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Abstract: In this paper, we study N -player finite-horizon discrete-time dynamic stochastic games where
the uncertainty is described by an event tree. We consider linear-state dynamics, with a one-period lag
structure, and quadratic costs. We derive necessary and sufficient conditions for the existence of S -adapted
Nash equilibria with open-loop and closed-loop (no-memory) information structures. We observe that the
existence of these equilibria is related to the solvability of a generalized backward Riccati recursion defined
on the event tree. Next, we consider these games with (node-specific) linear constraints. We show that
the S -adapted Nash equilibria (both open-loop and closed-loop) can be obtained by solving a parametric
linear-complementarity problem defined on the entire event tree.

Key Words: Linear-quadratic dynamic games; Event tree; Stochastic games; Open-loop Nash equilibria;
Closed-loop Nash equilibria.

Résumé : On étudie dans cet article un jeu stochastique et dynamique à temps discret à N joueurs et où
l’incertitude est décrite par un arbre d’événements. On retient une dynamique linéaire dans l’état impli-
quant un retard d’une période et des coûts quadratiques. On dérive les conditions nécessaires et suffisantes
d’existence d’un équilibre de Nash en boucle ouverte et en boucle fermée. On trouve que l’existence de ces
équilibres est reliée à la solvabilité d’équations de Riccati définies sur l’arbre d’événements. On analyse aussi
le cas où les joueurs font face à des contraintes linéaires. On montre que les équilibres en boucle ouverte et en
boucle fermée peuvent être obtenus en résolvant un problème de complémentarité linéaire défini sur l’arbre
au complet.

Mots clés : jeux dynamiques linéaires-quadratiques; arbre d’événements; jeu stochastiques; équilibres de
Nash en boucle ouverte; équilibres de Nash en boucle fermée.
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1 Introduction

Many decision problems in operations research and management science, economics and engineering share the

following features: (i) They involve few decision makers or players (firms, countries, etc.) having interdepen-

dent payoffs, i.e., the action of one player affects the rewards of the others. (ii) They are inherently dynamic,

i.e., the players compete repeatedly over time and their actions have an impact on the evolution of the state

of the system. (iii) They involve some uncertain parameters. And, (iv) They involve lags in the realization

of actions. An illustrative example is a set of power utilities competing in a given geographical market; the

state variables are the available production capacities (of different technologies) and the control variables

are the quantities put on the market at each period, as well as the investment in production capacities; the

uncertainty can be in the demand or in the cost parameters, or both. A natural methodological framework

to deal with this family of problems is the theory of (discrete) dynamic games played over uncontrolled

event trees, that is, games where the transition from one node to another is an act of nature and cannot be

influenced by the players’ actions. This class of games was initially introduced in Zaccour (1987) and Haurie

et al. (1990) to study noncooperative equilibria in the European natural gas market, which is characterized

by the presence of four suppliers competing over a long-term planning horizon in nine markets described by

stochastic demand laws. The solution concept was termed an S -adapted equilibrium, where the S stands

for sample of realizations of the random process (see Haurie et al. (2012) for details). Gürken et al. (1999)

and Haurie and Moresino (2002) showed that this concept is related to the concept of stochastic variational

inequality. Pineau and Murto (2003), Genc et al. (2007), Genc and Sen (2008) and Pineau et al. (2011)

modeled different energy markets as dynamic games played over an event tree and computed the resulting

S -adapted equilibria. Recently, Reddy et al. (2013) assumed that players can cooperate and proposed a

time-consistent Shapley value to share the proceeds of cooperation among the participating players. In all

these papers, the information structure is open loop, that is, decisions are a function of time and of the initial

conditions of the state variables.

The optimization of dynamic economic systems for the single agent case, in the presence of uncertainty,

has been traditionally approached using stochastic dynamic programming and stochastic programming. In

the former approach one solves the problem by looking for a fixed point of an operator defined in the space

of value functions whereas stochastic programming uses mathematical programming techniques. Stochastic

programming approach can be implemented when the agent actions do not influence the probability measure

of the random process describing the uncertainty. It has an advantage over the dynamic programming

approach in terms of complexity bounds, as it theoretically permits the solution of convex problems in

polynomial time, at least when the uncertainty is represented as an event tree.

In this paper we study a class of games where the random disturbance process has a probability measure

that is not affected by players actions. Using this framework, we aim at extending the stochastic programming

approach to a dynamic game context. More specifically, we study a framework for linear-quadratic games

played over event trees, that is, games where each player’s objective is quadratic in the state and control

variables, where the dynamics are described by linear functions of the state variables, where the uncertainty

is described by a scenario tree, and which also account for linear inequalities that jointly involve state and

control variables. Deterministic linear-quadratic dynamic games have a very long tradition of application, in

both continuous and discrete time. The main reasons for their popularity lies in the availability of theorems

characterizing the existence and uniqueness of equilibria, and in their tractability. For a complete coverage

of the theory of linear-quadratic games, see Başar and Olsder (1998), Dockner et al. (2000) and Engwerda

(2005). A comprehensive survey of linear-quadratic differential games in economics and management science,

covering papers published during the period from 2000 to 2005, is provided in Jørgensen and Zaccour (2006).

We believe that the extension of deterministic linear-quadratic games to a stochastic programming setting

is greatly needed to deal with realistic decision problems characterized by the above-stated features. More

specifically, we characterize S -adapted Nash equilibria for this class of games under open-loop and closed-

loop (no-memory) information structures. To the best of our knowledge, closed-loop equilibria for these

games have not yet been studied in the literature. The focus on linear-quadratic structure is motivated by

the computational possibilities, and also by setting up a general framework for large-scale finite dimensional

linear-quadratic game problems on the event tree that reflect a close resemblance to linear-quadratic difference
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games and stochastic equilibrium programming. In addition to studying multistage (sequential) games under

uncertainty, we provide a formulation that makes it possible to model lags between the time of decision and

its realization, commonly known as time-to-build. Besides these features, the algorithms developed in this

paper can serve as a tool to compare the performance of open-loop and closed-loop equilibria for these games,

called price of information (see Başar and Zhu (2011)).

The rest of this paper is organized as follows: Section 2 introduces the game model, and Section 3, the

S -adapted open-loop and closed-loop (no memory) Nash equilibria in the unconstrained case. We observe

that due to the one-period lag structure in the dynamics, the computation of Nash equilibria involves solving

backward recursive Riccati-type equations defined on the the event tree. Section 4 extends these results

to the setting where the players face linear constraints jointly in the state and control variables. Here, we

restrict the information structure as constrained open-loop and closed-loop structures. We observe that the

necessary conditions lead to a weakly coupled system of backward equations defined on the event tree and

node-specific parametrized linear-complementarity problems, which after a suitable reformulation, allows for

computing the Nash equilibria, by solving a linear-complementarity problem defined on the entire event tree.

We illustrate the implementation of the theory in two examples in Sections 5.1 and 5.2, and briefly conclude

in Section 6.

Notation: In the sequel, we shall use the following notation. M ′ denotes the transpose of a matrix M ∈
Rn×n. Col(A1, A2) represents the column vector/matrix obtained by appending rows ofA2 toA1. Col(Ak)nk=1

represents the column matrix/vector obtained by appending the rows of A1, A2, · · · , An in this sequence.

Similarly, Row(Ak)nk=1 represents the row matrix/vector obtained by appending the rows of A1, A2, · · · , An
in this sequence. BDmat(A1, A2) represents the block diagonal matrix obtained by taking matrices A1 and

A2 as the diagonal elements. BDmat(Ak)nk=1 represents the block diagonal matrix obtained by taking the

matrices A1, A2, · · · , An as diagonal elements in this sequence. A1 ⊗ A2 represents the Kronecker product

of the two vectors/matrices A1 and A2. The null matrix is represented by 0 or 0. The identity matrix is

represented by I or I. We suppress writing the dimensions of matrices and vectors and assume that they are

defined appropriately depending upon the context.

2 Preliminaries

In this section we introduce the multistage game model. Firstly, we briefly describe the event tree which

captures the underlying model of uncertainty. Let T = {0, 1, . . . , T} be the set of periods. Denote by

{ξ(t) : t ∈ T \T} the exogenous stochastic process represented by an event tree. This tree has a root node

n0 in period 0 and has a finite set of nodes nt in period t ∈ T . Each node nt ∈ nt represents a possible

sample value of the history of the ξ(·) process up to time t. The tree graph structure represents the nesting

of information as one one-time period succeeds another. We denote by a(nt) ∈ nt−1 the unique predecessor

of node nt ∈ nt, and by ν a successor of the node nt. We denote by S(nt) ∈ nt+1 the set of all possible

direct successors of node nt. We illustrate a branch of the event tree in Figure 1. A path from the root node

n0 to a terminal node nT is called a scenario. Each scenario has a probability and the probabilities of all

scenarios sum up to 1. We denote by π(nt) the probability of passing through node nt, which corresponds

to the sum of the probabilities of all scenarios that contain this node. In particular, π(n0) = 1 and π(nT )

is equal to the probability of the single scenario that terminates in (leaf) node nT ∈ nT . We denote by πνnt
the transition probability from node nt to a particular node ν ∈ S(nt). We denote by πνnt the row vector of

transition probabilities, that is,

π
S(nt)
nt =

[
πν

1

nt πν
2

nt · · · πν
|S(nt)|

nt

]
,

where ν1, ν2, · · · , ν|S(nt)| are the successors of node nt.

