed high-order indicator spatial statistics. A third extension developed is the inference of
indicator cross-cumulants and transiograms for two different categories. The experimental spatial indicator
cumulants and transition probabilities for different scattered datasets are compared with those obtained from
corresponding exhaustive datasets and training images. These comparisons show that significant information
about the high-order and multiple point spatial continuity of categorical variables can be extracted from
scattered samples. These results open an avenue for the development of simulation algorithms that rely more
on data and less on training images.

Key Words: Spatial indicator cumulants, multiple point transition probabilities, categorical variables, train-
ing image.
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1 Introduction

The modeling of the spatial structure of categorical attributes is a common task in various disciplines related

to the earth and environmental sciences and engineering. In mining, for instance, the modelling of geological

units is often required to define domains that differentiate populations of grades and, consequently, it is critical

for the mineral resources evaluation. Geological units and rock types are examples of mutually exclusive

categorical attributes, i.e. they can take only one category or state at each location. The indicator formalism

has been proposed as the basis of a non-parametrical approach to deal with distributions of categorical

attributes. Under this formalism, a binary coding is applied to data depending if a certain category is observed

or not at the datum location (Goovaerts 1997). The variograms and covariances applied on these indicator

transforms measure the 2-point spatial continuity of the corresponding attributes. These statistics are used

in sequential indicator simulation to generate stochastic models of the spatial distributions of categorical

attributes (Alabert 1987). Transition probabilities, or transiograms, were proposed as a more interpretable

alternative to indicator covariances and variograms (Carle and Fogg 1996). Being 2-point statistics, indicator

variograms and covariances fail to characterize the complex patterns that geological categorical variables often

exhibit (Journel 2005). Consequently, traditional simulation algorithms based on these 2-point statistics are

not able to reproduce complex spatial features, but result in patchy and disconnected patterns.

The popularity of simulation techniques based on 2-point statistics was justified by the difficulty to extract

high-order statistics from very sparse data. The use of training images as a source of multiple-point statistics

was proposed in the early nineties by Guardiano and Srivastava (1992). In this first implementation, the

training image was scanned to obtain the multiple-point statistics required to infer the conditional probability

distribution function (cpdf ) at each unsampled node. But it was not until improved algorithms and data

structures for storing large number of multiple-point statistics, such as the search tree, were incorporated

that simulation based on multiple-point statistics became practical (Strebelle 2000). Presently, algorithms

such as SNESIM (Strebelle 2002) and its various upgrades are used for geological modeling, particularly in

the petroleum industry, where hard data is usually scarce and indirect information is available to assist the

construction of training images. Contrarily, in the mining industry, hard data is often abundant. Accord-

ingly, the inference of high-order spatial statistics, such as moments and cumulants from dense datasets is

viable (Dimitrakopoulos, Mustapha and Gloaguen 2010). High-order statistics are used for approximating

non-Gaussian conditional distributions that can be used in the simulation of continuous spatial attributes

(Mustapha and Dimitrakopoulos 2010a). However, a training image is still needed to complement the infor-

mation provided by hard data.

This paper explores the inference of high-order spatial moments, cumulants and multiple-point transition

probabilities for categorical attributes in hard data. Spatial direct and cross indicator cumulants are presented

as measures of high-order spatial continuity for one or more categorical attributes. Multiple-point transition

probabilities express the conditional probability of having a particular category at one point given that the

categories at various surrounding points are known. The same spatial high-order indicator moments that

are used to build the direct and cross indicator cumulants are used to build the multiple-point transition

probabilities. The application of these statistics to continuous and categorical data is shown with the help of

2-D and 3-D datasets. The resulting cumulant and probability maps are compared with those obtained from

corresponding geological models and exhaustive training images. The implementation of these high-order

statistics are intended to be the first step towards simulation methods that rely more on the multiple-point

spatial continuity informed by hard data besides relying only on training images.

2 High-order Spatial Indicator Statistics

As in traditional geostatistics, high-order and multiple point indicator statistics are based on the indicator

transformation. If z(uuu) represents a categorical attribute, and sk is a category or state among a finite number

K of states, the indicator transform i(uuu; sk) is one if the state sk is present at uuu, and zero otherwise (Goovaerts
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1997). This is commonly expressed as:

i(uuu; sk) =

{
1 if z(uuu) = sk

0 otherwise
(1)

In this paper, the categories sk, k ∈ {1, . . . ,K} are regarded as mutually exclusive, i.e. only one category

sk can be present at a location uuu.

In geostatistics, the uncertainty related to the spatial distribution of an attribute is modeled by the joint

probabilistic distribution of multiple random variables Z(uuuα) defined at N locations uuuα, α = 1, . . . , N . The

joint random variables form a random field and their corresponding indicator transforms are denoted as

I(uuuα; sk), with α = 1, . . . , N and k ∈ {1, . . . ,K}.

Both spatial indicator spatial cumulants and multiple-point transition probabilities are derived from high-

order moments, which can be used to describe a distribution. Consider a stationary categorical random field

Z(uuu) in a spatial domain V , and a moving template formed by a tail at point uuu0 ∈ V plus n heads at the end

of vectors hhh1, . . . ,hhhn, such as uuu1 = uuu0 + hhh1, . . . ,uuun = uuu0 + hhhn ∈ V . Also, for the sake of generality, consider

that, for each point uuuα, α = 0, . . . , n in the template, the indicator transform is defined for a particular

category skα , with k ∈ {1, . . . ,K}. The moment of order ω = j0 + j1 + . . .+ jn for the indicator transforms

at the n+ 1 template endpoints is expressed as

µ0...n;j0...jn = E
[
Ij0(uuu0; sk0) · Ij1(uuu1; sk1) · . . . · Ijn(uuun; skn)

]
= E [I(uuu0; sk0) · I(uuu1; sk1) · . . . · I(uuuun; skn)]

(2)

Thus, when dealing with indicator transforms the order of a moment is equal to its number of points. Due

to this the terms order and points are used interchangeably in this paper.

