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Abstract: The classical maximum closure problem is of particular importance to the mining industry because
it is the underlying formulation related to mine design and production scheduling; this problem can be easily
solved by a polynomial time max-flow/min-cut algorithm. However, if a single capacity constraint is added
to the maximum closure formulation, the classical structure is destroyed and is classified in a category of
NP-hard problems. Using classical integer programming techniques to solve these formulations with capacity
constraints, it can take several days to solve linear programming (LP) relaxation of the real instances. This
phenomenon has hindered the development of exact optimization approaches for open pit mine design and
production scheduling of realistic sized problems.

In this paper, we develop an algorithm to solve the LP relaxation of the maximal closure problem with a
single constraint, which is often referred to as the precedence constrained knapsack problem. The proposed
algorithm expands on an existing parametric maximum flow model, and it is shown that the LP relaxation
of the precedence constrained knapsack problem can be solved at the cost of only a constant factor of the
worst-case time bound of the max flow algorithm. Computational results show that it is possible to solve
the LP relaxation less than one minute for open pit mines with hundreds of thousands of mining blocks to
be scheduled.

Key Words: Open pit mining problem, mining industry, precedence constrained knapsack problem, para-
metric max flow algorithm, LP relaxation.
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1 Introduction

The goal of long-term open pit mine design consists primarily of three phases: ultimate pit design, which

yields the largest extents that can be economically extracted; pushback design, which generates a general

strategic sequence of extraction to get to the ultimate pit; and finally production scheduling, which details

the annual sequence of extraction. All three phases have the common goal in that one wishes to maximize the

economic value of the design while obeying slope (precedence) constraints. Ultimately, these three phases are

interrelated; however, traditionally ultimate pit design and pushback design have been dealt with separately

from long-term production scheduling because they are similar in formulation.

Lerchs and Grossmann (1965) propose the earliest algorithm (L-G algorithm) for the ultimate pit limit

and pushback design heuristic for open pit mine design optimization, which is formulated as a discrete

optimization problem referred to as the maximal closure problem. The authors note that it is possible to

generate a sequence of extraction (pushbacks or nested pits) by parameterizing the value of the ore blocks and

re-applying the ultimate pit algorithm. Using a simple discrete argument in the comparison of the quadratic

formulations, Picard (1976) shows that the maximal closure problem can also be solved using the efficient

max-flow/min-cut algorithm. More recently, Hochbaum (2008) and Hochbaum and Chen (2000) report new

developments in the theory of max-flow/min-cut algorithms based on the ideas of Lerchs, Grossman and

Picard. The L-G algorithm has been the industry standard for pit design optimization for the last three

decades.

The shortcoming of max-flow algorithms when applied to open pit mine design is that the formulation and

solution methods do not easily accommodate capacity constraints, which are used to define the maximum

amount of material that can lie within a single nested pit. It has been shown from a theoretical perspective

that the maximal closure problem with a single cardinality constraint is NP-hard (Hochbaum, 2000); given

that the cardinality constraint is the simplest form of the capacity constraint, one can hardly expect that

there is polynomial time algorithm to solve maximal closure problem with capacity constraints.

Furthermore, it is well known that even the linear programming (LP) relaxation of the maximal closure

problem with a capacity constraint is in practice too time consuming (Moreno et al., 2010; Bienstock and

Zuckerberg, 2009). In an effort to reduce the computational burden, many authors rely on aggregating blocks

to reduce the size of the formulation (Ramazan, 2005; Boland et al., 2009), however these methods tend to

reduce the resolution from which decisions can be made, thereby leading to sub-optimal solutions for the

problem at hand.

Recently, Moreno et al. (2010) provide an algorithm to solve the LP relaxation of the open pit scheduling

with multi-period capacity constraints. By applying heuristics to obtain an integer solution from the LP

solution, the authors solve an open pit scheduling instance with 15 periods, 4 million blocks and 81 million

precedence constraints. Bienstock and Zuckerberg (2009) present an algorithm that solves the LP relaxation

of the maximal closure problem with multiple constraints for each period and demonstrate empirically that

their formulation generates small integrality gaps. The authors analyze the relationship between optimal

solution of the maximal closure problem produced through Lagranginan relaxation and the optimal solution

of the LP relaxation.

