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Abstract: In this paper we evaluate the performance and compare 19 different heuristics for solving contin-
uous global optimization. They are all based on the following metaheuristics: Simulated annealing, Variable
neighborhood search, Particle swarm optimization, and Differential evolution. Codes of methods are taken
from their authors. The comparison on usual test instances (convex and non-convex) is performed on the
same computer. Dimensions of test functions are changed from 10 to 100, thus effectively covering small
and large scale problems. The results measured by computational efforts and ranked statistics show that the
recent DE-VNS heuristic outperforms the other 18 algorithms on selected problems. Its better performances
are noted in solving non-convex problems.

Key Words: Continuous Global Optimization, Metaheuristics, Differential Evolution, Variable Neighbor-
hood Search, Comparison.
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1 Introduction

In this paper, we consider an unconstrained global optimization problem in a continuous space. The general

form of the problem is given below:

(min)f(x), x ∈ X ⊆ Rn (1)

where f : Rn → R is generally nonlinear, non-convex function defined on Rn. In cases where f is not convex

function and/or X is not convex set, the defined problem is not easy to solve. Since the classic mathematical

tools usually cannot help, one need to use approximate methods.

In the last 30 years several metaheuristics (or framework for building heuristics) have been developed,

such as Simulated Annealing (SA) [13,18], Tabu Search [7,8], Variable Neighborhood Search (VNS) [19], etc.

Several new optimization techniques have emerged in the past two decades that mimic biological evolution,

or the way biological entities communicate in nature. Some of these algorithms have been used successfully

in many areas with many constraints and non-linear processes. The most representative algorithms include

Particle Swarm Optimization (PSO) [12], Genetic Algorithm [9], Differential Evolution (DE) [24, 29], etc.

Particular interest is on global optimization of numerical, real valued “black box” problems for which exact

and analytical methods are not applicable. There are a considerable number of papers devoted to comparing

different optimization approaches. Typically, such comparison has been based on numerical benchmark

problems [32] but in recent years, comparisons are evident to many real life problems, especially in engineering

[4] and biology [21]. Many studies verify that one class of algorithms outperformed another on a given set of

problems. To the best of our knowledge, no numerical comparison of such a large number of algorithms to

the nonlinear continuous multidimensional global optimization problems, been presented previously.

The main objective of this paper is to evaluate whether one of tested heuristics would outperform others

on benchmark problem instances. In addition to that, we are particularly interested in the behavior of

algorithms depending on the problem size. “Curse of dimensionality” is one of the fundamental flaws of

many heuristics, which, at the first glance, have promising results. Bearing that in mind, the results could

also reveal whatever the algorithms would have particular preferences or difficulties regarding the specific

problem or dimension as well as success rate in achieving the global optimum.

Overall, our experimental study suggests that DE variants are more efficient and robust in terms of

number of function evaluations and precision. More particularly, the recent hybrid DE-VNS appears to be

the best method on multimodal problems. However, some of SA variants behave similarly to the DE variants

on selected convex problems, while VNS based variants show a remarkable convergence rate on some low

dimensional problems.

This paper is organized as follows. In Section 2 we briefly give steps of the methods that will be used in

this study: SA, VNS, PSO, and DE. Section 3 brings briefly overview of selected nonlinear continuous global

optimization problems. In Section 4 the discussion of results is presented. Section 5 is devoted to statistical

analysis of the obtained results and finally in Section 6 concludes our work.

2 Algorithms for comparison

In our comparative analysis, nineteen different algorithms are taken in consideration. These algorithms are

based on rules given by well-known metaheuristics: Simulated Annealing, Variable Search Neighborhood,

Particle Swarm Optimization, and Differential Evolution.

2.1 Heuristics based on Simulated Annealing

The basic variant of Simulated Annealing (SA) is presented by Kirkpatrick et al. [13]. The technique starts

with an initial solution h, which simply assigns random values to all the parameters satisfying the initial

constraints. The control variable analogous to temperature is marked as T and it decries to predefined value

Tmin. A candidate solution h′ is created by copying the parameters of h and then adding random values to

each of the parameters. E is the current error and p stands for each of the kinetic parameters. Value of

parameter T can be lowered by subtracting or multiplying current T by a value that is less than 1.
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Three algorithms with different settings of control parameters are included. The first version will set

the value of maximum temperature Tmax = 100 and the number of trial points pop = 100 (SA 100 100),

which is actually a variant of the fast algorithm that quickly converges to the solution. Due to the speed

of convergence, the global properties may be compromised, so we introduce the following variations to the

algorithm.

Algorithm 1 General Simulated Annealing

1: Initialize h, pop
2: Set T ← Tmax

3: WHILE stopping criteria
4: Set i← 1
5: WHILE until i > pop
6: h′ ← h
7: For each kinetic parameter p to h′, p← p+ k · ln(

√
E + 1) ·N(x̄, σ)

8: ∆E = Error(h′)− Error(h)
9: IF ∆E ≤ 0 then

10: Set h← h′

11: ELSE
12: Set h← h′ with probability e−

∆E
T

13: END IF
14: Set i← i+ 1
15: END WHILE
16: Lower T until T = Tmin

17: END WHILE
18: Stopping criteria: x∗ is an approximate solution of the problem

In the second variant will use the same number of trial points pop = 100 but we will increase the value

of the maximum temperature to Tmax = 500 (SA 500 100), allowing the higher initial energy of the system

and thus provide an easier escape from local optima. As the latest version of general SA will use the values

of control parameters Tmax = 100, or a lower initial energy of the system which will compensated by a large

population pop = 500 (SA 100 500), that will enable diverse solutions for child offsprings. The last version

used in comparison is SA with reheating (SAR) that adjusts the temperature of the system Tmax depending

on the speed of convergence, leaving a population trial points at pop = 100. Unlike the SAR version proposed

in [1], the system is reheated to Tmax.

