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Abstract: Symmetric quasi-definite systems may be interpreted as regularized linear least-squares prob-
lem in appropriate metrics and arise from applications such as regularized interior-point methods for convex
optimization and stabilized control problems. We propose two families of Krylov methods well suited to
the solution of such systems based on a preconditioned variant of the Golub-Kahan bidiagonalization pro-
cess. The first family contains methods operating of the normal and Schur-complement equations, including
generalizations of well-known methods such as Lsqr and Lsmr but also a new method named Craig-mr
aiming to minimize the residual of the Schur-complement equations. The second family follows from a re-
lated Lanczos process and contains methods operating directly on the augmented system, which generalize
the conjugate-gradient and minimum-residual methods. We establish connections between augmented-system
and reduced-system methods. In particular, the conjugate-gradient method is well defined despite the indefi-
niteness of the operator. We provide an explanation for the often-observed staircase behavior of the residual
in the minimum-residual method. An additional contribution is to provide explicit stopping criteria for all
methods based on estimates of the relative direct error in appropriate norms, as opposed to criteria based on
the residual. A lower bound estimate is available at no additional computational cost while an upper bound
estimate comes at the cost of a few additional scalar operations per iteration.

Key Words: Symmetric quasi-definite system, generalized Golub-Kahan bidiagonalization, elliptic singular
values, linear least-squares problem, Lsqr, Craig, Lsmr, Craig-mr, Cg, Minres, Lanczos.

Résumé : Les systèmes symétriques et quasi définis peuvent être vus comme des problèmes aux moindres
carrés linéaires régularisés dans une métrique adéquate et se présentent dans des applications telles que les
méthodes de points intérieurs régularisées en optimisation convexe et les problèmes de commande stabilisés.
Nous proposons deux familles de méthodes de Krylov adaptées à la structure de ces problèmes sur base
d’une variante préconditionnée du processus de bidiagonalisation de Golub et Kahan. La première famille
comprend des méthodes opérant sur les équations normales et celles correspondant au complément de Schur
du système et inclut des versions généralisées de méthodes bien connues, telles que Lsqr et Lsmr, mais
également une nouvelle méthode nommée Craig-mr visant à minimiser le résidu des équations correspon-
dant au complément de Schur. La seconde famille découle d’un processus de Lanczos connexe et comprend
des méthodes s’appliquant directement au système augmenté et qui généralisent les méthodes du gradient
conjugué et du résidu minimal. Nous établissons des liens entre les méthodes des deux familles. En parti-
culier, la méthode du gradient conjugué est bien définie malgré le fait qu’elle soit appliquée à un opérateur
indéfini. Nous fournissons une explication pour le phénomène, souvent observé, de décroissance en escalier
du résidu dans les méthodes de résidu minimal. Une contribution supplémentaire est de fournir des critères
d’arrêt explicites pour chaque méthode sur base d’estimations de l’erreur relative directe mesurée dans une
norme adéquate, et non sur base d’estimation de résidus. Une borne inférieure sur l’erreur est disponible
sans opérations supplémentaires alors qu’une borne supérieure sur l’erreur est disponible au prix de quelques
opérations scalaires par itération.

Mots clés : système symétrique quasi défini, processus de bidiagonalisation de Golub-Kahan généralisé,
valeurs singulières elliptiques, problème aux moindres carrés linéaire, Lsqr, Craig, Lsmr, Craig-mr, Cg,
Minres, Lanczos.
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1 Introduction

Symmetric quasi-definite (SQD) linear systems have the general form[
M A

AT −N

] [
x
y

]
=

[
f
g

]
, (1.1)

where M ∈ Rn×n and N ∈ Rm×m are symmetric and positive definite. The coefficient matrix of (1.1) is then
itself said to be SQD. It is always symmetric and indefinite unless m = 0 or n = 0, in which case it is definite.
Vanderbei (1995) shows that SQD matrices are strongly factorizable, i.e., any symmetric permutation of
their rows and columns admits a Cholesky-like factorization without pivoting. The latter factorization can
therefore typically be computed in much less operations than a traditional symmetric indefinite factorization
such as that of Duff (2004) and often has sparser factors. We adopt the following definition of an SQD matrix.

Definition 1.1 A matrix K ∈ R(n+m)×(n+m) is said to be symmetric quasi-definite (SQD) if K = KT and
there exists a permutation matrix P ∈ R(n+m)×(n+m) such that PTKP has the form (1.1).

Among other important properties of (1.1) are that the system is always square, symmetric, indefinite
and nonsingular, irrespective of the rank of A, and the inverse of the coefficient matrix is itself SQD. For
more details, we refer to (Vanderbei, 1995).

In this paper, we devise iterative methods for the solution of (1.1) that exploit its structure. Our methods
are generalizations of Lsqr (Paige and Saunders, 1982), Craig (Craig, 1955) and Lsmr (Fong and Saunders,
2011) based on a Golub-Kahan process (Golub and Kahan, 1965) occurring in the appropriate metric. In
addition, we present a method named Craig-mr aiming to minimize the residual of the Schur-complement
equations. Those methods determine specialized implementations of Cg (Hestenes and Stiefel, 1952) and
Minres (Paige and Saunders, 1975) by identifying specialized Lanczos processes. The implementation of Cg
is particularly interesting given the indefiniteness of (1.1).

All methods presented here especially apply to cases where systems with coefficient matrices M and N

can be solved efficiently. In follow-up research, we investigate preconditioning strategies and error analyses
related to cases where this assumption is not satisfied. All methods methods discussed below are dimension
agnostic in the sense that each applies irrespective of the fact that m < n or m ≥ n.

Systems of the form (1.1) arise in numerous applications and their efficient iterative solution is crucial
to matrix-free methods. In interior-point methods for the optimization of the inequality-constrained convex
problem

minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where f is convex and c is concave, Newton-based methods typically solve direction-finding systems of the
form [

∇xxL(x,y) J(x)T

J(x) −Y −1C(x)

] [
∆x
−∆y

]
= −

[
∇xL(x,y)

c(x)− µY −1e

]
,

where L(x,y) = f(x) − c(x)Ty is the Lagrangian of the problem, J(x) is the Jacobian of the constraints,
Y = diag(y), C(x) = diag(c(x)), µ > 0 is a parameter, and (c(x),y) > 0 is enforced. Whenever either f
is strictly convex or J(x) has full row rank, the leading block is positive definite and the system above is
SQD. When either of those assumptions is not satisfied, regularized methods such as that of Friedlander and
Orban (2012) recovers an SQD system, even in the presence of linear equality constraints.

Regularized linear least-squares problems are often cast as sytems of the form (1.1) in which M and N

are multiples of the identity. The right-hand side in this case is typically of the form (b,0) or (0,b). With
such a right-hand side, the methods we propose below are in fact an interpretation of (1.1) as a regularized
linear least-squares problem in a non-Euclidian metric.
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The mixed finite-element approximation to the globally stabilized Stokes problem in weak form can be
stated as ∫

Ω

∇u : ∇v dx−
∫

Ω

p∇ · v dx =

∫
Ω

fv dx, for all v ∈ V,

−
∫

Ω

q∇ · udx− βC(p, q) = 0 for all q ∈ Q,
(1.2)

where u is the velocity field, p is the pressure field, Ω is the domain, “:” represents the componentwise
inner product, V and Q are compatible finite-dimensional function subspaces of test functions, β > 0 is
a stabilization parameter and C is a stabilization term. After discretization with, e.g., P1–P1 triangular
elements and continuous linear pressure, the above equations reduce to a linear system of the form (1.1)
where g = 0, A is the gradient matrix, AT is the divergence matrix, M is the vector-Laplacian matrix and N

represents the stabilization term. For more details, we refer the interested reader to (Silvester and Wathen,
1994).

Other applications of regularized linear least squares include Kalman (1960) filters (Bunse-Gertner, 2012;
Strang, 1986) and variational data assimilation (Courtier, 1997). The problem formulation in both appli-
cations is very similar. The incremental formulation of the three-dimensional variational data assimilation
problem may be stated as

minimize
∆x∈Rn

1
2‖∆x‖2

B
−1 + 1

2‖H∆x− d‖2
R

−1 ,

where ∆x = x0 − xb is referred to as an increment used to obtain an initial climatic model state x0 from a
background state xb—i.e., a state resulting of previous forecasts, B is the covariance matrix of background
error, R is the covariance matrix of observation errors, H represents a linearization of the observation operator
and d = y0−Hxb is the innovation vector, in which y0 is the observation vector. The optimality conditions
of this problem have precisely the form (1.1) with A = H, M = R, N = B−1, f = d and g = 0.

SQD systems have been used in the past to precondition standard symmetric saddle-point systems, i.e.,
for which N = 0 (Axelson and Neytcheva, 2003; Perugia and Simoncini, 2000). Benzi, Golub, and Liesen
(2005, Section 10.2, pp. 82–83) provide several references and summarize key results including eigenvalue
estimates of the preconditioned system.

Notation

Throughout the paper, vectors and matrices are typeset in boldface while scalars appear in lightface. We
use the notation Ik to denote the k-by-k identity matrix. For conciseness and when the context leaves no
possible ambiguity, we will simply denote by I the identity matrix of appropriate size. For a symmetric
positive definite n × n matrix C, let ‖u‖2C = uTCu = ‖C

1
2 u‖22 be the norm defined by C, where C

1
2 is the

unique symmetric positive definite matrix square root of C. Finally, the shorthand blkdiag(C,D) is used to
denote the block-diagonal matrix [

C 0
0 D

]
for any matrices C and D of appropriate size. For any x ∈ R, bxc denotes the largest integer k ≤ x and dxe
denotes the smallest integer k ≥ x.

Related Work

Existing iterative methods for symmetric indefinite systems, such as Minres, Symmlq (Paige and Saunders,
1975) and Symmbk (Chandra, 1978) do not exploit the rich quasi-definite structure of (1.1).

Assume we are able to factor N = LDLT. Upon introducing auxiliary variables z := −DLTy, it is
possible to reformulate (1.1) as the traditional saddle-point point systemM A

D−1 LT

AT L

x
z
y

 =

f
0
g

 .
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Dollar et al. (2006) propose to solve the resulting system by way of the projected conjugate gradient method.
This approach requires a projection into the nullspace of

[
AT L

]
at each iteration, which may be achieved

via a one-time factorization of a projection matrix of the formM̃ A

D̃−1 LT

AT L

 ,
for appropriate approximations M̃ ≈ M and D̃ ≈ D such that the above matrix has precisely m negative
and n+m positive eigenvalues.

Saunders (1995) derives extended versions of Lsqr and Craig for the case where N = λIm for some
λ 6= 0 and establishes a connection with Cg applied to the corresponding SQD system.

Gill, Saunders, and Shinnerl (1996) provide stability results for the LDLT factorization of SQD matrices.
George et al. (2000) and George and Ikramov (2000) examine additional properties of SQD matrices, of their
eigenvalues and their condition number. Korzak (1999) gives the precise spectrum in the case of matrices
arising from linear programming.

Benbow (1999) proposes a variant of Lsqr similar to what we propose in the sequel of the present paper,
only for the case where N = 0 and systems with M can be solved efficiently.

The definite reference on solution methods for saddle-point linear systems is given by Benzi, Golub, and
Liesen (2005). Although they mention SQD systems, no specialized iterative approach is suggested.

Marcia (2008) proposes a Kylov-type iterative method for general symmetric indefinite systems based on
a symmetric indefinite factorization of the tridiagonal matrix generated by a Lanczos process. His method
reduces to Cg when applied to definite systems and is provably stable on indefinite systems.

Arioli (2010) derives a version of Craig for indefinite systems where N = 0 based on the so-called elliptic
singular values of A.

The rest of this paper is organized as follows. Section 2 points out connections between various linear
least-squares problems and (1.1) and §3 sets the prerequisites for the remainder of the paper. Section 4
defines the generalized Golub-Kahan process that forms the basis of our iterative methods. This process
gives rise to generalized versions of Lsqr in §6.1, Craig in §6.3 and Lsmr in §6.5, as well as to a new
method named g-Craig-mr in §6.7. Section 8.1 defines Lanczos processes determined by the generalized
Golub-Kahan process and used to connect the previous methods to the method of conjugate gradients in §8.2
and to Minres in §8.4. In particular, we demonstrate that the conjugate gradient method is well defined
for SQD systems and solves a min-max problems. We also provide an explanation for the often-observed
staircase behavior of the Minres residual on symmetric saddle-point systems together with a description
of what Minres minimizes during iterations where the residual decreases and during iterations where the
residual appears to plateau. We discuss our implementation in §9 and present numerical results on problems
arising from optimization and discretized PDEs. We conclude with a discussion in §10.