A vast amount of theoretical research related to open pit mine design is in the area of cutting planes

for the precedence constrained knapsack problem, which consists of a set of capacity constraints and multiple

precedence constraints. This research is of interest to open pit mine design optimization because an efficient

algorithm for solving the LP relaxation using cutting planes would lead to substantial reduction in computing

time for the integer formulation of the problem. Given that the knapsack problem is the simplest form of

the integer programming problems with only a single constraint, there has been a substantial amount of

research into algorithms and cutting planes for the knapsack problem (Nemhauser and Wolsey, 1988; Byun

et al., 2011). Additionally, researchers have been investigating aspects of polyhedral structures and cutting

planes for the precedence constrained knapsack problem (Boyd, 1993; Park and Park, 1997; Ven de Leensel

et al., 1999; Boland et al., 2011). Recently, several authors have proposed cutting plane algorithms in the

context of open pit mine scheduling (Fricke, 2006; Bley et al., 2010; Boland et al., 2011). Meagher (2010)

investigates the cutting planes for the max cut problem for directed graph, and applies the cutting planes
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to an instance of max cut problem with a knapsack constraint on the arcs, which is transformed from the

precedence constrained knapsack problem.

This paper describes an efficient algorithm that provides exact solutions for the LP relaxation of the

maximal closure problem with a single capacity constraint. While Moreno et al. (2010) have proposed an

alternative algorithm for a related problem, we propose more efficient and flexible algorithm using (complete)

parametric max flow algorithm (Gallo et al., 1989; Hochbaum, 2008). The proposed approach differs from

the parametric max flow algorithm that is used in the nested pit heuristic, whereby we use the complete

description of the max flow function, which is piecewise-linear function of the given parameter, to exactly

solve the LP relaxation.

The proposed algorithm, although deals with open pit mine scheduling with a capacity constraint for

each period, may be applied successively for each constraint in a set of constraints to approximate the LP

relaxation of the maximal closure problem with multiple constraints. In the following section, the funda-

mentals of the maximal closure problem are revisited, including an alternative derivation of the maximal

closure problem through duality theory. Then, the formulation is extended to incorporate a single capacity

constraint. Subsequently, it is shown that the LP relaxation of the precedence constrained knapsack problem

can be solved using the parametric max flow algorithm. The proposed algorithm is then tested on large,

“real-world” data sets and computational results discussed. Conclusions and avenues for future research

follow.

2 Prerequisites

In this section, we revisit the formulation of the maximal closure problem and show the relationship between

maximal closure problem and max-flow problem in the context of primal-dual relationship.

2.1 Maximal closure problem

Consider a directed graph G = (N,A), where N represents a set of blocks and A represents a set of precedence

relationships among the blocks. A closure of N is defined as a subset of blocks Y ⊂ N which does not violate

any precedence relationship in A. For example, a precedence relationship can be described by an arc ij ∈ A,

whereby block i ∈ N must be mined after another block j ∈ N . A real number pj ∈ R is associated with each

block called the profit of j ∈ N . It is assumed that the profit is permitted both to be positive or negative.

The maximal closure problem consists of finding a closure Y ⊂ N with the maximum sum of profits in Y .

The maximal closure problem can be formulated as the following binary programming problem.

max
∑
j∈N

pjxj

s.t. xi − xj ≤ 0 ∀ij ∈ A
xj ∈ {0, 1} ∀j ∈ N

(1)

where variable xj ∈ {0, 1} represents the choice whether to include block j ∈ N in the maximal closure or not.

The only constraints in the maximal closure problem are precedence constraints. Note that this formulation

does not contain a capacity constraint, and is used solely to determine the ultimate pit limit. The inclusion

of a capacity constraint will be considered in a subsequent section.

2.2 Maximum flow problem

Picard (1976) shows the maximal closure problem can be transformed to a min-cut problem. Using the

max-flow/min-cut theorem, the author demonstrates that a max-flow algorithm can be used to solve the

maximal closure problem. Consider a directed graph graph G = (N,A) where N represents set of nodes and

A represents the set of arcs. For any arc in ∈ A, there can be the arc flow from i ∈ N to j ∈ N . Each arc

ij is associated with an arc capacity bound bij . Additionally, consider two specialized nodes in the graph:

a sink node s ∈ N and a terminal node t ∈ N . In the maximum s − t flow problem, one tries to find the
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maximum flow from s to t while observing all the arc capacity constraints. It is easily shown that if an arc

ts is added to the graph G with a unit flow cost of −1 and unlimited arc capacity, the maximum s− t flow

problem can be formulated as follows.

min−xts
s.t.

