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Abstract: Preferential sampling of high grade zones is a common practice in the drilling campaigns of ore
deposits. This may lead to a bias in the statistics derived from these clustered datasets. The global mean and
variance, particularly, tend to be overestimated and high-order statistics, such as the skewness and kurtosis
are distorted. High-order simulation uses high-order spatial statistics, known as cumulants, to approximate
non-Gaussian local distributions of grades conditioned by neighbouring samples. Data clustering affects the
inference of the spatial cumulants, and consequently, the conditional distributions fitted using them. A
weighted cumulant estimator is proposed to account for data clustering. This estimator is implemented in
the program HOSC, used for calculating the experimental spatial cumulants of irregularly spaced datasets.
Additionally, the fitting of non-Gaussian conditional distributions using Legendre polynomial series derived
from weighted spatial cumulants is proposed and implemented in the algorithm for simulation with high-
order statistics, HOSIM. The geological model and diamond drilling dataset corresponding to the Apensu
gold deposit in Ghana is used to illustrate these implementations and to compare the new results with the
realizations and statistics produced without accounting for data clustering. This example shows that as
expected, the data cdf and its statistics are reproduced by simulation with declustered high-order statistics.

Key Words: Spatial cumulants, non-Gaussian distributions, training image.
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1 Introduction

Spatial clustering of direct measurements, or hard data, is a common feature in mining and other geosciences

or geoengineering datasets, which is a result of technical and logistical constraints, and also from the interest

on obtaining more information in areas where the sampled rock attribute exhibits anomalous values. Sample

clustering may cause biases in the inference of the attribute histogram and other statistics, thus, it is common

practice to weight the samples inversely proportional to the local sample density to minimize the bias intro-

duced by preferential or clustered sampling. When the declustered histogram is presented to geostatistical

simulation methods, such as the sequential Gaussian simulation, the resulting realizations reproduce this

histogram and the one and two point statistics within ergodic fluctuations (Goovaerts, 1999; Leuangthong et

al., 2004).

Recently, simulation based on high-order statistics has been proposed to overcome the limitations imposed

by the use of two-point spatial statistics and the multi-Gaussian model (Mustapha and Dimitrakopoulos,

2010). High-order spatial statistics, in particular cumulants, are able to capture more complex spatial rela-

tionships than two-point statistics such as the variogram and the covariance. High-order statistics are also

used to fit non-Gaussian conditional distributions via polynomial series without any assumption on the data

distribution. Following a random path over a grid, the fitted conditional probability distribution functions

(cpdf s) are randomly sampled to produce realizations of a non-Gaussian random field. The low- and high-

order statistics required to fit the cpdf s are primarily inferred directly from samples and completed by the

information obtained from a training image. As higher orders of the statistics are considered, there is an

increasing reliance on the training image. In order to avoid transferring the bias caused from clustered data

to the fitted cpdf s, it is necessary to minimize this bias in the lower and high-order spatial statistics.

In this paper weighted high-order statistics are proposed to account for sample clustering in the fitting

of non-Gaussian conditional distributions. First, weighted high-order spatial moments and cumulants are

presented. Next, the fitting of a conditional distribution using Legendre polynomial series based on weighted

high-order spatial moments and cumulants is developed. The impact of incorporating declustering weights

in high-order simulation is illustrated with the help of a diamond drill-hole dataset from the Apensu gold

deposit in Ghana. The declustered high-order statistics maps show the impact of incorporating declustering

weights and the resulting realizations reproduce the declustered global histogram.

2 Spatial Simulation Based on Weighted High-Order Spatial Statistics

High-order spatial statistics correspond to statistics of n-tuples of samples arranged in a spatial template.

Given a spatial random function Z (uuu) defined over a domain D, the vectors hhh1, · · · ,hhhn define a template

Th
hh1,...,hhhn

n+1 of n+ 1 points uuu0, uuu0 +hhh1, . . . , uuu0 +hhhn ∈ D. A high-order spatial moment for this arrangement is

defined by the integration:

E
[
Zi00 · Z

i1
1 · · ·Zinn

]
=

∫
Dn+1

zi0o z
i1
1 · · · zinn fZ (z0z1 · · · zn) dzzz (1)

with zzz = (z0, z1, · · · , zn). For the sake of brevity, the random variables in the template are denoted as

Z (uuuo) = Z0, Z (uuuo + hhh1) = Z1, · · · , Z (uuuo + hhhn) = Zn and their corresponding realizations as z0, z1, · · · , zn.