2 Linear Least-Squares Problems

In this section, we recall the connections between various symmetric indefinite and SQD linear systems, and
the solution of certain linear least-squares problems. Note that most of the connections are known. They are
repeated here because they are the motivation for the derivation of iterative methods for (1.1). By convexity,
all optimality conditions mentioned below are both necessary and sufficient.

The optimality conditions of the M−1-norm least-squares problem1

minimize
y∈Rm

1
2‖Ay − b‖2

M
−1 , (2.1)

1Sometimes referred to as the generalized least-squares problem.
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may be written [
M A

AT 0

] [
x
y

]
=

[
b
0

]
, (2.2)

where x = M−1(b − Ay) is the residual. The coefficient matrix of (2.2) is symmetric indefinite, but not
SQD. Upon writing the Cholesky decomposition M = LLT, (2.2) are also the optimality conditions of both
of the following weighted, or preconditioned least-squares problems

minimize
y∈Rm

1
2‖L

−1(Ay − b)‖22, and minimize
y∈Rm

1
2‖M

− 1
2 (Ay − b)‖22.

Whenever A does not have full column rank, (2.2) is singular. A typical remedy is to regularize the
least-square problem, i.e., to change (2.1) to

minimize
y∈Rm

1
2

∥∥∥∥[AR
]

y −
[
b
0

]∥∥∥∥2

M
−1
+

, where M+ :=

[
M 0
0 Im

]
(2.3)

and R is a square nonsingular matrix of appropriate size. Typically, R = λIm, for some regularization
parameter λ ∈ R but other choices are possible. Note that the objective of (2.3) may equivalently be written

1
2‖Ay − b‖2

M
−1 + 1

2‖Ry‖22 = 1
2‖Ay − b‖2

M
−1 + 1

2‖y‖
2

R
T
R
.

The optimality conditions of (2.3) may then be written as the general SQD system[
M A

AT −RTR

] [
x
y

]
=

[
b
0

]
.

Similarly, a positive-definite matrix of the form N
1
2 can be used in place of R and this leads to (1.1) with

f = b and g = 0. Additionally, (1.1) with f = b and g = 0 represents the optimality conditions of the
E−1

+ -norm regularized problem

minimize
y∈Rm

1
2

∥∥∥∥[AIm
]

y −
[
b
0

]∥∥∥∥2

E
−1
+

, where E+ :=

[
M 0

0 N−1

]
. (2.4)

Equivalently, if M = LLT and N = RTR, (1.1) represent the optimality conditions of the weighted regularized
problem

minimize
y∈Rm

1
2

∥∥∥∥[L−1 0
0 R

]([
A
Im

]
y −

[
b
0

])∥∥∥∥2

2

. (2.5)

A similar interpretation is derived when L and R are replaced by M
1
2 and N

1
2 , respectively.

At this point it might seem attractive to simply employ Lsqr to solve either (2.4) or (2.5). This would
however require that we either compute L or solve systems with M

1
2 , and that we compute one of R and

N
1
2 . Moreover, those must be computed accurately. Fortunately, there is an alternative in applications where

solving systems with coefficient matrices M and N can be performed efficiently. We now give a few examples
of such situations that arise in practice.

In regularized interior-point methods for linear programming—see, e.g., (Friedlander and Orban, 2012)—
the matrices M and N are diagonal and solving systems with those matrices is therefore trivial. In interior-
point methods for nonlinear programming in which the Hessian of the Lagrangian is approximated by a
limited-memory quasi-Newton matrix in inverse form, solving systems with M is cheap since the limited-
memory approximation represents M−1. A matrix-vector product is thus all that is required. Similarly, if the
limited-memory quasi-Newton matrix is updated in factored form, solving systems with M is cost effective.

In fluid dynamics applications, the discretization of Darcy’s law for incompressible flow in a saturated
medium gives rise to a badly scaled matrix M but for which diagonal preconditioning will only leave a few
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clusters of eigenvalues independently of the mesh size (Wathen, 1987). It can thus be expected that the
conjugate gradient method with diagonal preconditioner will converge quickly.

Without loss of generality, we assume from now on that the right-hand side of (1.1) has f = b and g = 0.
Reduction to this situation is always possible, though admittedly at some cost, by first finding any (x0,y0)

satisfying Ax0 −Ny0 = g and setting b = f −Mx0 −ATy0. A variety of iterative methods can be used to
identify such (x0,y0). For instance, the minimum norm problem

minimize
x,y

1
2

(
‖x‖22 + ‖y‖22

)
subject to Ax−Ny = g

can be solved with either the standard Lsqr (Paige and Saunders, 1982) or Craig (Craig, 1955). Because
of our assumption that solving systems with N can be done easily and efficiently, a simpler solution consists
in setting x0 := 0 and solving Ny0 = −g for y0.

Consider (1.1) with f = b and g = 0. Upon eliminating x from the first equation, the y component of
the solution must satisfy

(ATM−1A + N)y = ATM−1b. (2.6)

We refer to (2.6) as the normal equations. Similarly, eliminating y from the second equation of (1.1), the x

component must satisfy
(AN−1AT + M)x = b, (2.7)

to which we refer as the Schur-complement equations. Those equations are not, strictly speaking, normal
equations as they do not directly describe the optimality conditions of a linear least-squares problem. As
becomes apparent in later sections, the coefficient matrices of (2.6) and (2.7) play an important role in our
iterative methods in that they define energy norms suitable to measure direct errors.

We close this section by mentioning that (2.4) is always equivalent to the least-norm problem

minimize
x,y

1
2 (‖x‖2M + ‖y‖2N) subject to Mx + Ay = b. (2.8)

Indeed the Lagrange multipliers associated to the equality constraints are precisely equal to x. It is only
when regularization is present that the least-squares problem and the least-norm problems are equivalent.

3 Preliminaries

3.1 The Lanczos Process

In the sequel, we often refer to Lanczos processes in various contexts. To establish the notation, consider a
generic symmetric linear system with coefficient matrix H and right-hand side d. A Lanczos (1950, 1952)
process applied to H and d constructs a sequence of vectors {sk} according to the following recursion:

ω1s1 = d,

ωk+1sk+1 = Hsk − χksk − ωksk−1, χk := sTkHsk,
(3.1)

with the convention s0 := 0. The constants ωk are chosen at each iteration so ‖sk‖2 = 1. The notation
used in (3.1) is intentionally non-standard so as to avoid confusion with scalar and vector quantities defined
in the rest of the paper, the latter adhering more closely to standard notation found in the literature. It is
possible to derive (3.1) from the standard Gram-Schmidt orthogonalization process, by exploiting symmetry
of H, and therefore, the vectors sk are theoretically orthonormal. After k iterations, the Lanczos process has
generated k + 1 vectors. We gather the first k Lanczos vectors into the matrix Sk :=

[
s1 · · · sk

]
. The

situation after k iterations may be summarized as

HSk = SkΩk + ωk+1sk+1e
T
k , (3.2)
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where Ωk is the tridiagonal matrix

Ωk :=


χ1 ω2

ω2 χ2

. . .
. . . . . . ωk

ωk χk

 .
In floating-point arithmetic, orthogonality of the vectors sk is soon compromised and it is only mathematically
that we are allowed to expect that

ST
kHSk = Ωk,

but (3.2) generally holds to within machine precision.

3.2 Hilbert Space Setting

Let H ∈ Rk×k be symmetric and positive definite. Then Rk endowed with the scalar product uTHv is a
Hilbert space. Conversely, let H be a k-dimensional Hilbert space with basis {φj}j=1,...,k and equipped with
a scalar product (u, v)H. Then H is isometric to Rk with a scalar product determined by the Gramian matrix
H, i.e., Hij := (φi, φj)H. Indeed, upon decomposing u =

∑
j ujφj and v =

∑
j vjφj , we have (u, v)H = uTHv.

Owing to the Riesz theorem (Brézis, 1983), the dual space H? of H is itself a Hilbert space with a scalar
product induced by H−1. In particular, the operator

H : H→ H? 〈H u, v〉H?
,H := vTHu

is self-adjoint and strictly positive, and therefore invertible. Furthermore, the basis {φi} is made of the
columns of H and the corresponding basis {ψi} of H? is made of the columns of H−1. Hereafter, all our
Hilbert spaces are finite dimensional.

Given z ∈ H?, we have
〈z, u〉H?

,H = zTu = zTH−1Hu = (u,H−1z)H,

and we have that w = H−1z is the representation of the Riesz vector w =
∑
j wjφj ∈ H. Let K : H → F

be an operator between the Hilbert spaces H and F. Its adjoint operator K ? : F? → H? is defined (Brézis,
1983) by

〈K ?v, u〉H?
,H := 〈v,K u〉F?

,F ∀v ∈ F?, u ∈ H.

Therefore, we have
〈K ?v, u〉H?

,H = (H−1v,Ku)H = uTKTv, (3.3)

where K is a matrix representation of K . Finally, if we assume that F = H? then the “normal equations
operator” is

K ? ◦H −1 ◦K : H→ H?,

and it is represented by the matrix KTH−1K. If KT = K then K is self-adjoint. Moreover, the operator

H −1 ◦K : H→ H (3.4)

maps H into itself. Therefore, we can define its powers (H −1 ◦K )i as the operators represented by the
matrices (H−1K)i for i ≥ 0.

Let us consider now the Hilbert spaces

M := (Rn, ‖ · ‖M), N := (Rm, ‖ · ‖N),

their duals
M? := (Rn, ‖ · ‖

M
−1), N? := (Rm, ‖ · ‖

N
−1),

and assume that

K :=

[
M A

AT −N

]
(3.5)
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with the corresponding operator
K : M× N→M? × N?.

The norm and scalar product in M× N are induced by the block-diagonal matrix

H =

[
M

N

]
. (3.6)

Let the matrix A represent the linear operator A : N→M? with respect to the canonical bases. For y ∈ N,
A y may be considered as a linear operator defined on M via the relation

〈A y, u〉M?
,M := (u,M−1Ay)M = uTAy for all u ∈M,

where 〈·, ·〉M?
,M is the duality pairing between M and its dual. It is now clear that the appropriate norm to

measure the residual b−Ay is the M−1-norm. Let A ? : M→ N? denote the adjoint operator of A , i.e.,

〈A ?u, y〉N?
,N := (y,N−1ATu)N = yTATu, for all y ∈ N.

Finally, let M : M → M?, N : N → N? and their inverses M−1 : M? → M and N −1 : N? → N denote the
linear operators whose representations are the matrices M, N and their inverses.

We define the operator
(A ? ◦M−1 ◦A ) + N : N→ N?

as the normal operator. This operator appears in the normal equations (2.6). The appropriate norm to
measure the residual of the normal equations is the N−1-norm. Similarly, we call the operator

(A ◦N −1 ◦A ?) + M : M→M?

the Schur-complement operator. The residual of the Schur-complement equations is measured in the M−1-
norm. The situation is summarized in the commutative diagram of Figure 3.1.

M N?

M? N

A
?

A

N
−1NMM

−1

Figure 3.1: Commutative diagram between the relevant Hilbert spaces.

The next sections will regularly refer to Figure 3.1 as they provide appropriate norms in which various
quantities such as direct errors y∗−yk and residuals x∗−xk, should be measured. The commutative diagram
proves to be a consistently useful tool in understanding why such norms are appropriate.

4 Generalized Golub-Kahan Bidiagonalization

Motivated by the least-squares problems of the previous section we recall the standard Golub and Kahan
(1965) bidiagonalization process that forms the basis of several numerical methods for such problems. The
standard Golub-Kahan bidiagonalization process with initial vector b ∈ Rn can be stated as Algorithm 4.1.

In exact arithmetic, Algorithm 4.1 generates two sets of orthonormal vectors {ūi} and {v̄i} that can be
used to determine the left and right singular vectors of Ā (Golub and Kahan, 1965).

Consider the application of Algorithm 4.1 to the operator Ā = M− 1
2 AN−

1
2 with initial vector b̄ = M− 1

2 b.
It is straightforward to verify that after the change of variable ui := M− 1

2 ūi and vi := N−
1
2 v̄i, the resulting

process may be written as Algorithm 4.2.
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Algorithm 4.1 Golub-Kahan Bidiagonalization

Require: Ā, b̄
1: β1ū1 = b̄ with β1 > 0 so that ‖ū1‖2 = 1

2: α1v̄1 = ATū1 with α1 > 0 so that ‖v̄1‖2 = 1
3: for k = 1, 2, . . . do
4: βk+1ūk+1 = Āv̄k − αkūk with βk+1 > 0 so that ‖ūk+1‖2 = 1

5: αk+1v̄k+1 = ĀTūk+1 − βk+1v̄k with αk+1 > 0 so that ‖v̄k+1‖2 = 1.