∑
k∈N+(j)

xjk −
∑

k∈N−(j)

xkj = 0 ∀j ∈ N

0 ≤ xj ≤ bij ∀ij ∈ A

(2)

where variable xij is the flow in arc ij and N+(j) is the set of outgoing arcs from j. The maximum s − t
flow problem consists of flow balance constraints and arc capacity constraints. For more details, see Wolsey

(1998).

2.3 Dual of the maximal closure problem

The precedence constraints in (1) build a node-edge incidence matrix and that the balance constraints in (2)

build an edge-node incidence matrix. A node-edge incidence matrix can be built by transposing the edge-

node incidence matrix and vice-versa. There is a similar relationship, connected by transposed matrices, in

the duality theory in the linear programming theory. Here, we show the relationship between the maximal

closure problem and min-cut problem, shown by Picard (1976), can also be derived by analyzing primal-dual

relationship between (1) and (2).

To begin, the linear programming relaxation for the maximal closure problem (1) is presented by relaxing

the integral constraints for xj into linear bound constraints as follows:

max
∑
j∈N

pjxj

s.t. xi − xj ≤ 0 ∀ij ∈ A
0 ≤ xj ≤ 1 ∀j ∈ N

(3)

Note that the objective function value for the linear relaxation (3) is greater than or equal to the objective

value of the original (integer) problem. The dual of problem (3) can be written as follows:

min
∑
j∈N

zj

s.t.
∑

k∈N+(j)

yjk −
∑

k∈N−(j)

ykj + zj ≥ cj ∀j ∈ N

0 ≤ jij , 0 ≤ zj ∀ij ∈ A, ∀j ∈ N

(4)

where variables yij are the dual variables for each precedence constraint in (3) and zj is the dual variable

for each bound constraint in (3). Using the dual formulation from problem (4), it is possible to apply three

transformations to yield a problem similar to the maximal flow problem (2).

First by introducing slack variable sj , the inequalities in formulation (4) transform into equalities con-

straints, and the problem is now modelled as follows:

min
∑
j∈N

zj

s.t.
∑

k∈N+(j)

yjk −
∑

k∈N−(j)

ykj + zj − sj = cj ∀j ∈ N

0 ≤ yij , 0 ≤ zj , 0 ≤ sj ∀ij ∈ A, ∀j ∈ N

(5)
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right-hand side coefficients cj are then moved to the left-hand side. For this purpose, it is desirable to split

cj into positive and negative values, such as cj = c+j − c
−
j , where both c+j and c−j are nonnegative.

min
∑
j∈N

zj

s.t.
∑

k∈N+(j)

yjk −
∑

k∈N−(j)

ykj − (c+j − zj) + (c−j − sj) = 0 ∀j ∈ N

0 ≤ yij , 0 ≤ zj , 0 ≤ sj ∀ij ∈ A, ∀j ∈ N

(6)

Finally, by letting zj = c+j − zj and sj = c−j − sj , we obtain the final transformation which is equivalent

to (4), the dual of the linear programming relaxation of maximal closure problem, as follows:∑
j∈N

c+j −max
∑
j∈N

zj

s.t.

 ∑
k∈N+(j)

yjk + sj

−
 ∑
k∈N−(j)

ykj + zj

 = 0 ∀j ∈ N

0 ≤ yij , zj ≤ c+j , sj ≤ c
−
j ∀ij ∈ A, ∀j ∈ N

(7)

Consider a modified graph G = (N,A) by adding two nodes and one arc for each of the nodes in G : N =

N ∪ {s,t} and A = A ∪ {sj|j such that c+j > 0} ∪ {jt|j such that c+j ≤ 0}.

Then it is clear that we can solve (7) by using maximum s− t flow problem in G and the optimal solution

of (7) has the following property:

Theorem 1 The linear programming relaxation of the maximal closure problem is solved by the maximum

s− t flow problem using G, and satisfies the following relationship (Picard, 1976):

(LP relaxation of Max Closure) =
∑
j∈N

c+j −
(
Max s− t flow in G

)
.