Normally, when inferring spatial high-order moments from scattered data, all samples are considered as

equally weighted. The inference of weighted experimental high-order statistics and their use in high-order

spatial simulation is presented next.

2.1 Weighted spatial cumulants

Declustering weights can be obtained from several declustering methods, such as cell declustering (Deutsch,

1989), polygonal declustering (Isaaks and Srivastava, 1989), global kriging or random pick. A common feature

of these methods is that they assign to each sample at a location uuu0 a weight w0 = w (uuu0) that is inversely

proportional to the sample density in its neighbourhood. For an arrangement of n + 1 sample locations
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uuu0, uuu1, . . . ,uuun, a n+1-point weight is defined as the geometric average of the individual declustering weights:

w0,1,...,n = w(uuu0,uuu1, · · · ,uuun) = n+1
√
w0w1 · · ·wn

For a template Th
hh1,...,hhhn

n+1 that has Nh1···hn replicates within the domain, the corresponding declustered ex-

perimental high-order moment can be obtained by:

Ê(w)
[
Zi00 Z

i1
1 · · ·Zinn

]
=

1∑Nh1···hn

k wuuuk,1,...,n

Nh1···hn∑
j=1

wuuuj ,1,...,nz
i0
j z

i1
1 · · · zinn (2)

As combinations of high-order spatial moments, spatial cumulants capture more information than single

moments. For a zero-mean random function, the spatial cumulants from order one to four are given by

(Dimitrakopoulos et al., 2010):

C
(w)
1 (Z0) = E(w) [Z0] = 0

C
(w)
2 (Z0, Z1) = C

(w)
2 (hhh1) = E(w) [Z0Z1]

C
(w)
3 (Z0, Z1, Z2) = C

(w)
3 (hhh1,hhh2) = E(w) [Z0Z1Z2]

C
(w)
4 (Z0, Z1, Z2, Z3) = C

(w)
4 (hhh1,hhh2,hhh3)

= E(w) [Z0Z1Z2Z3]− E(w) [Z0Z1]E [Z2Z3]

− E(w) [Z0Z2]E(w) [Z1Z3]

− E(w) [Z0Z3]E(w) [Z1Z2]

(3)

If the spatial high-order moments incorporate declustering weights, the spatial cumulants obtained from

them are also declustered. It is important to notice the relation between cumulants and classical descriptive

statistics. The second declustered cumulant for a zero lag is the declustered variance:

σ2
(w) = C

(w)
2 (0) = E(w)

[
Z2
0

]
− (E(w) [Z0])

2
(4)

The declustered skewness and the declustered 3rd-order cumulant for lags zero are related by:

γ
(w)
1 =

C
(w)
3 (0, 0)

(C
(w)
2 (0))

3/2
(5)

And the declustered kurtosis is related to 4th-order by:

β
(w)
2 =

C
(w)
4 (0, 0, 0)

(C
(w)
2 (0))

2 (6)

The unbiased inference of these statistics is important for the approximation of the univariate and mul-

tivariate cpdf by Legendre polynomial series.

2.2 Simulation with declustered spatial high-order statistics

Conditional sequential simulation requires the conditioning of local distributions by neighbouring sample

values and other sources of information about the attribute being modelled. These conditional distributions

are randomly sampled to generate realizations that are used for the conditioning of the local distribution

where no realization yet exists. In the case that the initial conditioning dataset, ∆0 = {dn}, is limited to

hard data values at n locations, such as dn = {z(uuuα) = zα, α = 1, . . . , n}, the conditional pdf at the first

simulated location uuu0 is given by:

fZ0 (zo|∆0) =
fZ (z0, z1, . . . , zn)∫

D
fZ (z0, z1, . . . , zn) dz0

(7)
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The realization z′0 is obtained from the Monte Carlo drawing of this conditional distribution and added to

the dataset. Thus, the new conditioning data consists of ∆1 = {dn} ∪ {z′0} and it is used to condition the

pdf at a second node. This process continues by following a random path until all nodes of the predefined

grid are simulated (Gómez-Hernández, 1993; Journel, 1994).