There is a direct equivalence between the high-order indicator moment and the joint probability distri-

bution function (pdf ) of Z:

E [I(uuu0; sk0) · I(uuu1; sk1) · . . . · I(uuuun; skn)] = Pr [Z(uuu0) = sk0 ∧ Z(uuu1) = sk1 ∧ . . . ∧ Z(uuun) = skn ]

= fZ(uuu0,uuu1, . . . ,uuun; sk0 , sk1 , . . . , skn) = psk0 ,...skn (hhh1, . . . ,hhhn),

(3)

where psk0 ,...skn (hhh1, . . . ,hhhn) is a joint probability that depends on vectors hhh1, . . . ,hhhn. When skα = sk,

∀α = 0, . . . , n, the moment is referred to as an indicator direct moment of order n + 1, or (n + 1)-point

indicator direct moment. Otherwise, it is an indicator cross-moment of order n+ 1 or (n+ 1)-point indicator

cross-moment. If two or more points in the template are coincident, the order of the indicator direct moment

is reduced; for instance,

E [I(uuu0; sk) · I(uuu1; sk) · . . . · I(uuun−1; sk) · I(uuun; sk)] = E [I(uuu0; sk) · I(uuu1; sk) · I(uuun; sk)] ,

if uuu1 = uuu2 = · · · = uuun−1.

When two or more points in the template are coincident, the indicator-cross moment is zero, since two or

more different categories cannot be present in the same point:

E
[
I(uuu0; sk0) · I(uuu1; sk1) · . . . · I(uuun−1; skn−1

) · I(uuun; skn)
]

= 0,

if uuuα = uuuβ and skα 6= skβ for α, β = 0, . . . , n.

In a spatial context, high-order moments can be inferred directly from data when it is abundant and as-

suming that the joint probabilistic distribution within a region, or domain, is stationary. The next expression

allows the experimental calculation of the high-order spatial moments from scattered samples:

Ê
[
I(uuu0; sk0) · I(uuu1; sk1) · . . . · I(uuun; skn)

]
=

1

Nhhh1,...,hhhn

Nhhh1,...,hhhn∑
α=1

i(uuuα; sk0) · i(uuuα + hhh1; sk1) · . . . · i(uuuα + hhhn; skn)
. (4)
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Where Nhhh1,...,hhhn is the number of replicates that can be found for the template defined by the point uuuα and

the head points of vectors hhh1, . . . ,hhhn. As for traditional variogram inference (Deutsch and Journel 1998),

angular and distance tolerances can be allowed to deal with irregularly spaced data. Wider tolerances will

lead to a more robust inference of the multiple-point moments, but at the price of masking features that

describe actual patterns in the spatial distribution of the category.

2.1 Indicator spatial cumulants

Spatial cumulants are built as non-linear combinations of spatial moments (Mustapha and Dimitrakopoulos

2010b). The general relation between moments and cumulants (C) of any order is given by (Smith 1995)

CI
(
Z0, . . . Zn−1, Zn

)
=

1∑
a0=0

· · ·
1∑

an−1=0

1∑
an=0

(
1
a0

)
· · ·
(

1
an−1

)(
1
an

)
CI
(
Z1−a0
0 , . . . Z1−an−1

n , Z1−an
n

)
× E [Ia0(uuu0; s0) · . . . · Ian(uuun; sn)]

. (5)

Note that CI (Za00 , . . . , Zann ) = CI (Z0, . . . , Zn), ∀aj ≥ 1. This implies that the order and the number of

points for indicator cumulants is the same. Spatial cumulants can be expressed in terms of joint probabilities.

Assuming stationarity and an ergodic random field the indicator cumulants up to the 4-order is given next:

CI(uuu0; sk0) = psk0
CI(hhh1; sk0 , sk1) = psk0sk1 (hhh1)− psk0 · psk1

CI(hhh1,hhh2; sk0 , sk1 , sk2) = psk0sk1sk2 (hhh1,hhh2)− psk0 · psk1sk2 (hhh2 − hhh1)− psk1 · psk0sk2 (hhh2)

− psk2 · psk0sk1 (hhh1) + 2psk0 · psk1 · psk2
CI(hhh1,hhh2,hhh3; sk0 , sk1 , sk2 , sk3) = psk0sk1sk2sk3 (hhh1,hhh2,hhh3)− psk0sk1 (hhh1) · psk2sk3 (hhh3 − hhh2)

− psk0sk2 (hhh2) · psk1sk3 (hhh3 − hhh1)− psk0sk3 (hhh3) · psk1sk2 (hhh2 − hhh1)

− psk0 · psk1sk2sk3 (hhh2 − hhh1,hhh3 − hhh2)− psk1 · psk0sk2sk3 (hhh2,hhh3)

− psk2 · psk0sk1sk3 (hhh1,hhh3)− psk3 · psk0sk1sk2 (hhh1,hhh2)

+ 2psk0 · psk1 · psk2sk3 (hhh3 − hhh2) + 2psk0 · psk2 · psk1sk3 (hhh3 − hhh1)

+ 2psk0 · psk3 · psk1sk2 (hhh2 − hhh1) + 2psk1 · psk2 · psk0sk3 (hhh3)

+ 2psk1 · psk3 · psk0sk3 (hhh2) + 2psk2 · psk3 · psk0sk3 (hhh1)

− 6psk0 · psk1 · psk2 · psk3 (6)

If sk0 = sk1 = sk2 = sk3the expressions above are direct indicator cumulants, otherwise, they are indicator

cross-cumulants. Figure 1 shows a small example of direct third order indicator cumulants for continuous

and categorical variables. The exhaustive dataset used for this example consists of five square areas with

value 1 on a zero-value field (see Figure 1(a)). A three point template with lag vectors hhhX and hhhY parallel

to the coordinate axes was used to calculate the cumulants. Figure 1(b) shows the resulting 3rd-order direct

indicator cumulant map for category 1, whereas Figure 1(c) shows a similar map for category 0. In this case

the two categories s = 1 and s′ = 0 are complementary, i.e. Pr[z(uuu) = s′] = 1−Pr[z(uuu) = s]. The high value

areas in these graphs are the result of lag vectors hhhX and hhhY that permit collecting large number of 3-point

replicates of categories s and s′ for their corresponding indicator direct cumulants. Note that the high and

low value spots in Figure 1(b) and (c), respectively, are spaced by the same distance units as the exterior

category 1 squares in Figure 1(a). The impact of the central category 1 square in the cumulant maps at the

right is minimal due to the particular configuration of the template.