Lemma 1 The maximal closure problem is solved by the maximum s− t flow problem for G, and satisfies the

following relationship (Picard, 1976):

(Max Closure) =
∑
j∈N

c+j −
(
Max s− t flow in G

)
.

Theorem 1 and Lemma 1 state that the objective function value of the maximal closure problem is equal

to the objective value of the LP relaxation, which is due to the total unimodularity of matrix in (3).

3 Precedence Constrained Knapsack Problem

In this section, we present the relationship between the precedence constrained knapsack problem and the

complete parametric max flow algorithm (Gallo et al., 1989; Hochbaum, 2008). We show, by extending

results in the previous section, that the LP relaxation of the precedence constrained knapsack problem can

be solved by a parametric network flow algorithm.

3.1 LP relaxation and its dual

Consider the capacity constraint in the precedence constrained knapsack problem:∑
j∈N

qjxj ≤ κ, (8)
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where κ is a maximum capacity and qj is the contribution to the maximum capacity associated with node

(block) j ∈ N . The linear relaxation of the precedence constrained knapsack problem can be derived by

adding capacity constraints (8) into (3). The linear programming dual of the precedence constrained knapsack

problem follows.

min
∑
j∈N

zj + κλ

s.t.
∑

k∈N+(j)

yjk −
∑

k∈N−(j)

ykj + zj ≥ (cj − qjλ) ∀j ∈ N

0 ≤ yij , 0 ≤ zj , 0 ≤ λ ∀ij ∈ A, ∀j ∈ N

(9)

where variable λ is the dual variables for the capacity constraint (8). In a similar manner as the previous

section, it is possible to transform (9) into a similar formulation as (7). By letting zj = (cj = qjλ)
+− zj and

sj = (cj − qjλ)
− − sj , we get the transformation which is equivalent to (9):

min

∑
j∈N

(cj = qjλ)+ −
∑
j∈N

zj + κλ


s.t.

 ∑
k∈N+(j)

yjk + sj

−
 ∑
k∈N−(j)

ykj + zj

 = 0 ∀j ∈ N

zj ≤ (cj − qjλ)+ ∀j ∈ N
sj ≤ (cj − qjλ)− ∀j ∈ N

0 ≤ yij , 0 ≤ zj , 0 ≤ sj , 0 ≤ λ ∀ij ∈ A, ∀j ∈ N

(10)

For a fixed λ, (10) has the same structure to (7) and can be solved it using the max-flow algorithm as in

the previous section. However, note that λ is a positive real variable, which cannot be solved directly with a

max-flow algorithm.

3.2 Parametric max flow algorithm

In this section, the basic properties of (10) are presented and show that (10) can be solved by using a

parametric max flow algorithm. Gallo et al. (1989) propose the parametric max flow algorithm be used,

where the arc capacities are not fixed and are a function of a single parameter. The author’s proposed

algorithms take advantage of the similarity of the successive max flow algorithms that should be solved,

where the worst-case time bound is a constant factor of the traditional preflow-push max flow algorithm

bound.

In Gallo et al. (1989), arc capacities are a function of a real-valued parameter, λ, and are denoted by

cλ(ij) for ij ∈ A. There are three assumptions:

1. cλ(sj) = asj − bsjλ, where bsj ≥ 0

2. cλ(jt) = atj + btjλ, where btj ≥ 0

3. cλ(ij), is constant, otherwise.

Note that, for the ease of the presentation, the assumptions have been modified from Gallo et al. (1989) by

reversing the direction of the flow without loss of generality.

Let us define the max flow function mλ to be the capacity of a max flow problem as a function of the

parameter λ. It is known that mλ is a piecewise-linear concave function with at most |N | breakpoints. First,

the parametric algorithm is used to solve the max flow algorithm for each member of an increasing sequence

of parameter values λ1 < λ2 < · · · < λl, which is referred to as the simple parametric max flow algorithm

(Hochbaum, 2008). Then, Gallo et al. (1989) provide an algorithm that provides all breakpoints for mλ.

Given that the max flow function mλ is a piecewise-linear concave function, it is possible to describe the
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whole function, mλ, using all of the breakpoints of mλ. This algorithm is called the complete parametric

max flow algorithm (Hochbaum, 2008). All the algorithms run in O
(
nm log

(
n2

m

))
time.

Now, consider (10), which is the linear programming dual of the precedence constrained knapsack problem.