The objective is then to infer the multivariate distribution in the numerator of Eq. (7), whereas the

denominator can be obtained by numerical integration of the multivariate distribution. In sequential Gaussian

simulation, for instance, the multivariate pdf is modelled by a multi-Gaussian distribution, which is fully

defined by a covariance matrix and a vector of local means. The local Gaussian cpdf s are efficiently inferred

by simple kriging (Chilès and Delfiner, 1999), however this comes at the price of maximum entropy and lack

of high-order structure and connectivity (Journel and Deutsch, 1993). Alternatively, high-order simulation

uses high-order statistics and Legendre polynomials to approximate non-Gaussian multivariate distributions.

In case of an unsampled location uuu0 and two conditioning data, z1 and z2, the corresponding declustered

multivariate pdf is given by (Jain and Nanda, 1995; Navarro et al., 2006):

f
(w)
Z (zo, z1, z2) =

w (zo, z1, z2) fZ (zo, z1, z2)

E [w (zo, z1, z2)]
(8)

If the marginal pdfs are defined in the interval [−1, 1] , which usually requires rescaling the original values,

the multivariate pdf can be expressed as a series of Legendre polynomials (Mustapha and Dimitrakopoulos,

2010):

f
(w)
Z (zo, z1, z2) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

L
(w)
l,m,nP l(z0)Pm(z1)Pn(z2) (9)

L
(w)
l,m,n are the weighted Legendre coefficients and Pα (z) , α = l,m, n, are the α-order normalized Legendre

polynomials, such as:

Pα (z) =

√
2α+ 1

2
Pα (z) (10)

The first two Legendre polynomials are P0 (z) = 1 and P1 (z) = z. The following derivation allows obtaining

Legendre polynomials of any order α ≥ 0 (Abramowitz and Stegun, 1964):

Pα (z) =
1

2αα!

dα

dzα

[(
z2 − 1

)α]
=

α∑
j=1

aj,αz
α, for z ∈ [−1, 1] (11)

The Legendre polynomials fulfill the orthogonally property; if they are normalized this property is defined

as: ∫
A

Pm (z)Pn (z) dz =

{
0, if m 6= n

1, if m = n
(12)

After applying this property on Equation (9), the Legendre coefficients are derived as:

L
(w)
l,m,n =

∫
A3

P l(z0)Pm(z1)Pn(z2)f
(w)
Z (zo, z1, z2) dz0dz1dz2 (13)

Doing ai,α = ai,α
√

(2α+ 1)/2 and substituting into Equation (11), the Legendre coefficients above become:

L
(w)
l,m,n =

l∑
i=0

m∑
j=0

n∑
k=0

ai,laj,mak,n

∫
A3

zi0z
j
1z
k
2f

(w)
Z (zo, z1, z2) dz0dz1dz2 (14)

Therefore, these coefficients can be expressed as combinations of the weighted high-order moments:

L
(w)
l,m,n =

l∑
i=0

m∑
j=0

n∑
k=0

ai,laj,mak,nE
(w)
[
Zi0Z

j
1Z

k
2

]
(15)
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Fitting a multivariate non-Gaussian distribution in this way can be computationally demanding. For this

reason, the expansion of the Legendre polynomial series in Eq. (9) is truncated to an order ω, which, as a

rule of thumb, is not larger than 12. Therefore, approximation of the multivariate pdf becomes:

f
(w)
Z (zo, z1, z2) =

ω∑
l=0

l∑
m=0

m∑
n=0

L
(w)
l,m,nP l(z0)Pm(z1)Pn(z2) (16)