Next, denote by N̄ = {1, 2, . . . , N} the set of players. Let x(nt) ∈ X ⊂ Rn, with n a given positive

integer, be a state vector at node nt. The control/action/decision sets of player j at node nt, Un
t

j are taken

as measurable subsets of Rm
nt

j , with mnt

j being a given positive integer. Denote by uj(n
t) ∈ Untj the decision
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a(nt)

nt
ν

nt nt+1

S(nt)

Figure 1: Branch of the event tree

variable of player j at node nt ∈ nt. The state equation defined over the event tree is given as follows:

x(nt) = A(a(nt))x(a(nt)) +
∑
l∈N̄

Bl(a(nt))ul(a(nt)), nt ∈ nt, t ∈ T \0, x(n0) = x0 ∈ X, (1)

where A(nt) ∈ Rn×n and Bi(n
t) ∈ Rn×m

nt

j . According to the state equation (1), at each node nt ∈ nt, the

players, using the actions ui(n
t), i ∈ N̄ , influence the state x(ν) for all successor nodes ν ∈ S(nt). The state

variable at node nt in (1) depends on the state variable and the controls chosen at the ancestor node a(nt).

Here, the decisions are taken by players before the realization of uncertainty. So, (1) reflects a one-period

lag1 in the dynamics, and as a result, we have x(ν1) = x(ν2), ∀ν1, ν2 ∈ S(nt) such that ν1 6= ν2.

We assume that each player i is endowed with an additional decision variable vi(n
t) ∈ V nti at each node of

the event tree. The feasible action sets V n
t

i are measurable subsets of Rs
nt

i
+ , with sn

t

i a given positive integer.

These additional decision variables allow players to influence the game after the realization of uncertainty.

We assume that the decision variables vi(n
t) do not enter the dynamics directly2 but appear only in the form

of linear constraints, jointly with the state variable, at every node nt as follows

Mi(n
t)x(nt) +Ni(n

t)vi(n
t) + ri(n

t) ≥ 0, vi(n
t) ≥ 0, nt ∈ nt, t ∈ T , i ∈ N̄ , (2)

where Mi(n
t) ∈ Rcn

t

i ×n, Ni(n
t) ∈ Rcn

t

i ×s
nt

i and ri(t) ∈ Rcn
t

i . We denote by Unt = Un
t

1 × . . .×Un
t

j . . .×UntN
and Vnt = V n

t

1 × V nt2 × · · · × V ntN the joint decision sets of the players. The joint actions of players, at

every node nt, are denoted by u(nt) = (u1(nt), . . . , uN (nt)) and v(nt) = (v1(nt), · · · , vN (nt)). We denote by

ũi = {ui(nt), nt ∈ nt, t ∈ T \T} and by ṽi = {vi(nt), nt ∈ nt, t ∈ T } the strategies, that is, a complete

specification of actions defined for every node of the event tree, for player i. Note that the decision variables

are indexed over the set of nodes in the event tree, with each node being an exhaustive summary of the

history of the ξ(·) process. Making the decision variables depend on the nodes in the event tree is therefore

equivalent to saying that the decisions are adapted to the history of the ξ(·) process. Here, the players are

permitted to adapt their decisions to the sample path of the stochastic process but are not observing what

the other players do when time unfolds. So, the strategies of players are sample path adapted, denoted by

S -adapted, and defined formally as follows.

1 It is possible to model longer lags, but we restrict our attention to one period. We will see in Section 3 that this assumption
facilitates the recursive formulations for the computation of Nash equilibria.

2 As an illustrative example, the u variables can be investments in production capacities to be engaged before knowing the
realization of the random process at the next period, and the v variables are the quantities put on the market at current node,
and are subject to capacity constraints.
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Definition 1 An admissible S-adapted strategy for player i is defined by ũi = {ui(nt), nt ∈ nt, t ∈ T \T}
and ṽi = {vi(nt), nt ∈ nt, t ∈ T }. It defines the plan of actions adapted to the history of the random process

ξ(.) represented by the event tree.

We denote the admissible strategy space for player i as (Ũi, Ṽi), the Cartesian product of the action spaces

over all the nodes of the event tree. We denote by (ũ, ṽ) the joint admissible S -adapted strategies of players,

where ũ = (ũ1, . . . , ũN ) and ṽ = (ṽ1, . . . , ṽN ). In this state equation formalism, the players’ decisions are the

actions ui(n
t) and vi(n

t), which are chosen independently. The state variables x(nt) are determined once the

actions have been chosen. The state variables are shared by all the players and they enter the definition of

players’ objective functions. In the following we define two types of games; one without constraints denoted

by LQGET (linear-quadratic game played over event tree) and one with constraints denoted by Con-LQGET

(constrained linear-quadratic game played over event tree). The rationale behind this distinction is as follows.

The unconstrained game has a close resemblance to deterministic linear-quadratic difference games, see Basar

and Olsder (1998), and results in special recursive formulations towards the computation of Nash equilibria.

Next, using these results we shall compute the Nash equilibria of the constrained game.

The unconstrained game is defined as follows:

LQGET min
ũi

Ji(x0, ũ)

Ji(x0, ũ) =

T−1∑
t=0

∑
nt∈nt

π(nt)
(1

2
x′(nt)Qi(n

t)x(nt) + p′i(n
t)x(nt) +

1

2

∑
j∈N̄

u′j(n
t)Rij(n

t)uj(n
t)
)

+
∑

nT∈nT

π(nT )
(1

2
x′(nT )Qi(n

T )x(nT ) + p′(nT )x(nT )
)

(3)

subject to: x(nt) = A(a(nt))x(a(nt)) +
∑
l∈N̄

Bl(a(nt))ul(a(nt)), x(n0) = x0.

At each node nt, t ∈ T \T , the cost to player i is a quadratic function of the state and of the controls of

all players. At a terminal node nT the cost to player i is a quadratic function of the terminal state x(nT ).

Qi(n
t) ∈ Rn×n is a symmetric matrix and Rii(n

t) ∈ Rmn
t

i ×m
nt

i is a positive definite matrix, and pi(n
t) ∈ Rn

for all nt ∈ nt, t ∈ T . The optimizing behavior of a player i depends on the actions of players N̄\i and

the interaction environment is captured by the dynamics (1). Hence, the above LQGET model defines a

(multistage) linear-quadratic game defined on event tree. In the next section, we derive necessary conditions

for a particular outcome of LQGET when players play non cooperatively.

The constrained game is defined as follows:

Con-LQGET min
ũi,ṽi

Ji(x0, ũ, ṽ)

Jci(x0, ũ, ṽ) = Ji(x0, ũ) +

T∑
t=0

∑
nt∈nt

π(nt)

2

(
v′(nt)T i(nt)v(nt) + 2ti

′
(nt)v(nt) + 2x′(nt)Li(nt)v(nt)

)
(4)

subject to: x(nt) = A(a(nt))x(a(nt)) +
∑
l∈N̄

Bl(a(nt))ul(a(nt)), x(n0) = x0

Mi(n
t)x(nt) +Ni(n

t)vi(n
t) + ri(n

t) ≥ 0, vi(n
t) ≥ 0, nt ∈ nt, t ∈ T , i ∈ N̄ ,

where T i(t) = T i
′
(t) ∈ Rsn

t
×sn

t

, ti(nt) ∈ Rsn
t

, Li(nt) ∈ Rn×sn
t

and cn
t

i is a positive integer. We assume

T i(nt) as symmetric and denote by v′i(n
t)T iij(n

t)vj(n
t) the cross term between controls of players i and j. We

denote the remaining coefficients of vi(n
t) by x′(nt)Lii(n

t) and tii(n
t). The objective function in the above

model does not include cross terms between the controls ũ and ṽ, and hence it has a separable structure.

We shall see in Section 4 that this assumption allows to take stock on the results obtained for the LQGET

model.

Remark 1 The above game models have a different structure compared to the discrete-time linear-quadratic

stochastic game (see Section 6.7 of Başar and Olsder (1998)), where the uncertain parameter enters the state
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dynamics additively. The main difference is that the uncertainty lies in nature choosing the scenarios, and

the evolution of state is indexed over these scenarios. In that sense, the above game models are qualitatively

closer to problems studied in multistage stochastic programming (see Rockafellar and Wets (1990)), see also

Remark 3.

3 LQGET model

In this section we provide necessary conditions for an S -adapted equilibrium in the LQGET model. We have

the following definition.

Definition 2 An S-adpated equilibrium is an admissible S-adapted strategy ũ∗ if the following relations hold:

Ji(x0, (ũ
∗
i , ũ
∗
−i)) ≤ Ji(x0, (ũi, ũ

∗
−i)), ∀ũi ∈ Ũi,

for all i ∈ N̄ , subject to (1).

We can formulate the necessary conditions for an S -adapted equilibrium by defining the Lagrangian for

each player i as follows:

Li(x̃, (ui, ũ∗−i), λ̃i)

=
1

2

(
x′(n0)Qi(n

0)x(n0) + 2p′i(n
0)x(n0) + ui

′(n0)Rii(n
t)ui(n

0) +
∑
j∈N̄\i

u∗j
′(n0)Rij(n

0)u∗j (n
0)
)

+

T−1∑
t=1

∑
nt∈nt

π(nt)

2

x′(nt)Qi(nt)x(nt) + 2p′i(n
t)x(nt) + u′i(n

t)Rii(n
t)ui(n

t) +
∑
l∈N̄

u∗j
′(nt)Rij(n

t)u∗j (n
t)


+
∑
nT

π(nT )

2

(
x′(nT )Qi(n

T )x(nT ) + 2p′i(n
T )x(nT )

)
+ λ′i(n

0)
(
x0 − x(n0)

)
+

T∑
t=1

∑
nt∈nt

π(nt)λ′i(n
t)

A(a(nt))x(a(nt)) +Bi(a(nt))ui(a(nt)) +
∑
j∈N̄\i

Bj(a(nt))u∗j (a(nt))− x(nt)

 . (5)

In the above expression, we have introduced, for each player i, a Lagrange multiplier λi(n
t), also indexed

over the set of nodes and having the same dimension as x(nt). We observe the following: Due to the one-

period lag in the dynamics, the state variable at all successor nodes ν ∈ S(nt), of the node nt, has the same

value. The last expression in the above Lagrangian reflects this feature, that is, the costate variable evaluated

at ν ∈ S(nt) is multiplied with terms evaluated at the ancestor node nt. This allows us to aggregate the

costate variables as a conditional sum denoted by λi(S(nt)) =
∑
ν∈S(nt) π

ν
ntλi(ν) (from here on, we denote

by z(S(nt)) the conditional sum
∑
ν∈S(nt) π

ν
ntz(ν) evaluated at the successors ν of S(nt).) This observation

allows us to define, for each player i ∈ N̄ and each node nt ∈ nt, t ∈ T \T the following pre-Hamiltonian

function:

H̃i(x(nt), ui(n
t), u∗−i(n

t), λi(S(nt))) = λ′i(S(nt))

(
A(nt)x(nt) +Bi(n

t)ui(n
t) +

∑
j∈N̄\i

Bj(n
t)u∗j (n

t)

)

+
1

2

(
x′(nt)Qi(n

t)x(nt) + 2p′i(n
t)x(nt) +

∑
j∈N̄\i

u∗j
′(nt)Rij(n

t)u∗j (n
t)
)
,

= Hi(x(nt), ui(n
t), u∗−i(n

t), λi(S(nt))) + p′i(n
t)x(nt). (6)

The necessary condition for a strategy profile ũ∗ to be an S -adapted equilibrium is given as follows:

Theorem 3.1 Assume that ũ∗ is an S-adapted equilibrium at x0, generating the state trajectory x̃∗ over the

event tree. Then there exists, for each player i, a costate trajectory λ̃i such that the following conditions hold

for i ∈ N̄ :
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∂Hi
∂ui(nt)

= 0→ u∗i (n
t) = −R−1

ii (nt)B′i(n
t)λi(S(nt)), (7)

λi(n
t) =

∂Hi(.)
∂xi(nt)

+ pi(n
t), nt ∈ nt, t ∈ T \T, (8)

λi(n
T ) = Qi(n

T )x∗(nT ) + pi(n
T ), nT ∈ nT . (9)

Proof. In the expression of the Lagrangian (5), using (6), we group together the terms that contain x(nt),

to obtain

Li
(
x̃, (ũi, ũ

∗
−i), λ̃i

)
=

T−1∑
t=0

∑
nt∈nt

π(nt)

(
Hi(x(nt), ui(n

t), u∗−i(n
t), λi(S(nt))) + pi(n

t)x(nt)− λ′i(nt)x(nt)

)
+

∑
nT∈nT

π(nT )

(
1

2
x′(nT )Qi(n

T )x(nT ) + p′i(n
T )x(nT )− λ′i(nT )x(nT )

)
+ λ′i(n

0)x0

Equations (7)–(9) are obtained by taking the partial derivatives of the Lagrangian with respect to ui(n
t) at

u∗i (n
t) and x(nt) at x∗(nt).

From the above necessary conditions, it is clear that the S -adapted equilibrium depends upon the infor-

mation that players use during the decision-making process. More precisely, if Γn
t

i denotes the information

set available to player i at node nt, then the admissible actions available to the player are governed by Γn
t

i .

We will consider two widely used information sets.3 Firstly, players can design their equilibrium strategy,

indexed over the nodes of the event tree, at the beginning of the planning period, and then stick to that

strategy throughout the entire planning period. This is called S -adapted open-loop strategy. Secondly, play-

ers can design a rule for choosing actions at each node of the event tree, based on the observations of the

state allowing for continuous revision of the strategy. This is called an S -adapted closed-loop strategy. We

define these behavioral notions formally in the following definition:

Definition 3 In an N-person LQGET of prespecified fixed duration, we say that player i’s information struc-

ture is an

1. S-adapted open-loop pattern if Γo
i
nt = {nt;x0}, with the initial state x0 being fixed and a known param-

eter of the game.

2. S-adapted closed-loop no-memory pattern if Γc
i
nt = {x(nt)}.

In the first case, the players use ui(n
t) = γoi (n

t;x0), where γoi ∈ Un
t

i , and as a result, the term ∂ui(n
t)

∂x(nt) = 0

in (8). Whereas, in the latter case, players use ui(n
t) = γci (x(nt)), where γci : X → Un

t

i is a measurable

mapping, and, as a result, the term ∂ui(n
t)

∂x(nt) 6= 0 in (8). In the remaining discussion, we derive necessary

conditions for the S -adapted Nash equilibrium with these behavioral assumptions.

3.1 S-adapted open-loop Nash equilibrium

In the computation of an open-loop S -adapted equilibrium, the control action depends only on the node nt

in the event tree. Therefore, (8) leads to

λi(n
t) =A′(nt)λi(S(nt)) +Qi(n

t)x∗(nt) + pi(n
t), nt ∈ nt, t ∈ T \T,

λi(n
T ) = Qi(n

T )x∗(nT ) + pi(n
T ), nT ∈ nT , i ∈ N̄ . (10)

3 It is possible to introduce more general information structures, for instance, those that involve memory. However, we restrict
our analysis to open-loop and closed-loop no-memory structures to avoid informational non-uniqueness of the Nash equilibria
(see Başar and Olsder (1998) for more details).
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Similarly, writing the same for the remaining players and letting Si(n
t) = Bi(n

t)R−1
ii (nt)B′i(n

t), and using

(7) in the state equation (1) gives

x∗(ν) = A(nt)x∗(nt)−
∑
l∈N̄

Sl(n
t)λl(S(nt)), ν ∈ S(nt), nt ∈ nt, t ∈ T \0, x∗(n0) = x0. (11)

Note that the right-hand side of the equilibrium state dynamics contains terms that are averaged over all the

nodes ν ∈ S(nt). Consequently, we have x∗(ν1) = x∗(ν2), ∀ν1, ν2 ∈ S(nt). The above equations provide a set

of necessary conditions for the open-loop S -adapted Nash equilibrium in the form of a two-point boundary-

value problem (10)–(11). There may or may not exist a solution for these problems. Further, if the above

equations are solvable, there can be more than one solution (see Başar and Olsder (1998) and Jank and

Abou-Kandil (2003) in a deterministic difference game context). The following theorem provides sufficient

conditions for the existence of a unique S -adapted open-loop Nash equilibrium.

Theorem 3.2 For an N -person LQGET, let Λo(S(nt), nt) and Ko
i (nt) (nt ∈ nt, i ∈ N̄) be matrices of

appropriate dimensions, defined by

Λo(S(nt), nt) = I +
∑
l∈N̄

Sl(n
t)Ko

l (S(nt)), (12)

Ko
i (nt) = Qi(n

t) +A′(nt)Ko
i (S(nt))Λ−1

o (S(nt), nt)A(nt), nt ∈ nt, t ∈ T \T, Ko
i (nT ) = Qi(n

T ). (13)

If the matrices Λo(S(nt), nt), nt ∈ nt, t ∈ T \T , thus recursively defined, are invertible, then the game admits

a unique S adapted open-loop Nash equilibrium solution for player i ∈ N̄ given by

u∗i (n
t) ≡ γoi (x0, n

t) =−R−1
ii (nt)B′i(n

t)
(
Ko
i (S(nt))Λ−1

o (S(nt), nt)A(nt)x∗(nt)
)

−R−1
ii (nt)B′i(n

t)
(
βoi (S(nt))−Ko

i (S(nt))Λ−1
o (S(nt), nt)

∑
l∈N̄

Sl(n
t)βol (S(nt))

)
, (14)

where x̃∗ is the associated state trajectory determined from

x∗(ν) = Λ−1
o (S(nt), nt)

(
A(nt)x∗(nt)−

∑
l∈N̄

Sl(n
t)βol (S(nt))

)
, ∀ν ∈ S(nt), x(n0) = x0, (15)

with βoi (n
t) recursively defined by

βoi (n
t) = pi(n

t) +A′(nt)
(
βoi (S(nt))−Ko

i (S(nt))Λ−1
o (S(nt), nt)

∑
l∈N̄

Sl(n
t)βol (S(nt))

)
,

nt ∈ nt, t ∈ T \T, βi(nT ) = pi(n
T ), nT ∈ nT . (16)

Proof. See Appendix.

We show in the following corollary that the invertibility of the matrices {Λo(S(nt), nt), nt ∈ nt, t ∈ T \T}
is a sufficient condition for unique solvability of the two-point boundary-value problem (10)–(11) defined on

the event tree.

Corollary 3.3 If the set of backward equations (12), (13) and (16) admit a solution then the two-point

boundary-value problem (10)–(11) has a unique solution.

Proof. See Appendix.

Remark 2 We emphasize that, though u∗i (n
t) appears affine in the state x∗(nt), the players actually implement

u∗(nt) = γo(nt;x0) (to be consistent with Definition 3). This is achieved by representing x∗(nt) as a function

of x∗0 and nt using (15) recursively.
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Remark 3 Note that (13) is a generalized coupled Riccati-type recursive equation defined on the event tree.

We use the term generalized to emphasize that the computation of Ko
i (nt) involves computing the expected

sum of Ko
j (ν), j ∈ N̄ , over all the successor nodes, ν ∈ S(nt), of nt. This feature is due to the one-period-lag

assumption in the state dynamics (1). So, starting at the leaf nodes, matrices Ko
i (nt) are computed recursively

for the entire event tree using (13). Riccati equations defined over event/scenario trees have been studied

earlier in the context of multistate stochastic programming. Salinger and Rockafellar (1999) apply operator

splitting methods to solve a class of multistage stochastic programs and arrive at a linear-quadratic control

problem defined over event trees as one of the subproblems. They show that this subproblem can be solved using

linear feedback solution, which includes a backward Riccati recursion defined on the event tree. Blomvall and

Lindberg (2002a, 2002b) show that certain linear and nonlinear multistage stochastic optimization problems

can be solved by combining primal interior point methods with a linear-quadratic control problem over the

scenario tree, which again leads to a backward Riccati equation defined on the event tree. Our paper is

concerned with linear-quadratic multistage games defined over event trees, and in this regard we obtain a

coupled Riccati recursion over the event tree.