Besides these basic SA algorithms, the Simplex-Simulated annealing (SIMPSA) is included in the com-

parison. Control parameters of interest are cool rate CoolR, which controls the speed of convergence of the

system, and the acceptance rate AccR, with the method of estimation of initial temperature of the system

proposed in [2], and adding random fluctuations to current function values of vertices [23]. Two SIMPSA

variants, with control parameter settings CoolR = 1, AccR = 0.95 (SIMPSA 1), and CoolR = 2, AccR = 0.3

(SIMPSA 2), are included in the comparison. In the first case the algorithm has the acceptance rate by a

larger number of dimensions and a slower convergence. In the other case we force slower population clustering

with lower acceptance rate value, and thus reduce the convergence speed that we have introduced with higher

cool rate.

2.2 Heuristics based on Variable Neighborhood Search

Mladenović and Hansen [19] proposed Variable Neighborhood Search, the metaheuristic based on systematic

change of neighborhoods. It explores increasingly distant neighborhoods of the current best solution. If

better solution is found, VNS jumps from the current solution to the new one. Many VNS extensions for

continuous global optimization are made using this idea.

Mladenović et al. [20] have presented Glob-VNS, algorithm that utilizes the idea of using several geometric

neighborhood structures and random distributions in the shaking step. Neighborhood structure Nk(x) is
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defined as:

Nk(x) = {y ∈ S|ρk(x, y) ≤ rk} (2)

or

Nk(x) = {y ∈ S|rk−1 ≤ ρk(x, y) ≤ rk} (3)

It is determined by the geometry of neighborhood structure and its radius rk. Values of radius can be

specified by the user or generated automatically during the search, with a condition that the values must

be monotonically nondecreasing with k. Geometry of neighborhood structures is defined by choice of metric

function ρk – authors use lp distance as metric, usually l1, l2, and l∞. The uniform distribution is the mostly

used for obtaining y from Nk(x). Other distributions can be used in shaking step, too.

Gaussian VNS (Gauss-VNS) is presented by Carrizosa et al. [3]. The main idea of this approach is

defining a class of probability distributions Pk(x), instead of class neighborhoods Nk(x). It is assumed that

each distribution is a n-variate Gaussian distribution centered at x and covariance matrix
∑

k. The next

trial point in shaking step is generated by Pk(x). Gauss-VNS is particularly user-friendly, because only the

sequence of variances for defining a covariance matrix should be specified by the user.

Algorithm 2 Gauss-VNS

1: Select a set of covariance matrices
∑

k, k = 1, . . . , kmax

2: Chose an arbitrary initial point x
3: Set x∗ ← x, f∗ ← f(x)
4: WHILE stopping criteria
5: Set k ← 1
6: WHILE until k > kmax

7: Shake: Generate y from a Gaussian distribution with mean x∗ and covariance matrix
∑

k

8: Apply some local search method from y to obtain a local minimum y′

9: IF f(y′) < f∗ then
10: Set x∗ ← y′, f∗ ← (y′)
11: END IF
12: Set k ← k + 1
13: END WHILE
14: END WHILE
15: Stopping criteria: x∗ is an approximate solution of the problem

2.3 Heuristics based on Particle Swarm

Kennedy and Eberhart [12] introduced Particle Swarm Optimization (PSO). PSO has roots in two main

areas: bird flocking, fish schooling, and swarming theory; and evolutionary computation, genetic algorithms

and evolutionary programming. The search process can be described as particles being “flown” through the

hyper dimensional space. They adjust its position based on position of best particle and its best position

found so far. Each particle is adjusted to move closer to the best particle in a predefined neighborhood

according to the following equations:

νi ← ω · νi + U(0, ϕ1)⊗ (pi − xi) + U(0, ϕ2)⊗ (pg − xi) (4)

xi ← xi + νi (5)

where νi is velocity vector, xi position vector, pi the better position vector, pg the better position vector

for the good neighbor, U(0, ϕi) is a vector of random numbers uniformly distributed in [0, ϕi], ϕ1 and ϕ2

are cognitive and social acceleration coefficients, and ⊗ is component-wise multiplication. Population size

is referred as popSize. At the original PSO variant ω is fixed at 1. Later, Shi and Eberhart [27] refer this

parameter as inertia weight.
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Algorithm 3 Particle Swarm

1: Initialize a population array of particles with random positions and velocities
2: WHILE stopping criteria
3: Set i← 1
4: WHILE until i > popSize
5: Update velocity vector

νi ← νi + U(0, ϕ1)⊗ (pi − xi) + U(0, ϕ2)⊗ (pg − xi)
6: Update position vector xi ← xi + νi
7: IF f(xi) < f(pi) then
8: Set pi ← xi
9: IF f(pi) < f(pg) then

10: Set pg ← pi
11: END IF
12: END IF
13: Set i← i+ 1
14: END WHILE
15: END WHILE
16: Stopping criteria: x∗ is an approximate solution of the problem

The PSO GBest topology (for “global best”) is the static topology. At PSO GBest, the best neighbor in

the entire population influenced the target particle.

In contrast to PSO GBest, where the neighborhood is the entire swarm, PSO LBest [5] utilizes a neigh-

borhood with smaller size K. For K = 2, it is a simple ring lattice where each particle is connected to

neighboring members in the population array. PSO LBest can be generalized to K > 2. The main advan-

tage of PSO LBest is parallel search. A smaller neighborhood size usually leads to slower convergence, but

increases diversity – a larger part of the search space is covered for smaller neighborhoods.