To further elucidate the distribution fitting using declustered high-order statistics, consider a univariate

example. Figure 1 shows the Walker Lake clustered dataset (Isaaks and Srivastava, 1989). The sizes of the

sample marks in this figure are proportional to the declustering weight assigned to each sample. It is clear in

this figure that high-grade areas are oversampled, while sample density in poor areas is lower. The fitting of

the univariate distribution is first performed with cumulants of order 1 to 10 obtained from equally weighted

samples. In this case, the Legendre fitting approximates the distribution of clustered data, as it can be

observed in Figure 1(b). The fitting of the univariate distribution using declustered Legendre cumulants (red

curve in Figure 1(b)) fits better the declustered histogram (black bars in Figure 1(b)).
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Figure 1: (a) Clustered dataset, (b) fitting of the clustered (white bars) and declustered (black bars) 

histogram using clustered (cyan curve) and declustered (red curve) Legendre cumulants.  

Figure 2 compares the 3
rd

-order clustered (Figure 2 (b)) and declustered (Figure 2 (c)) 

cumulant maps with a similar map obtained from the exhaustive Walker Lake dataset 

(Figure 2 (a)). Both maps obtained from scattered data are les continuous than the one 

obtained from the exhaustive image, however, this is explained by the incompleteness of 

the information provided by the sampling dataset. The declustered 3
rd

-order cumulant 

map shows some features that are comparable to the corresponding map for the 

exhaustive dataset. 

 

Figure 2: 3
rd

 order cumulant maps for (a) Exhaustive dataset, (b) clustered samples with equal weight, (c) 

clustered samples with declustering weights. 

The fitting of non-Gaussian multivariate distributions by means of series of Legendre 

cumulants and polynomials was originally implemented in the algorithm HOSIM 

(Mustapha and Dimitrakopoulos, 2011) for sequential simulation based on high-order 

Figure 1: (a) Clustered dataset, (b) fitting of the clustered (white bars) and declustered (black bars) histogram
using clustered (cyan curve) and declustered (red curve) Legendre cumulants.

Figure 2 compares the 3rd-order clustered (Figure 2(b)) and declustered (Figure 2(c)) cumulant maps

with a similar map obtained from the exhaustive Walker Lake dataset (Figure 2(a)). Both maps obtained

from scattered data are les continuous than the one obtained from the exhaustive image, however, this is

explained by the incompleteness of the information provided by the sampling dataset. The declustered 3rd-

order cumulant map shows some features that are comparable to the corresponding map for the exhaustive

dataset.

The fitting of non-Gaussian multivariate distributions by means of series of Legendre cumulants and

polynomials was originally implemented in the algorithm HOSIM (Mustapha and Dimitrakopoulos, 2011) for

sequential simulation based on high-order spatial statistics. The modified version of HOSIM incorporates data

declustering weights in the inference of spatial high-order statistics required for fitting declustered conditional

distributions.
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(Mustapha and Dimitrakopoulos, 2011) for sequential simulation based on high-order 

Figure 2: 3rd order cumulant maps for (a) Exhaustive dataset, (b) clustered samples with equal weight, (c)
clustered samples with declustering weights.

3 Case Study: The Apensu Gold Deposit, Ghana

The dataset used for this case study is a subset of a larger drilling campaign dataset from the Apensu

deposit, located in the Ahafo South district of Ghana and owned by Newmont Ghana Gold Ltd. The gold

mineralization in this deposit is controlled by the dominant thrust fault and its subsidiary structures. The

richer gold grades are found mainly in the hanging wall of the thrust fault (Jones et al., 2011). Newmont

provided the drilling dataset containing the gold assays, as well as a tridimensional geological block model

with blocks identified as the thrust fault, the two different families of subsidiary structures and the host rock.

Taking into account the host rock, this model defines four mineralization domains.

3.1 Original data and training image

The selected region for this study comprises a volume of 300m × 600m × 150m, which is rotated to make the

fault thrust strike parallel to the North South direction; this region is located at the center of the deposit,

which is the most densely sampled area. Figure 3(a) shows a 3D view of the block model containing the

mineralized domains in the selected region. The block size in the geological block model is 5m × 5m × 5m.