Algorithm 4.2 Generalized Golub-Kahan Bidiagonalization, first variant
Require: M, A, N, b
1: β1Mu1 = b with β1 > 0 so that ‖u1‖M = 1

2: α1Nv1 = ATu1 with α1 > 0 so that ‖v1‖N = 1
3: for k = 1, 2, . . . do
4: βk+1Muk+1 = Avk − αkMuk with βk+1 > 0 so that ‖uk+1‖M = 1

5: αk+1Nvk+1 = ATuk+1 − βk+1Nvk with αk+1 > 0 so that ‖vk+1‖N = 1.

We refer to Algorithm 4.2 as the Generalized Golub-Kahan Bidiagonalization process in the sense that
the left and right singular vectors {ui} and {vi} are orthonormal with respect to inner products defined by
M and N respectively. It is important to note that at each iteration, one solve with M and one solve with N

must be performed. Indeed the terms Muk and Nvk in the right-hand sides of the assignments in the loop
were computed during the previous pass through the loop. For instance, the computation of βk+1 and uk+1

could be detailed as

1. Set ûk+1 = Avk − αk(ûk/βk)

2. Solve Mũk+1 = ûk+1 for ũk+1

3. Set βk+1 =
√

ũT
k+1ûk+1

4. Set uk+1 = ũk+1/βk+1.

The storage per iteration required by Algorithm 4.2 is the same as that required by Algorithm 4.1 with
the addition of one n-vector for Muk and one m-vector for Nvk. The computational effort per iteration is
that of Algorithm 4.1 with the addition of one solve with M and one solve with N.

After k steps of Algorithm 4.2, the situation can be summarized as

AVk = MUkBk + βk+1Muk+1e
T
k (4.1a)

= MUk+1Ek, (4.1b)

ATUk+1 = NVk+1B
T
k+1 (4.1c)

= NVkE
T
k + αk+1Nvk+1e

T
k+1, (4.1d)

where ek is the k-th vector of the canonical basis, Uk and Vk are the n-by-k and m-by-k matrices whose
columns are u1 through uk and v1 through vk, respectively, and

Bk :=


α1

β2 α2

. . . . . .
βk αk

 , Ek :=


α1

β2 α2

. . . . . .
βk αk

βk+1

 =

[
Bk

βk+1e
T
k

]
(4.2)

i.e., Bk is k-by-k lower bidiagonal and Ek is Bk with one extra row. The orthogonality properties of the
vectors uj and vj implies that the matrices M

1
2 Uk and N

1
2 Vk are orthogonal for all k.

Algorithm 4.2 is a generalization of the process referred to as GKLB(M) by Benbow (1999) and it may be
denoted GKLB(M,N). An analysis mirroring that of Paige (1974) is instructive in relation to the stopping of
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the generalized Golub-Kahan process. The first situation that can cause the process to stop is that βk+1 = 0

is generated. In this case, we obtain from (4.1) that, in exact arithmetic,

AVk = MUkBk, ATUk = NVkB
T
k , UT

kMUk = Ik, VT
k NVk = Ik. (4.3)

The second situation is that αk+1 = 0 is generated. In this case, in exact arithmetic,

ATUk+1 = NVkE
T
k , AVk = MUk+1Ek, UT

k+1MUk+1 = Ik+1, VT
k NVk = Ik. (4.4)

Let Ek = Pk+1ΣkQ
T
k be the singular value decomposition of Ek, where Pk+1 is orthogonal (k+1)-by-(k+1),

Σk is (k + 1)-by-k, Qk orthogonal is k-by-k and

Σk =


σ1

σ2

. . .
σk

0 0 . . . 0

 , σi > 0, i = 1, . . . , k.

We have from (4.4) that ATUk+1Pk+1 = NVkQkΣ
T
k and AVkQk = MUk+1Pk+1Σk. Equivalently, the last

two identities can be stated as

(M− 1
2 AN−

1
2 )TŪk+1Pk+1 = V̄kQkΣ

T
k , (4.5a)

(M− 1
2 AN−

1
2 )V̄kQk = Ūk+1Pk+1Σk. (4.5b)

where we used ūj = M
1
2 uj and v̄j = N

1
2 vj for all j. The relations (4.5) show that Ā := M− 1

2 AN−
1
2 has a

zero singular value and that the associated right singular vector is the last column of Ūk+1Pk+1. This last
column can be written

t =

k+1∑
j=1

pk+1,jM
1
2 uj ,

where pk+1 is the last column of Pk+1. This vector t is a linear combination of the vectors M
1
2 uj and

must lie in Null(ĀT) = Null(ATM− 1
2 ). Assume now that b ∈ Range(A). Then u1 ∈ Range(M−1A). A

recursion argument easily establishes that each uj ∈ Range(M−1A). In this case, the vector t thus lies in
Range(M− 1

2 A) which is in contradiction with the previous conclusion that t ∈ Null(ATM− 1
2 ). Therefore, if

b ∈ Range(A), Algorithm 4.2 cannot terminate with αk+1 = 0. It must thus terminate with βk+1 = 0 and
the final situation must be described by (4.3).

Conversely, if (4.3) describes the final situation, necessarily u1 ∈ Range(M−1A), i.e., b ∈ Range(A)

because Uk = M−1AVkB
−1
k , which shows that all uj lie in Range(M−1A). Therefore if b 6∈ Range(A), the

final situation must be described by (4.4).

In the same way that Algorithm 4.1 is closely related to the singular-value decomposition of A, Algo-
rithm 4.2 is related to the elliptic singular-value decomposition of A (Arioli, 2010) in the sense that the
families {ui} and {vi} determine families {wi} and {zi} satisfying

Azi = σiMwi, zTi Nzj = δij ,

ATwi = σiNzi, wT
i Mwj = δij .

In matrix form, this can also be cast as the generalized eigenvalue problem[
A

AT

] [
w
z

]
= λ

[
M

N

] [
w
z

]
.

The positive scalars σi are referred to as the elliptic singular values of A and the families {wi} and {zi}
are its left and right elliptic singular vectors, respectively. The latter may equivalently be interpreted as the
stationary points of the indefinite quadratic mapping

(w, z) 7→ wTAz
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restricted to the unit sphere ‖w‖M = 1 and ‖z‖N = 1. In exact arithmetic, we have from (4.1) that
ŪT
k (M− 1

2 AN−
1
2 )V̄k = Bk, where ūj = M

1
2 uj and v̄j = N

1
2 vj . Since the matrices Ūk and V̄k are orthogonal

for all k, the singular values of Bmin(m,n) are the same as those of M− 1
2 AN−

1
2 .

There are algebraically equivalent alternatives to Algorithm 4.2. For instance, if we use instead the change
of variables ui := M

1
2 ūi and vi := N−

1
2 v̄i, and use the initial vector M

1
2 b, we obtain the process described

in Algorithm 4.3.

Algorithm 4.3 Generalized Golub-Kahan Bidiagonalization, second variant
Require: M, A, N, b
1: β1M

−1u1 = b with β1 > 0 so that ‖u1‖M−1 = 1

2: α1Nv1 = ATM−1u1 with α1 > 0 so that ‖v1‖N = 1
3: for k = 1, 2, . . . do
4: βk+1uk+1 = Avk − αkuk with βk+1 > 0 so that ‖uk+1‖M−1 = 1

5: αk+1Nvk+1 = ATM−1uk+1 − βk+1Nvk with αk+1 > 0 so that ‖vk+1‖N = 1.

The process of Algorithm 4.3, which we could denote GKLB(M−1, N) generalizes the process referred
to by Benbow (1999) as GKLB(M−1). As both are mathematically equivalent, in the rest of this paper, we
concentrate on the process GKLB(M,N) described by Algorithm 4.2. However, all methods examined in the
next sections could be examined instead with Algorithm 4.3 and similar conclusions could be drawn.

5 Properties of SQD matrices and of their Krylov spaces

5.1 Eigenvalues

From Sylvester’s law of inertia, the congruence relation[
M A

AT −N

]
=

[
In

ATM−1 Im

] [
M

−(ATM−1A + N)

] [
In M−1A

Im

]
(5.1)

shows that the coefficient matrix of (1.1) always possesses precisely n positive and m negative eigenvalues.
Note that a second possible decomposition illustrating this result is[

M A

AT −N

]
=

[
In −AN−1

Im

] [
AN−1AT + M

−N

] [
In

−N−1AT Im

]
. (5.2)

The result below is more precise. Consider centered preconditioning of (1.1) with f = b and g = 0:[
M− 1

2

N−
1
2

][
M A

AT −N

][
M− 1

2

N−
1
2

][
M

1
2 x

N
1
2 y

]
=

[
M− 1

2 b

0

]
. (5.3)

It is straightforward to verify that the coefficient matrix of the previous system is

K̄ :=

[
In Ā

ĀT −Im

]
with Ā := M− 1

2 AN−
1
2 . (5.4)

The next result gives the eigenvalues of K̄. It is a special case of (Saunders, 1995, Result 2).

Theorem 5.1 Suppose Ā has rank p ≤ min(m,n) with nonzero singular values σ1, . . . , σp. The eigenvalues
of K̄ are
• λ = +1 with multiplicity n− p,
• λ = −1 with multiplicity m− p,

• λ = ±
√

1 + σ2
k, k = 1, . . . , p.
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The scalars σk are the singular values of M− 1
2 AN−

1
2 , which we call the elliptic singular values of A. A

similar result clearly also holds if we replace M
1
2 with L and N

1
2 with R, where M = LLT and N = RTR.

Theorem 5.1 implies that the spectrum of K̄ is symmetric, i.e., if λ is an eigenvalue of K̄, then −λ is
another. An important result related to operators with symmetric spectrum due to Fischer (2011, Theo-
rem 6.9.9) will prove to be instrumental to our analysis.

Consider K, H and K̄ as defined in (3.5), (3.6) and (5.4), and observe that

K = H
1
2 K̄H

1
2 . (5.5)

By direct computation,

K̄2 =

[
In + ĀĀT

Im + ĀTĀ

]
:= D̄. (5.6)

From (5.6) and the symmetry of K̄, we have the following properties:

K̄−1 = D̄−1K̄ = K̄D̄−1 (5.7)

K̄D̄ = K̄3 = D̄K̄ (5.8)

KH−1K = H
1
2 D̄H

1
2 =

[
M + AN−1AT

N + ATM−1A

]
:= D. (5.9)

Note that D contains the coefficient matrix of both the normal equations (2.6) and the Schur-complement
equations (2.7). Finally, from (5.9), we have

K−1 = D−1KH−1 = H−1KD−1. (5.10)

Because (5.8) says that D̄ and K̄ commute, both matrices can be simultaneously diagonalized. In addition,
(5.5) and (5.9) imply that D and K can be simultaneously diagonalized by the solutions of the generalized
eigenvalue problem

Kz = λjHz,

where the λj , j = 1, . . . , p = rank(Ā) are the same eigenvalues presented in Theorem 5.1. Again, the entire
discussion above remains if we replace H

1
2 by the Cholesky factor of H.

5.2 Krylov subspaces

We denote
Ki(K̄, z̄) = Range

{
K̄iz̄, K̄i−1z̄, . . . , K̄z̄, z̄

}
(5.11)

the i-th Krylov subspace generated by K̄ and a vector z̄. Note that Ki(K̄, z̄) is also the i-th Krylov subspace
generated by K symmetrically preconditioned by H

1
2 and the vector z = H

1
2 z̄. Moreover, taking into account

(3.4), the discussion in §3.2 and (5.5), we have

H−1K = H−
1
2 K̄H

1
2 , (5.12)

and
Ki(H

−1K,w) = H−
1
2Ki(K̄, z), where w = H−

1
2 z. (5.13)

Owing to the symmetry of the spectrum of K̄—see Theorem 5.1—it is known (Fischer, 2011, Theorem 6.9.9)
and (Freund et al., 1991) that Lanczos-based algorithms such as Minres perform redundant iterations.
Taking into account the structure of K̄, it is possible to be more precise.

From (5.6) and (5.8), we have, for all k ≥ 0,

K̄2k = D̄k and K̄2k+1 = K̄D̄k = D̄kK̄. (5.14)
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Consequently, for all i ≥ 0, the Krylov subspace Ki(K̄, z̄) can be written as the direct sum

Ki(K̄, z̄) = Kbi/2c(D̄, z̄)⊕Kbi/2c(D̄, K̄z̄)

= Kbi/2c(D̄, z̄)⊕ K̄Kbi/2c(D̄, z̄).
(5.15)

Let D̄1 and D̄2 be defined such that D̄ = blkdiag(D̄1, D̄2). Then, if z̄ = (z̄1, z̄2), we have

Ki(D̄, z̄) =

[
Ki(D̄1, z̄1)

0

]
⊕
[

0
Ki(D̄2, z̄2)

]
(5.16)

and

K̄Ki(D̄, z̄) =

[
Ki(D̄1, z̄1)

ĀTKi(D̄1, z̄1)

]
⊕
[

ĀKi(D̄2, z̄2)
−Ki(D̄2, z̄2)

]
(5.17)

=

[
Ki(D̄1, z̄1)

Ki(D̄2, Ā
Tz̄1)

]
⊕
[
Ki(D̄1, Āz̄2)
−Ki(D̄2, z̄2)

]
. (5.18)

In particular, if we choose z = (b,0) or (0,g), we have, respectively,

Ki
(

D̄,

[
b
0

])
=

[
Ki(D̄1,b)

0

]
and Ki

(
D̄,

[
0
g

])
=

[
0

Ki(D̄2,g)

]
.