Next, (16) is a linear-backward recursive equation starting at the leaf nodes of the event tree. The

parameters entering this equation depend4 upon the solution of (13). We denote βo(nt) = Col(βoi (n
t))Ni=1,

and represent (16) in vector form as follows:

βo(nt) = p(nt) + Go(S(nt), nt)βo(S(nt)), nt ∈ nt, t ∈ T \T, βo(nT ) = p(nT ), (17)

where p(nt) is again a vector representation of pi(n
t), i ∈ N̄ , and the open-loop gain matrix Go(S(nt), nt)

is given by [
Go(S(nt), nt)

]
ij

=

{
−A′(nt)(Ko

i (S(nt))Λ−1
o (S(nt), nt)Sj(n

t)), i 6= j

A′(nt)−A′(nt)Ko
i (S(nt))Λ−1

o (S(nt), nt)Si(n
t), i = j.

3.2 S-adapted closed-loop (no-memory) Nash equilibrium

We assume that the players use strategies of the type ui(n
t) = γci (x(nt)). The adjoint equation (8) has the

following form:

λi(n
t)=Qi(n

t)x∗(nt)+pi(n
t)+

A(nt) +
∑
j∈N̄\i

Bj(n
t)
∂u∗j (n

t)

∂x∗(nt)

′λi(S(nt))+
∑
j∈N̄\i

(
∂u∗j (n

t)

∂x∗(nt)

)′
Rij(n

t)u∗j (n
t),

nt ∈ nt, t ∈ T \T, λi(nT ) = Qi(n
T )x∗(nT ) + pi(n

T ). (18)

Coupled with (1) and (7), the above equation results in a two-point boundary-value problem, and provides

necessary conditions for the existence of an S -adapted closed-loop Nash equilibrium. Like before, we provide

the sufficient conditions for the existence of a unique S -adapted closed-loop no-memory Nash equilibrium in

the following theorem:

Theorem 3.4 For an N -person LQGET, let Λc(S(nt), nt) and Kc
i (nt) (nt ∈ nt, i ∈ N̄) be matrices of the

appropriate dimensions, defined by

Λc(S(nt), nt) = I +
∑
l∈N̄

Sl(n
t)Kc

l (S(nt)), (19)

Kc
i (nt) = Qi(n

t) +A′(nt)
∑
l∈N̄

Θ′il(S(nt), nt)Kc
l (S(nt))Λ−1

c (S(nt), nt)A(nt), (20)

nt ∈ nt, t ∈ T \T, Ko
i (nT ) = Qi(n

T ),

where

Θij(S(nt), nt) =

{
I −

∑
j∈N̄\i Sj(n

t)Kc
j (S(nt))Λ−1

c (S(nt), nt), i = j,

Sij(n
t)Kc

j (S(nt))Λ−1
c (S(nt), nt), i 6= j,

4 Note that the solution of (13) does not depend on (16). We will see in Section 4 that this feature facilitates solving the
constrained LQGET model.
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and Sij(n
t) = Bj(n

t)R−1
jj (nt)Rij(n

t)R−1
jj (nt)B′j(n

t), i 6= j. If the matrices Λc(S(nt), nt), nt ∈ nt, t ∈ T \T ,

thus recursively defined, are invertible, then the game admits an S-adapted closed-loop no-memory Nash

equilibrium solution for player i ∈ N̄ , which is given by

u∗i (n
t) ≡ γci (nt) =−R−1

ii (nt)B′i(n
t)
(
Kc
i (S(nt))Λ−1

c (S(nt), nt)A(nt)x∗(nt)
)

−R−1
ii (nt)B′i(n

t)
(
βci (S(nt))−Kc

i (S(nt))Λ−1
c (S(nt), nt)

∑
l∈N̄

Sl(n
t)βcl (S(nt))

)
, (21)

where x̃∗ is the associated state trajectory determined from

x∗(ν) = Λ−1
c (S(nt), nt)

(
A(nt)x∗(nt)−

∑
l∈N̄

Sl(n
t)βcl (S(nt))

)
, ν ∈ S(nt), x(n0) = x0,

with βci (n
t) recursively defined by

βci (n
t) = pi(n

t) +A′(nt)
∑
j∈N̄

Θ′ij(S(nt), nt)
(
βcj (S(nt))−Kc

j (S(nt))Λ−1
c (S(nt), nt)

∑
l∈N̄

Sl(n
t)βcl (S(nt))

)
,

nt ∈ nt, t ∈ T \T, βci (nT ) = pi(n
T ), nT ∈ nT . (22)

Proof. See Appendix.

Remark 4 The above approach for finding the closed-loop (no-memory) Nash equilibrium suffers with the

problem of informational non uniqueness, see Başar and Olsder (1998). To observe this, firstly we imposed a

linear structure for the costate variable that leads to an affine structure of control (44), which again influences

the costate variable (18) through (45); see also Footnote 5. One way to circumvent the problem is to assume

that players are restricted at the outset to memoryless strategies (affine in state variable here) and solve the

minimization problem, given in Definition 4. This approach, however, leads to a different problem formulation

and system of equations, see Lukes (1971).

Again, we observe that (20) is a generalized coupled Riccati-type recursive equation defined on the event

tree, due to the one-period lag in the dynamics (1). Next, (22) is a linear-backward recursive equation

starting at the leaf nodes of the event tree. Note that the above equations are structurally similar5 to those
obtained for the open-loop case. Like before, (22) can be represented in the following vector form:

βc(nt) = p(nt) + Gc(S(nt), nt)βc(S(nt)), nt ∈ nt, t ∈ T \T, βc(nT ) = p(nT ), (23)

where the closed-loop gain is given by

[
Gc(S(nt), nt)

]
ij

= A′(nt)Θ′ij(S(nt), nt)−A′(nt)

(∑
l∈N̄

Θ′il(S(nt), nt)Kc
l (S(nt))Λ−1

c (S(nt), nt)

)
Sj(n

t).

So far, we have discussed a dynamic game model where the players make decisions before the realization

of uncertainty, and without constraints. In the next section we shall discuss a particular class of stochastic

dynamic games where players can influence the game after the realization of uncertainty. Further, these

decision variables enter the game description in the form of constraints jointly with the state variable.

4 Constrained LQGET model

In this section we provide necessary conditions for an S -adapted equilibrium in the Con-LQGET model. We

have the following definition:

5 We can recover the open-loop S -adapted equilibrium from (19)–(22) by replacing Θ with the identity matrix.
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Definition 4 A constrained S-adpated equilibrium is an admissible S-adapted strategy (ũ∗, ṽ∗) if the following

relations hold:

Jci(x0, (ũ
∗
i , ũ
∗
i−), (ṽ∗i , ṽ

∗
i−)) ≤ Jci(x0, (ũi, ũ

∗
i−), (ṽi, ṽ

∗
i−)), ∀ũi ∈ Ũi, ṽi ∈ Ṽi,

for all i ∈ N̄ , subject to (1) and (2).

We introduce the Lagrangian connected with player i’s minimization problem as follows:

Lci(x̃, (ui, ũ∗−i), (vi, ṽ∗−i), λ̃i, µ̃i) = Li(x̃, (ui, ũ∗−i), λ̃i)

+

T∑
t=0

∑
nt∈nt

π(nt)
(
tii
′
(nt)vi(n

t) + x′(nt)Lii(n
t)vi(n

t) + ti−i
′
(nt)v∗−i(n

t) + x′(nt)Li−i(n
t)v∗−i(n

t)
)

+

T∑
t=0

∑
nt∈nt

π(nt)

2

(
v′i(n

t)T iii(n
t)vi(n

t) + 2v′i(n
t)T ii,−iv

∗
−i(n

t) + v∗−i
′(nt)T i−i,−iv

∗
−i(n

t)
)

−
T∑
t=0

∑
nt∈nt

π(nt)µ′i(n
t)
(
Mi(n

t)x(nt) +Ni(n
t)vi(n

t) + ri(n
t)
)
, (24)

where µ̃i is the multiplier associated with constraints (2). In the LQGET model, we gave necessary conditions

in Theorem 3.1 for an S -adapted equilibrium strategy, without making a prior distinction about whether the

players will base their decision on their location on the event tree or on the state variable. Later, while

computing the adjoint variable, such a distinction was made to arrive at the different behavioral strategies.

In the constrained case, the adjoint variable λi(n
t), evaluated by taking the partial derivative of the above

Lagrangian with respect to the state variable, is a function of the terms ∂ui(n
t)

∂x(nt) and ∂vi(n
t)

∂x(nt) . Further, we

observe that the state variable inherently affects the actions v(nt) as a parameter entering the node specific

constraint. The information structure depends on how players view the state variable available at nt: as a

parameter entering the constraint or as an additional instrument on which to base their action. Therefore,

the constrained model needs a deeper analysis and we elaborate on a specific information structure in the

next subsection.

4.1 Constrained information structure and S-adapted Nash equilibrium

As before, players can condition their actions ui(n
t) on the position of the node on the event tree as ui(n

t) =

γoi (n
t;x0), or on the state variable as ui(n

t) = γci (x(nt). For the actions vi(n
t) there are again two possibilities:

players treat the state variable as a parameter entering the constraint as vi(n
t) = δi(n

t;x(nt)), or as a function

of the state variable as vi(n
t) = δi(x(nt).6 In summary, all of these four situations can occur. We restrict

our attention to the case v(nt) = δi(n
t;x(nt)) ∈ ∆i(x(nt)), where ∆i(x(nt)) ⊂ V n

t

i is the action set that

ensures feasibility of (2). We will see that this assumption uses a natural extension of LQGET model towards

computing the S -adapted Nash equilibrium. Further, this assumption has the following interpretation: the

players make decisions based on the location in the event tree and the state variable enters the feasibility

constraints. Next, the latter case v(nt) = δi(x(nt)) leads to pure state constraints at each node nt of the event

tree. It is not clear at the moment which functional forms of δ(.) would facilitate a closed-form analysis akin

to the previous case. So we consider the following two information structures I = {Co, Cc} in the remaining

analysis, where:

• Co - constrained S -adapted open-loop pattern if player i uses ui(n
t) = γoi (n

t;x0) and vi(n
t) =

δi(n
t;x(nt)),

• Cc - constrained S -adapted closed-loop pattern if player i uses ui(x(nt)) = γci (x(nt)) and vi(n
t) =

δi(n
t;x(nt)).