Figure 3(b) shows the drill-hole traces in the selected region. Drillholes are, for the most part, perpendicular

or sub-perpendicular to the main fault thrust.

The samples within the selected region are composited in 5-meter intervals and the composited gold grades

rescaled between 0 and 10. This last was done for confidentiality reasons. The cell declustering method is

used to assign declustering weights to the composites.

Table 1 shows the basic statistics for the clustered and declustered 4106 composited in the selected region.

As this table shows, the impact of data clustering in the Au cdf and its statistics is significant.

The cumulant maps presented next are obtained using a rotated template of lag vectors hhhX′ (Az. 270◦,

Dip −55◦), parallel to the main down-the-hole direction, hhhY ′ (Az. 0◦, Dip 0◦) and hhhZ′ (Az. 270◦, Dip 35◦),

perpendicular to the first two lag vectors. These directions correspond to the configuration that allows

maximizing the collection of replicates in three directions for the inference of robust high-order statistics.

Table 1: Basic statistics for clustered and declustered gold grades.

Statistics for (Au g/t): Mean Std. Dev. Skewness Kurtosis

Clustered composites: 0.24 0.52 6.10 52.5
Declustered composites: 0.19 0.44 7.04 78.8
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Figure 3 (a): Geological model view showing the main fault zone (dark blue) and the two families of 

subsidiary structures (pale blue and golden). (b) A similar view showing the drill-hole traces. 

The samples within the selected region are composited in 5-meter intervals and the 

composited gold grades rescaled between 0 and 10. This last was done for confidentiality 

reasons. The cell declustering method is used to assign declustering weights to the 

composites.  

Table 1 shows the basic statistics for the clustered and declustered 4106 composited in 

the selected region. As this table shows, the impact of data clustering in the Au cdf and its 

statistics is significant. 

 

Table 1: Basic statistics for clustered and declustered gold grades 

Statistics for  

(Au    ) : 

Mean Std. 

Dev. 

Skewness Kurtosis 

Clustered composites: 0.24 0.52 6.10 52.5 

Declustered composites: 0.19 0.44 7.04 78.8 

 

The cumulant maps presented next are obtained using a rotated template of lag vectors 

    (               ), parallel to the main down-the-hole direction, 

    (            ) and     (               ), perpendicular to the first two lag 

vectors. These directions correspond to the configuration that allows maximizing the 

collection of replicates in three directions for the inference of robust high-order statistics.  

Figure 3: (a) Geological model view showing the main fault zone (dark blue) and the two families of subsidiary
structures (pale blue and golden). (b) A similar view showing the drill-hole traces.
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Figure 4 shows the clustered and declustered 3
rd

-order cumulant maps obtained from the 

drill hole dataset. The differences between both maps are not very clear, although the 3
rd

-

order cumulant value at zero separation distance, which is related to the skewness, falls 

from 0.83 to 0.59. 

 

 

Figure 4: (a) clustered and (b) declustered third order cumulant maps obtained from drill hole data. 

Figure 5 presents three slices of the declustered (a) and clustered (b) 4
th

-order cumulant 

volumes obtained from the drill hole samples. As for the 3
rd

-order cumulants, the 

differences between clustered and declustered 4
th

-order cumulants are not visually clear, 

however, the zero-lag 4
th

-order cumulant falls from 3.69 to 2.89 after applying 

declustering weights. 

 

 

Figure 5: (a) unweighted and (b) weighted fourth order cumulant maps. 

Figure 4: (a) clustered and (b) declustered third order cumulant maps obtained from drill hole data.

Figure 4 shows the clustered and declustered 3rd-order cumulant maps obtained from the drill hole dataset.

The differences between both maps are not very clear, although the 3rd-order cumulant value at zero sepa-

ration distance, which is related to the skewness, falls from 0.83 to 0.59.

Figure 5 presents three slices of the declustered (a) and clustered (b) 4th-order cumulant volumes obtained

from the drill hole samples. As for the 3rd-order cumulants, the differences between clustered and declustered

4th-order cumulants are not visually clear, however, the zero-lag 4th-order cumulant falls from 3.69 to 2.89

after applying declustering weights.