2.4 Heuristics based on Differential Evolution

Storn and Price [24, 29] proposed Differential Evolution, simple and straightforward metaheuristic that

consists three main parts: strategy, crossover and selection. There are two basic strategy approaches:

“DE/rand/1/bin”, characterized by slow convergence speed and stronger exploration capability, and

“DE/best/1/bin”, which has the high convergence speed and performs well on the unimodal problems.

Crossover determines whether the target or the trial vector survives to the next generation. At last phase,

we have the selection based on the choice of better solutions. The configuration and adaptation of mutation

parameter F and crossover parameter CR are crucial for the performance of DE based algorithms [17]. The

parameter adaptation techniques are divided into deterministic, adaptive, and self-adaptive control rules, e.g.

Smith and Fogarty [28]. Deterministic rules modify the parameters according to certain predetermined ra-

tionales without utilizing any feedback from the search process. Adaptive rules incorporate some form of the

feedback from the search procedure to guide the parameter adaptation. Self-adaptive rules directly encode

parameters into the individuals and evolve them together with the encoded solutions. Four deterministic and

four self-adaptive DE algorithms are taken in consideration.

Since it is well known that “DE/rand/1/bin” version of the strategy has the possibility for good searching

solution space and therefore better performance in solving multimodal global optimization problem, which

is the main focus of this paper, we compare three variants of this strategy. We will use the values of control

parameters F = 0.5, CR = 0.3 (DERand 0.5 0.3), and F = 0.5, CR = 0.5 (DERand 0.5 0.5), which proved to

be promising strategy according to [25]. In addition to these variations, we will observe the pure stochastic

variation of the algorithm. Control parameters are defined as F = Unif(0.4, 1) and CR = Unif(0, 1)

(DERand rand), which proved to be a good variant of DE algorithms for searching solution space.

Although the main focus of this paper is global multimodal problems, one DE variant that uses

“DE/best/1/bin” strategy is taken in consideration, because this algorithm is well-known and is commonly

used in comparisons. The values of control parameters F = 0.5 and CR = 0.3 are chosen on the basis of
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Algorithm 4 Differential Evolution using “DE/rand/1/bin” strategy

1: Randomly initialize a population of N individuals PG = {Xi, . . . , XN}, i = 1, . . . , N
2: Evaluate the population
3: Set F,CR
4: WHILE stopping criteria
5: Set k ← 1
6: WHILE until k > N
7: Applying strategy “DE/rand/1/bin” with F and CR parameters
8: Evaluate child vector f

(
ykchild

)
9: IF f

(
ykchild

)
< f

(
ykparent

)
then

10: parent = child
11: END IF
12: Set k ← k + 1
13: END WHILE
14: END WHILE
15: Stopping criteria: x∗ is an approximate solution of the problem

good behavior version of “DE/rand/1/bin” at these values of control parameters. That algorithm will be

referred as DEBest in this paper.

Qin et al. [25] presented Self-adaptive DE (SaDE) that instead of employing the computationally ex-

pensive trial-and-error search for the most suitable strategy and its parameter values, maintains a strategy

candidate pool. Strategy candidate pool includes several trial vector generation strategies with effective,

and yet diverse characteristics. During evolution, one strategy will be chosen from the candidate pool

and applied to perform the mutation operation. Four trial vector generation strategies are included in

the strategy candidate pool: “DE/rand/1/bin”, “DE/rand/2/bin”, “DE/rand − to − best/2/bin”, and

“DE/current− to− rand/1/bin”. In SaDE algorithm, the parameter F is approximated by a normal distri-

bution with mean value 0.5 and standard deviation 0.3. This setting enables to maintain both exploitation

and exploration power throughout the evolution process. Parameter CR is taken from normal distribution

N(µCR, 0.1), where µCR is initialized as 0.5. To adapt CR to proper values, the authors update µCR every

25 generations based on the recorded successful CR values since the last µCR update.

Zhang and Sanderson [34] have presented their DE based algorithm named JADE. The main contribution

of JADE is the implementation of a new mutation strategy – “DE/current− to− pbest”, that is a general-

ization of the classic “DE/current− to− best” strategy. This strategy has an optional external archive and

updating control parameters in an adaptive manner. After each generation, the parent solutions that fail

in the selection process are added to the archive. If the archive size exceeds a certain threshold, then some

solutions are randomly removed from it. The role of the archive is to provide information about the progress

direction and to improve the diversity of the population. Crossover probability CRi is randomly taken from

a normal distribution of mean µCR and standard deviation 0.1, and then truncated to [0, 1]. Mean µCR is

initialized to be 0.5 and then updated at the end of each generation as:

µCR = (1− c) · µCR + c ·meanA (CRsucc) (6)

where c is a constant between 0 and 1, meanA( ) is the arithmetic mean and CRsucc as the set of all successful

crossover probabilities CRi. The mutation factor Fi of is randomly taken from a Cauchy distribution with

location parameter µF and scale parameter 0.1, and then truncated to be 1 if Fi ≥ 1 or regenerated if Fi ≤ 0.

The location parameter µF is initialized to be 0.5 and then updated at the end of each generation as:

µF = (1− c) · µF + c ·meanL (Fsucc) (7)

where meanL( ) is the Lehmer mean and Fsucc is the set of all successful mutation factors.

Wang et al. [33] proposed novel optimization method, called composite DE (CoDE). This method uses

three trial vector generation strategies and three control parameter settings and randomly combines them to
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generate trial vectors. The strategy candidate pool is consisted of following strategies: “DE/rand/1/bin”,

“DE/rand/2/bin”, and “DE/current − to − rand/1”. The three control parameter settings are: [F =

1.0, CR = 0.1], [F = 1.0, CR = 0.9], and [F = 0.8, CR = 0.2]. At each generation, each of these trial vector

generation strategies is used to create a new trial vector with a control parameter setting randomly chosen

from the parameter candidate pool. Thus, three trial vectors are generated for each target vector, and they

are compared in the next step. The best trial vector enters the next generation if it is better than its target

vector.