It is clear that the constraints of (10) satisfies all three assumptions for the parametric max flow algorithm

of Gallo et al. (1989). Among the three terms in the objective function of (10),
∑
j∈N (cj − qjλ)+ and κλ are

simple functions of λ, so it is unnecessary to minimize these terms. It is possible to solely consider the term

(max
∑
j∈N zj), which can be interpreted as the objective function mλ of the parametric max flow problem

of Gallo et al., (1989).

As
∑
j∈N (cj − qjλ)+, κλ and (−max

∑
j∈N zj) are piecewise-linear concave function of λ, the sum of the

three terms in the objective value of (10) is also piecewise-linear concave function of λ. Finally, the following

theorem is proposed:

Theorem 2 The objective value of the linear programming relaxation of the precedence constrained max flow

problem is ∑
j∈N

(cj − qjλ∗)+ − (Max s− t flow at λ∗) + κλ∗,

where λ∗ is the optimal value of λ∗ in (10).

4 Computational Tests

In this section, the algorithm to solve the LP relaxation of the precedence constrained knapsack problem is

presented and computational results shown.

Algorithm

1. Get all the break points of the max flow function, mλ, by only considering the objective term (max
∑
j∈N

zj) in (10). In this stage, the parametric max flow algorithm gives all of the breakpoints of mλ with

complexity O
(
nm log

(
n2

m

))
.

2. Get the optimal value λ∗ in (10). In this stage, we scan three piecewise-concave functions
∑
j∈N (cj −

qjλ)+, κλ and −mλ with complexity O(n).

3. Get the optimal solution of (10). In this stage, we use the max flow algorithm by fixing λ = λ∗ in (10)

with complexity O
(
nm log

(
n2

m

))
.

The code for the above was written in C++ and compiled under cygwin g++ compiler environment. The

test was carried out on the notebook computer with a 2.13GHz Intel Core i3 330M CPU and 3GB RAM

available. Table 1 summarizes the computational results. Note that Para Max Flow and Max Flow in Table 1

represent the run time of steps 1 and 3 in the algorithm shown above. The computational results show that

parametric max flow algorithm provides the complete description of mλ within a short time.

Table 1: The performance of proposed algorithm

Instance Mine1 Mine2 Mine3

Blocks 4,275 40,762 219,434

Precedence 21,673 188,270 4,033,028

Para Max Flow 0.12s 5.2s 24.7s

Max Flow 0.02s 0.3s 12.5s

Moreno et al. (2010) deal with the same problem and in the absence of a direct comparison it is of

interest to somehow consider the performance of both algorithms. Table 2 shows the computational results

of Moreno et al. (2010). CMA presents the running time of Critical Multiplier Algorithm and CPX represents
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the running time of CPLEX linear programming solver. Reporting in Table 1 and Table 2 indicate that the

proposed algorithm may be more comparable to the CMA algorithm in terms of order of time needed. Further

comparisons will be required.

Table 2: The performance of CMA algorithm

Instance American Mine Marvin Asia Mine Andina

Blocks 19,320 53,668 772,800 4,320,480

Precedence 88,618 606,403 49,507,796 81,973,942

CMA 4s 12s 2m 36s 1h 44m

CPX 19m 26s 1h 3m 10d+ N/A

5 Conclusions

This paper presented an efficient algorithm to solve the LP relaxation of the precedence constrained knap-

sack problem. The algorithm provides the optimal solution of the LP relaxation using the parametric max

flow algorithm. Additionally, it is possible to directly use the algorithm iteratively to approximate the LP

relaxation with multiple knapsack constraints. Combined with efficient heuristics, which generate an integer

solution from the fractional solution, we expect that we can solve the real instance of open pit mine scheduling

in the reasonable time. We also expect that the algorithm in this paper makes it easier to use cutting planes

for the precedence constrained knapsack problem.

The parametric max flow algorithm appears promising for exactly solving the LP relaxation of the problem

with precedence constraints and multiple knapsack constraints. In is noted that in the proposed method

there are no negative coefficients in the capacity constraints; another research topic could be to modify the

algorithm to deal with the negative coefficients, which are commonly seen in blending constraints. Finally, it

is desirable to extend the proposed algorithm to the stochastic integer programming formulation of the open

pit mine scheduling (Meagher et al., 2009; Ramazan and Dimitrakopoulos, 2012; Asad and Dimitrakopoulos,

2012).
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