The required training image was built using sequential Gaussian simulation (SGS) within the domains.

The domains are defined by hard boundaries, and only composites within the boundaries of a domain were

used for simulating the grades in it. The dimensions of the training image are the same as the dimensions of the

zone of study. It is important to remark that the use of SGS for the construction of the training image raises

concerns about its ability to reproduce the high-order statistics of data, given that the high-order cumulants

of Gaussian distributions tend to zero (Sadler et al., 1994). However, there are few practical alternatives

to SGS within domains for the construction of training images from scattered samples. Figure 6(a) and (b)

show the 3rd and 4th order cumulant maps, respectively, obtained from the training image. The lag vectors
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The required training image was built using sequential Gaussian simulation (SGS) within 

the domains. The domains are defined by hard boundaries, and only composites within 

the boundaries of a domain were used for simulating the grades in it. The dimensions of 

the training image are the same as the dimensions of the zone of study. It is important to 

remark that the use of SGS for the construction of the training image raises concerns 

about its ability to reproduce the high-order statistics of data, given that the high-order 

cumulants of Gaussian distributions tend to zero (Sadler et al., 1994).  However, there are 

few practical alternatives to SGS within domains for the construction of training images 

from scattered samples. Figure 6 (a) and (b) show the 3
rd

 and 4
th

 order cumulant maps, 

respectively, obtained from the training image. The lag vectors that form the 

corresponding cumulant template layout are     (               ), 

    (            ) and     (               ). The main feature in these cumulant 

maps is the high value region in the plane of vectors     and    . This is produced by the 

high-grade population simulated inside the fault domain. In the direction of    , that is 

sub-parallel to the main down-the-hole direction, the cumulant values fall quickly and 

stabilizes around zero. Besides some fluctuations in the     and     plane, which are 

related to the presence of high grades in the subsidiary structures, this lack of spatial 

high-order features is expected for a Gaussian simulated image (Sadler et al., 1994). 

 

Figure 6: 3
rd

-order (a) and 4
th

-order (b) cumulant maps obtained from the training image. 

Figure 6: 3rd-order (a) and 4th-order (b) cumulant maps obtained from the training image.

that form the corresponding cumulant template layout are hhhX′ (Az. 270◦, Dip −45◦), hhhY ′ (Az. 0◦, Dip 0◦)

and hhhZ′ (Az. 270◦, Dip 45◦). The main feature in these cumulant maps is the high value region in the plane

of vectors hhhY ′ and hhhZ′ . This is produced by the high-grade population simulated inside the fault domain.

In the direction of hhhX′ , that is sub-parallel to the main down-the-hole direction, the cumulant values fall

quickly and stabilizes around zero. Besides some fluctuations in the hhhX′ and hhhY ′ plane, which are related to

the presence of high grades in the subsidiary structures, this lack of spatial high-order features is expected

for a Gaussian simulated image (Sadler et al., 1994).

3.2 High-order simulation

The composite dataset and the training image described in the previous section are used as inputs for

the HOSIM algorithm. HOSIM superimposes the data to the training image and rescales the merged values

between −1 and 1, which is necessary in order to respect the range of definition for the Legendre polynomials.

Before simulating the grades, HOSIM scans the merged training to obtain and store the high-order statistics

for all of the spatial templates that can be accommodated in a search template. In this case, the dimensions

of the search template are 75m × 135m × 55m, with the longer side parallel to the y axis. The declustering

sample weights are also superimposed to the equal weights of the training image nodes. The maximum number

of neighboring samples to condition the simulation of a node is set as 24, and the order of the polynomial

series is 7. A larger number of samples or higher orders for the Legendre polynomials increase considerably

the computational effort with modest improvement of the realizations. Twenty HOSIM realizations have been
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generated for both, the clustered and declustered, datasets. Figure 7 shows the average of these realizations,

or E-type estimates, corresponding to (a) the clustered dataset and (b) the declustered dataset. Both groups

of realizations reproduce the general features of mineralization, such as the high grade population in the

fault zones and moderate grades in the subsidiary structures. However, as Table 2 shows, the averages of low

and high-order statistics of the twenty realizations obtained using declustered cumulants match closely the

equivalent statistics of the declustered dataset.
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3.2 High-order simulation 