When two categories are complementary, the corresponding 3rd-order indicator direct cumulants are the

negative of each other:

CI(hhh1,hhh2; s, s, s) = −CI(hhh1,hhh2; s′, s′, s′) if Pr [Z(uuu) = s] + Pr [Z(uuu) = s′] = 1. (7)
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Figure 1(a)). A three point template with lag vectors  and X Yh h  parallel to the coordinate 

axes was used to calculate the cumulants. Figure 1(b) shows the resulting 3
rd

-order direct 

indicator cumulant map for category 1, whereas Figure 1(c) shows a similar map for 

category 0. In this case the two categories 1 and 0s s   are complementary, i.e. 
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value spots in Figure 1 (b) and (c), respectively, are spaced by the same distance units as 

the exterior category 1 squares in Figure 1 (a). The impact of the central category 1 

square in the cumulant maps at the right is minimal due to the particular configuration of 

the template. 

 

Figure 1: (a) a simple binary dataset, 3
rd

-order indicator direct cumulants for (b) category 1 and (c) category 

0. 

When two categories are complementary, the corresponding 3
rd

-order indicator direct 

cumulants are the negative of each other:  

   1 2 1 2( , ; , , ) ( , ; , , )  if Pr ( ) Pr ( ) 1I IC s s s C s s s Z s Z s        h h h h u u .   (7) 

Also, the next equivalences can be established between 3
rd

-order indicator direct and 

cross-cumulants for complementary categories: 

1 2 1 2 1 2

1 2 1 2

( , ; , , ) ( , ; , , ) ( , ; , , ),

( , ; , , ) ( , ; , , ).

I I I

I I

C s s s C s s s C s s s

C s s s C s s s

     

  

h h h h h h

h h h h
    (8) 

The demonstration of equivalences (7) and (8) and others between higher order indicator 

direct and cross-cumulants is not presented in this paper for the sake of brevity. 

Nevertheless, the top row of Figure 2 shows these equivalences for the template formed 

by lag vectors  and X Yh h  parallel to the coordinate axis, whereas the bottom row shows 

Figure 1: (a) a simple binary dataset, 3rd-order indicator direct cumulants for (b) category 1 and (c) category 0.

Also, the next equivalences can be established between 3rd-order indicator direct and cross-cumulants for

complementary categories:

CI(hhh1,hhh2; s, s′, s) = CI(hhh1, h2; s, s, s′) = CI(hhh1,hhh2; s′, s′, s′),

CI(hhh1,hhh2; s, s′, s′) = CI(hhh1,hhh2; s, s, s).
(8)

The demonstration of equivalences (7) and (8) and others between higher order indicator direct and cross-

cumulants is not presented in this paper for the sake of brevity. Nevertheless, the top row of Figure 2 shows

these equivalences for the template formed by lag vectors hhhX and hhhY parallel to the coordinate axis, whereas

the bottom row shows the indicator cross-cumulants using the [hhhX ,hhhY ] template after a 45◦ clockwise rotation,

that is [hhhX′(Az.135◦),hhhY ′(Az.45◦)]. The left column of Figure 2 shows the indicator cross-cumulant maps when

the heads of lag vectors hhhX and hhhX′ correspond to category 0 (Figure 2(a) and (d), respectively). The central

column corresponds to indicator cross-cumulants when only the head of lag vectors hhhY (Figure 2(a)) and hhhY ′

(Figure 2(b)) correspond to category 0. In the right column of this figure, all the lag vector heads correspond

to category 0. In all cases, the tail point corresponds to category 1. The indicator cross-cumulant maps for

the rotated template shows the interaction between the central and exterior category 1 squares in Figure 1.

2.2 Multiple-point transition probabilities

The inference of 2-point transition probabilities, or transiograms, directly from categorical scattered data was

proposed by Li (2006, 2007). This idea is expanded to multiple-point transition probabilities. The 1-point

probability is the proportion of the category and it is defined by:

psk0 (uuu0) = Pr [Z(uuu0) = sk0 ] = E [I(uuu0; sk0)] . (9)

The 2-point transition probability is the conditional probability of having the category sk0 in point uuu0,

the tail, given that category sk1 is present at the head of vector hhh1. This conditional probability can be

obtained by the quotient of the 2-point indicator moment E [I(uuu0; sk0) · I(uuu1; sk1)] with the 1-point indicator

moment E [I(uuu1; sk1)] (Carle and Fogg 1996):

tsk0/sk1 (hhh1) = Pr [Z(uuu0) = sk0 |Z(uuu1) = sk1 ]

=
Pr [Z(uuu0) = sk0 ∧ Z(uuu1) = sk1 ]

Pr [Z(uuu1) = sk1 ]
=
E [I(uuu0; sk0) · I(uuu1; sk1)]

E [I(uuu1; sk1)]

(10)

As for indicator cumulants, if sk0 = sk1 the expression above is a 2-point direct transition probability,

or a cross- transition probability, if not. The multiple-point transition probability is built as the conditional

probability of having a category sk0 at uuu0 given that the head points of the vectors in the template are in

the same or different categories:

tsk0/sk1 ...skn (hhh1, . . . ,hhhn) = Pr [Z(uuu0) = sk0 |Z(uuu1) = sk1 ∧ . . . ∧ Z(uuun) = skn ] .
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cumulants when only the head of lag vectors Yh  (Figure 2 (a)) and Y h  (Figure 2 (b)) 

correspond to category 0. In the right column of this figure, all the lag vector heads 

correspond to category 0. In all cases, the tail point corresponds to category 1. The 

indicator cross-cumulant maps for the rotated template shows the interaction between the 

central and exterior category 1 squares in Figure 1.  