Next, the necessary conditions for (ũ∗, ṽ∗) to be an admissible S -adapted Nash equilibrium for Con-

LQGET, with information structure I, is given in the following theorem.

6 The distinction surfaces clearly when the dimension of x(nt) is greater than one.



Les Cahiers du GERAD G–2013–37 11

Theorem 4.1 Assume that (u∗,v∗) is an S-adapted equilibrium, with an information pattern I, generating

the state trajectory x̃∗ over the event tree. Then there exists, for each player i, a costate profile λ̃i and a

multiplier profile µ̃i such that the following conditions hold for i ∈ N̄ :

u∗i (n
t) = −R−1

ii (nt)B′i(n
t)λi(S(nt)), nt ∈ nt, t ∈ T \T, (25)

x∗(nt) = A(a(nt))x∗(a(nt)) +
∑
l∈N̄

Bl(a(nt))u∗l (a(nt)), nt ∈ nt, t ∈ T \0, x(n0) = x0, (26)

λi(n
t) =

∂Hi(.)
∂x∗(nt)

+ pi(n
t)−M ′i(nt)µi(nt) + Li(nt)v∗(nt), nt ∈ nt, t ∈ T \T, (27)

λi(n
T ) = Qi(n

T )x∗(nT ) + pi(n
T )−M ′i(nT )µi(n

T ) + Li(nT )v∗(nT ),

T iiiv
∗
i (nt) +

∑
j∈N̄\i

T iijv
∗
j (nt) + Lii

′
(nt)x∗(nt)−N ′i(nt)µi(nt) + tii(n

t) ⊥ v∗i (nt), (28)

Mi(n
t)x∗(nt) +Ni(n

t)v∗i (nt) + ri(n
t) ⊥ µi(nt), nt ∈ nt, t ∈ T . (29)

Proof. See Appendix.

A few comments on the role of the one-period lag in the dynamics and separable cost structure are in order.

In the LQGET model, we noticed that the one-period lag in the dynamics resulted in recursive formulations

towards computing the equilibria. In the Con-LQGET, we obtain similar recursive formulations due to the

one-period lag and the restriction of the information structure to either Co or Cc. This is clear from the three

necessary conditions (25)–(27), as they are similar to those of a LQGET model with the vector pi(t) replaced

with pi(t) − M ′i(n
t)µi(n

t) + Li(nt)v∗(nt). So we represent this set of equations as LQGET(µ̃, ṽ∗). The

last two equations represent the necessary conditions for the solution of a linear-complementarity problem,

usually associated with solving for Nash equilibria in static games, computed at each node of the event

tree and parametrized with the equilibrium state trajectory x̃∗. This is a consequence of the separable cost

structure. We represent them as LCP(x̃∗). In summary, the S -adapted equilibrium in the Con-LQGET

model is obtained by solving these (weakly) coupled systems of equations.

Remark 5 We emphasize that the necessary conditions given by (25)–(29) are not sufficient. So, solving
them result in candidates for constrained Nash equilibria. A few comments related to this aspect are given in

Remark 6.

4.2 Reformulation as a linear-complementarity problem

In this subsection, we illustrate a procedure for solving the system of equations (25)–(29). To start, note

that LQGET(µ̃, ṽ∗) also results in recursive equations similar to (17) and (23), which are structurally the

same, except for the gain terms, which differ for the open-loop and closed-loop cases. So, from now on we

suppress the superscripts. We replace pi(n
t) in (16) or (22) with pi(t)−M ′i(nt)µi(nt) + Li(nt)v∗(nt) for all

i ∈ N̄ to obtain the following linear recursion in vector form:

β(nt) = p(nt) +
[
L1(nt)−M′

1(nt)
] [v∗(nt)
µ(nt)

]
+ G(S(nt), nt) β(S(nt)), nt ∈ nt, t ∈ T \T,

β(nT ) = p(nT ) +
[
L1(nT ) −M′

1(nT )
] [v∗(nT )
µ(nT )

]
, (30)

where L1(nt) = Col(Li(nt))Ni=1, M1(nt) = BDmat(Mi(n
t))Ni=1 and µ(nt) = Col(µi(n

t))Ni=1. Denoting S(nt) =

Row(Si(n
t))Ni=1, the state equation is represented as follows:

x∗(S(nt)) = Λ−1(S(nt), nt)
(
A(nt)x∗(nt)− S(nt)β(S(nt))

)
, nt ∈ nt, t ∈ T \T, x(n0) = x0. (31)
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Next, the vector representation of LCP(x∗(nt)) is given by[
T(nt) −N′(nt)
N(nt) 0

] [
v∗(nt)
µ(nt)

]
+

[
L′2(nt)
M2(nt)

]
x∗(nt) +

[
t(nt)
r(nt)

]
⊥
[
v∗(nt)
µ(nt)

]
, (32)

where [T(nt)]ij = T iij(n
t), N(nt) = BDmat(Ni(n

t))Ni=1, L2(nt) = Row(Lii(n
t))Ni=1, M2(nt) = Col(Mi(n

t))Ni=1,

t(nt) = Col(tii(n
t))Ni=1 and r(nt) = Col(ri(n

t))Ni=1. We introduce some additional notation before presenting

the main results. First, we enumerate the event tree as n = {n0,n}, where n = {n1,n2 · · · ,nT } and

nt = {nt1, nt2, · · · , nt|nt|}. Observe that (30) is a backward-linear recursion defined at each node nt of the

event tree relating to its successors S(nt). We denote β(nt) = Col(β(nti))
|nt|
i=1 and provide a relation with

β(nt+1) in Lemma 4.2. Again denoting β(n) = Col(β(nti))
T
i=1, in the same lemma, we provide a relation of

β(n) with the parameters ṽ∗ and µ̃. Then using these ideas in Lemma 4.3, we provide a relation between

x∗(n), the state information on the entire event tree, excepting the root node, and the parameters ṽ∗ and µ̃.

Finally, we collect these results to transform (32) as a parametrized linear-complementarity problem, with

known x∗0 and p(n), which is defined on the enumerated event tree n. We present these steps in the following

lemmas.

Lemma 4.2 For the enumerated event tree n = {n0,n}, the following relation holds:

β(n) = G−1

(
p(n) +

[
L1(n) −M′

1(n)
] [v∗(n)
µ(n)

])
. (33)

Proof. Let the set of successors of the node nti be S(nti) =
{
ν1
i , ν

2
i , · · · , ν

|S(nti)|
i

}
. Then equation (30) is

rewritten as

β(nti) = p(nti) +
[
L1(nti) −M′

1(nti)
] [v∗(nti)
µ(nti)

]
+
(
π
S(nti)

nti
⊗G(S(nti), n

t
i)
)

β(ν1
i )

β(ν2
i )

...

β(ν
|S(nti)|
i )

 .
We introduce the block diagonal matrices L1(nt) = BDmat(L1(ntk))

|nt|
k=1, M1(nt) = BDmat(M1(ntk))

|nt|
k=1 and

Gπ(nt+1,nt) = BDmat
(
π
S(ntk)

ntk
⊗G(S(ntk), ntk)

)|nt|
k=1

. The linear recursion defined on the set of nodes at t and

t+ 1 is given by

β(nt) = p(nt) +
[
L1(nt) −M′

1(nt)
] [v∗(nt)
µ(nt)

]
+ Gπ(nt+1,nt) β(nt+1).

Now, defining the block matrices L1(n) = BDmat(L1(nt))Tt=1, M1(n) = −BDmat(M1(nt))Tt=1 and Gπ(n) =

BDmat(Gπ(nt))Tt=1, we have

β(n) = p(n) +
[
L1(n) −M′

1(n)
] [v∗(n)
µ(n)

]
+

[
0 Gπ(n)
0 0

]
β(n).

Since, Gπ(n) is block diagonal, the matrix G = I−
[

0 Gπ(n)
0 0

]
is invertible and the relation (33) follows.

Lemma 4.3 The optimal-state trajectory evaluated on the enumerated event tree n = {n0,n}, represented by

x∗(n), satisfies the following relation:

x∗(n) = ψ0(n)x∗0 +ψ1(n)

(
p(n) +

[
L1(n) −M′

1(n)
] [v∗(n)
µ(n)

])
. (34)

Proof. As before, we list the state variables computed at the successors of a node nti ∈ nt as follows:
x∗(ν1

i )
x∗(ν2

i )
...

x∗(ν
|S(nti)|
i )

 = Φ1(S(nti), n
t
i)x
∗(nti) + Φ2(S(nti), n

t
i)


β(ν1

i )
β(ν2

i )
...

β(ν
|S(nti)|
i )

 ,
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where

Φ1(S(nti), n
t
i) =

(
1|S(nti)|×1 ⊗ Λ−1(S(nti), n

t
i)
)
A(nti),

Φ2(S(nti), n
t
i) =

(
1|S(nti)|×1 ⊗ Λ−1(S(nti), n

t
i)
)(
π
S(nti)

nti
⊗ S(nti)

)
.

Here, notice that the Kronecker product with the vector of ones reflects the one-period lag structure in the

state dynamics. Next, we define, as before, the block diagonal matrices, which relate the set of nodes at

times t and t+ 1 as Φ1(nt+1,nt) = BDmat (Φ1(S(ntk), ntk))
|nt|
k=1 and Φ2(nt+1,nt) = BDmat (Φ2(S(ntk), ntk))

|nt|
k=1.

So, the state vector computed at the nodes nt+1 is then given by

x∗(nt+1) = Φ1(nt+1,nt)x∗(nt) + Φ2(nt+1,nt)β(nt+1).