The composite dataset and the training image described in the previous section are used 

as inputs for the HOSIM algorithm. HOSIM superimposes the data to the training image 

and rescales the merged values between -1 and 1, which is necessary in order to respect 

the range of definition for the Legendre polynomials. Before simulating the grades, 

HOSIM scans the merged training to obtain and store the high-order statistics for all of 

the spatial templates that can be accommodated in a search template. In this case, the 

dimensions of the search template are 75m x 135m x 55m, with the longer side parallel to 

the y axis. The declustering sample weights are also superimposed to the equal weights of 

the training image nodes. The maximum number of neighboring samples to condition the 

simulation of a node is set as 24, and the order of the polynomial series is 7. A larger 

number of samples or higher orders for the Legendre polynomials increase considerably 

the computational effort with modest improvement of the realizations. Twenty HOSIM 

realizations have been generated for both, the clustered and declustered, datasets. Figure 

7 shows the average of these realizations, or E-type estimates, corresponding to (a) the 

clustered dataset and (b) the declustered dataset. Both groups of realizations reproduce 

the general features of mineralization, such as the high grade population in the fault zones 

and moderate grades in the subsidiary structures. However, as Table 2 shows, the 

averages of low and high-order statistics of the twenty realizations obtained using 

declustered cumulants match closely the equivalent statistics of the declustered dataset. 

 

 

Figure 7: E-type estimates of 20 realizations obtained using (a) the clustered and (b) the declustered 

datasets. Figure 7: E-type estimates of 20 realizations obtained using (a) the clustered and (b) the declustered datasets.

Table 2: Statistics for clustered and declustered data, the training image and realizations with clustered and
declustered high-order statistics.

Statistic Clustered Declustered Training Clustered HOSIM Declustered HOSIM
data data image (average of 20 (average of 20

realizations) realizations

Mean 0.24 0.19 0.19 0.24 0.18
Variance 0.27 0.19 0.20 0.26 0.19
Skewness 6.10 7.04 6.74 6.17 7.09
Kurtosis 52.5 78.8 66.6 52.8 71.0

Figure 8 shows the average 3rd-order cumulant maps obtained from the twenty realizations using clus-

tered (a) and declustered Legendre cumulants (b). Both maps show similar features, although the averages

in the second map tend to be lower than in the clustered case. These maps combine features from both

the data and the training image cumulant maps. For instance, the continuity of high values in the direction

of the hhhY ′ vector is also present in the training image 3rd-order cumulant map, whereas the high values at

medium and long distances of vector hhhX′ are related to similar features in the data cumulant map. Similar

observations can be made on the 4th-order cumulant maps in Figure 9.

4 Discussion

The incorporation of declustering weights in the inference of the cumulants required for fitting the non-

Gaussian conditional distributions in high-order simulation allows minimizing the bias introduced by clustered

sampling. The resulting realizations reproduce the declustered data cdf and its low- and high-order single

point statistics. This is important in resource evaluation, since otherwise, the recoverable reserves could be

overestimated if samples are more abundant in richer zones. The training image has an important impact

in the high-order multiple-point statistics reproduced by the realizations. This is expected given that as the

points involved in the inference of the high-order statistics increases, more information needs to be borrowed
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Table 2: Statistics for clustered and declustered data, the training image and realizations 

with clustered and declustered high-order statistics. 

Statistic Clustered 

data 

Declustered 

data 

Training 

Image 

Clustered HOSIM 

(average of 20 

realizations) 

Declustered 

HOSIM (average 

of 20 realizations) 

Mean 0.24 0.19 0.19 0.24 0.18 

Variance 0.27 0.19 0.20 0.26 0.19 

Skewness 6.10 7.04 6.74 6.17 7.09 

Kurtosis 52.5 78.8 66.6 52.8 71.0 

 

Figure 8 shows the average 3
rd

-order cumulant maps obtained from the twenty 

realizations using clustered (a) and declustered Legendre cumulants (b). Both maps show 

similar features, although the averages in the second map tend to be lower than in the 

clustered case. These maps combine features from both the data and the training image 

cumulant maps. For instance, the continuity of high values in the direction of the     

vector is also present in the training image 3
rd

-order cumulant map, whereas the high 

values at medium and long distances of vector     are related to similar features in the 

data cumulant map. Similar observations can be made on the 4
th

-order cumulant maps in 

Figure 9. 