In addition to the above method, the results of the analysis incorporate self-adaptive DE based on com-

petitive settings, referred as DEbr18 [30]. This algorithm gives a higher probability of selecting those values

of control parameters that were in previous iterations proved more successful in finding better child offspring.

A number of settings for control parameter CR and F are denoted by H. Among them values are chosen at

random with probability ph, h = 1, 2, . . . , 3, H. The hth setting is successful if it generates such a trial point

y that f(y) < f(xi). When nh is the current number of the f(y) setting successes, probability ph can be

calculated as the relative frequency as:

ph =
nh + n0∑H

j=1 (nj + n0)
=

nh + n0

n0 ·H +
∑H

j=1 nj
(8)

where n0 > 0 is a constant. If any of probabilities drop below a given threshold δ > 0 and δ < 1, current

values of ph are reset to its starting values ph = 1/H. Thus the premature convergence of probabilities ph is

avoided.

2.5 DE-VNS hybrid

Kovačević et al. [14] proposed hybrid approach based on DE with estimating crossover parameter CR using

neighborhood search approach DE-VNS. The authors introduce a family of adaptive distributions, that

depend on variable neighborhood parameter – par. Crossover parameter CR values are chosen based on par.

Implementing the idea of VNS, the search around the current vector starts from the closest neighborhoods,

and if a better solution is not found, progressively increasing of the neighborhood is applied on CR. When

the algorithm finds a child vector better than the parent vector, in the next iterations it will be required

that neighborhood parameter par remains at low values which imply the crossover by just few dimensions

i.e. closest dimensional neighborhoods. In this way, it is ensured that the entire population would not

have converged too quickly, and therefore more detailed search of area around the population vector. For

these reasons, the iterations in which the algorithm cannot find a more satisfactory solution will gradually

increase the value of the neighborhood factor using the stepfactor, allowing finding new solutions in further

dimensional distances around the parent vector. In the case of finding a favorable child vector, algorithm resets

the distribution according to the objective function. The authors used extended version – two sided power

distribution (TSP) [21] as a proxy for beta distribution [11], because the benefits of the control parameters

comprehensible set evaluation. The problem of selecting the values of the parameter F is solved by roulette

methods which gradually give greater probability of drawing the successful values of F from TSP. DE-VNS

strategy is based on the modification of “DE/rand/1/bin” strategy that comprise the characteristics of

“DE/best/1/bin”, named “DE/Rand− Local −Best/1/bin”.

3 Test functions

For the numerical experiments, we use seven common benchmark functions, whose global optima are known.

They are selected from [26]. The focus will be on multi-modal problems, however, in order to demonstrate the

robustness of the proposed approaches on a wide class of problems, several easy (convex) objective functions

will be considered as well.

3.1 Schwefel’s function

Schwefel’s function (presented at Figure 1) is deceptive in that the global minimum is geometrically distant,

over the parameter space, from the next best local minima. Therefore, the search algorithms are potentially
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Algorithm 5 DE-VNS

1: Randomly initialize a population of N individuals PG = {Xi, . . . , XN}, i = 1, . . . , N
2: Evaluate the population
3: Setting initial roulette probability for F parameter
4: WHILE stopping criteria
5: Set k ← 1
6: WHILE until k > N
7: Calculate roulette probability for F parameters ph = nh+n0∑H

j=1(nj+n0)

8: Sampling CR from adaptive beta distribution as:

CR = F (x|a,m, b, par) =


m−a
b−a

(
x−a
m−a

) 1
par

, a < x < m

1− b−m
b−a

(
b−x
b−m

) 1
par

, m < x < b

9: Applying strategy “DE/Rand− Local −Best/1/bin” with obtained F and CR parameters
10: Evaluate child vector f(ykchild)
11: IF f

(
ykchild

)
< f

(
ykparent

)
then

12: parknew = max
(
parmin, par

k
old −

(
f(ykchild) = f(ykparent)

))
13: parent = child
14: ELSE
15: parknew = parkold + stepfactor
16: parknew = min(parknew, parmax)
17: END IF
18: Set k ← k + 1
19: END WHILE
20: END WHILE
21: Stopping criteria: x∗ is an approximate solution of the problem

prone to convergence in the wrong direction.

F1 =

n∑
i=1

[
−xisin

(√
|xi|
)]

(9)

with −500 ≤ xi ≤ 500 and minF1(420.9687, 420.9687, . . . , 420.9687) = −418.9829 · n.

3.2 Ackley’s function

Ackley’s function (presented at Figure 2) is a widely used multimodal test function. This function has an

exponential term that covers its surface with numerous local minima. The complexity of Ackley’s function is

moderate. In order to obtain good results for this function, the search strategy must combine the exploratory

and exploitative components efficiently.

F2 = −20exp

−0.2

√√√√ 1

n

n∑
i=0

x2i

− exp(√ 1

n

n∑
i=0

cos(2πxi)

)
+ 20 (10)

with −32 ≤ xi ≤ 32 and minF2(0, 0, . . . , 0) = 0.

3.3 Griewank’s function

Griewank’s function (presented at Figure 3) is similar to the function of Rastrigin. It has many widespread

local minima regularly distributed over the solution space.

F3 =
1

4000

n∑
i=1

x2i −
n∏

i=1

cos

(
xi√
i

)
+ 1 (11)

with −600 ≤ xi ≤ 600 and minF3(0, 0, . . . , 0) = 0.
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Figure 1: Schwefel’s function

Figure 2: Ackley’s function
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Figure 3: Griewank’s function

3.4 Rastrigin’s function

Rastrigin’s function (presented at Figure 4) is based on the function of De Jong with the addition of cosine

modulation in order to produce frequent local minima. Thus, the test function is highly multimodal. However,

the locations of the minima are regularly distributed.

