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Abstract: In this paper, we suggest DE-VNS as a new heuristic that combines two well known metaheuristic
approaches: Differential Evolution (DE) and Variable Neighbourhood Search (VNS), which have, in the last
few years, attracted a considerable attention both by academics and practitioners. In our hybrid heuristic,
the idea of neighbourhood change is used to estimate the crossover parameter of DE. We propose a family
of distributions to be used in order to control the distances among solutions in the search space. Our
hybrid heuristic has excellent characteristics, and it comes out that it is more favorable than the recent DE
approaches when tested on standard and large instances from the literature.

Key Words: Global Optimization, Hybrid heuristics, Differential Evolution, Variable Neighbourhood Search,
Parametric Distributions.
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1 Introduction

This paper is dealing with multimodal problems occurring when finding global optima in difficult uncon-
strained nonlinear problems over continuous spaces. Their general form is given below:

(min)f (x) , x ∈ X ⊆ Rn (1)

where f : Rn → R is generally nonlinear, non-convex function defined on Rn, and X is a feasible set.

One of the popular methods used for solving these problems is Differential Evolution (DE) , proposed by

Storn and Price [1]. Its simple and straightforward ideas contain three main parts: strategy, crossover and

selection. Strategy diversifies the population, which alleviates such problems as the premature convergence;
although there are many strategies, only a few may be suitable for solving a particular problem. Crossover

determines whether the target or the trial vector v will survive to the next generation, while selection

is based on solutions quality. Vesterstroem and Thomsen [2] compared the DE algorithm with Particle

Swarm Optimization (PSO) and Evolutionary Algorithms (EAs) on numerical benchmark problems. For
the majority of the problems, DE outperformed both PSO and EAs in terms of the solution’s quality. Sun

et al. [3] proposed a combination of DE and the Estimation of Distribution Algorithm (EDA), where the

search toward a promising area uses sampling of new solutions following the distribution function. Liu and

Lampinen [4] reported that the effectiveness, efficiency, and robustness of the DE algorithm are sensitive to

the settings of the control parameters, namely mutation parameter F and crossover parameter CR. The
best settings for the control parameters can be different for different functions and for the same function

with different requirements. A “fast EP” (FEP) is proposed by Yao et al. [5], using a Cauchy mutation as

the primary search operator (instead of conventionally used Gaussian ). Lee and Yao [6] described a further

generalization of FEP by using mutation based on the Levy probability distribution; note that, Cauchy
probability distribution is a special case of the Levy probability distribution. This way, variations of a

single mutation enables discovering a wide region of the search space, wider than the one got by Gaussian

distributions; large variations of the mutated offspring can help to escape from local optima. Furthermore,

three crucial control parameters involved in DE - population size N , mutation parameter F , and crossover

rate CR, may significantly influence the optimization performance of the DE. Different problems usually
require different setting for the control parameters. Self-adaptation allows an DE strategy to adapt itself

to any general class of problems by reconfiguring [7, 8, 9]. DE algorithm has gained much attention with

successful applications in different domains, e.g. [10, 11, 12].

Mladenovic and Hansen [13] presented Variable Neighbourhood Search (VNS) approach, a metaheuristic

which does not follow vector trajectories. It explores increasingly distant neighbourhoods of the current best
solution. If a better solution is found, VNS jumps from the current solution to the new one; there is a variety

of hybrids, where VNS is combined with other optimizers. Mladenovic et al. [14] have presented the idea of

using several geometric neighbourhood structures and random distributions in the shaking step. That idea

led to the Glob-VNS, which turned out to be noticeably more efficient than the variants with fixed geometry
and fixed distribution. Instead of using a sequence of neighbourhoods and shaking by sampling, Carrizosa et

al. [15] define a sequence of shaking distribution derived from Gaussian n-variate distribution centered at x.

This optimizer is called Gauss-VNS. Yang et al. [16] sugest hybridization of DE with neighbourhood search.

The resulting algorithm, known as NSDE, performs mutation by adding a normally distributed random value

to each target vector.

In this paper, we propose a self-adaptive algorithm based on the DE, which incorporates the features of

VNS approach. Particular attention is devoted to the mechanism of self-adaptation of crossover parameter

CR, based on systematic change of neighbourhoods.

The paper is organized as follows. In the next section, we give a short review of conventional DE.

Section 3 describes the proposed DE-VNS. In Section 4, we present computational results demonstrating the
performance of our DE-VNS in comparison with the state-of-the-art DE variants. In the final section, we

give conclusions and guidelines for the future work.
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2 Differential Evolution

In this section, we briefly summarize the basic procedure of Differential Evolution (DE), and introduce the
notation and the terminology.

DE is a parallel direct search method which utilizes D-dimensional parameter vectors as a population

for each generation. The initial vector population is chosen randomly and should cover the entire parameter

space. After initialization, DE enters a loop of evolutionary operations: mutation, crossover, and selection.