 

 

Figure 8: Average 3
rd

-order cumulant maps corresponding to the realizations generated using clustered (a) 

and declustered (b) Legendre cumulants. Figure 8: Average 3rd-order cumulant maps corresponding to the realizations generated using clustered (a)
and declustered (b) Legendre cumulants. 
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Figure 9: Average 4
th

-order cumulant maps corresponding to the realizations generated using clustered (a) 

and declustered (b) Legendre cumulants. 

4 Discussion 

The incorporation of declustering weights in the inference of the cumulants required for 

fitting the non-Gaussian conditional distributions in high-order simulation allows 

minimizing the bias introduced by clustered sampling. The resulting realizations 

reproduce the declustered data cdf and its low- and high-order single point statistics. This 

is important in resource evaluation, since otherwise, the recoverable reserves could be 

overestimated if samples are more abundant in richer zones. The training image has an 

important impact in the high-order multiple-point statistics reproduced by the 

realizations. This is expected given that as the points involved in the inference of the 

high-order statistics increases, more information needs to be borrowed from the training 

image. In the previous study, since the training image is a composite of four different 

Gaussian images, one per each geological unit, it tends to override the high-order 

structures informed by the data cumulants. This poses the problem of generating training 

images that contain high-order statistics that are pertinent to the spatial features of the 

mineralization. 

In this application to a structurally complex gold deposit, HOSIM succeeds in generating 

simulated models that respect the spatial features of gold mineralization. This is 

accomplished without the need to merge separated realizations of the geology and the 

grades. However, the mineralization in the fault zone, which is an abundantly sampled 

domain, is better reproduced in the simulated models than the mineralization in the 

Figure 9: Average 4th-order cumulant maps corresponding to the realizations generated using clustered (a)
and declustered (b) Legendre cumulants.

from the training image. In the previous study, since the training image is a composite of four different

Gaussian images, one per each geological unit, it tends to override the high-order structures informed by the

data cumulants. This poses the problem of generating training images that contain high-order statistics that

are pertinent to the spatial features of the mineralization.

In this application to a structurally complex gold deposit, HOSIM succeeds in generating simulated models

that respect the spatial features of gold mineralization. This is accomplished without the need to merge

separated realizations of the geology and the grades. However, the mineralization in the fault zone, which is

an abundantly sampled domain, is better reproduced in the simulated models than the mineralization in the

smaller and less sampled subsidiary structures. The difficulty in modelling the spatial continuity of grades

in the smaller structures is aggravated in this case by the statistical similarity between the gold population

in these structures and in the background rock that host them. An option for ongoing research to deal with

background noise is the use of weighted training images where features that are deemed more important are

weighted heavier than others. Proceeding in this way could allow the spatial cumulants to capture more of

the spatial structure of the important features.
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5 Conclusions

Simulation using high-order statistics does not need to adopt a parametric model. Any shape of conditional

distribution can be approximated using series of Legendre cumulants, where Legendre cumulants are functions

of spatial cumulants. The incorporation of declustering weights in the inference of the spatial cumulants

allows minimizing the biases caused by clustered sampling in the Legendre approximation of non-Gaussian

distributions. High-order simulation allows modelling important spatial features of mineralization, even

when they are complex. The resulting realizations reproduce the declustered one-point low- and high-order

statistics of original data, but also tend to reproduce the multiple-point high-order statistics of training

images. This is explained by the increased reliance on the information provided by the training image as

the required spatial cumulants become more complex. An important issue is that Gaussian-based training

images tend to override the information provided by samples in the inference of high-order statistics. The

construction of non-Gaussian training images containing high-order statistics that are representative of the

mineralization is a subject of future work.
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