With z = (b,0), we finally obtain

Ki
(

K̄,

[
b
0

])
=

[
Kbi/2c(D̄1,b)

0

]
⊕
[

0

Kbi/2c+1(D̄2,A
Tb)

]
.

6 Methods Based on Reduced Equations

This section presents a family of four methods based on the normal and Schur-complement equations. Three
methods are generalizations of known methods in appropriate metrics: Lsqr, Craig and Lsmr. The last
one is new and may be viewed as an alternative to Lsmr when m < n. It also serves as an essential tool to
explain the behavior of Minres on (1.1) in §8.4. For each method, we give implementation details in order
to be complete and to provide a self-contained reference. The implementation details of Lsqr and Lsmr are
our interpretation of the descriptions in (Paige and Saunders, 1982) and (Fong and Saunders, 2011). The
implementation details of Craig were pieced together from various hints scattered across the literature and
those of Craig-mr are new although they essentially mirror Lsmr.

6.1 Generalized Lsqr

The generalized Lsqr method seeks a solution to the normal equations (2.6). At the end of the k-th iteration
of Algorithm 4.2, we may seek an approximation yk to the solution y of (2.6) in the k-th Krylov subspace
spanned by {v1, . . . , vk}, i.e.,

y ≈ yk := Vkȳk

for some ȳk ∈ Rk. Using (4.1), we have, in exact arithmetic, Ayk = AVkȳk = MUk+1Ekȳk so that

ATM−1Ayk = (NVkE
T
k + αk+1Nvk+1e

T
k+1)Ekȳk,

and, using the definition of yk, Nyk = NVkȳk. Similarly, the initialization of Algorithm 4.2 guarantees that
b = MUk+1(β1e1) holds to machine precision at each iteration. This implies that

ATM−1b = (NVkE
T
k + αk+1Nvk+1e

T
k+1)(β1e1).

Finally, (2.6) may be equivalently written

((NVkE
T
k + αk+1Nvk+1e

T
k+1)Ek + NVk)ȳk = (NVkE

T
k + αk+1Nvk+1e

T
k+1)(β1e1).
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Upon premultiplying the previous equality with VT
k and using the fact that the vk’s are N-orthonormal in

exact arithmetic, we obtain
(ET

kEk + Ik)ȳk = ET
k (β1e1), (6.1)

which are the optimality conditions of the linear least-squares problem

minimize
ȳ∈Rk

1
2

∥∥∥∥[Ek

Ik

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

. (6.2)

The latter is exactly the k-th regularized least-squares subproblem solved by Lsqr with regularization pa-
rameter λ = 1. Equivalently, ȳk solves the SQD subsystem[

Ik+1 Ek

ET
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
(6.3)

for some x̄k. As in (Benbow, 1999), this means that all that need be changed in Lsqr to solve (1.1) with
f = b and g = 0 is Algorithm 4.1, which should be replaced with Algorithm 4.2.

The `2-norm residual satisifes

‖x̄k‖2 = ‖M
1
2 Uk+1x̄k‖2 = ‖M− 1

2 (Mxk)‖2 = ‖Mxk‖M−1 = ‖xk‖M,

where we used the fact that M
1
2 Uk+1 is an orthogonal matrix. Thus ‖Mxk‖M−1 may be updated recursively

by updating ‖x̄k‖2 as in the original Lsqr, and the sequence {‖Mxk‖M−1} is non-increasing.

It is convenient to solve (6.1) by computing a (2k+ 1)-by-(2k+ 1) orthogonal matrix Qk as a product of
Givens rotations and a (2k + 1)-by-k upper bidiagonal matrix Rk such that

Ẽk :=

[
Ek

Ik

]
= QkRk. (6.4)

We give the details of the construction of Qk in the next section.

The following result is algebraic and generalizes (Saunders, 1995, Result 8). It is based on the observation
that the coefficient matrix of (2.6) may also be written

N
1
2

(
(M− 1

2 AN−
1
2 )T(M− 1

2 AN−
1
2 ) + In

)
N

1
2 .

Theorem 6.1 The generalized Lsqr iterates on (2.4) are the same as those generated by the standard
conjugate gradient method on the positive definite system (2.6) with preconditioner N.

Proof. Proceeding as above, using (4.1) and post-multiplying the coefficient matrix of (2.6) by Vk, we have

(ATM−1A + N)Vk = N(VkE
T
kEk + αk+1vk+1e

T
k+1Ek + Vk)

= N(Vk(ET
kEk + Ik) + αk+1βk+1vk+1e

T
k ),

where we used the fact that eT
k+1Ek = βk+1e

T
k . The matrix Tk := ET

kEk + Ik is tridiagonal, symmetric and
positive definite, and its i-th off-diagonal element is αiβi. Therefore, upon comparing with (3.2), the above
represents a Lanczos process applied to the coefficient matrix of (2.6) in a metric defined by N. Moreover,
by definition of Qk and Rk,

ET
kEk + Ik =

[
ET
k Ik

]
QkQ

T
k

[
Ek

Ik

]
= RT

kRk.

Therefore, Rk is the Cholesky factor of Tk, updated at each iteration, and the generalized Lsqr method is
equivalent to the method of conjugate gradients applied to (2.6) with preconditioner N.
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6.2 Generalized Lsqr Recursive Expressions

In this section we give update formulae to perform the factorization (6.4) iteratively. Substituting the identity

RT
kRk ȳk =

[
ET
k Ik

] [Ek

Ik

]
ȳk = (ET

kEk + Ik)ȳk,

into (6.1), we obtain

RT
kRk ȳk = ET

kβ1e1 =
[
ET
k Ik

] [β1e1

0

]
= RT

kQT
k

[
β1e1

0

]
= α1β1e1. (6.5)

The (2j + 1, j)-th element of Ẽk (equal to 1) may be zeroed out by applying a Givens rotation acting
on rows j and 2j, denoted QT

j,2j+1, the last index indicating the row of the element being zeroed out.
This rotation does not create any new nonzero in the other columns of Ẽk. Its effect may be represented
schematically as (ignoring irrelevant rows and columns)

[ j 2j + 1

j cj sj
2j + 1 sj −cj

] [ j j + 1

α̂j 0

1 0

]
=

[ j j + 1

ρ̂j 0

0 0

]
,

where ρ̂j :=
√
α̂2
j + 1, cj := α̂j/ρ̂j , sj = 1/ρ̂j and initially, α̂1 = α1. Next, the βj+1 in position (j + 1, j)

may be zeroed out by a second Givens rotation acting on rows j and j + 1, denoted QT
j,j+1. This rotation

creates a new nonzero element in position (j, j + 1) as the following schema illustrates

[ j j + 1

j c̄j s̄j
j + 1 s̄j −c̄j

] [ j j + 1

ρ̂j 0

βj+1 αj+1

]
=

[ j j + 1

ρj θj+1

0 α̂j+1

]
,

where ρj :=
√
ρ̂2
j + β2

j+1, c̄j := ρ̂j/ρj , s̄j := βj+1/ρj , θj+1 := s̄jαj+1 and α̂j+1 := −c̄jαj+1. It is now easy to
see that the overall orthogonal matrix Qk is given by

Qk = (Q1,4Q1,2)(Q2,6Q2,3) · · · (Qk,2kQk,k+1).

Recalling that Ek is (k + 1)-by-k, the result of the first k Givens rotations may be described as

QT
k

[
Ek β1e1

Ik 0

]
= QT

k

 Bk β1e1

βk+1e
T
k 0

Ik 0

 =

Rk zk
0 ζ̄k+1

0 wk

 ,
where zk = (ζ1, . . . , ζk), wk = (ω1, . . . , ωk) and ζ̄k+1 will be updated into ζk+1 with the next Givens rotation.

The update of the right-hand side may be visualized as


j j + 1 2j + 1

j c̄j s̄j
j + 1 s̄j −c̄j
2j + 1 1

 
j j + 1 2j + 1

cj sj
1

sj −cj

ζ̄j0
0

 =

 ζj
ζ̄j+1

ωj

 ,
where ζj := c̄jcj ζ̄j , ζ̄j+1 := s̄jcj ζ̄j , ωj := sj ζ̄j , and where we initialize ζ̄1 := β1. The value ζ̄j+1 will be
replaced by ζj+1 by the next Givens rotation.

A consequence of the rotation above is that the subproblem (6.2) may equivalently be rewritten

minimize
ȳ∈Rk

1
2

∥∥∥∥∥∥
Rk

0
0

 ȳ −

 zk
ζ̄k+1

wk

∥∥∥∥∥∥
2

2

,
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whose solution is readily identified, ȳk := R−1
k zk, and whose residual is the norm of (ζ̄k+1,wk).

Since ȳk is the solution of an upper triangular system, all of its components likely change at each iteration.
Fortunately, it possible to update yk directly without requiring ȳk. Following Paige and Saunders (1982),
let dj be the j-th column of

Dk := VkR
−1
k . (6.6)

Upon rearranging, we have RT
kDT

k = VT
k so that we find the rows of DT

k , i.e., the vectors dj , recursively:

d1 =
1

ρ1

v1, dj+1 =
1

ρj+1

(vj+1 − θj+1dj), (j = 1, . . . , k − 1). (6.7)

Consequently,
yk = Vkȳk = VkR

−1
k zk = Dkzk = yk−1 + ζkdk. (6.8)

The following result shows that Dk is a partial factor of ATM−1A + N and that the latter matrix defines
the appropriate norm to measure direct errors.

Theorem 6.2 Let the vectors dk be updated according to (6.7). Then, for k = 1, . . . ,m, we have

DT
k (ATM−1A + N)Dk = Ik. (6.9)

In particular,

yk =

k∑
j=1

ζjdj , (6.10a)

‖y‖2
A
T
M

−1
A+N

=

m∑
j=1

ζ2
j (6.10b)

‖y − yk‖
2

A
T
M

−1
A+N

=

m∑
j=k+1

ζ2
j , (6.10c)

where y is the solution of (2.4).

Proof. We have from (4.1), (6.4), and (6.6) that

DT
k (ATM−1A + N)Dk = R−Tk VT

k (ATM−1A + N)VkR
−1
k

= R−Tk (VT
kATM−1AVk + Ik)R−1

k

= R−Tk (ET
kUT

k+1MUk+1Ek + Ik)R−1
k

= R−Tk

[
ET
k Ik

] [Ek

Ik

]
R−1
k

= QT
kQk = Ik,

which establishes (6.9). Formulae (6.10a), (6.10b), and (6.10c) follow easily from (6.9) and (6.8).

Truncating the sum in (6.10b) and (6.10c) yields lower bounds on ‖y‖2
A
T
M

−1
A+N

and ‖y−yk‖
2

A
T
M

−1
A+N

.
In particular, given an integer d sufficiently large and an iteration k ≥ d, the sum over the most recent d
iterations

k∑
j=k−d+1

ζ2
j ≤ ‖y − yk−d+1‖

2

A
T
M

−1
A+N

(6.11)

can be a good approximation of the direct error between the exact solution y and the iterate yk−d+1 in the
energy norm defined by ATM−1A + N. Analogously to the approach used by Arioli (2010), Hestenes and
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Stiefel (1952), Golub and Meurant (1997), Golub and Meurant (2010) and others, this suggests a stopping
criterion where we stop the iterations when the partial sum above falls below a tolerance τ2 times

∑k
j=1 ζ

2
j .

The update of dk+1 appears to require knowledge of ρk+1, which is not available during the k-th iteration.
It is possible to circumvent this by defining hk := ρkdk. We then initialize h1 := v1 and update according
to hk+1 = vk+1 − θk+1/ρk hk. The update of yk becomes yk = yk−1 + ζk/ρk hk. The main steps of g-Lsqr
are summarized as Algorithm 6.1.