 

Figure 2: Top row, (a), (b) and (c) indicator cross-cumulant maps for a L shape template with lag vectors 

parallel to the coordinate axes. Bottom row, (d), (e) and (f) indicator cross-cumulant maps for a 45° rotated 

L shape template. 

2.2 Multiple-point Transition Probabilities 

The inference of 2-point transition probabilities, or transiograms, directly from 

categorical scattered data was proposed by Li (2006, 2007). This idea is expanded to 

multiple-point transition probabilities. The 1-point probability is the proportion of the 

category and it is defined by: 

0 00
0 0 0( ) Pr ( ) ( ; )

ks k kp Z s E I s     
   

u u u .      (9) 

Figure 2: Top row, (a), (b) and (c) indicator cross-cumulant maps for a L shape template with lag vectors
parallel to the coordinate axes. Bottom row, (d), (e) and (f) indicator cross-cumulant maps for a 45◦ rotated
L shape template.

This conditional probability can be built by the quotient of the indicator moments E[I(uuu0; sk0) · . . . ·
I(uuun; skn)] of order n+ 1 and E [I(uuu1; sk1) · . . . · I(uuun; skn)] E1...n;sk1 ...skn

of order n:

tsk0/sk1 ...skn (hhh1, . . . ,hhhn) =
Pr [Z(uuu0) = sk0 ∧ Z(uuu0 + hhh1) = sk1 ∧ . . . ∧ Z(uuu0 + hhhn) = skn ]

Pr [Z(uuu0 + hhh1) = sk1 ∧ . . . ∧ Z(uuu0 + hhhn) = skn ]

=
E [I(uuu0; sk0) · I(uuu1; sk1) · . . . · I(uuun; skn)]

E [I(uuu1; sk1) · . . . · I(uuun; skn)]

(11)

As before, if sk0 = sk1 = . . . = skn , the expression above is a direct transition probability of order

n+ 1, otherwise, it is a cross transition probability of the same order. Multiple-point transition probabilities

can be inferred only if the denominator of the expression above is greater than zero, this is E[I(uuu1; sk1)

· . . . · I(uuun; skn)] > 0, but they are defined as zero if the numerator, E[I(uuu0; sk0) · I(uuu1; sk1) · . . . · I(uuun; skn)],

is also zero.

To further elucidate the basic properties of multiple point direct and cross transition probabilities let us

analyse the 3-point case:

tsk0/sk1sk2 (hhh1,hhh2) = Pr [Z(uuu0) = sk0 |Z(uuu1) = sk1 ∧ Z(uuu2) = sk2 ] =
psk0sk1sk2 (hhh1,hhh2)

psk1sk2 (hhh2 − hhh1)

=
E [I(uuu0; sk0) · I(uuu1; sk1) · I(uuu2; sk2)]

E [I(uuu1; sk1) · I(uuu2; sk2)]

(12)

The direct transition probability, that is for sk0 = sk1 = sk2 , is 1 when uuu0 = uuu1 = uuu2, unless the numerator

of expression (12) is zero.

Figure 3(a) shows a 3-point direct transition probability map of category sk0 = 1 obtained from the same

dataset presented in Figure 1(a). The pattern of the high probability areas reflects the arrangement of the

category 1 squares in the dataset. The zero probability areas in this figure indicate that there are no instances
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when the heads, uuuX and uuuY , of the corresponding hhhX and hhhY vectors are in category 1 for a tail uuu0 that also

is in such category. Figure 3(b) shows the cross-transition probability map of tsk0=1/skX=1,skY =0(hhhX ,hhhY ) =

Pr [Z(u0) = 1|Z(uX) = 1 ∧ Z(uY ) = 0]. If uuuX = uuu0, the value of the transition probability is 1, since

t1/1,0(0,hhhY ) =
Pr [Z(uuu0) = 1 ∧ Z(uuu0) = 1 ∧ Z(uuuY ) = 0]

Pr [Z(uuu0) = 1 ∧ Z(uuuY ) = 0]
= 1,

unless E [I(uuu0; 1) · I(uuuX ; 1) · I(uuuY ; 0)] = 0. Whereas, if uuuY = uuu0, the transition probability is zero. The two

high probability bands parallel to the Y axis have the same separation as the horizontal distance between

the exterior category 1 squares in Figure 1(a). These bands are created by replicates with both: the tail and

the uuuX head are in category one, whereas the uuuY head is in category zero. The bands become thinner for hhhY
distances where the uuuY head is also in category one. A similar behavior is observed now parallel to the X axis

when the head point in the complementary category is the end of vector hhhX , as in Figure 3(c), which shows the

cross transition probability map for tsk0=1/skX=0,skY =1(hhhX ,hhhY ) = Pr [Z(uuu0) = 1|Z(uuuX) = 0 ∧ Z(uuuY ) = 1].

Figure 3(d) presents the cross transition probability map when both head points are in the complemen-

tary category, this is tsk0=1/skX=0,skY =0(hhhX ,hhhY ) = Pr [Z(uuu0) = 1|Z(uuuX) = 0 ∧ Z(uuuY ) = 0]. In this case the

transition probability values along both template axes are zero. Note that in Figure 3(d), the maximum

cross-transition probability happens for lag distances, in both hhhX and hhhY , for which no more category 1

areas can be found. Figure 3 (e), (f), (g), and (h), at the bottom, show similar direct and cross-transition

probabilities than those in the top row of Figure 3, but they were inferred using the 45◦ rotated template.

The features in these 3-point transition probability maps show the impact of the central category 1 square

of Figure 1(a).

When comparing the 3rd-order cumulant maps of Figure 2 with the 3-point transition probability maps

of Figure 3, it is clear that the later show sharper features. This can be explained by considering that

the indicator cumulants contain more information from single and joint probabilities than the transition

probabilities.
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of Figure 1 (a). 

When comparing the 3
rd

-order cumulant maps of Figure 2 with the 3-point transition 

probability maps of Figure 3, it is clear that the later show sharper features. This can be 

explained by considering that the indicator cumulants contain more information from 

single and joint probabilities than the transition probabilities.  