2.1 Strategy

Strategies in DE enable the algorithm to explore the search space and maintain the diversity. There are two
basic strategies used in differential evolution heuristics:

• The “DE/rand/1/bin” strategy usually demonstrates slow convergence speed and bears stronger ex-

ploration capability. Therefore, this strategy is suitable for solving multimodal problems and performs

better than the strategies relying on the best solution found so far. Target vector for this strategy is

generated in this way:

vi = xri
1

+ F ·
(

xri
2

− xri
3

)

(2)

• The “DE/best/1/bin” strategy is a degenerated case of the “DE/rand-to-best/1/bin” strategy with λ

equal to 0. It usually has the fast convergence speed and performs well when solving unimodal problems.

However, it is more likely to get stuck at a local optimum and thereby, leads to a premature convergence
when solving multimodal problems. This mutation strategy has the following form:

vi = xbest + F ·
(

xri
1

− xri
2

)

(3)

2.2 Crossover

After applying a chosen strategy, the next phase is crossover. The undetermined offspring yi is generated by

the crossover operation on vi as:

yi (g + 1) =

{

vi, if (rand (0, 1) ≤ CR) or (j + jrand)

yi (g) , otherwise
(4)

where jrand is randomly chosen index to ensure that the trail vector yi does not duplicate vi, rand(0, 1)

represents a uniform random value between 0 and 1, CR ∈ (0, 1) is a crossover rate, and g = 1, . . . , n is a

generation. Presented crossover phase is the version used in basic DE algorithms.

2.3 Selection

The task of selection phase is to determine better offspring and parent vector. The better vector survives into

the next generation, and the worse vector is discarded. The selection operation can be expressed as follows:

xri
1

(g + 1) =

{

yi (g + 1) , if f (yi (g + 1)) < f
(

xri
1

)

xri
1

, otherwise
(5)

where xri
1

(g + 1) is the offspring of xri
1

in the next generation g = 1, . . . , n.

These 3 steps are repeated until some specific termination criteria are satisfied. Termination criteria can

be: reaching the value of success threshold, exceeding the number of generations, maximum CPU time used

in the search, etc.
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3 DE-VNS for Continuous Global Optimization

Variable Neighbourhood Search is a metaheuristic based on a principle of systematic change of neighbour-
hoods within the search; VNS and its extensions are characterized by the simplicity of the basic scheme. The

search in the different neighbourhoods is performed in a deterministic, stochastic or combined way. VNS

with deterministic rules is called Variable Neighbourhood Descent (VND), Reduced VNS is VNS that uses

stochastic rules. Basic VNS is the third variant that combines a random selection of a point in shaking

or perturbation step followed by a deterministic local search from that point. Inspired by VNS main idea,
we present a hybrid system based on the effective DE algorithms that we extend with the concept of vari-

able neighbourhood perturbation parameter vector. The main ideas of the proposed DE-VNS algorithm are

elucidated as follows.

3.1 Strategy

Numerous approaches have been proposed in order to find an adequate measure of the selection between
“DE/rand/1/bin” and “DE/best/1/bin” strategies. It should enable global search of the solution space on

one hand, and rapid convergence of the strategy, on the other. In this paper, we will introduce the modification

of “DE/rand/1/bin” strategy that will comprise the characteristics of “DE/rand/1/bin”, named “DE/order-

random/1/bin” (see details in [17] for different strategies within DE). The main idea is that within the

“DE/rand/1/bin”, we will try to find a local “DE/best/1/bin” strategy as shown:

vi = xri
1

+ F ·
(

xri
2

− xri
3

)

(6)

where xri
1

, xri
2

, xri
3

are randomly selected at each step:

f
(

xri
1

)

< f
(

xri
2

)

andf
(

xri
1

)

< f
(

xri
3

)

(7)

3.2 Estimation of the Mutation Parameter F

In the conventional realizations of DE, the choice of three control parameters: the population size N , the

mutation parameter F , and the crossover parameter CR largely determines the outcome of the optimization.

There is a great number of empirical results e.g. [18] that help us to choose the parameter values. However,

there is not a strict set of parameters related to the broader group of practical problems. Higher values of the
population size N allow greater diversification in the solution space and therefore, a better exploration of the

solution space. On the other hand, large population causes slower convergence, which is reflected in the speed

of the algorithm when solving large scale optimization problems. Note that if the values of the mutation

parameter F are larger, the larger portion of the solution space is explored. The problem of selecting the
mutation parameter N is solved by introducing roulette methods [19]. Roulette methods gradually give a

higher probability of drawing the values of mutation parameter proven to be successful in previous iterations.

The parameter F is estimated by introducing the competition. Assume that we haveH different values for

the parameter F ; choose one among them at random with the probability ph, h = 1, . . . , H . The probabilities

can be adjusted according to the success rate of the preceding steps of searching the solution space. The hth

value of F is successful if it generates a trial point y such that f (y) < f (xi). When nh is the current number

of the f(y) setting successes, the probability ph can be calculated as the relative frequency as:

ph =
nh + n0

∑H
i=1 (ni + n0)

=
nh + n0

n0 ·H +
∑H

i=1 ni

(8)

where n0 > 0 is a constant. Setting n0 > 1 prevents a dramatic change in ph by the use of thehth parameter

settings. If any of the probabilities drops below a given threshold δ > 0 and δ < 1, current values of ph
are reset to their starting values ph = 1/H . Thus the premature convergence of probabilities ph is avoided.
The competition structure prefers the parameters related to the success in such a way that an algorithm is

self-adapted each time when the better solution is found over probabilities ph for that settings.
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The degree of similarity between offspring and trail vector changes as it depend on the values of crossover

parameter CR. We define the degree of similarity of these two vectors as follows. The nearest dimensional

surroundings of the offspring are defined with small values of the parameter CR, so the changes in vectors
are of small number dimensions, as it is illustrated on the additive problem at Fig. 1.