Algorithm 6.1 Generalized Lsqr

Require: M, A, N, b, d, τ , kmax
1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: h1 = v1, ζ̄1 = β1, α̂1 = α1, y0 = 0
3: k = 1, ∆ = 0, converged = false
4: while not converged and k < kmax do
5: // Continue bidiagonalization
6: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk

7: ρ̂k = (1 + ρ̄2
k)

1
2 , ck = α̂k/ρ̂k, sk = 1/ρ̂k // Rotation of type II

8: ρk = (ρ̂2
k + β2

k+1)
1
2 , c̄k = ρ̂k/ρk, s̄k = βk+1/ρk // Rotation of type I

9: θk+1 = s̄kαk+1, α̂k+1 = −ĉkαk+1

10: ζk = c̄kck ζ̄k, ζ̄k+1 = s̄kck ζ̄k, ωk = sk ζ̄k // Update solution and residual
11: yk = yk−1 + ζk/ρk hk // Update
12: hk+1 = vk+1 − θk+1/ρk hk,
13: ∆ = ∆ + ζ2

k

14: if k ≥ d then
15: converged =

(∑k
j=k−d+1 ζ

2
j < τ2∆

)
// Test convergence

16: k ← k + 1
17: y = yk
18: x = M−1(b−Ay)
19: return (x,y)

6.3 Generalized Craig

The Generalized Craig method seeks a solution to the least-norm problem (2.8), which, we reiterate, it
perfectly equivalent to the least-squares problem (2.4). After k steps of Algorithm 4.2, we seek approximations

x ≈ xk := Ukx̄k, and y ≈ yk := Vkȳk

for some x̄k ∈ Rk and ȳk ∈ Rk. In doing so, we have ‖y‖2N ≈ ‖yk‖
2
N = ‖ȳk‖

2 and ‖x‖2M ≈ ‖xk‖
2
M = ‖x̄k‖

2.
Moreover,

Mx + Ay ≈Mxk + Ayk

= MUkx̄k + AVkȳk

= MUkx̄k + MUkBkȳk + βk+1Muk+1e
T
k ȳk.

Upon premultiplying by UT
k , the right-hand side becomes x̄k + Bkȳk. Therefore, (x̄k, ȳk) solves

minimize
x̄,ȳ

1
2 (‖x̄‖2 + ‖ȳ‖2) subject to x̄ + Bkȳ = β1e1, (6.12)

where we again used the fact that b = MUk(β1e1) for all k. Since the constraints of the latter problem always
form a compatible system, Craig’s method may be applied. As in the previous section, the k-th subproblem
solved by this generalized Craig method is identical to that solved by the Extended Craig Algorithm of
Saunders (1995) with the regularization parameter set to one. The only part of the implementation that
need be modified is the bidiagonalization step.
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By contrast with §6.1, the solution of (6.12) solves the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
(6.13)

which represents the optimality conditions of the regularized least-squares problem

minimize
ȳ∈Rk

1
2

∥∥∥∥[BT
k

Ik

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

.

The similarity between the latter and the least-squares problem solved at iteration k of Lsqr makes it
possible to transfer from the Craig point to the Lsqr point (Saunders, 1995).

Following Saunders (1995) and Paige (1974), (6.12) may be solved via the LQ factorization of the k-by-2k
matrix

[
Bk Ik

]
by applying 2k − 1 Givens rotations that zero out the identity block. The construction of

the rotations is explained below. Their effect is to produce an orthogonal 2k-by-2k matrix Qk and a k-by-k
lower bidiagonal matrix B̂k such that [

Bk Ik
]
QT
k =

[
B̂k 0

]
. (6.14)

We denote

B̂k :=


α̂1

β̂2 α̂2

. . . . . .
β̂k α̂k

 . (6.15)

Suppose y∗ is the y-component of the exact solution to (1.1) with f = b and g = 0 and write y∗ = Vmȳ

for some vector ȳ. The direct error is measured by

‖ȳ − ȳk‖2 = ‖N
1
2 Vm(ȳ −BT

k z̄k)‖2 = ‖Vm(ȳ −BT
k z̄k)‖N = ‖y∗ − yk‖N,

where we used the facts that ȳk = BT
k z̄k, yk = Vmȳk and the orthogonality of N

1
2 Vm. Similarly, ‖x∗ −

xk‖M = ‖x̄ − x̄k‖2, where x∗ = Umx̄ is the x-component of the exact solution to (1.1). The generalized
Craig method thus generates a sequence {(xk,yk)} such that ‖x∗ − xk‖

2
M + ‖y∗ − yk‖

2
N is non-increasing.

By definition of the Craig method—(Craig, 1955) and (Saunders, 1995, Result 9)—and the observation
that

M + AN−1AT = M
1
2

(
In + (M− 1

2 AN−
1
2 )(M− 1

2 AN−
1
2 )T
)

M
1
2 ,

we have the following result.

Theorem 6.3 The generalized Craig iterates yk are related to the iterates xk of the conjugate gradient
method applied to

(M + AN−1AT)x = b (6.16)

with preconditioner M according to yk = N−1ATxk.

Proof. Upon multiplying the second block equation of (6.13) by Bk and substituting the value of Bkȳk from
the first block equation, we obtain

(BkB
T
k + Ik)x̄k = β1e1. (6.17)

Our subsitution combined with (4.1) yield

yk = Vkȳk = VkB
T
k x̄k = N−1BTUkx̄k = N−1ATxk.

Using the approximation x ≈ xk := Ukx̄k in (6.16) and premultiplying with UT
k , and using the M-

orthogonality of the uk, the N-orthogonality of the vk and (4.1), we obtain precisely (6.17).
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The system (6.17) may be written equivalently

[
Bk Ik

] [BT
k

Ik

]
x̄k = β1e1.

Substituting the factorization (6.14) and using the orthogonality of Qk, we obtain

B̂kB̂
T
k x̄k = β1e1. (6.18)

In the latter system, the matrix T̂k := B̂kB̂
T
k is tridiagonal, symmetric and positive definite, and its Cholesky

factor is B̂k. It is the tridiagonal matrix generated by a Lanczos process applied to (6.16). Indeed, con-
sider (6.16) in which we substitute x by an approximation of the form xk = Ukx̄k. Using (4.1), we have

(M + AN−1AT)Uk = M
(
Uk(Ik + BkB

T
k ) + βk+1uk+1e

T
kBT

k

)
= M

(
Uk

[
Bk Ik

] [BT
k

Ik

]
+ αkβk+1uk+1e

T
k

)
.

(6.19)

It is easy to verify that the k-th off-diagonal element of T̂k = BkB
T
k + Ik is precisely equal to αkβk+1. Com-

paring with (3.2), we conclude that (6.19) corresponds to a Lanczos process on the coefficient matrix of (6.16)
with a metric defined by the matrix M. This and the facts established above confirm that the generalized
Craig method is equivalent to the conjugate gradient method applied to (6.16) with preconditioner M.

The proof of Theorem 6.3, and (6.18) in particular, suggests a numerical procedure. Indeed, letting

z̄k := B̂T
k x̄k, (6.20)

solving for the components of z̄k = (ζ1, . . . , ζk) is easy:

ζ1 := β1/α̂1, ζi+1 := −β̂i+1ζi/α̂i, (i = 1, . . . , k − 1). (6.21)

Solving for xk directly, and bypassing x̄k, may now be done as in §6.2. By definition,

xk = Ukx̄k = UkB̂
−T
k z̄k.

Since B̂−Tk is upper bidiagonal, all components of B̂−Tk z̄k are likely to change at every iteration. Fortunately,
upon defining Dk := UkB̂

−T
k , and denoting di the i-th column of Dk, we are able to use a recursion formula

for xk provided that di may be found easily. Slightly rearranging, we have

B̂kD
T
k = UT

k

and therefore it is easy to identify each di—i.e., each row of DT
k—recursively:

d1 := u1/α̂1, di+1 := (ui+1 − β̂i+1di)/α̂i+1, (i = 1, . . . , k − 1). (6.22)

This yields the update
xk+1 = xk + ζk+1dk+1 (6.23)

for xk+1. In the next section, we return to the expansion of each xk as a linear combination of the columns
of Dk.

6.4 Generalized Craig Recursive Expressions

Saunders (1995) describes an implementation of the extended Craig method in the variable y. In this
section, we describe an implementation in the variable x that resembles that of Arioli (2010).

The (1, k + 1)-st element of
[
Bk Ik

]
(equal to 1), may be zeroed out by applying a Givens rotation

acting on columns 1 and k + 1. By convention, we denote this rotation Q1,k+1, the last index indicating
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the column of the element being zeroed out, and label it a rotation of type I. As the (2, 1)-th element of the
constraint matrix is β2 > 0, the rotation creates a new nonzero element in position (2, k+1), which we denote
γ2. The newly created γ2 may be zeroed out by a second rotation, of type II, acting on columns k + 1 and
k + 2, i.e., Qk+2,k+1. Aside from zeroing out γ2, the effect of Qk+2,k+1 is to change the value 1 in position
(k+ 2, k+ 2) to some other value, denoted δ2, which can be zeroed out by a new rotation of type I. With the
convention that δ1 = 1, a general rotation of type I, with the purpose of zeroing out a δk, may be represented
schematically as (ignoring all irrelevant rows and columns):

[ k 2k

k αk δk
k + 1 βk+1 0

] [ k 2k

ck sk
sk −ck

]
=

[
ρk 0

ckβk+1 γk+1

]
:=

[
α̂k 0

β̂k+1 γk+1

]
,

where ρk :=

√
α2
k + δ2

k, ck := αk/ρk, sk := δk/ρk, β̂k+1 := ckβk+1, and γk+1 := skβk+1, and where labels to
the left and above a matrix indicate row and column indices, respectively. It is easy to show by induction
that α̂k > 0 and therefore that the procedure (6.21) is well defined. Similarly, a general rotation of type II,
with the purpose of zeroing out a γk+1, may be represented schematically as

[ 2k + 1 2k + 2

k + 1 γk+1 1

k + 2 0 0

] [ 2k + 1 2k + 2

c̄k s̄k
s̄k −c̄k

]
=

[
0 δk+1

0 0

]
,

where c̄k := −1/
√
γ2
k+1 + 1, s̄k := γk+1/

√
γ2
k+1 + 1, and δk+1 := s̄kγk+1 − c̄k =

√
γ2
k+1 + 1. It is now not

too difficult to see that the sequence of rotations required to perform the LQ factorization is given by

QT
k := (Q1,k+1Qk+2,k+1)(Q2,k+2Qk+3,k+2) · · · (Qk−1,2k−1Q2k,2k−1)Qk,2k.

Other rotations are possible; the one given coincides with that of Saunders (1995).

We can verify by induction that

α̂1 =

√
α2

1 + 1,

α̂k+1 =

√
α2
k+1 + δ2

k+1, k ≥ 2,

β̂k+1 = αkβk+1/α̂k, k ≥ 2.

(6.24)

At this point, we have constructed B̂k and we may update the vectors dk and the estimate xk as in (6.22)
and (6.23).

The factorization (6.14) implicitly fixes ȳk = BT
k x̄k in (6.13).

At each iteration, the residual of (1.1) at (xk,yk),[
rk
sk

]
:=

[
b
0

]
−
[
M A

AT −N

] [
xk
yk

]
(6.25)

is given by [
rk
sk

]
=

[
β1Mu1

0

]
−
[
M A

AT −N

] [
Uk

Vk

] [
x̄k
ȳk

]
=

[
β1Mu1

0

]
−
[
M

N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
−
[
βk+1Muk+1

0

]
eT

2k

[
x̄k
ȳk

]
=

[
−βk+1ηkMuk+1

0

]
,

where we used (4.1), (6.13) and where ηk is the k-th component of ȳk. The vector ȳk is not directly available
but ηk can nonetheless be monitored cheaply since, by definition,

ηk = eT
k

[
ȳk
x̄k

]
= eT

kQT
k

[
z̄k
0

]
= eT

kQk,2k

[
z̄k
0

]
= ckζk, (6.26)
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where ζk is the k-th component of z̄k, while ck is the cosine defining Qk,2k. This establishes that

‖rk‖M−1 = |βk+1ckζk|. (6.27)

The residual of (6.16) may be monitored similarly. As in (6.19), we have

qk := b− (M + AN−1AT)Ukx̄k (6.28)

= β1Mu1 −M
(
Uk(Ik + BkB

T
k )x̄k + αkβk+1uk+1e

T
k x̄k

)
= αkβk+1ξkMuk+1.

where we used (6.17) and we denoted ξk the last component of x̄k. As before, x̄k is not directly accessible
but, by definition,

ξk = eT
2k

[
ȳk
x̄k

]
= eT

2kQ
T
k

[
z̄k
0

]
= eT

2kQ2k,2k−1Qk,2k

[
z̄k
0

]
= skζk, (6.29)

where we have used the facts that eT
2kQ2k,2k−1 = s̄ke

T
2k−1 − c̄ke

T
2k, that eT

2k−1Qk,2k = 0, and eT
2kQk,2k =

ske
T
k − cke

T
2k. Since qk ∈M?, we have, using the M-orthogonality of uk+1,

‖qk‖M−1 = |αkβk+1skζk|. (6.30)

Note that from (6.21), (6.26) and (6.29), we also have

ξ2
k + η2

k = ζ2
k for all k. (6.31)

The generalized Craig method is summarized as Algorithm 6.2.