We define Φ1(n) = BDmat
(
Φ1(nt+1,nt)

)T−1

t=1
and Φ2(n) = BDmat

(
Φ2(nt+1,nt)

)T−1

t=1
. The state vector com-

puted on the entire event tree is given as follows:
x∗0

x∗(n1)
...

x∗(nT )

 =


I 0 · · · 0

Φ1(n1, n0) 0 0
...
0 Φ1(n) 0




x∗0

x∗(n1)
...

x∗(nT )

+


0 0 · · · 0

0
... Φ2(n)
0




β(n0)

β(n1)
...

β(nT )

 ,


0 0 · · · 0

−Φ1(n1, n0)
... I−

[
0 0

Φ1(n) 0

]
0




x∗0

x∗(n1)
...

x∗(nT )

 =


0 0 · · · 0

0
... Φ2(n)
0




β(n0)

β(n1)
...

β(nT )

 . (35)

Here, Φ1(n) and Φ2(n) are block diagonal matrices, so the matrix I−
[

0 0
Φ1(n) 0

]
is invertible. Finally, using

(33) in (35) and by identifying ψ0(n) =
(
I−
[

0 0
Φ1(n) 0

])−1 [
Φ1(n1,n0)

0

]
and ψ1(n) =

(
I−
[

0 0
Φ1(n) 0

])−1

Φ2(n)(
I−

[
0 Gπ(n)
0 0

])−1

, (34) follows.

Next, linear-complementarity problems (32), defined at node nt, is written as a single complementarity

problem defined for all the nodes in nt as follows:[
T(nt) −N′(nt)
N(nt) 0

] [
v∗(nt)
µ(nt)

]
+

[
L′2(nt)
M2(nt)

]
x∗(nt) +

[
t(nt)
r(nt)

]
⊥
[
v∗(nt)
µ(nt)

]
,

where T(nt) = BDmat(T(ntk))
|nt|
k=1, N(nt) = BDmat(N(ntk))

|nt|
k=1, L2(nt) = BDmat(N2(ntk))

|nt|
k=1, t(nt) =

Col(t(ntk))
|nt|
k=1, v(nt) = Col(v(ntk))

|nt|
k=1, µ(nt) = Col(µ(ntk))

|nt|
k=1. Again, using the same procedure, we

write the above problems defined on nt for all t ∈ T \0 as a single problem defined on nodes in n as follows:[
T(n) −N′(n)
N(n) 0

] [
v∗(n)
µ(n)

]
+

[
L′2(n)
M2(n)

]
x∗(n) +

[
t(n)
r(n)

]
⊥
[
v∗(n)
µ(n)

]
,

where T(n) = BDmat(T(nt))Tt=1, N(n) = BDmat(N(nt))Tt=1, L2(n) = BDmat(N2(nt))Tt=1, t(n) =

Col(t(nt))Tt=1, v(n) = Col(v(nt))Tt=1 and µ(n) = Col(µ(nt))Tt=1. Using (34), the above problem can be

written as a parametrized linear complementarity problem defined for all the nodes in n as follows[
A1(n) A2(n)
A3(n) A4(n)

] [
v∗(n)
µ(n)

]
+

[
B1(n)
B2(n)

]
x∗0 +

[
tp(n)
rp(n)

]
⊥
[
v∗(n)
µ(n)

]
,

where [
A1(n) A2(n)
A3(n) A4(n)

]
=

([
L′2(n)
M2(n)

]
ψ1(n)

[
L1(n) −M′

1(n)
]

+

[
T(n) −N′(n)
N(n) 0

])
,
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[
B1(n)
B2(n)

]
=

[
L′2(n)
M2(n)

]
ψ0(n),

[
tp(n)
rp(n)

]
=

[
L′2(n)
M2(n)

]
ψ1(n)p(n) +

[
t(n)
r(n)

]
.

Finally, defining

[M(n)]11 = BDmat(T(n0),A1(n)), [M(n)]12 = BDmat(−N′(n0),A2(n)),

[M(n)]21 = BDmat(N(n0),A3(n)), [M(n)]22 = BDmat(0,A4(n)), and

q(n;x0,p(n)) = Col
(
L′2(n0),B1(n),M2(n0),B2(n)

)
x∗0 + Col

(
t(n0), tp(n), r(n0), rp(n)

)
,

the linear complementarity problems defined at each node nt ∈ nt, t ∈ T of the event tree are written as a

large-scale linear complementarity problem (parametrized by x0 and p(n)) defined on the enumerated event

tree n as follows

M(n)z(n) + q(n;x0,p(n)) ⊥ z(n), z(n) =

[
v∗(n)
µ(n)

]
. (36)

A few remarks on the above complementarity problem are in order. Firstly, the matrix M(n) may not be

symmetric; a feature generally true with quadratic programming problems. Here, the loss of symmetry is

attributed to the transformations involved in the derivation of (36). Next, the solvability depends on the

choice of the initial state and the parameters p(n). In general, if the above problem is solvable, it may have

more than one solution (see Cottle et al. (1992) for more details on the existence and uniqueness of solutions).

Finally, we summarize the main results of this section as an algorithm for computing the candidate Nash

equilibrium strategies.

Algorithm 1 Candidate Nash equilibrium strategies with information structure I = {Co, Cc}
1. Using the problem parameters check if the matrices ΛCo(S(nt), t) (ΛCc(S(nt), t)) recursively defined by

(12)–(13) ((19)–(20)) are invertible for t = T − 1, · · · , 1. If step 1 is true, then go to step 2 else go to
step 4.

2. Check if the linear complementarity problem (36) solvable. If step 2 is true then go to step 3 else go to
step 4.

3. The Nash equilibrium strategies (ũ∗I, ṽ∗I) are given as follows:

(a) The strategies ũ∗i for each i ∈ N

u∗i (n
t) = −R−1

ii (nt)B′i(n
t)
(
KI
i (t)x∗(nt) + βIi (n

t)
)
, nt ∈ nt, t ∈ T \T

where KI
i (nt) is given by (13) ((19)), βIi (n

t) is given by (30), and the state trajectory is given by
(31).

(b) The strategies ṽ∗i , i ∈ N̄ are obtained directly from the solution of the problem (36).

4. Stop.

We have the following remark for sufficiency of the conditions (25)–(29).

Remark 6 We know that every dynamic game defined over an event tree can be represented in normal form

(see Haurie et al. (2012)), and the Con-LQGET can be written as

min
ũi,ṽi

Ji(x0, ũ, ṽ) subject to fi(x0, ũ, ṽ) ≥ 0.

The functions fi(x0, ũ, ṽ) represent the constraints (2) after eliminating the state variable; an equality con-

straint described by (1). The strategies of player i in this normal form game are (ũi, ṽi) ∈ Ũi × Ṽi. It is

shown that for convex games, see Rosen (1965), i.e., when every joint strategy space (Ũ1× Ṽ1)× (Ũ2× Ṽ2)×
· · · × (ŨN × ṼN ) is convex and bounded, and that each player’s payoff function Ji(x0, ũ, ṽ) is convex in his

own strategies (ũi, ṽi), then the game admits a Nash equilibrium. Further, it was shown that if the payoff

functions satisfy an additional requirement called diagonal convexity, then the convex game has a unique

equilibrium. So, if the normal form representation of Con-LQGET is convex, then the KKT conditions given
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by (25)–(29) are also sufficient and the candidates computed from Algorithm 1 are indeed the Nash equilibria

for Con-LQGET.

In the remaining part of the paper, we demonstrate the application of Theorem 3.2, Theorem 3.4 and

Algorithm 1 with two examples.

5 Numerical illustration

5.1 Dynamic duopoly with stochastic demand

We consider a duopoly model with a stochastic demand. Let ki(n
t) ∈ R denote the production capability of

firm i, Ii(n
t) its investment control instrument, and δi the depreciation rate of its capital, all at node nt of

the event tree. The state equation for firm i is then

ki(n
t) = (1− δi)ki(a(nt)) + Ii(a(nt)), ki(n

0) = k0
i , i = 1, 2.

We assume that each firm has a quadratic maintenance cost eik
2
i (nt) and investment cost diI

2
i (nt), where ei

and di are positive parameters. We assume that competition is à la Cournot, and that the price is given by

the following stochastic inverse-demand law:

D(k1(nt), k2(nt)) = α(nt)− β(nt)
(
k1(nt) + k2(nt)

)
.

Player i minimizes the following cost function:7

Ji(x0, Ĩ) =

T−1∑
t=0

∑
nt∈N t

π(nt) ρt
(
eik

2
i (nt) + diI

2
i (nt)− ki(nt)D(k1(nt), k2(nt))

)
+

∑
nT∈NT

π(nT ) ρT
(
vik

2
i (nT )− ki(nT )D(k1(nT ), k2(nT ))

)
, (37)

where ρ is the common discount factor. We recognize that the above game belongs to the LQGET class

with

x(nt) =

[
k1(nt)
k2(nt)

]
, u1(nt) = I1(nt), u2(nt) = I2(nt),

A(nt) =

[
1− δ1 0

0 1− δ2

]
, B1(nt) =

[
1
0

]
, B2(nt) =

[
0
1

]
,

Q1(nt) = 2ρt
[
e1 + β(nt) 1

2β(nt)
1
2β(nt) 0

]
, Q2(nt) = 2ρt

[
0 1

2β(nt)
1
2β(nt) e2 + β(nt)

]
, t ∈ T \T,

R11(nt) = 2ρtd1, R12(nt) = 0, R21(nt) = 0, R22(nt) = 2ρtd2, t ∈ T \T,

p1(nt) =

[
−ρtα(nt)

0

]
, p2(nt) =

[
0

−ρtα(nt)

]
, t ∈ T ,

Q1(nT ) = 2ρT
[
v1 + β(nT ) 1

2β(nT )
1
2β(nT ) 0

]
, Q2(nT ) = 2ρT

[
0 1

2β(nT )
1
2β(nT ) v2 + β(nT )

]
.