F4 = 10n+

n∑
i=1

(
x2i = 10cos(2πxi)

)
(12)

with −5.12 ≤ xi ≤ 5.12 and minF4(0, 0, . . . , 0) = 0.

3.5 Molecular potential energy (MPE) function

MPE function [16] (presented at Figure 5) is the functional form similar to general potential energy functions,

whose global minimum is known. The number of local minima of this function increases exponentially with

the size of the problem.

F5 =

n∑
i=1

(
1 + cos(3xi) +

(−1)i√
10.60099896− 4.141720682 · cos(xi)

)
(13)

with 0 ≤ xi ≤ 5 and minF5(0, 0, . . . , 0) = −0.0411183034 · n.

3.6 Rosenbrock’s function

Rosenbrock’s valley (presented at Figure 6) is a classic optimization problem, also known as banana function

or the second function of De Jong. The global optimum lies inside a long, narrow, parabolic shaped flat

valley. To find the valley is trivial, however convergence to the global optimum is difficult and hence this

problem has been frequently used to test the performance of optimization algorithms. The function has the

following definition:

F6 =

n−1∑
i=1

[
100 · (xi+1 − x2i )2 + (1− xi)2

]
(14)

with −5 ≤ xi ≤ 5 and minF6(0, 0, . . . , 0) = 0.
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Figure 4: Rastrigin’s function

Figure 5: MPE function

3.7 Sphere function

The sum of different powers is a commonly used unimodal test function. Sphere function (presented at

Figure 7) is a simple and strongly convex function used in the development of the theory of evolutionary

strategies. It has the following definition:

F7 =

n∑
i=1

x2i (15)

with −1 ≤ xi ≤ 1 and minF7(0, 0, . . . , 0) = 0.
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Figure 6: Rosenbrock’s function

Figure 7: Sphere function

4 Computational results

Codes of all 19 methods are taken from authors who originally proposed their heuristics. They are then run

on our computer own Pentium dual core computer using Matlab environment. In analyzing the behavior of

the selected algorithms we will be focused on the unconstrained continuous multimodal global optimization

problems. To show their robustness, we vary the dimension (D) from 10 to 100; in that way we will cover

large scale problem instances as well. A value of 10−6 is used for the predefined tolerance around the global
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optimum. The other stopping condition is the maximum number of function evaluations. For the Rosenbrock

function it is set to 50, 000∗D and 10, 000∗D for all other functions. Each problem is repeated 25 times, in

order to obtain credible data.

The number of function evaluations (FEs) is the usual indicator used to compare methods. In addition

to FEs we will be also indicate the success rate (SR), or the percentage of successfully achieved optima

within the predefined tolerance.

Additional parameters for the DE-VNS are: (i) parmin = 0; (ii) parmin = 0.7;

stepfactor =
1

10 ·D · log2(D)
(16)

Parameters a, b, and m were defined as follows: a = 0, b = 1, m = 0. For all DE variants used in this

study, the maximum number of parameter evaluation evalmax and population pop were set as it is shown in

Table 1.

Table 1: Values of evalmax and pop parameters for all DE variants

Dimension evalmax pop
10 1e + 5 34
20 2e + 5—1e + 6 44
30 1.5e + 6 50
50 5e + 5—2.5e + 6 80
100 1e + 6 100

In addition, both PSO variants’ swarm consists of 50 particles. The inertia weight varies linearly from

0.9 in the first velocity update to 0.4 in the final velocity update. The cognitive and social acceleration

coefficients are: ϕ1 = ϕ2 = 1.49618. Also, for the PSO, parameter Lbest, the neighborhood of each particle

is consisted of two particles, K = 2. These settings are noted as promising in [22].

4.1 Comparative analysis

In Tables 2 to 8, the test results for each function are shown, varying the different values of the dimension D.

Gray areas indicate that for a given problem, the tolerance around the global optimum is not reached in

100% of cases. Tables also display the basic information for function evaluations: minimum FEs number

(evalmin), average FEs number (evalavg) and maximum FEs number (evalmax). Another indicator that
we are interested in is named fminD and it presents the difference between the average cost function and

known global optima in cases where tolerance around the global optima is not achieved, or tolerance in others.

The best results are marked with bold fields, provided that the heuristic achieved SR percentage of 100%.

The last column in all of these tables is overall score (OS) for each of selected algorithms. This variable is

calculated as follows:

OS = log

(∑
D

eval avg

D
fminD

)
,

{
D = 10, 20, 30, 50, for Rosenbrock

D = 10, 20, 50, 100, in other cases
(17)

The overall score is the logarithm of the sum of elements that characterize optimization for selected dimen-

sional problem. The average number of function evaluations is the base of each calculation. Value of evalavg

is divided by the dimension D. In that way, both the small and the large dimensional problems get the same

importance. The fact that the global minimum is not reached is indicated by value fminD. Success rate is

not included in the formula, so there is no double counting. Optimization is considered better if OS value

is less. The logarithm is used for normalizing results. Algorithms are ranked using this criterion function in

each of these tables. Before we give general conclusions, we analyze performances of all 19 heuristics on 7

different test functions, varying the dimension value D.

Schwefel functions (Table 2). Five algorithms have SR of 100%: DE-VNS, SaDE, DERand 0.5 0.3, DEbr18,

and DERand 0.5 0.5; DE-VNS is the fastest (tolerance is achieved in less FEs) for all dimensions; all three
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DE/rand/1/bin versions also achieved tolerance in less than 10,000 FEs at 10 D problem; DERand 0.5 0.3

and DERand 0.5 0.5 perform very well at 20 D problem; the third variant, DERand rand, is also fast, but it

struggles with the precision SR; in solving 50 and 100 dimensions, SaDE is the second best.