As in the case of Lsqr, Algorithm 6.2 implicitly constructs and updates a partial factorization of a matrix
determining the energy norm.

Theorem 6.4 Let B̂k be defined by (6.14) and Dk := UkB̂
−T
k . For k = 1, . . . , n, we have

DT
k (AN−1AT + M)Dk = Ik. (6.32)

In particular,

xk =

k∑
j=1

ζjdj (6.33)

and we have the estimates

‖xk‖
2

AN
−1

A
T
+M

=

k∑
i=1

ζ2
i , (6.34a)

‖x∗ − xk‖
2

AN
−1

A
T
+M

=

n∑
i=k+1

ζ2
i , (6.34b)

‖xk‖
2
M =

k∑
i=1

ξ2
i , (6.34c)

‖x∗ − xk‖
2
M =

n∑
i=k+1

ξ2
i , (6.34d)

where ζi and ξi are as in (6.21) and (6.29).
In addition, the residuals rk and qk defined in (6.25) and (6.28) satisfy

‖rk‖M−1 ≤ ‖Ā‖2 |ζk| and ‖qk‖M−1 ≤ ‖Ā‖22 |ζk|. (6.35)
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Proof. We have from (6.14), the orthogonality of Qk, the M-orthogonality of the uk, the N-orthogonality
of the vk and (4.1), that

DT
k (AN−1AT + M)Dk = B̂−1

k UT
k (AN−1AT + M)UkB̂

−T
k

= B̂−1
k (UT

kAN−1ATUk + Ik)B̂−Tk

= B̂−1
k (BkV

T
k NVkB

T
k + Ik)B̂−Tk

= B̂−1
k (BkB

T
k + Ik)B̂−Tk

= B̂−1
k

[
Bk Ik

] [BT
k

Ik

]
B̂−Tk

= B̂−1
k

[
B̂k 0

]
QkQ

T
k

[
B̂T
k

0

]
B̂−Tk

= B̂−1
k B̂kB̂

T
k B̂−Tk

= Ik,

which establishes (6.32).

Using the update formula (6.23) for xk, we may write xk = Dkz̄k. Thus,

‖xk‖
2

AN
−1

A
T
+M

= xT
k (AN−1AT + M)xk = z̄TkDT

k (AN−1AT + M)Dkz̄k = ‖z̄k‖
2
2.

Therefore

‖xk‖
2

AN
−1

A
T
+M

=

k∑
i=1

ζ2
i ,

and this establishes (6.34a). Since

‖x∗‖2
AN

−1
A
T
+M

= ‖xn‖
2

AN
−1

A
T
+M

=

n∑
i=1

ζ2
i ,

we obtain (6.34b) as before.

Since Mxk = MUkx̄k and ‖x̄k‖
2
2 =

∑k
i=1 ξ

2
i by definition of ξi, we obtain the second equality in (6.34c).

Using

‖x∗‖2M = ‖xn‖
2
M =

n∑
i=1

ξ2
i ,

we have the error estimate

‖x∗ − xk‖
2
M =

n∑
i=k+1

ξ2
i ,

which is identical to (6.34d).

The proof of (6.35) follows directly form (6.25), (6.28) and (Arioli, 2010, Proposition 3.1).

As in §6.2, (6.34b) suggests a stopping condition of the form

k+d+1∑
i=k+1

ζ2
i ≤ τ

2
k+d+1∑
i=1

ζ2
i ,

for a user-chosen integer d ∈ N0 and τ ∈ (0, 1).

In Theorem 6.4, the quantity ‖Ā‖2 is the largest singular value of Ā, which coincides with the largest
elliptic singular value of A.
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Algorithm 6.2 Generalized Craig

Require: M, A, N, b, d, τ , kmax
// Initialization

1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: δ1 = 1, α̂1 = (α2

1 + 1)
1
2 , c1 = α1/α̂1, s1 = 1/α̂1, ζ1 = s1β1

3: d1 = s1u1, x1 = ζ1d1

4: k = 1, ∆ = ζ2
1 , converged = false

5: while not converged and k < kmax do
6: // Continue bidiagonalization
7: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk
8: β̂k+1 = ckβk+1, γk+1 = skβk+1 // Continue rotation of type I
9: δk+1 = (γ2

k+1 + 1)
1
2 , c̄k = −1/δk+1, s̄k = γk+1/δk+1 // Rotation of type II

// Compute next Givens rotation of type I
10: α̂k+1 = (α2

k+1 + δ2
k+1)

1
2 , ck+1 = αk+1/α̂k+1, sk+1 = δk+1/α̂k+1

11: ζk+1 = −β̂k+1ζk/α̂k+1, ∆ = ∆ + ζ2
k+1, // Update

12: dk+1 = (uk+1 − β̂k+1dk)/α̂k+1

13: xk+1 = xk + ζk+1dk+1

14: if k ≥ d− 1 then
15: converged =

(∑k+1
j=k−d+2 ζ

2
j < τ2∆

)
// Test convergence in x

16: k ← k + 1
17: x = xk+1

18: y = N−1ATx
19: return (x,y)

6.5 Generalized Lsmr

Lsmr (Fong and Saunders, 2011) consists in applying Minres (Paige and Saunders, 1975) to the normal
equations (2.6). Since the appropriate norm for measuring the residual of the normal equations is the N−1-
norm, we premultiply (2.6) by N−

1
2 :

N−
1
2 (ATM−1A + N)y = N−

1
2 ATM−1b. (6.36)

By definition, Minres then computes y so as to

minimize
y∈Rm

1
2‖N

− 1
2 (ATM−1b− (ATM−1A + N)y))‖2.

Seeking again an approximation y ≈ yk := Vkȳk and using (4.1), we have

M−1(b−Ay) = M−1(MUk+1(β1e1)−AVkȳk) = Uk+1(β1e1 −Ekȳk)

and
ATM−1(b−Ay) = (NVkE

T
k + αk+1Nvk+1e

T
k+1)(β1e1 −Ekȳk).

Using the identities
eT
k+1e1 = 0, eT

k+1Ek = βk+1e
T
k , and ET

ke1 = α1e1,

there remains

ATM−1(b−Ay) = NVk+1

(
α1β1e1 −

[
ET
kEk

αk+1βk+1e
T
k

]
ȳk

)
.

Similarly,

Ny = NVkȳk = NVk+1

[
ȳk
0

]
.
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By orthogonality of N
1
2 Vk+1,

‖N−
1
2 (ATM−1b− (ATM−1A + N)y))‖2 =∥∥∥∥∥N 1

2 Vk+1

(
α1β1e1 −

[
ET
kEk + Ik

αk+1βk+1e
T
k

]
ȳ

)∥∥∥∥∥
2

=

∥∥∥∥∥α1β1e1 −

[
ET
kEk + Ik

αk+1βk+1e
T
k

]
ȳ

∥∥∥∥∥
2

. (6.37)

Minimizing the latter residual is precisely the subproblem solved by the classic regularized Lsmr with param-
eter λ = 1. Once again, changing the Golub-Kahan procedure in Lsmr is all that is required to solve (1.1)
with f = b and g = 0.

A by-product of the above is the underlying Lanczos process

(N + ATM−1A)Vk+1 = N
(
Vk(ET

kEk + Ik) + αk+1βk+1vk+1e
T
k

)
,

= NVk+1

[
ET
kEk + Ik

αk+1βk+1e
T
k

] (6.38)

which we already discovered in the proof of Theorem 6.1 and which is equivalent to what would be generated
by applying the standard Lanczos process to (N + ATM−1A) with initial vector ATM−1b in the metric
defined by N. We detail the Lanczos process that characterizes Minres on this set of normal equations in
§8.4.

We have established the following result, which follows directly from the very definition of Lsmr and the
Lanczos process (6.38).

Theorem 6.5 The generalized Lsmr iterates on (2.4) are the same as those generated by the Minres
method on the positive definite system (2.6) in the metric defined by N.

6.6 Generalized Lsmr Recursive Expressions

Most of the details in this section come directly from (Fong and Saunders, 2011) but will turn out to be
useful in designing a stopping condition in the appropriate norm.

The core of g-Lsmr revolves around two QR factorizations. The first is the factorization of §6, i.e.,

QT
k

[
Ek

Ik

]
=

[
Rk

0

]
, Rk =


ρ1 θ2

ρ2

. . .

. . . θk
ρk

 .
As before, ET

kEk + Ik = RT
kRk. The least-squares problem (6.37) then reads

minimize
ȳ

1
2

∥∥∥∥∥α1β1e1 −

[
RT
kRk

αk+1βk+1e
T
k

]
ȳ

∥∥∥∥∥
2

. (6.39)

Define the approximation y ≈ yk := Vkȳk where ȳk solves the above least-squares problem and let tk :=

Rkȳk. Define also qk := R−Tk (αk+1βk+1ek) = γkek where

γk := αk+1βk+1/ρk. (6.40)

We now perform a second QR factorization

Q̄k

[
RT
k α1β1e1

γke
T
k 0

]
=

[
R̄k zk
0 ζk+1

]
, R̄k =


ρ̄1 θ̄2

ρ̄2

. . .

. . . θ̄k
ρ̄k

 .
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For this second factorization to be well defined recursively, it is necessary to show that γk = θk+1 so that
the matrix

[
Rk γkek

]
is Rk with one extra column taken from Rk+1. But upon examination of the sets

of two rotations defining the first factorization in §6, we see that θj+1 = s̄kαj+1 = αj+1βj+1/ρj = γj . The
least-squares problem in ȳ may now be restated as

minimize
t̄

1
2

∥∥∥∥∥
[

zk
ζk+1

]
−

[
R̄k

0

]
t

∥∥∥∥∥
2

.

The solution is obtained by setting tk := R̄−1
k zk and the value of the residual is |ζk+1|.

Since R̄k is upper triangular, it is likely that all components of tk change from one iteration to the next
and it is more efficient to seek an update of yk directly. The first step to achieve this is to define the matrix
Dk as in (6.6) and to additionally define

D̄k := DkR̄
−1
k . (6.41)

This defines the columns d̄i of D̄k recursively as the solution of a lower triangular system:

d̄0 := 0, and d̄i+1 :=
1

ρ̄i+1

(di+1 − θ̄i+1d̄i) i ≥ 0. (6.42)

With these definitions we may update yk as follows:

yk = Vkȳk = VkR
−1
k tk = Dktk = D̄kR̄ktk = D̄kzk = yk−1 + ζkd̄k. (6.43)

The matrix D̄k yields a partial factorization of the operator that determines the energy norm in which
errors should be measured in g-Lsmr. The rationale behind this energy norm is the following. Consider
temporarily a hypothetical symmetric and positive-definite system Cx = b. It is the defining property of
Minres that ‖rk‖2 decreases monotonically, where rk := b−Cxk = C(x∗−xk), and where x∗ is the unique
solution of the system. Thus ‖rk‖2 = ‖x∗ − xk‖C2 is the quantity that decreases. Suppose now, as in (6.36)
that the residual must be measured in the N−1-norm. Then

‖rk‖N−1 = ‖N−
1
2 rk‖2 = ‖N−

1
2 C(x∗ − xk)‖ = ‖x∗ − xk‖CN

−1
C

is the appropriate energy norm in which the error should be measured in Minres. The next result summarizes
the main properties in our SQD context.

Theorem 6.6 Let D̄k be defined as in (6.41). Then, for k = 1, . . . ,m, we have

D̄T
kGD̄k = Ik, where G := (ATM−1A + N)N−1(ATM−1A + N). (6.44)

In particular,

yk =

k∑
j=1

ζjd̄j , (6.45)

and

‖yk‖
2
G =

k∑
j=1

ζ2
j , (6.46)

and we have the error estimate

‖y − yk‖
2
G =

m∑
j=k+1

ζ2
j , (6.47)

where y is the solution of (6.36).
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Proof. We establish (6.44). The expansion (6.45) follows by repeated application of (6.43). The proof of
(6.46) and (6.47) is a direct consequence of (6.44) and (6.45), as in the proof of Theorem 6.4.

We deduce from (6.41) and (6.6) that D̄T
kGD̄k = R̄−Tk R−Tk VT

kGVkR
−1
k R̄−1

k . We now expand this
expression from the inside and out. Using (4.1), we have

(ATM−1A + N)Vk = ATUk+1Ek + NVk

= N((VkE
T
k + αk+1vk+1e

T
k+1)Ek + Vk)

= N(Vk(ET
kEk + Ik) + γkρkvk+1e

T
k ),

where we used the identity eT
k+1Ek = βk+1e

T
k and the definition (6.40) of γk. Using the above identity twice,

we obtain, after some basic manipulations,

VT
kGVk = (ET

kEk + Ik)2 + γ2
kρ

2
keke

T
k .

When forming the product above, cross terms vanish because they contain the expression VT
kNvk+1, which

is zero by orthogonality.