Figure 1: Additive multimodal problem

For the higher values of crossover parameter CR, we get further dimensional surroundings, and the
offspring vector can change by more dimensions at once. Each approach has advantages and disadvantages.

If crossover parameter CR is small, the algorithm may not be able to perform such a jump which could find

a better solution by changing the small number of dimensions, as it is shown in Fig. 2.

Figure 2: Rotated multimodal problem

In the example of the rotated ellipse, Salomon [20] explains why CR factor should not have low values

during the whole course of the optimization. For large values of CR, the entire population could converge

too fast and remain trapped in a local optimum. This is the reason to start our parameter from the closer

neighbourhoods to the offspring vector, so the population would not converge too fast. On the other hand, if
our algorithm is found in local optima or is on the correct path to the global optima, we want higher values

of CR for two reasons:
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• To provide that the algorithm can escape from local optima by several dimensions, allowing an effective

jump to any point over the solution space;

• To speed up the convergence if the algorithm is located in the vicinity of global optimum.

We will rely on the choice of probability distributions from which we want to choose the parameter CR. We

are not defining a clear boundary, in the sense of VND, among dimensional distances of an offspring vector,

just the expected value of dimensions. Therefore, we will form a family of parametric distributions that will

allow us to effectively select expected number of dimensions from the offspring neighbourhoods.

3.3 Estimation of the Crossover Parameter CR with Variable Neighbourhood Search

This section deals with the method of selecting a crossover parameter value. Numerous studies show that

it is difficult to choose this parameter, because different values of CR correspond to different sets of prob-
lems. We introduce a family of adaptive distributions that depends on crossover neighbourhood parameter

- neighbourhood factor par. The CR parameter is than stochastically chosen with respect to these distri-

butions. The Variable Neighbourhood Search is included in solving this problem in the following manner.

When the algorithm finds a child vector better than the parent, in the next iterations, it is required that a

neighbourhood factor CR reduces its value. That ensures that the crossover parameter will be at the closest
neighbourhoods; as the entire population would not converge too quickly so, a better search through the

solution space is achieved. Therefore, the value of the neighbourhood factor CR will gradually increase,

in the iterations in which the algorithm cannot find a more satisfactory solution, by using the stepfactor

which will allow further dimensional environments around the parent vector to be investigated. In the case
of finding a favourable child vector, algorithm resets the CR value based on improvement of fitness function

value. This property of parameters allows the adaptation of the algorithm to the given problem, so there is

no need for parameterization of the algorithm by the user.

Analysing the distributions from which CR derives values

The analysis is started by observing the distributions from which crossover parameter CR derives its values,

and it considers problems divided into three main classes:

1. Additive multimodal problems : Schwefel, Ackley, Griewank, Rastrigin, Molecular potential energy

(MPE), Michalewicz’s function and Six-hump;

2. Unimodal problems : Sphere, Rosenbrock and De Jong’s variations;

3. Noncontinuous problems: step function, molecule or sphere packing [21].

Each group of the problems was repeated 100 times using the algorithm “DE/rand/1/bin” with CR and F

parameters, as a random process with a uniform distribution. The values of CR and F were recorded in the

case when fitness function value was better and the algorithm achieved the predefined tolerance. Moving

windows are defined so that the bins contain the recorded values of the parameters CR in the first iterations,
midd iterations of the algorithm, as well as the final part of the algorithm, respectively, in case when the

algorithm succeed to achieve a global optimum. Empirical probability distribution functions of defined classes

are presented in Fig. 3.

The goal of our analysis is to make a family of parametric distributions that mimic the distributions

presented at Figs. 3 and 4. To find out which parametric distribution best reflect the empirical distribution,

we fitted a number of distributions such as: beta, Weilbull, exponential, gamma, normal, inverse gaussian,
Pareto, nakagami, etc. Moving windows are defined as 1000 successful iterations i.e. iterations in which

the better child vector is found. Distribution from such defined moving window with best estimated most

likelihood function is recorded. The array of recorded distributions is then divided by quintiles: 0%–25%

25%–50%, 50%–75%, 75%–100%, which effectively describes the various distributions of the path to the
global optimum. Based on maximum likelihood estimation, a set of 6 distributions that best describes the

distribution of crossover parameter CR is obtained as it can be seen on Figs. 5–8.