 

Figure 3: 3-point direct, (a) and (e), and cross, (b) to (d) and (f) to (h) transition probability maps for a L-

shape template (top row) and 45° rotated L-shape template (bottom row) 

3 Implementation and Case Studies 

The prototype program, HOSC+, implements the calculation of indicator direct and 

cross-cumulants and transition probabilities from regularly and irregularly spaced data. In 

its current implementation, HOSC+ can deal with up to two different categories at the 

same time in the inference of cross high-order statistics.  

Figure 3: 3-point direct, (a) and (e), and cross, (b) to (d) and (f) to (h) transition probability maps for a
L-shape template (top row) and 45◦ rotated L-shape template (bottom row).

3 Implementation and Case Studies

The prototype program, HOSC+, implements the calculation of indicator direct and cross-cumulants and

transition probabilities from regularly and irregularly spaced data. In its current implementation, HOSC+

can deal with up to two different categories at the same time in the inference of cross high-order statistics.
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HOSC+ was used to generate the direct cumulant and transition probability maps in the 2-D example

and the direct and cross transition probability maps and volumes in the two 3-D cases study that are shown

next.

3.1 A two-dimensional case

A horizontal 100 × 100 pixel slice of the Stanford V Reservoir Data Set (Mao and Journel, 1999) was selected

for this 2-D example. The original continuous dataset has been transformed to a categorical image by applying

a cut-off that divides the high values in the channels from the low values in the background. Figure 4(a)

shows the exhaustive image of the selected slice. 380 samples are taken from this image on a pseudo regular

5 × 5 pixel grid. Figure 4(b) shows the location of the scattered samples. An L-shape template with lag

vectors parallel to the X and Y coordinate axes was used for obtaining the 3rd-order indicator cumulants and

transition probabilities. For the 4th order statistics a third lag vector parallel to the Z axis was considered.

Incremental lags of 1 distance units were used for the exhaustive image, and 10 distance units for the scattered

samples. Distance tolerances equal to half of the lag size were allowed, as well as angular tolerances of ±5◦.
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HOSC+ was used to generate the direct cumulant and transition probability maps in the 

2-D example and the direct and cross transition probability maps and volumes in the two 

3-D cases study that are shown next. 

3.1 A two-dimensional case 

A horizontal 100 x 100 pixel slice of the Stanford V Reservoir Data Set (Mao and 

Journel, 1999) was selected for this 2-D example. The original continuous dataset has 

been transformed to a categorical image by applying a cut-off that divides the high values 

in the channels from the low values in the background. Figure 4(a) shows the exhaustive 

image of the selected slice. 380 samples are taken from this image on a pseudo regular 5 

x 5 pixel grid. Figure 4(b) shows the location of the scattered samples. An L-shape 

template with lag vectors parallel to the X and Y coordinate axes was used for obtaining 

the 3
rd

-order indicator cumulants and transition probabilities. For the 4
th

 order statistics a 

third lag vector parallel to the Z axis was considered. Incremental lags of 1 distance units 

were used for the exhaustive image, and 10 distance units for the scattered samples. 

Distance tolerances equal to half of the lag size were allowed, as well as angular 

tolerances of ±5º. 

 

Figure 4: (a) exhaustive 2-D data set, (b) scattered samples taken from it. 

The cumulants and transition probabilities maps shown next, as well as in the second 

example, were produced by interpolating the inferred values of these statistics. This 

facilitates their visualization and interpretation. Figure 5 (a) and (b) show the indicator 

direct cumulant maps obtained from the exhaustive data set and the samples, respectively. 

Some common features can be identified between the two maps, such the elongated zero-

Figure 4: (a) exhaustive 2-D data set, (b) scattered samples taken from it.

The cumulants and transition probabilities maps shown next, as well as in the second example, were

produced by interpolating the inferred values of these statistics. This facilitates their visualization and

interpretation. Figure 5(a) and (b) show the indicator direct cumulant maps obtained from the exhaustive

data set and the samples, respectively. Some common features can be identified between the two maps,

such the elongated zero-value contours. These features reflect the geometry of the high value channels. The

areas above zero result when the templates capture a large proportion of high values in the heads, while

the tail value is below the cut-off. Figure 6(a) and (b) show the X − Y , X − Z and Y − Z slices of the

4th-order indicator direct cumulant volumes for the exhaustive and scattered dataset, respectively. As for

the 3rd-order indicator cumulants in Figure 5, some similar features related to the geometry of the channels

can be distinguished for the 4th-order, particularly for the shorter lag distances.

Figure 7(a) and (b) show the three-point direct transition probabilities for the exhaustive and scattered

datasets, respectively. These figures represent the conditional probability of the tail value being within the

channels given that the two head values in the template also are in channels. The low probability banding

stretched parallel to the North-South axe for hhhX lags with lengths between 5 and 30 distance units reflect the

short scale transition from channels to background. The low probability band for very large hhhX lag vectors

indicate that very few channels are separated horizontally by such distances. For medium hhhX lags, both graphs

show increased conditional probabilities, but those obtained from the exhaustive data set (Figure 7(a)) are

higher than the obtained from the scattered samples (Figure 7(b)).

Figure 8 shows the 4-point indicator transition probability maps created using a template with three lag

vectors with azimuths of 0◦, 90◦ and 270◦, respectively. These graphs express the conditional probability
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value contours. These features reflect the geometry of the high value channels. The areas 

above zero result when the templates capture a large proportion of high values in the 

heads, while the tail value is below the cut-off. Figure 6 (a) and (b) show the X-Y, X-Z 

and Y-Z slices of the 4
th

-order indicator direct cumulant volumes for the exhaustive and 

scattered dataset, respectively. As for the 3
rd

-order indicator cumulants in Figure 5, some 

similar features related to the geometry of the channels can be distinguished for the 4
th

-

order, particularly for the shorter lag distances.  

 

Figure 5: 3rd-order indicator direct cumulants for the exhaustive data (a) and for the scattered samples (b). 