As we already noticed at the beginning of this section, ET
kEk + Ik = RT

kRk, and therefore,

(ET
kEk + Ik)2 = RT

kRkR
T
kRk.

Consequently,
R−Tk

(
(ET

kEk + Ik)2 + γ2
kρ

2
keke

T
k

)
R−1
k = RkR

T
k + γ2

keke
T
k ,

where we used the identity R−Tk ek = ρ−1
k ek.

Note now that by definition of R̄k,

R̄T
k R̄k =

[
R̄T
k 0T

] [R̄k

0

]
=
[
Rk γkek

]
Q̄kQ̄

T
k

[
RT
k

γke
T
k

]
= RkR

T
k + γ2

keke
T
k .

This last identity finally yields

D̄T
kGD̄k = R̄−Tk (RkR

T
k + γ2

keke
T
k )R̄−1

k = R̄−Tk (R̄T
k R̄k)R̄−1

k = Ik,

and this completes the proof.

The last rotation computes R̄k by eliminating the subdiagonals of RT
k , i.e., θj+1 for j = 1, . . . , k − 1 as

follows: [ k k + 1

k ĉk ŝk
k + 1 ŝk −ĉk

] [ k k + 1

ρ̃k
θk+1 ρk+1

]
=

[
ρ̄k θ̄k+1

ρ̃k+1

]
,

with the initialization ρ̃1 := ρ1. In other words, ρ̄k :=
√
ρ̃2
k + θ2

k+1, ĉk := ρ̃k/ρ̄k, ŝk := θk+1/ρ̄k, θ̄k+1 :=

ŝkρk+1 and ρ̃k+1 := −ĉkρk+1.

During the k-th iteration, ρk+1 is not yet available. Therefore, the computation of θ̄k+1 and ρ̃k+1 can only
take place during the next iteration. The k-th iteration computes θ̄k and ρ̃k as soon as ρk becomes available
using the previous values ĉk−1 and ŝk−1. To update, yk we first compute d̄k according to (6.42) and update
y using (6.43). Computing dk+1 appears to require ρk+1. However, as Fong and Saunders (2011) point out,
it is possible to bypass this requirement by defining instead

hk := ρkdk, and h̄k := ρkρ̄kd̄k,

and updating

h̄k = hk +
ρkθ̄k

ρk−1ρ̄k−1

h̄k−1, yk = yk−1 +
ζk

ρk−1ρ̄k−1

h̄k, hk+1 = vk+1 −
θk+1

ρk
hk.
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The least-squares residual is initially given by[
ĉ1 ŝ1

ŝ1 −ĉ1

] [
β1

0

]
=

[
ĉ1β1

ŝ1β1

]
,

so that ζ1 := ĉ1β1. Define ζ̂2 := ŝ1β1 to obtain the recursion[
ĉk ŝk
ŝk −ĉk

] [
ζ̂k
0

]
=

[
ĉk ζ̂k
ŝk ζ̂k

]
,

i.e., ζk := ĉk ζ̂k and ζ̂k+1 := ŝk ζ̂k. The recursion begins with ζ̂1 := ζ1. Note that there is a lag in the residual
value—the component ζ̂k+1 is obtained when computing xk but it is |ζk| that gives the residual value, and it
corresponds to xk−1, not to xk. The main computational steps of g-Lsmr are summarized as Algorithm 6.3.

Algorithm 6.3 Generalized Lsmr

Require: M, A, N, b, d, τ , kmax
1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: α̂1 = α1, ρ̄1 = α1, ζ̂1 = α1β1, ĉ0 = −1, ŝ0 = 0, ρ0 = 0, ρ̄0 = 0
3: h1 = v1, h̄0 = 0, y0 = 0
4: k = 1, ∆ = 0, converged = false
5: while not converged and k < kmax do
6: // Continue bidiagonalization
7: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk

8: ρ̂k = (1 + α̂2
k)

1
2 , ck = α̂k/ρ̂k, sk = 1/ρ̂k // Rotation of type II

9: ρk = (ρ̂2
k + β2

k+1)
1
2 , c̄k = ρ̂k/ρk, s̄k = βk+1/ρk // Rotation of type I

10: θk+1 = s̄kαk+1, α̂k+1 = −c̄kαk+1,
11: θ̄k = ŝk−1ρk, ρ̃k = −ĉk−1ρk // Rotation of type III
12: ρ̄k = (ρ̃2

k + θ2
k+1)

1
2 , ĉk = ρ̃k/ρ̄k, ŝk = θk+1/ρ̄k,

13: ζk = ĉk ζ̂k, ζ̂k+1 = ŝk ζ̂k, ∆ = ∆ + ζ2
k // Residual and error update

14: h̄k = hk + ρkθ̄k/(ρk−1ρ̄k−1) h̄k−1 // Update
15: yk = yk−1 + ζk/(ρk−1ρ̄k−1) h̄k
16: hk+1 = vk+1 − θk+1/ρk hk
17: if k ≥ d then
18: converged =

(∑k
j=k−d+1 ζ

2
j < τ2∆

)
// Test convergence

19: k ← k + 1
20: y = yk
21: x = M−1(b−Ay)
22: return (x,y)

6.7 Generalized Craig-mr

In this section, we present the main features of a method similar to Lsmr but that is equivalent to applying
Minres to the Schur-complement equations. By analogy with Lsmr, we dub this method Craig-mr. Its
application to (6.16) is dubbed the generalized Craig-mr, or g-Craig-mr. The reason for introducing this
method becomes clear in §8.4, where we show that Minres applied directly to (1.1) with right-hand side
(b,0) alternates between g-Lsmr steps and g-Craig-mr steps.

It follows from (6.19) that the approximation xk = Ukx̄k reveals the associated Lanczos process

(M + AN−1AT)Uk = MUk(BkB
T
k + Ik) + αkβk+1Muk+1e

T
k ,

= MUk+1

[
BkB

T
k + Ik

αkβk+1e
T
k

]
,

(6.48)

where we note that the matrix (BkB
T
k + Ik) is tridiagonal, and by definition, b = β1Mu1.
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Note that for any x, the residual of (6.16) lies in M?. The appropriate norm to measure this residual is
thus the M−1-norm. By definition, g-Craig-mr computes xk as the solution of

minimize
x∈Range(Vk)

1
2‖M

− 1
2 (b− (M + AN−1AT)x)‖2.

Since the system is always consistent in Rn, the final solution x solves

M− 1
2 (M + AN−1AT)x = M− 1

2 b. (6.49)

We have established the following result, which follows directly from the very definition of g-Craig-mr
and the Lanczos process (6.48).

Theorem 6.7 The generalized Craig-mr iterates on (2.4) are the same as those generated by the Minres
method on the positive definite system (2.7) in the metric defined by M.

Using the approximation x ≈ xk = Ukx̄k and (6.48), the k-th subproblem may be written

minimize
x̄k

1
2

∥∥∥∥∥β1e1 −

[
BkB

T
k + Ik

αkβk+1e
T
k

]
x̄k

∥∥∥∥∥
2

, (6.50)

which is again a regularized subproblem with regularization parameter λ = 1.

An implementation of g-Craig-mr starts, as in g-Craig, by computing the LQ factorization (6.14),
where B̂k is k-by-k lower bidiagonal. As before, BkB

T
k + Ik = B̂kB̂

T
k . We define

tk := B̂T
k x̄k, and qk := B̂−1

k (αkβk+1ek) =
αkβk+1

α̂k
ek := γkek.

The least-squares residual of the k-th subproblem may now be rewritten

β1e1 −

[
BkB

T
k + Ik

αkβk+1e
T
k

]
x̄k = β1e1 −

[
B̂kB̂

T
k

qT
k B̂T

k

]
x̄k = β1e1 −

[
B̂k

γke
T
k

]
tk.

As in Lsmr, we now perform the third QR factorization

Q̄k+1

[
B̂k β1e1

γke
T
k 0

]
=

[
Rk zk
0 ζk+1

]
with Rk =


ρ1 θ2

ρ2

. . .

. . . θk
ρk

 ,
where Q̄k+1 is orthogonal. Again for this second factorization to be well defined recursively, it is necessary
to verify that γk = β̂k+1. Fortunately, we have already verified this fact in (6.24). This helps us write the
k-th subproblem as

minimize
tk

1
2

∥∥∥∥[ zk
ζk+1

]
−
[
Rk

0

]
tk

∥∥∥∥
2

.

Clearly, we obtain the solution by picking tk := R−1
k zk and the least-squares residual is simply |ζk+1|. The

remaining algorithmic details essentially follow those developed by Fong and Saunders (2011) for Lsmr.

Seeking once again a direct update of xk, we define the columns d1 to dk of Dk recursively via the
definition

Dk := UkB̂
−T
k , i.e., B̂kD

T
k = UT

k ,

which yields

d1 :=
1

α̂1

u1, and dj+1 :=
1

α̂j+1

(uj+1 − β̂j+1dj) (j ≥ 0).
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Similarly, define the columns d̄1 to d̄k of D̄k via

D̄k := DkR
−1
k , i.e., RT

k D̄T
k = DT

k , (6.51)

which yields

d̄1 :=
1

ρ1

d1, and d̄j+1 :=
1

ρj+1

(dj+1 − θj+1d̄j), (j ≥ 0).

With these definitions, we may use the update

xk = Ukx̄k = UkB̂
−T
k tk = Dktk = DkR

−1
k zk = D̄kzk = xk−1 + ζkd̄k.

Theorem 6.8 Let D̄k be defined as in (6.51). Then, for k = 1, . . . , n, we have

D̄T
kWD̄k = Ik, where W := (AN−1AT + M)M−1(AN−1AT + M). (6.52)

In particular,

xk =
k∑
j=1

ζjd̄j , (6.53)

and

‖xk‖
2
W =

k∑
j=1

ζ2
j , (6.54)

and we have the error estimate

‖x− xk‖
2
W =

n∑
j=k+1

ζ2
j , (6.55)

where x is the solution of (6.49).

Proof. The proof is analogous to that of Theorem 6.6.

The rotation necessary to compute Rk, which we call a rotation of type III, eliminates the subdiagonals
of B̂k, i.e., β̂j+1, j = 1, . . . , k − 1, as follows:

[ k k + 1

k ĉk ŝk
k + 1 ŝk −ĉk

] [ k k + 1

α̃k
β̂k+1 α̂k+1

]
=

[
ρk θk+1

α̃k+1

]
,

with the initialization α̃1 := α̂1. In other words, ρk :=
√
α̃2
k + β̂2

k+1, ĉk := α̃k/ρk, ŝk := β̂k+1/ρk, θk+1 :=

ŝkα̂k+1, and α̃k+1 = −ĉkα̂k+1.

The main details of g-Craig-mr are summarized as Algorithm 6.4. It is worth noting again that the
least-squares residual, |ζk| lags one step behind and corresponds to the previous iterate xk−1.

7 Upper Bound Error Estimates

In the previous sections, we proposed several lower bounds on the direct error that are linked to the techniques
described by Golub and Meurant (2010). Even though those lower bounds estimate the error at step k − d,
it is safe to use the most recent solution estimate, i.e., that computed at step k, owing to the monotonicity
of the error sequence.

To motivate our approach, consider the generalized Lsqr method and the relation (6.5), which determines
the coefficients ȳk of the k-th approximation yk in terms of the initial values β1 = ‖b‖

M
−1 and α1 =
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Algorithm 6.4 Generalized Craig-mr

Require: M, A, N, b, d, τ , kmax

1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: δ1 = 1, α̂1 = (α2

1 + 1)
1
2 , c1 = α1/α̂1, s1 = 1/α̂1

3: ζ̂1 = β1, α̃1 = α̂1, θ1 = 0
4: d1 = 1/α̂1u1, d̄0 = 0, x0 = 0
5: k = 1, ∆ = 0, converged = false
6: while not converged and k < kmax do
7: // Continue bidiagonalization
8: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk
9: β̂k+1 = ckβk+1, γk+1 = skβk+1 // Continue rotation of type I

10: δk+1 = (γ2
k+1 + 1)

1
2 , c̄k = −1/δk+1, s̄k = γk+1/δk+1 // Rotation of type II

// Compute new Givens rotation of type I
11: α̂k+1 = (α2

k+1 + δ2
k+1)

1
2 , ck+1 = αk+1/α̂k+1, sk+1 = δk+1/α̂k+1

12: ρk = (α̃2
k + β̂2

k+1)
1
2 , ĉk = α̃k/ρk, ŝk = β̂k+1/ρk // Rotation of type III

13: θk+1 = ŝkα̂k+1, α̃k+1 = −ĉkα̂k+1

14: ζk = ĉk ζ̂k, ζ̂k+1 = ŝk ζ̂k, ∆ = ∆ + ζ2
k // Update

15: dk+1 = 1/α̂k+1(uk+1 − β̂k+1dk)
16: d̄k = 1/ρk(dk − θkd̄k−1)
17: xk = xk−1 + ζkd̄k
18: if k ≥ d then
19: converged =

(∑k
j=k−d+1 ζ

2
j < τ2∆

)
// Test convergence

20: k ← k + 1
21: x = xk
22: y = N−1ATx
23: return (x,y)

‖ATu1‖N−1 = β−1
1 ‖A

TM−1b‖
N

−1 . Let T̂k denote the symmetric and positive definite tridiagonal matrix
RT
kRk. Then ȳk = α1β1T̂

−1
k e1. Theorem 6.2 indicates that ‖yk‖AT

M
−1

A+N
= ‖zk‖2 where zk = Rkȳk.