For simplicity, we assume symmetric players and focus on the comparison of open-loop and closed-loop

S -adapted equilibrium strategies. We choose the following values for the parameters: depreciation rates

δ1 = δ2 = 0.1, maintenance costs e1 = e2 = 0.25, investment costs d1 = d2 = 1, terminal costs v1 = v2 = 0.1

and the discount factor is taken as ρ = 0.9 for both firms. The initial values of firms’ production levels are

taken as k0
1 = k0

2 = 3.

7 Here, the LQGET and Con-LQGET problems are posed as minimization problems.
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Event tree and demand function

We consider a planning horizon T = 13. Each node, excepting the terminal nodes, has two successors. At

each node in the event tree, the demand is either at high state - H where the price is given by

DH(k1(nt), k2(nt)) = 60− 2(k1(nt) + k2(nt)),

or in a low state - L and the price is then given by

DL(k1(nt), k2(nt)) = 40− 2(k1(nt) + k2(nt)).

Consequently, the event tree consists of a total of 16,383 nodes. The conditional probabilities are generated

using a Bernoulli distribution (due to the two possible fixed-market conditions). We indicate the first successor

to represent the low-demand market condition and the second successor to correspond to the high-demand

market condition. The S -adapted open-loop and closed-loop (no-memory) investment strategies are obtained

using (14) and (21) from Theorem 3.2 and Theorem 3.4, respectively. Table 1 illustrates the S -adapted open-

loop and closed-loop (no-memory) investment and the production capability trajectories for the following

particular scenario:8

{0, 2, 5, 12, 26, 54, 110, 222, 445, 892, 1785, 3571, 7143, 14287}.

We observe that firms invest more, in almost all periods, when they implement closed-loop strategies than

when they play with open-loop strategies. Consequently, the production capabilities of firms are higher

under closed-loop strategies. This result is similar to what has been found in a number of applications of

dynamic games, where feedback (so not precisely closed-loop) strategies increase competition, that is, where

feedback equilibrium investments in, e.g., production capacity, R&D efforts or advertising budgets, exceed

the open-loop ones (see for instance Reynolds, Dockner (1992), Driskill and McCafferty (1989), Long et al.

(1999), and Driskill (2001)).

The optimized cost of firms under S -adapted open-loop and closed-loop strategies for the above scenario

are calculated as −1110.7 and −1094.2 respectively. We observe that firms gain more (but less than 2%)

using the S -adapted open-loop strategy, which can be explained by the above result that open-loop strategies

soften competition with respect to closed-loop ones.

Table 1: S -adapted open-loop and closed-loop investment strategies for a particular scenario.

Scenario

Period (t) Node label (nt) Demand Io1(nt) Ic1(nt) ko1(nt) kc1(nt)

0 0 H 4.0139 4.1873 3.0000 3.0000
1 2 H 1.4084 1.4628 6.7139 6.8873
2 5 L 0.8934 0.9222 7.4509 7.6613
3 12 H 0.8014 0.8243 7.5992 7.8173
4 26 H 0.7104 0.7327 7.6407 7.8599
5 54 H 0.7604 0.7823 7.5871 7.8066
6 110 H 0.8149 0.8370 7.5888 7.8082
7 222 H 0.7707 0.7933 7.6448 7.8643
8 445 L 0.6746 0.6987 7.6510 7.8712
9 892 H 0.8436 0.8662 7.5605 7.7828

10 1785 L 0.9623 0.9841 7.6480 7.8707
11 3571 L 0.4881 0.4834 7.8455 8.0677
12 7143 L 0.5394 0.4100 7.5490 7.7443
13 14287 L 0 0 7.3335 7.3799

8 The event tree is enumerated using a breadth-first search approach.
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5.2 Constrained dynamic duopoly with stochastic demand

In the above example, production capacity was synonymous to output. In this example, we distinguish

between these two variables. More specifically, we introduce as an additional decision variable the quantity

qi(n
t) put on the market by player i at each node nt. Like before, ki(n

t) ∈ R denotes the production capacity

of firm i, Ii(n
t) its investment-control instrument, and δi the depreciation rate of its capital, all at node nt

of the event tree. The state equation for firm i is then

ki(n
t) = (1− δi)ki(a(nt)) + Ii(a(nt)), ki(n

0) = k0
i , t ∈ T \0. (38)

At each node, player i faces the capacity constraint

qi(n
t) ≤ ki(n

t), i = 1, 2, t ∈ T .

We assume that each firm has a quadratic investment cost (diI
2
i (nt)) and a production cost proportional to

its capacity (ciki(n
t)qi(n

t)). The stochastic inverse-demand law is linear in the total output and is given by

D(q1(nt), q2(nt)) = α(nt)− β(nt)
(
q1(nt) + q2(nt)

)
.

Further, we assume that the firms pay a tax, specified exogenously, proportional to their total production

capacities as τ(nt)(k1(nt) + k2(nt))2. Player i minimizes the following cost function:

Ji(x0, Ĩ, q̃) =

T−1∑
t=0

∑
nt∈N t

π(nt) ρt
(
diI

2
i (nt)+ciki(n

t)qi(n
t)+τ(nt)(k1(nt)+k2(nt))2−qi(nt)D(q1(nt), q2(nt))

)
+
∑

nT∈NT
π(nT ) ρT

(
vik

2
i (nT )+ciki(n

T )qi(n
T )+τ(nT )(k1(nT )+k2(nT ))2−qi(nT )D(q1(nT ), q2(nT ))

)
. (39)

It is easy to verify that this game belongs to the Con-LQGET class, with variables and parameters defined

as follows:

x(nt) =

[
k1(nt)
k2(nt)

]
, u1(nt) = I1(nt), u2(nt) = I2(nt),

A(nt) =

[
1− δ1 0

0 1− δ2

]
, B1(nt) =

[
1
0

]
, B2(nt) =

[
0
1

]
,

Q1(nt) = 2ρtτ(nt)

[
1 1
1 1

]
, Q2(nt) = 2ρtτ(nt)

[
1 1
1 1

]
, t ∈ T \T,

R11(nt) = 2ρtd1, R12(nt) = 0, R21(nt) = 0, R22(nt) = 2ρtd2, t ∈ T \T,

p1(nt) =

[
0
0

]
, p2(nt) =

[
0
0

]
, t ∈ T ,

Q1(nT ) = 2ρT
[
v1 + τ(nT ) τ(nT )
τ(nT ) τ(nT )

]
, Q2(nT ) = 2ρT

[
τ(nT ) τ(nT )
τ(nT ) v2 + τ(nT )

]
,

T 1(nt) = 2ρt
[
β(nt) 1

2β(nt)
1
2β(nt) 0

]
, T 2(nt) = 2ρt

[
0 1

2β(nt)
1
2β(nt) β(nt)

]
,

t1(nt) = ρt
[
−α(nt)

0

]
, t2(nt) = ρt

[
0

−α(nt)

]
,

L1(nt) = ρt
[
c1 0
0 0

]
, L2(nt) = ρt

[
0 0
0 c2

]
,

M1(nt) =
[
1 0

]
, M2(nt) =

[
0 1

]
, N1(nt) = −1, N2(nt) = −1, r1(nt) = 0, r2(nt) = 0.

Again, we assume symmetric players, as the main objective is to compare the S -adapted constrained9

open-loop and constrained closed-loop equilibrium strategies. We choose the following values for the param-

eters: depreciation rates δ1 = δ2 = 0.1, production costs c1 = c2 = 0.25, investment costs d1 = d2 = 1,

9 Here, we recall that in the Con-LQGET model, the information structures are restricted to Co, where Ii(n
t) =

γi(n
t, x0), qi(n

t) = δ(nt;x(nt)) and Cc, where Ii(n
t) = γi(x(nt);x0), qi(n

t) = δi(n
t;x(nt)). In both cases, the quantities

are set based on the calendar date and uncertainty, i.e., node nt of the event tree; and the feasibility (capacity) constraints are
influenced by the state x(nt) = [k1(nt) k2(nt)]′.
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terminal costs v1 = v2 = 0.1, and the discount factor is taken as ρ = 0.9 for both firms. The initial values of

firms’ production levels are set at k0
1 = k0

2 = 10. The event-tree description is the same as in the previous

example, that is, at any given node, demand can be in a high state - H or in a low state - L. To reduce the

computational burden, we set T = 8. Therefore, the event tree consists of a total of 511 nodes. The high

and low inverse demand functions are given by

DH(q1(nt), q2(nt)) = 60− 2(q1(nt) + q2(nt)),

DL(q1(nt), q2(nt)) = 40− 2(q1(nt) + q2(nt)).

Table 2 illustrates the S -adapted open-loop and closed-loop (no-memory) investment and production

strategies for a a specific but qualitatively representative scenario {0, 2, 6, 14, 29, 60, 121, 244, 490}. As in

the previous example, we note that firms invest more initially with a closed-loop strategy when compared

with the open-loop strategy. Further, we observe that the production capacities of firms are higher with

closed-loop strategies. However, we observe that production quantity is lower with a constrained closed-loop

information structure. The optimized cost of firms under constrained S -adapted open-loop and closed-loop

strategies for the above scenario are calculated as −1364.3136 and −1361.4659, respectively. Here also, we

observe that firms gain (marginally) more using the S -adapted open-loop strategy.

Table 2: Constrained S -adapted open-loop and closed-loop investment strategies for a particular scenario,
with the tax parameter set to τ(nt) = 0.01.