Figure 7 (a) and (b) show the three-point direct transition probabilities for the exhaustive 

and scattered datasets, respectively. These figures represent the conditional probability of 

the tail value being within the channels given that the two head values in the template 

also are in channels. The low probability banding stretched parallel to the North-South 

axe for Xh  lags with lengths between 5 and 30 distance units reflect the short scale 

transition from channels to background. The low probability band for very large Xh  lag 

vectors indicate that very few channels are separated horizontally by such distances. For 

medium Xh  lags, both graphs show increased conditional probabilities, but those 

obtained from the exhaustive data set (Figure 7 (a)) are higher than the obtained from the 

scattered samples (Figure 7 (b)). 

Figure 5: 3rd-order indicator direct cumulants for the exhaustive data (a) and for the scattered samples (b). 
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Figure 6: 4th-order indicator direct cumulants for the exhaustive data (a) and for the scattered samples (b). 

 

Figure 7: 3-Point transition probabilities for the exhaustive data (a) and the scattered samples (b). 

Figure 8 shows the 4-point indicator transition probability maps created using a template 

with three lag vectors with azimuths of 0°, 90° and 270°, respectively. These graphs 

express the conditional probability of being inside the channel category when the samples 

at the North, East and West also are at different distances.  The high probability bands 

parallel to the zero azimuth vectors reflect the geometry of the channels.  These look less 

continuous for the exhaustive dataset (see Figure 8 (a)) than for the scattered samples (see 

Figure 8 (a)) since the former contains much more information about the short scale 

features of the channels. 

 

Figure 6: 4th-order indicator direct cumulants for the exhaustive data (a) and for the scattered samples (b).

of being inside the channel category when the samples at the North, East and West also are at different

distances. The high probability bands parallel to the zero azimuth vectors reflect the geometry of the

channels. These look less continuous for the exhaustive dataset (see Figure 8(a)) than for the scattered

samples (see Figure 8(a)) since the former contains much more information about the short scale features of

the channels.

3.2 3-D case: A structurally-controlled gold deposit

The dataset used for this three-dimensional case comes from the Apensu Gold Deposit in Ghana (Jones et al.,

2011). The primary geological structure in this deposit is a north-east striking fault and its area of influence.

Two families of subsidiary structures are present at eastwards of the fault zone. Figure 9(a) shows a view

of the main fault zone and the most important of the families of subsidiary structures. Figure 9(b) shows

the traces of 376 drill holes that jointly contain 10253 samples of 4.5m length. These samples are coded

according to the geological structures they intercept. The holes were drilled sub-perpendicular to the main

fault. Between Figure 9(a) and 9(b) there is a representation of the template geometry that was used for the

inference of the 3 and 4-points transition probabilities. The first axis of this template, hhh1, is parallel to the
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Figure 6: 4th-order indicator direct cumulants for the exhaustive data (a) and for the scattered samples (b). 

 

Figure 7: 3-Point transition probabilities for the exhaustive data (a) and the scattered samples (b). 

Figure 8 shows the 4-point indicator transition probability maps created using a template 

with three lag vectors with azimuths of 0°, 90° and 270°, respectively. These graphs 

express the conditional probability of being inside the channel category when the samples 

at the North, East and West also are at different distances.  The high probability bands 

parallel to the zero azimuth vectors reflect the geometry of the channels.  These look less 

continuous for the exhaustive dataset (see Figure 8 (a)) than for the scattered samples (see 

Figure 8 (a)) since the former contains much more information about the short scale 

features of the channels. 

 

Figure 7: 3-Point transition probabilities for the exhaustive data (a) and the scattered samples (b). 
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Figure 8: 4-point direct transition probability maps for (a) the exhaustive image, (b) the sample dataset. 

3.2 3-D case: A Structurally-Controlled Gold Deposit 

The dataset used for this three-dimensional case comes from the Apensu Gold Deposit in 

Ghana (Jones et al., 2011). The primary geological structure in this deposit is a north-east 

striking fault and its area of influence. Two families of subsidiary structures are present at 

eastwards of the fault zone. Figure 9(a) shows a view of the main fault zone and the most 

important of the families of subsidiary structures. Figure 9 (b) shows the traces of 376 

drill holes that jointly contain 10253 samples of 4.5m length. These samples are coded 

according to the geological structures they intercept. The holes were drilled sub-

perpendicular to the main fault. Between Figure 9 (a) and 9 (b) there is a representation 

of the template geometry that was used for the inference of the 3 and 4-points transition 

probabilities. The first axis of this template, 1h , is parallel to the average down-the-hole 

direction. The second axis, 2h , has an azimuth of 35° and 0° dip, which correspond to the 

main fault’s strike. The third axis of the template, 3h ,  is perpendicular to the plane 

formed by the first two axes. This template geometry corresponds to the directions along 

where most conditioning sample replicates can be found. 

Figure 8: 4-point direct transition probability maps for (a) the exhaustive image, (b) the sample dataset.

average down-the-hole direction. The second axis, hhh2, has an azimuth of 35◦ and 0◦ dip, which correspond

to the main fault’s strike. The third axis of the template, hhh3, is perpendicular to the plane formed by the

first two axes. This template geometry corresponds to the directions along where most conditioning sample

replicates can be found.

Figure 10 presents various 3-point direct and cross-transition probabilities maps obtained from the drill

hole sampling dataset using 3-point subsets of the template described above. The categories considered

for the transition probabilities are the fault zone (F) and a family subsidiary structures (S1). The direct

transition probabilities corresponding to the subsidiary structures in Figure 10(a) reflect the banding and

cyclicity of this geological unit. The direct transition probabilities maps in Figure 10(d) for the fault zone

category quickly fall to zero along the down-the hole direction but are preserved in the parallel direction to

the fault structure and also along the 3rd template axes. This behavior conforms to the geometry of the fault

zone. The two of the 6 possible cross transition probabilities maps that are shown in Figure 10 show the

conditional probabilities of being in the category S1 given the head points of the template are at categories F

and S1.
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Figure 9 (a): geological model showing the thrust fault zone (F) and one family of subsidiary structures 

(S1). (b): Drill-hole traces coded by their intersections with the geological units. 