Ackley functions (Table 3). For lower dimensions of, SA 100 100, SAR, JADE, and SaDE are notably fast.

DEBest has shown good result only at 10 D Ackley. At large dimensions, algorithms based on Differential

Evolution outperforms others, especially good are DE-VNS and DERand 0.5 0.3.

Greiwank functions (Table 4). The most algorithms have difficulties in reaching tolerance, even at low

dimensions; 10 algorithms do not have SR equal to 100% at any dimension. DERand 0.5 0.3, DE-VNS, and

DERand 0.5 0.5 have shown very good results in both SR and speed. Code and DEbr18 are reaching the

tolerance slower, but within the defined test setting. JADE is very fast, especially for D = 20 and 50, but it

doesn’t have maximal success rate at final problem.

Rastrigin functions (Table 5). Only DE-VNS, JADE and DEbr18 solved all instances (with SR 100%).

Glob VNS and Gauss VNS also reach 100%, but with more iterations than it is defined in test settings. All

four Simulated Annealing algorithms are fast at 10, 20, and 50 D problems. SA 100 100 is the fastest of all

algorithms on these dimensions for Rastrigin. On 100 D they have SR 100% or lower. DE-VNS and JADE

have shown great results at the largest dimension considered in this paper.

MPE functions (Table 6). VNS-based algorithms (Gauss-VNS, Glob-VNS and DE-VNS) and DEbr18 have

SR = 100% at MPE for all dimensions. Gauss-VNS is the fastest at 10 D. At other dimensions DE-VNS

outperforms other algorithms. At smaller dimension problems all VNS-based algorithms have similar number

of FEs, while at larger DE-VNS is faster than others significantly.

Rosenbrock functions (Table 7). DEbr18, DE-VNS, and DERand rand have shown best performance. All

of these algorithms have SR 100% and they are among the fastest algorithms. Theirs number of FEs is of

the same order of magnitude as CoDE’s, but CoDE doesn’t have SR 100% at 50 D Rosenbrock. JaDE is

considerably faster than others on 20 and 30 dimensions, but at maximum dimensions has the same problem

as CoDE.

Sphere function (Table 8). Tested algorithms do not have greater problems with achieving SR 100%, so the

focus of analysis is on the number of FEs. Predefined tolerance at 10 dimensional is reached within 5000 FEs

by SIMPSA 2, SA 100 100, and SAR. These algorithms and JADE are the fastest on 20 D problem. For

larger dimensions, JADE is by far the best.

Summarizing results reported in Tables 2 to 8, one can get the following observations:

(i) In terms of precision and robustness, DE-VNS and DEbr18 algorithms have shown the best properties:

only these two algorithms solved all test problems (on all test functions, for all dimensions), i.e., their

SR = 100%.

(ii) DE-VNS is clearly the best algorithm for global optimization, since its worst behavior is on convex test

functions (Tables 7 and 8). DE-VNS is at 10 out of 28 problems ranked as the fastest. It should be

emphasized that DE-VNS achieved desired tolerance in the fewest FEs for all largest non-convex test

instances.

(iii) These two algorithms are followed by CoDE that does not reach 100% success rate at 5 out of 28

problems.

(iv) The second fastest method is JADE. It was the fastest at 7 problems, but most of them are convex.

Rank statistics. In Table 9 and at Figure 8, all 19 algorithms are ranked for each test function. The last

column, “all”, is the arithmetic mean of rankings. DE-VNS is ranked as the first, with mean ranking 1.86,

and with the top results for multimodal problems. The second is DEbr18 with rank = 3.71. Third and fifth

are Gauss and Glob-VNS. These results should not be taken for granted, because only data for three test

functions were available from papers and compared. Self-adaptive DE algorithms JADE, SaDE and CoDE
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are ranked fourth, seventh, and thirteenth. JADE has proven the best at Sphere and Rastrigin’s function in

accordance with an overall score. SaDE performs well at Sphere and Schwefel’s function. On these problems

CoDE algorithm has a slow convergence rate. CoDE algorithm almost always converged toward the solution,

but convergence speed is not very fast. Other DE algorithms are ranked sixth, eighth and tenth. Among them,

DERand 0.5 0.3 is proven as the best, although its results differ from good (Griewank’s, Ackley’s, Schwefel’s),

till very bad (Rastrigin’s, MPE). SA 100 100 is ranked ninth, and it has shown the best performance among

SA algorithms. It is followed by SA 100 500, and SA 500 100, while SAR has lowest ranking. SA has

generally shown well in case of MPE and Rastrigin’s function. SIMPSA algorithms are ranked twelfth and

fifteenth. Better ranked SIMPSA 2 have shown as good for unimodal problems, it is ranked fifth and third

at Rosenbrock and Sphere. PSO algorithms LBest and GBest are next. They have shown a rather slow

convergence. They perform best for Griewank’s function. In last place is DEBest algorithm, based on

“DE/best/1/bin”, due its characteristic that converges prematurely at multimodal problems.