Scenario

Period (t) Node label (nt) Demand ICo1 (nt) ICc1 (nt) kCo1 (nt) kCc1 (nt) qCo1 (nt) qCc2 (nt)

0 0 H 3.5725 3.6286 10 10 9.5833 9.5833
1 2 H 3.4878 3.5314 12.5725 12.6286 9.4179 9.4158
2 6 H 3.3467 3.3773 14.8031 14.8972 9.2385 9.2346
3 14 H 3.0518 3.0698 16.6695 16.7847 9.0472 9.0421
4 29 L 2.7530 2.7601 18.0544 18.1760 5.5201 5.5143
5 60 H 2.1666 2.1649 19.0019 19.1185 8.6592 8.6532
6 121 L 1.2131 1.2058 19.2683 19.3716 5.1560 5.1503
7 244 H 0.1113 0.1021 18.5546 18.6402 8.3836 8.3785
8 490 H 0 0 16.8105 16.8783 8.3728 8.3683

A few comments on the implementation details are in order. We used the Matlab PATH solver pathlcp10

for solving complementarity problem (36). The initial conditions and the parameter values used in the above

examples were set to ensure the positivity of the investment variable and a unique solution of (36).

6 Conclusions

In this paper, we study linear quadratic games played over uncontrolled event trees, that is, games where

the transition from one node to another is nature’s decision and cannot be influenced by the players’ actions.

Firstly, we considered the unconstrained case (LQGET) and obtained necessary conditions for the existence

of S -adapted open-loop and closed-loop Nash equilibrium strategies. We observed that these conditions

are related to solvability of generalized Riccati-type backward-recursive equations defined on the event tree.

Next, we consider the LQGET model with node-specific linear constraints. By restricting the information

pattern as constrained S -adapted open-loop and closed-loop structure, we derived necessary conditions for the

existence of the associated Nash equilibrium strategies. We observed that these necessary conditions result in

a weakly coupled system of backward-recursive equations and node-specific parametric linear complementarity

problems defined on the event tree. Next, using suitable reformulations, the Nash equilibrium strategies can

be obtained by solving a single large-scale parametric linear complementarity problem defined on the entire

event tree. We illustrate the applicability of proposed algorithms with numerical examples.

10 Freely downloadable from http://pages.cs.wisc.edu/~ferris/path/.

http://pages.cs.wisc.edu/~ferris/path/
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A Appendix

Proof of Theorem 3.2. Since Rii(n
t) > 0, Hi(.) is a strictly convex function of ui(n

t) for all ui(n
t) ∈ Unti .

Therefore, minimization of this Hamiltonian over ui(n
t) ∈ Un

t

i yields the following unique relation for all

t ∈ T \T

u∗i (n
t) = −R−1

ii (nt)B′i(n
t)λi(S(nt)). (40)

We define11 λi(n
t) = Ko

i (nt)x∗(nt) + βoi (n
t), nt ∈ nt, t ∈ T \T due to the linear structure. Then the state

equation reduces to

x∗(ν) = A(nt)x∗(nt)−
∑
l∈N̄

Sl(n
t)

∑
ν∈S(nt)

πνnt

(
Ko
l (ν)x∗(ν) + βol (ν)

)
= A(nt)x∗(nt)−

∑
ν∈S(nt)

πνnt
∑
l∈N̄

Sl(n
t)Ko

l (ν)x∗(ν)−
∑

ν∈S(nt)

πνnt
∑
l∈N̄

Sl(n
t)βol (ν). (41)

The right-hand side of the above equation contains the expected value of the terms evaluated at the successor

nodes ν ∈ S(nt). So, the state variable takes the same value for all the successor nodes ν of the node nt

along the optimal trajectory, that is, x∗(ν1) = x∗(ν2), ∀ν1, ν2 ∈ S(nt). This observation is consistent with

the one-period lag assumption in model (1). Taking the expectation on both sides of (41) with respect to

the distribution πνnt results in

x∗(S(nt)) =
∑

ν∈S(nt)

πνntx
∗(ν) = x∗(ν).

Replacing x∗(ν) in (41) results in

x∗(S(nt)) = A(nt)x∗(nt)−
∑

ν∈S(nt)

πνnt
∑
l∈N̄

Sl(n
t)Ko

l (ν)x∗(S(nt))−
∑

ν∈S(nt)

πνnt
∑
l∈N̄

Sl(n
t)βol (ν).

Since the matrix Λo(S(nt), nt) = I +
∑
l∈N̄ Sl(n

t)Ko
l (S(nt)) is assumed to be invertible, the state variable

x∗(ν) is then given by

x∗(ν) = x∗(S(nt)) = Λ−1
o (S(nt), nt)

(
A(nt)x∗(nt)−

∑
l∈N̄

Sl(n
t)βol (S(nt))

)
. (42)

Using the above, the costate variable at ν is written as follows:

λi(ν) = Ko
i (ν)x∗(ν) + βoi (ν)

= Ko
i (ν)Λ−1

o (S(nt), nt)
(
A(nt)x∗(nt)−

∑
l∈N̄

Sl(n
t)βol (S(nt))

)
+ βoi (ν). (43)

Using the above in equation (10), we have for nt ∈ nt, t ∈ T \T ,

Ko
i (nt)x∗(nt) + βoi (n

t) =
(
Qi(n

t) +A′(nt)Ko
i (S(nt))Λ−1

o (S(nt), nt)A(nt)
)
x∗(nt)

+ pi(n
t) +A′(nt)

(
βoi (S(nt))−Ko

i (S(nt))Λ−1
o (S(nt), nt)

∑
l∈N̄

Sl(n
t)βol (S(nt))

)
.

Collecting the coefficients of x∗(nt) and by the assumption (13), the relation (16) follows. The remaining

statements follow from the terminal conditions (9), and using (43) in (40).

11 This is a standard procedure in solving linear quadratic difference games (see Başar and Olsder (1998), Engwerda (2005),
Pindyck (1977)). Here, we follow the approach of (Pindyck (1977)).
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Proof of Corollary 3.3. Let λ̄i(n
t) = λi(n

t)−(Ko
i (nt)x∗(nt) + βoi (n

t)) be any other solution to the two point

boundary value problem. Firstly, we have

λ̄i(S(nt) =
∑

ν∈S(nt)

πνnt (λi(ν)− (Ko
i (ν)x∗(ν) + βoi (ν)))

= λi(S(nt))−
(
Ko
i (S(nt))x∗(S(nt)) + βoi (S(nt))

)
(follows as x∗(ν) = x∗(S(nt)))

Then substituting this in (10)–(11) we write the two point boundary value problem in (x∗, λ̄) coordinates as:

x∗(ν) =Λ−1
o (S(nt), nt)

A(nt)x∗(nt)−
∑
l∈N̄

Sl(n
t)λ̄i(S(nt)−

∑
l∈N̄

Sl(n
t)βoi (S(nt))

 , ν ∈ S(nt)

λ̄i(n
t) =A′(t)λ̄i(S(nt))−A′(nt)Ko

i (S(nt))Λ−1
o (S(nt), nt)

∑
l∈N̄

Sl(n
t)λ̄i(S(nt))

Notice, that the above system of equations is decoupled. The terminal conditions lead to λ̄i(n
T ) = 0 for all

nT ∈ nT , and as a result we have λ̄i(n
t) = 0 for all nt ∈ nt, t ∈ T .

Proof of Theorem 3.4. The procedure for the closed-loop (no-memory) case is similar to the open-loop case,

see Pindyck (1977). Here also, we assume λi(n
t) = Kc

i (n
t)x∗(nt) + βci (n

t) due to linear structure. Since the

matrix Λc(S(nt), nt) = I+
∑
l∈N̄ Sl(n

t)Kc
l (S(nt)) is invertible, with straightforward algebraic manipulations,

we can show that

x∗(ν) = x∗(S(nt)) = Λ−1
c (S(nt), nt)

(
A(nt)x∗(nt)−

∑
l∈N̄

Sl(n
t)βcl (S(nt))

)
,

u∗j (n
t) = −R−1

jj (nt)B′j(n
t)λj(S(nt)), (44)

∂u∗j (n
t)

∂x∗(nt)
= −R−1

jj (nt)B′j(n
t)Kc

j (S(nt))Λ−1
c (S(nt), nt)A(nt). (45)

Next define Sij(n
t) = Bj(n

t)R−1
jj (nt)Rij(n

t)R−1
jj (nt)B′j(n

t), i 6= j and a matrix Θ(S(nt), nt) as

Θij(S(nt), nt) =

{
I −

∑
j∈N̄\i Sj(n

t)Kc
j (S(nt))Λ−1

c (S(nt), nt) i = j

Sij(n
t)Kc

j (S(nt))Λ−1
c (S(nt), nt) i 6= j

.

Next, substituting the above relations in (18) and from assumption (20), the relation (22) follows.12 The

remaining statements follow from the terminal conditions (9).

Proof of Theorem 4.1. The Lagrangian given by (24) has a special form (relating to the Lagrangian (5))

due to the separable cost structure of the objective. Like before, we use Hamiltonian (6) to express the term

Li(x̃, (ui, ũ∗−i), λ̃i). We have ∂vi(n
t)

∂x(nt) = 0 due to the assumed information structure I = {Co, Cc}. Then, we

obtain the necessary conditions (25)–(27) by equating to zero the partial derivatives of the Lagrangian (24),

with respect to ui(n
t) evaluated at u∗(nt), and xi(n

t) evaluated at x∗(nt). Again from information structure

I and the separable cost structure, players at node nt minimize a parametrized quadratic programming

problem. The Karush-Kuhn-Tucker conditions for v∗i (nt) to be the minimizer, at each node nt ∈ nt, t ∈ T ,

are given by

αi(n
t) =

∑
l∈N̄

T iil(n
t)v∗l (nt) + Lii

′
(nt)x∗(nt)−N ′i(nt)µi(nt) + tii(n

t) ≥ 0, v∗i (nt) ≥ 0, α′i(n
t)v∗i (nt) = 0,

βi(n
t) = Mi(n

t)x∗(nt) +Ni(n
t)v∗i (nt) + ri(n

t) ≥ 0, µi(n
t) ≥ 0, β′i(n

t)µi(n
t) = 0.

The necessary conditions (28)–(29) correspond to the linear complementarity formulation of the above nec-

essary conditions.

12 We skip the lengthy straightforward calculations as they are similar to the open-loop case.
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