 

Figure 10: 3-point (a), (d) direct and cross (b), (c) transition probabilities maps for the Fault (F) and 

Structure Family 1 (S1) categories. 

Figure 9: (a) geological model showing the thrust fault zone (F) and one family of subsidiary structures (S1).
(b) Drill-hole traces coded by their intersections with the geological units.
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Figure 9 (a): geological model showing the thrust fault zone (F) and one family of subsidiary structures 

(S1). (b): Drill-hole traces coded by their intersections with the geological units. 

 

Figure 10: 3-point (a), (d) direct and cross (b), (c) transition probabilities maps for the Fault (F) and 

Structure Family 1 (S1) categories. 
Figure 10: 3-point (a), (d) direct and cross (b), (c) transition probabilities maps for the Fault (F) and
Structure Family 1 (S1) categories.
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Figure 11 presents isosurfaces corresponding to the 0.25 conditional probability of being in the subsidiary

structure when the 3 conditioning samples fall either in the subsidiary structure or in the fault zone. In

Figure 11(a) all the conditioning samples fall in the subsidiary structures. The elongated isosurfaces parallel

to hhh2 shown in this figure are produced by the interaction of samples within category S1. The separations

between the three strings of isosurfaces correspond approximately to the separations between individual

structures in the family S1. In Figure 11(b), all points but the head of hhh3 vector fall in the subsidiary

structure. Two high probability bands related to the subsidiary structures are still present in this case,

but the probability of finding this particular data arrangement fades with the distance to the fault. In

Figure 11(c), the head of hhh1 vector fall in the fault zone, whereas all other heads fall in category S1. In

Figure 11(d), the conditional probability surfaces are few and smaller since the instances when all heads in

the template fall within the fault zone are restricted to the proximity of the fault.
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Figure 10 presents various 3-point direct and cross-transition probabilities maps obtained 

from the drill hole sampling dataset using 3-point subsets of the template described 

above. The categories considered for the transition probabilities are the fault zone (F) and 

a family subsidiary structures (S1). The direct transition probabilities corresponding to 

the subsidiary structures in Figure 10 (a) reflect the banding and cyclicity of this 

geological unit. The direct transition probabilities maps in Figure 10 (d) for the fault zone 

category quickly fall to zero along the down-the hole direction but are preserved in the 

parallel direction to the fault structure and also along the 3
rd

 template axes. This behavior 

conforms to the geometry of the fault zone. The two of the 6 possible cross transition 

probabilities maps that are shown in Figure 10 show the conditional probabilities of being 

in the category S1 given the head points of the template are at categories F and S1.  

 

 

Figure 11: Direct, (a) and cross (b), (c) and (d) 4-point transition probabilities P25 isosurfaces for the Fault 

(F) and Structure Family 1 (S1) categories. Figure 11: Direct, (a) and cross (b), (c) and (d) 4-point transition probabilities P25 isosurfaces for the Fault
(F) and Structure Family 1 (S1) categories.

3.3 3-D case: A kimberlitic diamond pipe

The data for the last case study comes from the Fox kimberlitic diamond pipe, located in the Ekati property,

Northwest Territories, Canada. This data consist of a geological 3D model of the pipe (see Figure 12(a))

and 3610 composited drill hole samples (see Figure 12(b)). The multiple rock types were grouped in four

main geological units: crater, diatreme, xenoliths and host rock (cyan, yellow, red and blue, respectively in

Figure 12).
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Figure 11 presents isosurfaces corresponding to the 0.25 conditional probability of being 

in the subsidiary structure when the 3 conditioning samples fall either in the subsidiary 

structure or in the fault zone. In Figure 11 (a) all the conditioning samples fall in the 

subsidiary structures. The elongated isosurfaces parallel to 2h shown in this figure are 

produced by the interaction of samples within category S1.  The separations between the 

three strings of isosurfaces correspond approximately to the separations between 

individual structures in the family S1. In Figure 11 (b), all points but the head of 3h

vector fall in the subsidiary structure. Two high probability bands related to the 

subsidiary structures are still present in this case, but the probability of finding this 

particular data arrangement fades with the distance to the fault. In Figure 11 (c), the head 

of 1h vector fall in the fault zone, whereas all other heads fall in category S1. In Figure 11 

(d), the conditional probability surfaces are few and smaller since the instances when all 

heads in the template fall within the fault zone are restricted to the proximity of the fault. 

3.3 3-D case: A Kimberlitic Diamond Pipe 

The data for the last case study comes from the Fox kimberlitic diamond pipe, located in 

the Ekati property, Northwest Territories, Canada. This data consist of a geological 3D 

model of the pipe (see Figure 12 (a)) and 3610 composited drill hole samples (see Figure 

12 (b)). The multiple rock types were grouped in four main geological units: crater, 

diatreme, xenoliths and host rock (cyan, yellow, red and blue, respectively in Figure 12).  

 

Figure 12 : (a) Geological model of the Fox kimberlitic diamond pipe. (b) drill hole traces in the same pipe. 

Cyan: crater, yellow: diatreme, red: xenoliths, blue: host rock.  
Figure 12: (a) Geological model of the Fox kimberlitic diamond pipe. (b) drill hole traces in the same pipe.
Cyan: crater, yellow: diatreme, red: xenoliths, blue: host rock.

The 4-point template used for obtaining the direct transition probabilities is formed by the tail and heads

of three lag vectors, hhhX , hhhY and hhh−Z , parallel to the axes X and Y , and vertical downwards, respectively.

Figure 13 presents the 25% conditional probability isosurfaces obtained from the 4-point multiple point

direct and cross-transition probabilities between diatreme and the other three geological units. Figure 13(a)

expresses the conditional probability of being inside the diatreme given that the three heads also are within

this geological unit. The resulting isosurface reflects the geometry of the diatreme boundaries. Figure 13(b)

shows the conditional probability of being inside the diatreme given the downwards point of the template is

also in diatreme, whereas the eastward and northward points fall in the host rock. The shape of the resulting

25% probability isosurface is related to the geometry of the contact between the diatreme and the host rock.