Allocation of fitted distributions along intervals and classes of problems is shown at Figs. 5, 6 and 7

respectively.
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(a) (b) (c)

Figure 3: Empirical probability distribution functions for (a) Continuous separable multimodal (b) Continuous
unimodal (c) Noncontinuous

Figure 4: Empirical probability distribution functions for all defined classes

Figure 5: The portion of fitted parametric probability distribution functions for continuous separable multi-
modal problems

Beta Distribution

According to these figures, in the final iteration of the algorithm, CR parameter values are taken from the

beta distribution in nearly 100% of cases, while in the first quintile, in addition to the beta distribution,

the exponential distribution occurs in a large percentage. Bearing in mind that the exponential distribution

is a special case of the beta distribution, the beta distributions are considered as the major distribution of
parameters CR in the further analysis. It should be noted that the structure of the distribution changes

depends on the applied strategy. In our work, the usage of the beta distribution is related to “DE/rand/1/bin”
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Figure 6: The portion of fitted parametric probability distribution functions for continuous unimodal problems

Figure 7: Portion of fitted parametric probability distribution functions for non-continuous problems

strategy. Beta distribution is defined as follows:

f (x, α, β) =
xα−1 (1− x)β−1

∫10 uα−1 (1− u)β−1 du
=

1

B (α, β)
xα−1 (1− x)β−1 (9)

As it is shown at Fig. 3. (a), algorithm achieved the best results starting from a beta distribution which has

the feature favouring small values of CR for the continuous multimodal problem. In this way, detailed search
over the solution space is achieved. That capacity, consistent with the multimodal definition of a problem,

is archived for well-defined values of α, β:

α = 1, β > 1 (10)

The final steps in all defined distributions become uniform which is a special case of beta distribution for

values:

α = 1, β = 1 (11)

For the unimodal class of problems, during the search, the distribution takes the successful values that are

uniform all the way. As it can be seen, there is no favouring of certain values of crossover parameter because

there is no problem multimodality, so there is no problem of trapping in local optima.

The best results for the beta distribution of the non-continuous class of problems is obtained by distribu-
tions that sample the entire domain of CR. In the final phase, distribution is slightly shifting to the value of

one i.e. distribution favours high values of CR. The non-continuous algorithm seeks the best leap towards

better solutions by increasing number of dimensions in order to skip a discontinuity in the solution space. In

this case, the parameters of the distribution are:

α > 1, β = 1 (12)

It can be seen that the distributions are not completely symmetrical for the small and large values of CR.

For the probability of distributions that favours large values of CR, the distribution itself does not converge

to zero for small values of CR i.e. the distribution tries to preserve lower level of CR at some level.
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Two-sided power distribution

The beta distribution has difficulties concerned with its maximum likelihood parameter estimation of two

parameters, whose parameters do not have a clear-cut meaning. Johnson [22] and Johnson and Kotz [23] dealt
with neglected applications of triangular distributions as an alternative to the beta distribution. Johnson used

triangular distributions as a proxy for the beta distribution, specifically in problems of assessment of risk and

uncertainty, such as the project evaluation and review technique (PERT). The parameters of a triangular

distribution have a one-to-one correspondence with an optimistic estimate a, most likely estimate m and
pessimistic estimate b of a quantity under consideration, providing to the triangular distribution its intuitive

appeal (see, for example Williams [24]). Similarly to the beta distribution, the triangular distribution can be

positively or negatively skewed (or symmetrical) but must remain unimodal. It is pointed out that there is

no triangular distribution which would reasonably approximate uniform, J-shaped or U-shaped distributions.

In this paper we investigate an extension of the three-parameter triangular distribution, so called the two-
sided power (TSP) distribution [25], as a proven alternative to the beta distribution. The four-parameter

distribution proposed herein does allow J-shaped and U-shaped forms.

The cumulative distribution function of TSP (a,m, b, par) is:

F (x|a,m, b, par) =











m−a
b−a

(

x−a
m−a

)
1

par

, a < x < m

1− b−m
b−a

(

b−x
b−m

)
1

par

,m < x < b
(13)

TSP family of distributions depending on the parameter par witha = 0, b = 1 and m = 0 is shown at Fig. 8.

Figure 8: Family of TSP distribution over parameter par

3.4 Evaluation of Neighbourhood Search Parameter

Based on estimation of parameters m and using the procedure discussed in Appendix 1, it may be assumed

that r̂ (a, b) = 1; m̂ (a, b) = X(1) = a and

pâr (a, b) = − log [M {a, b, r̂(a, b)}]
s

(14)

We applied the estimation Neighbourhood search parameters par on a set of problems – global continuous

problems. Using this analysis, we will try to determine the extent of movement parameters par. The
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maximum likelihood estimates are obtained by using the same recorded values of CR, when the algorithm

achieved the predefined tolerance, as mentioned before. In Fig. 9, the estimated value of the neighbourhood

factor par and the limits of movement of this parameter are shown.

For some problems (Schwefel, Rastrigin, MPE) parameter neighbourhood factor par, in the initial itera-
tions, starts from low values. This indicates that crossover has a smaller number of dimensions or, in closer

dimensional environments, greater exploration of the solution space in the initial phase. In the final itera-

tions of the algorithm, larger values of the neighbourhood factor par are preferred. This indicates that the

algorithm is in the vicinity of the global optimum, which allows crossover between the offsprings by several
dimensions at once. In some problems (Griewank, Ackley, Rosenbrock), it is evident that the algorithm

moves from the higher values of the parameters par, indicating that the used strategy “DE/rand/1/bin”

has no problem of local optima trapping. In all cases, in the final iterations of the algorithm, values of the

neighbourhood factor par tends to 0.7.