Table 9: Rank of compared heuristics

Schwefel’s Ackley’s Griewank’s Rastrigin’s MPE Rosenbrock’s Sphere All
1 DE-VNS 1 1 2 1 1 2 5 1.8571
2 DEbr18 4 4 4 3 2 1 8 3.7143
3 Gauss-VNS 6 9 4 6.3333
4 JADE 10 16 7 2 9 7 1 7.4286
5 Glob-VNS 12 8 3 7.6667
6 DERand 0.5 0.3 3 2 1 17 17 12 6 8.2857
7 SaDE 2 18 8 12 10 9 2 8.7143
8 DERand 0.5 0.5 5 3 3 19 18 8 7 9.0000
9 SA 100 100 6 8 15 4 5 15 10 9.0000
10 DERand rand 12 7 6 13 11 3 13 9.2857
11 SA 100 500 7 10 13 6 7 11 12 9.4286
12 SIMPSA 2 13 13 10 11 12 5 3 9.5714
13 CoDE 14 5 5 14 14 6 9 9.5714
14 SA 500 100 8 9 14 7 8 14 11 10.1429
15 SIMPSA 1 11 14 16 10 13 4 4 10.2857
16 SAR 9 11 12 5 6 17 15 10.7143
17 LBest 15 17 9 16 15 10 14 13.7143
18 GBest 16 15 11 15 16 16 16 15.0000
19 DEBest 17 19 17 18 19 13 17 17.1429

Figure 8: The average rank of comparing heuristics

Composite scores for all algorithms are presented in Table 10. For each 50 and 100 dimensional problem

we compare the speed of convergence. Five algorithms that have proved to be the fastest for that problem
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are taken into consideration. An additional condition is that the algorithm must have success rate equal to

100% of that problem. Data are also presented at Figure 9.

Table 10: Composite score of compared heuristics

Schwefel’s Ackley’s Griewank’s Rastrigin’s MPE Rosenbrock’s Sphere All
1 DE-VNS -2.2564 -2.2128 -2.1789 -2.1898 -2.3704 -1.2669 -2.3043 -14.7795
2 DEbr18 -1.9517 -1.8437 -1.8784 -1.9444 -1.7420 -1.3926 -1.9790 -12.7318
3 Gauss-VNS -0.4460 0.0641 -0.7887 -1.1707
4 Glob-VNS 0.1346 -0.0155 -0.8389 -0.7197
5 SA 100 100 -1.2237 0.0104 3.1447 -1.8597 0.2339 6.1697 -1.9092 4.5662
6 SA 100 500 -1.1667 0.0529 3.0548 -1.8289 0.2409 6.0312 -1.7264 4.6579
7 SA 500 100 -1.1576 0.0262 3.1028 -1.7600 0.2429 6.1335 -1.8107 4.7772
8 SAR -1.1050 0.1158 3.0147 -1.8595 0.2368 6.4021 0.3462 7.1513
9 DERand 0.5 0.3 -2.0942 -2.1257 -2.1850 6.8457 5.6462 6.1202 -2.2553 9.9519
10 DERand 0.5 0.5 -1.8861 -2.0169 -2.0382 7.0064 5.8171 5.3705 -2.1440 10.1088
11 JADE 6.3194 4.1885 1.4897 -2.1075 2.8954 4.0094 -2.6821 14.1128
12 DERand rand 6.8702 -0.0830 0.8962 5.6031 3.6515 -1.1320 -1.6707 14.1353
13 SaDE -2.1753 4.5798 1.9022 4.5266 3.5813 5.7945 -2.4707 15.7384
14 CoDE 7.5105 -1.7805 -1.7674 6.3851 4.6263 3.9693 -1.9278 17.0155
15 SIMPSA 1 6.5511 0.9693 3.1696 2.9563 4.0775 2.9578 -2.3134 18.3682
16 SIMPSA 2 7.4886 0.3020 2.9547 3.9428 3.9706 2.9662 -2.3938 19.2311
17 LBest 8.3845 4.3765 2.6518 6.5908 4.9043 5.7987 -1.6468 31.0598
18 GBest 8.4812 1.7353 3.0016 6.3923 4.9213 6.3962 4.6721 35.6000
19 DEBest 10.0843 5.0825 6.6141 6.9730 5.8556 6.1323 6.6655 47.4073

4.2 Statistical tests

The results of the statistical analysis given in this subsection do not contain Glob-VNS and Gauss-VNS

heuristics, since the results were not available for all the all test problems. The results with the inclusion of

these two heuristics would be biased, so we excluded them from the further analysis. Therefore, we continue

comparison of the remaining 17 heuristics. To prove that the rank distributions of heuristics do not have

the same first moments, i.e. the same mean, we use the Kruskal-Wallis test [15]. The function compares the

medians of the samples, and returns the p value for the null hypothesis that all samples are drawn from the

same population (or equivalently, from different populations with the same distribution).

Table 11: Kruskal-Wallis ANOVA test

Source SS df MS Chi-sq Prob > Chi-sq
Columns 62066.1 15 3879.13 52.31 9.75462e-6
Error 77936.9 102 764.09
Total 140003 118

As it can be seen in Table 11, the probability P = 9.75e − 6 casts doubt on the null hypothesis and

suggests that at least one sample median is significantly different from the others. Since this is a generalized

conclusion concerning the results of all heuristics, we have no indications which ranks behave statistically

different. For this reason we use multiple comparison Wilcoxon rank sum test [6, 10] which performs a

two-sided rank sum test of the null hypothesis that the data in the vectors are independent samples from

identical continuous distributions with equal medians, against the alternative that they do not have equal

medians, for all combinations of the used heuristics. The results can be seen in Table 12. It appears that,

the null hypothesis (that the ranks of other heuristics are independent samples from identical continuous

distributions with equal medians as DE-VNS) should be rejected (with the confidence level α = 0.1). It is

notable the natural clustering of algorithms from the same family of heuristics. For example, DE variants

(SaDE, CoDE and JADE) with mutual p-value 0.5, 0.63 and 0.73 respectively, from which we cannot reject

the null hypothesis of the identical distribution. Similar is happening with variants DERand 0.5 0.3, DERand

0.5 0.5, and DERand rand. The only exception concerns the DE variants – DEBest, that with a significance

level α = 0.1 does not match with any other heuristics in terms of the first moment distribution of ranks.