Figure 13(c) corresponds to the 25% probability of being in diatreme conditioned to the downwards sample

also being in diatreme while the others are in the crater. This isosurface is thin and fades beyond 40m depth,

which corresponds to a smooth and unique crater-diatreme contact in the geological model. Figure 13(d)

represents the 25% probability of transitioning from diatreme to a xenolith in the downward direction. The

irregular shape of this isosurface reflects the irregular pattern of the xenoliths within the diatreme.

Figure 14 shows equivalent conditional probability isosurfaces to those in Figure 13, but they correspond

to the drill hole samples. The shape of the sample transition probabilities isosurfaces is much less continuous

than those obtained from the geological model. This happens because hard data is incomplete and also

because the geological units in the samples show more spatial variability than in the geological model. For

instance, Figure 14(c) indicates that there is more than 25% of transitioning horizontally from diatreme to

crater at deeper points than indicated by the equivalent transition probabilities obtained from the geological

model in Figure 13(c). This is because the scattered dataset actually contains samples coded as crater much

deeper than the crater-diatreme contact surface in the geological model.

4 Discussion and Conclusions

Experimental indicator cumulants and transition probabilities are able to characterize complex spatial rela-

tionships from indicator transforms of continuous or categorical scattered data. As it can be observed from

the case studies, much of the multiple-point spatial structure of geological units can be characterized directly
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Figure 13: Isosurfaces obtained from the geological model representing the 25% direct and cross-transition 

probabilities within diatreme (a), diatreme and host rock (b), diatreme and crate (c) and diatreme and 

xenoliths (d).  

Figure 14 shows equivalent conditional probability isosurfaces to those in Figure 13, but 

they correspond to the drill hole samples. The shape of the sample transition probabilities 

isosurfaces is much less continuous than those obtained from the geological model. This 

happens because hard data is incomplete and also because the geological units in the 

samples show more spatial variability than in the geological model. For instance, Figure 

14 (c) indicates that there is more than 25% of transitioning horizontally from diatreme to 

crater at deeper points than indicated by the equivalent transition probabilities obtained 

from the geological model in Figure 13 (c). This is because the scattered dataset actually 

contains samples coded as crater much deeper than the crater-diatreme contact surface in 

the geological model. 

Figure 13: Isosurfaces obtained from the geological model representing the 25% direct and cross-transition
probabilities within diatreme (a), diatreme and host rock (b), diatreme and crate (c) and diatreme and
xenoliths (d).

from the information provided by scattered samples. This opens an avenue for the development of stochastic

geological modeling methods based on actual hard and soft data rather than in preconceived training images.

The high-order indicator statistics maps obtained from only hard data often look either discontinuous

or as if lacking detail. This is due mainly to the incompleteness of samples and the higher variability of

its categorical values when compared with those of training images. Including soft data may result in more

robust indicator high-order statistics.

Indicator cumulants carry information of multiple low- and high-order univariate and joint distributions.

However, they are not straightforward to interpret. Transition probabilities are simpler and easier to interpret,

but the main advantage of transition probabilities over indicator cumulants is that the former can be used

directly to build the conditional distribution for a given arrangement of conditioning data and categories.

These conditional probabilities can be further used for simulating geological categories.

A very important limitation for both cross indicator cumulants and cross transition probabilities is the

exponential growth of the complexity of these statistics as the number of different categories considered

increases. So far, the current implementation of HOSC+ considers only up to two different categories. The

use of these statistics in a simulation algorithm will have to take into account this limitation. A way to

overcome this may include the use of efficient data structures, such as search trees.

Future work includes the incorporation of transition probabilities obtained from scattered data in con-

ditional simulation of categorical attributes. Another pending task is the implementation of HOSC+ as a

SGeMS plug-in.



14 G–2013–62 Les Cahiers du GERAD

 

 237  

 

Figure 14: Isosurfaces obtained from the drill hole samples representing the 25% direct and cross-transition 

probabilities within diatreme (a), diatreme and host rock (b), diatreme and crate (c) and diatreme and 

xenoliths (d). 

4 Discussion and Conclusions 

Experimental indicator cumulants and transition probabilities are able to characterize 

complex spatial relationships from indicator transforms of continuous or categorical 

scattered data. As it can be observed from the case studies, much of the multiple-point 

spatial structure of geological units can be characterized directly from the information 

provided by scattered samples. This opens an avenue for the development of stochastic 

geological modeling methods based on actual hard and soft data rather than in 

preconceived training images.  

Figure 14: Isosurfaces obtained from the drill hole samples representing the 25% direct and cross-transition
probabilities within diatreme (a), diatreme and host rock (b), diatreme and crate (c) and diatreme and
xenoliths (d).

References
Alabert, F.G. (1987) Stochastic Imaging of Spatial Distributions Using Hard and Soft Information. Department of

Applied Earth Sciences, Stanford University, Stanford, USA.

Carle, S.F. & G.E. Fogg (1996) Transition probability-based indicator geostatistics. Mathematical Geology, 28,
453–476.

Deutsch, C. & A. Journel (1998) GSLIB: Geostatistical software library and user’s guide. New York: Oxford
University Press.

Dimitrakopoulos, R., H. Mustapha & E. Gloaguen (2010) High-order Statistics of Spatial Random Fields: Ex-
ploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear Phenomena. Mathematical
Geosciences, 42, 65-99.

Goovaerts, P. (1997) Geostatistics for natural resources evaluation. New York: Oxford University Press.

Guardiano, F. & R.M. Srivastava (1992) Multivariate geostatistics: Beyond bivariate moments. In Geostatistics-
Troia, ed. A.M. Soares, 133–144. Dordrecht: Kluwer.

Jones, P., I. Douglas & A. Jewbali (2011) Modelling geological uncertainty in mining using multiple-point statistics.
World Gold 2011, 3rd International Conference, Montréal, Canada.
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