Parameters a and b are defined by the limits of parameter CR i.e. a = CRmin = 0, b = CRmax =
1. The analysis of shape for continuous multimodal distributions suggests zero as the value of parameter

m −m = 0. For the continues multimodal problem, the algorithm achieves the best results starting from

the TSP distribution, with preferable small values of crossover parameter CR or a detailed search over the

solution space, which is consistent with the multimodal definition of the problem, i.e. for par → 0. On the

other hand, in the final iterations, all CR values are equally favoured, leading to values of the parameter
par→ 0.7.

3.5 DE-VNS Pseudo-Code

Finally, we present our DE-VNS pseudo-code of Algorithm 1.

Algorithm 1 DE-VNS pseudo-code

1: Randomly initialize a population of N individuals Pg = {X1, . . . , XN}, i = 1, . . . , N
2: Evaluate the population
3: Setting initial roulette probability for F
4: WHILE stopping criteria
5: Set k ← 1
6: WHILE until k > N
7: Calculate roulette probability for F parameter ph = nh+n0∑

H
j=1

(nj+n0)

8: Sampling CR from adaptive beta distribution as:

CR = F (x|a,m, b, par) =











m−a
b−a

(

x−a
m−a

)
1

par

, a < x < m

1− b−m
b−a

(

b−x
b−m

)
1

par

,m < x < b

9: Applying strategy “DE/Rand-Local-Best/1/bin” with obtained F and CR parameters
10: Evaluate child vector f(ykchild)
11: IF f(ykchild) ≤ f(ykparent) then

12: parknew = max(parmin, par
k
old − (f(ykchild)− f(ykparent)))

13: parent = child
14: ELSE

15: parknew = parkold + stepfactor
16: parknew = min(parknew , parmax)
17: END IF

18: Set k ← k + 1
19: END WHILE

20: END WHILE

21: Stopping criteria: x∗ is an approximate solution of the problem
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The loop starts after the first three steps used for initialization and evaluation of the population, and

for setting initial roulette probability of mutation parameter; roulette probability of mutation parameter is

calculated, and crossover parameter value is sampled from TSP distribution in each iteration. The next
steps are: applying strategy, and evaluating child vector. If the child vector is better than the parent vector,

neighbourhood factor par value is reset, based on improvement of fitness function value. If child vector is

not better, par value is increased by using stepfactor.

4 Computational results

Experimental settings for the benchmarks and DE heuristics used for comparison are explained in this section
so, and the numerical results are given.

4.1 Test functions

Seven common benchmark functions are used for the numerical experiments. The problems are selected from

[20]. We shall focus on multimodal problems, but unimodal problems will be also included in the analysis,

in order to demonstrate the robustness of the proposed approach on a wide class of problems.

Schwefel function

Schwefel’s function is a deceptive one in the sense that the global minimum is geometrically distant, over the

parameter space, from the next best local minima. Therefore, the search algorithms are potentially prone to
convergence in the wrong direction.

F1 =

n
∑

i=1

[

−xisin
(

√

|xi|
)]

(15)

with −500 ≤ xi ≤ 500 and minF1(420.9687, 420.9687, . . . , 420.9687) = −418.9829 · n.

Ackley function

Ackley’s is a widely used multimodal test function. This function has an exponential term that covers its

surface with numerous local minima. The complexity of Ackley function is moderate. In order to obtain
good results for this function, the search strategy must combine the exploratory and exploitative components

efficiently.

F2 = −20exp



−0.2

√

√

√

√

1

n

n
∑

i=0

x2
i



 − exp

(

√

1

n

n
∑

i=0

cos (2πxi)

)

+ 20 (16)

with −32 ≤ xi ≤ 32 and minF2(0, 0, . . . , 0) = 0.

Griewank function

The Griewank’s function is similar to the function of Rastrigin’s. It has many widespread local minima

regularly distributed over the solution space.

F3 =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos

(

xi√
i

)

+ 1 (17)

with −600 ≤ xi ≤ 600 and minF3(0, 0, . . . , 0) = 0.
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Rastrigin function

The Rastrigin’s function is based on the function of De Jong with the addition of cosine modulation in order

to produce frequent local minima. Thus, the test function is highly multimodal. However, the locations of
the minima are regularly distributed.

F4 = 10n+

n
∑

i=1

(

x2
i − 10 cos (2πxi)

)

(18)

with −5.12 ≤ xi ≤ 5.12 and minF4(0, 0, . . . , 0) = 0.

Molecular potential energy (MPE) function

MPE function [26] is a functional form similar to general potential energy functions, whose global minimum

is known. The number of local minima of this function increases exponentially with the size of the problem.

F5 =

n
∑

i=1

(

1 + cos (3xi) +
(−1)i

√

10.60099896− 4.141720682 · cos (xi)

)

(19)

with 0 ≤ xi ≤ 5 and minF5(0, 0, . . . , 0) = −0.0411183034 · n.

Rosenbrock function

The Rosenbrock’s valley is a classic optimization problem, also known as banana function or the second

function of De Jong. The global optimum lies inside a long, narrow, parabolic shaped flat valley. To find

the valley is trivial, however convergence to the global optimum is difficult and hence, this problem has been

frequently used to test the performance of optimization algorithms. The function has the following definition:

F6 =
n−1
∑

i=1

[

100 ·
(

xi+1 − x2
i

)2
+ (1− xi)

2
]

(20)

with −5 ≤ xi ≤ 5 and minF6(0, 0, . . . , 0) = 0.