This is an expected result, since DEBest does not show good results in the case of multi-modal optimization

problems and has a problem of premature convergence. Variants of Simulated Annealing (SIMPSA, SA and
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(m) (n)

Figure 9: Convergence for (a) Schwefel 50 D; (b) Schwefel 100 D; (c) Rastrigin 50 D; (d) Rastrigin 100 D;
(e) Greiwank 50 D; (f) Greiwank 100 D; (g) Ackley 50 D; (h) Ackley 100 D; (i) MPE 50 D; (j) MPE 100 D;
(k) Rosenbrock 30 D; (l) Rosenbrock 50 D; (m) Sphere 50 D; (n) Sphere 100 D

Table 12: Multiple comparison Wilcoxon rank sum test
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SAR), even with a significance level of α = 0.5, accept the hypothesis of same ranks distribution moments,

which indicates the similarity of behavior of these variants for different values of the control parameters. It

can be also seen that Particle Swarm Optimizer variants (LBest and GBest), belong to the group with the

same distributions.

Based on this statistical analysis, we can extract 5 overlapping groups of heuristics, which have a similar

distribution of median ranks. The first group contains DE-VNS, suggesting the best results for the problem

under consideration. The second group includes representatives of the advanced version of the DE algorithm

(DEbr18, JADE, SaDE, DERand 0.5 0.3 and DERand 0.5 0.5). In the third group are mixed heuristics

(JADE, DERand 0.5 0.3, DERand0.5 0.5, SaDE, CoDE, SA 100 100, SA 100 500, SA 500 100, DERand

rand, SAR and SIMPSA variants).The fourth group consists of PSO variants (GBest and LBest) while in

the fifth group is only DEBest.

5 Conclusions

In this paper we perform extensive comparative analysis of 19 algorithms for solving continuous box con-

strained global optimization problem. All 19 methods are based on some metaheuristic principle, such as

Simulated annealing (SA), Differential evolution (DE), Variable neighborhood search (VNS) and Particle

swarm optimization (PSO). We believe that we collected currently best methods from the literature, and

compared them at the same test instances (small and large), on the same computer, using the same pro-

gramming language (Matlab) and using the same evaluation parameters. In addition, we performed some

statistical tests to evaluate performances of heuristics more rigorously. It appears that all heuristics are

naturally divided in 5 groups. The best method, in terms of the number of function evaluation and precision,

appeared to be the recent hybrid between DE and VNS (DE-VNS). On the basis of tests conducted, with a

confidence of α = 0.1, DE-VNS belongs to the separate ranking group. Probably the most interesting our

observation is the fact that heuristics that follow the same metaheuristic principles are clustered in the same

quality group. For example, group of DE heuristics (DEbr18, JADE and SaDE) is in the second quality

group. Their rank statistics are better than ranks of other methods. In addition, it has few parameters to

set in some variants and in some have fully adaptable control parameters. VNS variants, on some low dimen-

sional problems, show a remarkable convergence speed and success rate of 100%, but we cannot generalize

this statement since the results of these heuristics were available for only some test instances. SA variants

behave well, but only on selected convex problems. PSO variants did not show satisfactory results, especially

on multimodal problems with higher dimensions. DEBest is by far the last, given that this heuristic does not

behave well regarding multiple optima problems and have a problem of premature convergence. Probably a

larger set of test instances is required to get more rigorous conclusions of comparative analysis. This task

remains for the future work.
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[20] Mladenović, N., Drazic, M., Kovačević-Vujcic, V., Cangalovic, M.: General variable neighborhoods search for
the continuous optimization, Eur. J. of Oper. Res. 191(3), 753–770 (2008)

[21] Murtuza Baker, S., Schallau, K., Junker, B.H.: Comparison of different algorithms for simultaneous estimation
of multiple parameters in kinetic metabolic models, J. of Integr. Bioinforma. 7, 133 (2010)

[22] Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview, Swarm Intelli. 1(1), 33–57
(2007)

[23] Press W.H., Teukolsky, S.A.: Simulated annealing optimization over continuous spaces, Comput. Phys. 5(4),
426 (1991).

[24] Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization.
Springer, Berlin (2005)

[25] Qin A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global
numerical optimization, IEEE Trans. on Evol. Comput. 13(2), 398–417 (2009)

[26] Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions:
a survey of some theoretical and practical aspects of genetic algorithms, Biosyst. 39(3), 263–278 (1996)

[27] Shi, Y., Eberhart, R.C., A modified particle swarm optimizer, In: Proc. of the IEEE Int. Conf. on Evol.
Comput. (1998), doi: 10.1109/ICEC.1998.699146

[28] Smith, J.E., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms, Soft Comput. 1(2),
81–87 (1997)

[29] Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces, J. Glob. Optim. 11, 341–359 (1997)

[30] Tvrdik, J.: Differential Evolution with Competitive Setting of its Control Parameters, TASK Quart. 11, 169–179
(2007)

[31] Van Dorp, J., Kotz, S.: A Novel Extension of the Triangular Distribution and its Parameter Estimation, The
Statistician 51, 63–79 (2002)

[32] Vesterstroem, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark problems, In: Proc. IEEE Congr. Evolutionary Computation,
(2004) doi: 10.1109/CEC.2004.1331139

[33] Wang Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control
parameters, IEEE Trans. on Evol. Comput. 15(1), 55–66 (2011)

[34] Zhang J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional external archive, IEEE Trans.
on Evol. Comput. 13(5), 945–958 (2009)


	Introduction
	Algorithms for comparison
	Heuristics based on Simulated Annealing
	Heuristics based on Variable Neighborhood Search
	Heuristics based on Particle Swarm
	Heuristics based on Differential Evolution
	DE-VNS hybrid

	Test functions
	Schwefel's function
	Ackley's function
	Griewank's function
	Rastrigin's function
	Molecular potential energy (MPE) function
	Rosenbrock's function
	Sphere function

	Computational results
	Comparative analysis
	Statistical tests

	Conclusions