Sphere function

The sum of different powers is a commonly used unimodal test function. Sphere function is a simple and

strongly convex function used in the theory of evolutionary strategies. It has the following definition:

F7 =

n
∑

i=1

x2
i (21)

with −1 ≤ xi ≤ 1 and minF7(0, 0, . . . , 0) = 0.

4.2 DE based heuristics used in comparison

As it is previously mentioned, the performance of the conventional DE algorithm highly depends on the chosen

trial vector generation strategy and associated parameter values used. In literature [27], the parameter

adaptation techniques are divided into three categories: deterministic, adaptive, and self-adaptive control

rules. Deterministic rules modify the parameters according to certain predetermined rationales without
utilizing any feedback from the search process. Adaptive rules incorporate some form of the feedback from

the search procedure to guide the parameter adaptation. Self-adaptive rules directly encode parameters into

the individuals and evolve them together with the encoded solutions. In addition to the DE-VNS approach,

which is proposed in this paper, we analyse the problem of global optimization, and compare our algorithm

with different variations of DE methods. Two common versions of DE without parameter adaptation are
taken into consideration: “DE/best/1/bin”(Debest) and “DE/rand/1/bin”. Three self-adapted algorithms

with distinguished characteristics are also chosen: SaDE, JADE, and CoDE.
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DE based on “DE/rand/1/bin” strategy

Since it is well known that “DE/rand/1/bin” version of the strategy has good searching possibility of the

solution space and therefore, better performance in solving multimodal global optimization problem, we use
one variant of this strategy for the comparison. Used values of control parameters are F = 0.5 and CR = 0.3,

which proved to be promising strategy according to [28].

Debest

Although the main focus of this paper is global multimodal problems, “DE/best/1/bin” with defined con-

trol parameters F = 0.5 and CR = 0.3 is taken in consideration because this algorithm is well-known

and is commonly used for comparison. The values of F and CR are chosen based on ’good behaviour’ of

“DE/rand/1/bin” at these values of control parameters.

SaDE

Self-adaptive DE (SaDE) algorithm [28] is one of the state of the art algorithms that avoids the expensive
computational costs on searching the most appropriate trial vector generation strategy, as well as its associated

parameter values by a trial-and-error procedure. Instead of employing the computationally expensive trial-

and-error search for the most suitable strategy and its parameter values, we maintain a strategy candidate

pool including several effective trial vector generation strategies with effective, yet diverse characteristics.

During evolution, one strategy will be chosen from the candidate pool and applied to perform the mutation
operation. The choice is made according to probability learned from the previous experience in generating

promising solutions. Four trial vector generation strategies are included into the strategy candidate pool:

“DE/rand/1/bin”, “DE/rand-to-best/2/bin”, “DE/rand/1/bin”, and “DE/rand-to-ran/1/bin”. In the SaDE

algorithm, N is left as a user-specified parameter because it highly replies on the complexity of a given
problem. The parameter F is approximated by a normal distribution with mean value 0.5 and standard

deviation 0.3. This setting enables us to maintain both exploitation and exploration power throughout the

evolution process. Parameter CR has normal distribution N (CRm, 0.1), where CRm is initialized as 0.5.

To adapt CR to the proper values, the authors update CRm every 25 generations, based on the recorded

successful CR values since the last CRm update.

JADE

Zhang and Sanderson [29] have presented their DE algorithm named JADE. The main contribution of JADE
is the implementation of a new mutation strategy “DE/current-to-pbest”. This strategy has an optional

external archive and updating control parameters in an adaptive manner. “DE/current-to-pbest” strategy is

a generalization of the classic strategy “DE/current-to-best”. The archive is initiated to be empty. After each

generation, the parent solutions that fail in the selection process are added to the archive. If the archive size

exceeds a certain threshold, then some solutions are randomly removed from it. The role of the archive is to
provide information about the progress direction and to improve the diversity of the population. Crossover

probability CRi is randomly taken from a normal distribution of mean µCR and standard deviation 0.1, and

then truncated to [0, 1]. µCR is initialized to be 0.5 and then updated at the end of each generation as:

µCR = (1− c) · µCR + c ·meanA (CRsucc) (22)

where c is a constant between 0 and 1, meanA() is the arithmetic mean and CRsucc is a set of all successful
crossover probabilities CRi. The mutation factor Fi is randomly taken from a Cauchy distribution with

location parameter µF and scale parameter 0.1, and then truncated to be 1 if Fi ≥ 1 or regenerated if Fi ≤ 0.

The location parameter µF is initialized to be 0.5 and then updated at the end of each generation as:

µF = (1− c) · µF + c ·meanL (Fsucc) (23)

where meanL() is the Lehmer mean and Fsucc is the set of all successful mutation factors.
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CoDE

Wang et al. [30] proposed novel method based on Differential Evolution, called composite DE (CoDE).

This method uses three trial vector generation strategies and three control parameter settings and randomly
combines them to generate trial vectors. The strategy candidate pool is consisted of the following strate-

gies: “DE/rand/1/bin”, “DE/rand/2/bin”, and “DE/current-to-rand/2/bin”. The three control parameter

settings are: F = 1.0, CR = 0.1, F = 1.0, CR = 0.9, and F = 0.8, CR = 0.2. In each generation, each of

these trial vector generation strategies is used to create a new trial vector with a control parameter setting
randomly chosen from the parameter candidate pool. Thus, three trial vectors are generated for each target

vector and are compared in the next step. The best trial vector enters the next generation if it is better than

its target vector.

For all DE variants used in this study, the maximum number of parameter evaluation eval max and

population pop were set as it is shown in Table 1.

Table 1: Values of evalmax and pop parameters for all DE variants

Dimension evalmax pop

10 2.00E+05 34
20 2e+51e+6 44
30 1.50E+06 50
50 5e+52.5e+6 80
100 1.00E+06 100

Because of the DE-VNS parameters characteristic mentioned before, the following values for the maximum

and minimum value of par were used – parmin = 0 and parmax = 0.7. We have used an arbitrary step

defined as:

stepfactor =
1

10 ·D · log2 (D)
(24)

Parameters a,b, and m were defined as follows – a = 0, b = 1, m = 0. For competitive settings we use
F = 0.4, 0.6, 0.8 and 1 with defined n0 = 2; δ = 0.05.

Experiments are performed on Pentium dual core computer with 2GB of memory, using MATLAB.

4.3 Comparison

In analysing the behaviour of the proposed algorithm, we focus on the unconstrained continuous multimodal

global optimization problems. To show the robustness of the proposed algorithm, we use the number of

dimensions (D) from 10 to 100, so to cover that problem with the lower dimensions and large scale problem,
as well. For the predefined tolerance around the global optimum, a value of 1e-6 is used. The other stopping

condition is the maximum number of function evaluations, that is 50000*D for Rosenbrock’s function and

10000*D for other functions. Each problem is repeated 25 times in order to obtain credible data.

Number of function evaluations (FEs) is one of the metrics that we are interested in. In addition to FEs

metrics, we are also interested in success rate (SR), or the percentage of successfully achieved optima in the
predefined tolerance.

In Tables 2 to 8, the results of the test are shown. Gray areas indicate that for a given problem, the

tolerance around the global optimum is not reached in all 100% of cases. Tables also display the basic

statistics for function evaluations: minimum FEs number (eval min), average FEs number (eval avg) and

maximum FEs number (eval max ). Another statistic that we are interested in is named fminD and it
presents tolerance, in cases where tolerance around the global optima is achieved, or the difference between

the average cost function and known global optima in other cases. The best results are marked with bold

fields, provided that the metaheuristic achieved SR percentage of 100%. The last column in all of these
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tables is an overall score (OS) for each of selected algorithms. This variable is calculated as:

OS = log

(

∑

D

evalavg

D
fminD

)

,

{

D = 10, 20, 30, 50, for Rosenbrock

D = 10, 20, 50, 100, in other cases
(25)

The overall score is the logarithm of the sum of elements that characterize optimization for the selected

dimensional problem. The average number of function evaluations eval avg is divided with the number of

dimensions, because it is important that both small and large dimensional problems have the same impor-
tance. Not reaching the global minimum is penalized by fminD. Success rate is not included in the formula,

so there is no double counting. Optimization is considered better if OS value is less. The logarithm is used

for scaling the results. Algorithms are ranked using this criterion function in each of these tables.

As it is previously mentioned, DE-VNS is developed for multimodal problems whereon it achieves the best
results. On hard functions, like MPE, Schwefel and Rastrigin, our algorithm has the lowest number of FEs

for all dimensions. That is a notable result, because DE-VNS is compared with state of the art algorithms

for lower dimension problems (DE self-adapted algorithms). Also, DE-VNS performs excellent on large scale

problems. For maximum dimensional problems, on 6 of 7 test functions (Rosenbrock’s and all of multimodal
functions) it has shown to be the fastest algorithm. That result can be indication for future work - to test

DE-VNS at huge scale problems, up to 10000 D, and to compare it with algorithms that are adjusted for

large scale optimization. On unimodal functions JADE, it outperforms all the selected algorithms, except

on 50 dimensional Rosenbrock’s function. According to OS, DE-VNS demonstrates best results on 5 of 7

selected problems.

It should be emphasized that our DE-VNS is the only algorithm that has SR 100% on all test problems

(on all test functions, for all dimensions). CoDE algorithm is the second best in terms of robustness, and it

does not reach 100% success rate in 5 of 28 problems.

In Table 9, all algorithms taken into consideration are ranked for each test function. The last column,

all, is the arithmetic mean of rankings. That value for DE-VNS is 1.43, JADE performed well at all test

functions, and its arithmetic mean of rankings is 2.86. Overall performances of SaDE, “DE/rand/1/bin” and

CoDE are similar. Debest algorithm has a characteristic that converges prematurely at multimodal problems,
and it is the last, as can be seen in Fig. 10.

For each function, we compare the speed of convergence for the four methods that have proved to be the

best- our DE-VNS, JADE, SaDE, and CoDE. We compare the results for 50 and 100 dimensions. For the

comparison, we used the convergence path that is closest to the mean number of function evaluations. Data
are presented in Fig. 11.

Figures for Schwefel’s function indicate that DE-VNS and SaDE converge fast toward the solution. For

Rastrigin, DE-VNS and JADE converge rapidly. On these problems, CoDE algorithm has slow convergence

rate. On the other hand, CoDE algorithm almost always converged toward the solution but its convergence
speed differs from very slow at Schwefel and Rastrigin, to much faster, especially at 100 D Greiwenk and 50

D Rosenbrock.

DE-VNS have the greatest convergence rate for all multimodal problems, except Greiwenk. JADE algo-
rithm is faster for 50 D Griewank, but it does not converge for 100 D. At 100 dimensional problem, CoDE

and DE-VNS have similar speed. Only our algorithm converges toward the solution for every chosen test

function.

5 Conclusion

In this paper, we presented a new approach for solving the continuous global optimization problem. Our

method, called DE-VNS, is based on application of Variable neighbourhood search (VNS) heuristic within

Differential evolution (DE) heuristic. The change of neighbourhoods is used for automatic estimation of the
crossover parameter CR of DE. Numerical results show very good performance of the proposed algorithm.

For example, the success rate on all instances tested was 100%; the computational efforts (the number of
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function evaluations before the global optimum is reached) are consistently smaller than those obtained by

the other methods. Our comparative study was concentrated on comparison with other DE based heuristics.

However, future work may consist in comparison of our hybrid DE-VNS heuristic with other state-of-the-art
heuristics.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Estimated neighbourhood parameter par for a) Schwefel’s; b) Rastrigin’s; c) MPE; d) Rosenbrock’s;
e) Griewank’s; f) Ackley’s
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Table 9: Rankings of compared metaheuristics based on Eq. 25

f1 f2 f3 f4 f5 f6 f7 all

1 DE-VNS 1 1 2 1 1 1 3 1.4286
2 SaDE 2 5 5 3 3 4 2 3.4286
3 DE/Rand/1; F=0.5; CR=0.3 3 2 1 5 5 5 4 3.5714
4 JaDE 4 4 4 2 2 3 1 2.8571
5 CoDE 5 3 3 4 4 2 5 3.7143
6 Debest 6 6 6 6 6 6 6 6

Figure 10: Average rankings of compared metaheuristics

(a) (b)
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(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

(m) (n)

Figure 11: Convergence for a) Schwefel 50D; b) Schwefel 100 D; c) Ackley 50D; d) Ackley 100 D; e) Greiwank
50D; f) Greiwank 100 D; g) Rastrigin 50D; h) Rastrigin 100 D; i) MPE 50D; j) MPE 100 D; k) Rosenbrock
30D; l) Rosenbrock 50 D; m) Sphere 50D; n) Sphere 100 D
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Appendix

A Maximum likelihood estimation for TSP distribution

Let X be a random variable with probability density function given by:

f (x|a,m, b, par) =











(1/par)
b−a

(

x−a
m−a

)
1−par

par

, a < x < m

(1/par)
b−a

(

b−x
b−m

)
1−par
par

, m < x < b

(A.1)

The random variable X is said to follow a TSP distribution F (a, b,m, par) where a ≤ m ≤ b, par > 0 and a

correspondent cumulative distribution function can be expressed as:

F (x|a,m, b, par) =











m−a
b−a

(

x−a
m−a

)
1

par

, a < x < m

1− b−m
b−a

(

b−x
b−m

)
1

par

, m < x < b
(A.2)

For a random sample X = (x1, x2, . . . , xs) with size s from TSP distribution, let the order statistics be
x(1) < x(2) < . . . < x(s). Utilizing expression (26), the likelihood for X is by definition:

L (X ; a,m, b, par) =

(

1

par(b − a)

)s

H (X ; a,m, b)
1

par
−1

(A.3)

where

H (X ; a,m, b) =

r
∏

i=1

(

x(i) − a
)

s
∏

i=r+1

(

b− x(i)

)

(m− a)
r
(b−m)

s−r (A.4)

X(0) = a,X(s) = b and r is implicitly defined by X(r) ≤ m ≤ X(r+1). From (28) follows that two-parameter

MLE procedure maximizing equation as a function ofm and par (with a and b fixed) is two stage optimization

problem, namely we may first determine m̂ at which equation (29) attains its maximum as a function of m.
Next utilizing m̂, we may calculate p̂ar, maximizing L(X ; a,m, b, par) as a function of par. Van Dorp and

Kotz [25] proved that equation (29) attains its maximum, for fixed a and b, at one of the order statistics
(

X(1), X(2), . . . , X(s)

)

. Specifically,

m̂ (a, b) = X(r̂(a,b)) (A.5)

r̂ (a, b) = arg max
r∈{1,2,...,s}

{M (a, b, r)} (A.6)

M (a, b, r) =
r−1
∏

i=1

X(i) − a

X(r) − a

s
∏

i=r+1

b−X(i)

b−X(r)
(A.7)

Utilizing H {X ; a, m̂(a, b), b} = M {a, b, r̂(a, b)}, the maximum likelihood estimator of n, n̂(a, b), maximizing

(28) together with the maximum likelihood estimator of m, m̂(a, b) in (30) is:

pâr (a, b) = − log [M {a, b, r̂(a, b)}]
s

(A.8)
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