Therefore,
‖yk‖AT

M
−1

A+N
= ‖zk‖2 = ‖Rkȳk‖2 = ‖ȳk‖T̂k

= |α1β1| ‖e1‖T̂−1
k
.

But ‖e1‖
2

T̂
−1
k

= eT
1 T̂−1

k e1 and so the above states that the squared energy norm of yk is a factor of the

leading element of T̂−1
k . Using the same logic as in the proof of Theorem 6.2, if T̂ := T̂n is the value of the

tridiagonal when convergence has occurred, then we may measure the direct error as

‖yk − y‖
A
T
M

−1
A+N

= |α1β1|
∣∣∣‖e1‖T−1

k
− ‖e1‖T−1

∣∣∣ ,
and this direct error is related to the quality of the approximation of the leading entry of T̂−1 at step k.
The same reasoning holds for the generalized Lsmr method using (6.39). A similar result follows for the
generalized Craig and Craig-mr methods using (6.17) and (6.50), with the difference that α1 does not
appear explicitly.

In order for the discussion of this section to apply to all four methods, we introduce the notation

T̂k := ÛT
k Ûk,

where the value of Ûk is given in Table 1 for each method based on reduced equations. Note that Ûk is
upper bidiagonal and T̂k is tridiagonal, symmetric and positive definite. From theorems 6.2, 6.4, 6.6, and 6.8
the error estimates are related to the approximation of the leading entry T̂−1

11 by (T̂−1
k )11.
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Table 1: Factor Ûk of the tridiagonal and coefficient matrix W of the system solved by each method based
on a reduced system. The same matrix W defines the energy norm for the method.

Method Ûk W Theorems
g-Lsqr Rk A

T
M

−1
A+N 6.1 and 6.2

g-Craig B̂
T
k AN

−1
A
T
+M 6.3 and 6.4

g-Lsmr Rk (A
T
M

−1
A+N)N

−1
(A

T
M

−1
A+N) 6.5 and 6.6

g-Craig-mr B̂
T
k (AN

−1
A
T
+M)M

−1
(AN

−1
A
T
+M) 6.7 and 6.8

The vector z of entries ζj defines different quantities depending on the algorithm choice. In g-Lsqr and
g-Lsmr,

‖z‖22 = ‖ATM−1b‖2
N

−1 T̂−1
11 and

n∑
j=k+1

ζ2
j = ‖ATM−1b‖2

N
−1

(
T̂−1

11 − (T̂−1
k )11

)
, (7.1)

while in g-Craig and g-Craig-mr,

‖z‖22 = ‖b‖2
M

−1 T̂−1
11 and

m∑
j=k+1

ζ2
j = ‖b‖2

M
−1

(
T̂−1

11 − (T̂−1
k )11

)
, (7.2)

where T̂k is the k × k principal submatrix of T̂.

Let 0 < λ1 ≤ · · · ≤ λp be the eigenvalues of the matrix W defining the energy norm in the method chosen,
where p is either m or n. As explained in Theorems 6.1, 6.3, 6.6 and 6.8 and summarized in Table 1, W is
also the coefficient matrix of the system being solved. Therefore, W and T̂ have the same eigenvalues.

Let T̂ = QΛQT be the eigendecomposition of T̂, where Q is orthogonal and Λ = diag(λ1, . . . , λp). The
squared energy norm of the solution may then be expressed as

‖z‖22 = γ2 eT
1 T̂−1e1 = γ2 µTΛ−1µ = γ2

p∑
i=1

λ−1
i µ2

i , (7.3)

where γ > 0 is either ‖ATM−1b‖
N

−1 or ‖b‖
M

−1 and µ := QTe1 = (µ1, . . . , µp). Note that the components
of µ are the first components of the normalized eigenvectors of T̂. Similarly, the squared energy norm of the
k-th approximation may be written as

‖zk‖
2
2 = γ2

k∑
i=1

λ−1
i µ2

i ,

so that the squared energy norm of the error is given by

‖z− zk‖
2
2 = γ2

p∑
i=k+1

λ−1
i µ2

i .

As earlier, we may choose to terminate the iterations as soon as

k∑
i=k−d+1

λ−1
i µ2

i ≤ τ
2

k∑
i=1

λ−1
i µ2

i (7.4)

for a given window size d ∈ N0 and tolerance τ2 > 0. Note that this relative stopping test does not depend
on γ.

Following the exposition of Golub and Meurant (1997) and Golub and Meurant (2010), the energy norm
of z can be interpreted as the approximation by a Gauss quadrature of the Riemann-Stieltjes integral∫ λp

λ1

1

λ
dµ(λ), (7.5)
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where the measure µ is the nondecreasing step function

µ(λ) =


0 if λ < λ1,∑k
i=1 µ

2
i if λk ≤ λ < λk+1,∑p

i=1 µ
2
i if λ ≥ λp.

Comparing the last sum in (7.3) with (7.5), we see that in this Gauss approximation, the nodes are given by
the eigenvalues of T̂ while the weights are the squared first components of the normalized eigenvectors of T̂.
Following this interpretation, the errors (7.1) and (7.2) can be viewed as the remainder of the approximation
of (7.5) by this Gauss quadrature. In practice there is no need to compute explicitly the eigenvalues λi or
the weights µi—we simply accumulate the tems of the quadrature by computing recursively eT

1 T̂−1
k e1 for all

k, stopping when new terms do not add significantly to the overall sum.

The interesting feature of the above interpretation, as noted by Golub and Meurant (2010), is that because
the sign of the remainder can be known in advance, the quadrature approximation will either yield an upper
or a lower bound on the energy norm. This is due to the sign of the derivatives of λ 7→ 1/λ being known
in advance. A pure Gauss approximation can be shown to yield a lower bound. But other quadratures are
possible, such as the Gauss-Radau quadrature in which one node is fixed, or the Gauss-Lobatto quadrature
in which two nodes are fixed. Fixing nodes amounts to augmenting T̂k so as to give it one or two prescribed
eigenvalues. It can be shown that the Gauss-Radau rule yields an upper bound if a ≤ λ1 is the fixed node,
or a lower bound if b ≥ λp is the fixed node, while the Gauss-Lobatto rule, in which both a ≤ λ1 and b ≥ λp
are fixed nodes, yields an upper bound. Note that the measure µ(λ) ensures that∫ b

a

1

λ
dµ(λ) =

∫ λp

λ1

1

λ
dµ(λ)

for all such values of a and b.

We denote by ςj the diagonal entries of Û and νj the entries under the diagonal, so that

T̂k =


ς1

ν2 ς2
. . . . . .

νk ςk



ς1 ν2

ς2
. . .
. . . νk

ςk

 =


ς21 ς1ν2

ς1ν2 ς22 + ν2
2

. . .
. . . . . . ςk−1νk

ςk−1νk ς2k + ν2
k

 .

Note that in all four methods, T̂k has the form ET
kEk+Ik or BkB

T
k +Ik. In both cases, λ1 ≥ 1. Let 0 < a < 1

be a lower bound on all the eigenvalues of T̂. We now follow Golub and Meurant (2010) and describe how
to implement the Gauss-Radau rule with a fixed node at a, thereby obtaining an upper bound on the error.
When advancing from T̂k to T̂k+1, we compute the new off-diagonal element ςkνk+1 and modify the new
diagonal element so that T̂k+1 has an eigenvalue equal to a. The key element to setting the appropriate
value on the diagonal resides in the relationship between the Lanczos process and the family of normalized
polynomials pi(λ) that are orthogonal with respect to the measure µ, i.e.,∫ λp

λ1

pi(λ)pj(λ)dµ(λ) = δij ,

where δij = 1 if i = j and zero otherwise is the Kronecker symbol. Like all orthogonal polynomials, these
satsify a three-term recurrence relationship that is none other than, in matrix form,

λpk+1(λ) = T̂k+1pk+1(λ) + ςk+1νk+2pk+1(λ)ek+1, (7.6)

where pk+1(λ) = (p0(λ), . . . , pk(λ)). From this relation, it becomes apparent that λ = a is an eigenvalue of
T̂k+1 if and only if pk+1(a) = 0. In this case, the last equation of (7.6) reads

apk(a) = ςkνk+1pk−1(a) + (ς2k+1 + ν2
k+1)pk(a).
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We now modify the (ς2k+1 + ν2
k+1) on the diagonal and replace it with the value that ensures satisfaction of

this last identity, i.e.,

ωk+1 := a− ςkνk+1

pk−1(a)

pk(a)
. (7.7)

The modified tridiagonal may be written as

T̃k+1 =

[
T̂k ςkνk+1ek

ςkνk+1e
T
k ωk+1

]
. (7.8)

By construction, the smallest eigenvalue of T̃k+1 is precisely a. The next difficulty is that the polynomials
pi(λ) are not directly accessible. Fortunately, it is possible to evaluate ωk+1 by extracting the k-th component
δk of the solution δk of a symmetric, positive-definite and tridiagonal system. To see this, note that (7.6) at
iteration k evaluated at λ = a may be written

(T̂k − aIk)δk = −ς2kν
2
k+1ek, (7.9)

where
δk = (δ1, . . . , δk) :=

ςkνk+1

pk(a)
pk(a) = ςkνk+1

(
p0(a)

pk(a)
, . . . ,

pk−1(a)

pk(a)

)
.

Therefore, (7.7) may equivalently be written

ωk+1 = a+ δk.

Analogously to what is done in Arioli (2010) and Golub and Meurant (2010), we can recursively compute
δk and ωk+1 by using the Cholesky decomposition for the system (7.9). Let

T̂k − aIk =


ς21 − a ς1ν2

ς1ν2 ς22 + ν2
2 − a

. . .
. . . . . . ςk−1νk

ςk−1νk ς2k + ν2
k − a



=


`1

c2 `2
. . . . . .

ck `k



`1 c2

`2
. . .
. . . ck

`k

 .
It is easy to verify that the Cholesky factors are given by the recurrence relations

`1 =

√
ς21 − a, cj = ςj−1νj/`j−1, `j =

√
ς2j + ν2

j − a− c
2
j , j = 2, 3, . . .

We may now compute δk by first solving
`1
c2 `2

. . . . . .
ck `k



π1

π2
...
πk

 =


0
0
...

−ς2kν
2
k+1

 ,
i.e., πk = (π1, . . . , πk) = −ς2kν

2
k+1/`k ek, and next extracting the last component of the solution to

`1 c2

`2
. . .
. . . ck

`k



δ1

δ2
...
δk

 =


0

0
...

−ς2kν
2
k+1/`k

 ,
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i.e,

δk := − ς
2
kν

2
k+1

`2k
= − ς2kν

2
k+1

ς2k + ν2
k − a− c

2
k

,

with the special case that νk = ck = 0 when k = 1.

There remains to accumulate the terms of the quadrature. Having chosen a Gauss-Radau approximation
to (7.5), we are interested in computing eT

1 T̃−1
k+1e1 with T̃k+1 defined as in (7.8). It is easy to verify that the

Cholesky factorization L̃k+1L̃
T
k+1 of T̃k+1 is given by

T̃k+1 =

[
T̂k ςkνk+1ek

ςkνk+1e
T
k ωk+1

]
=

[
ÛT
k

νk+1e
T
k uk+1

] [
Ûk νk+1ek

uk+1

]
= L̃k+1L̃

T
k+1,

where uk+1 =
√
ωk+1 − ν

2
k+1. Then, eT

1 T̃−1
k+1e1 = ‖L̃−1

k+1e1‖
2
2 and this last squared norm is accumulated into

the variable Ξ2 using the procedure

χ1 =1/ς1, Ξ2 ← χ2
1,

χj+1 =− νj+1χj/uj+1, Ξ2 ← Ξ2 + χ2
j+1, j = 1, 2, . . .

Observe that by definition zk = γÛ−Tk e1 and therefore the first k components of χk = (χ1, . . . , χk) are
precisely equal to γ−1zk. Since the main loop of the algorithm already computes zk, we need only compute
the last χk+1 = −νk+1ζk/(γuk+1). Since the γ in the denominator appears in both the components of χk
and in Ξ, we remove it from both places.

Finally, we obtain the realization of the Gauss-Radau convergence test described in Algorithm 7.1. This
algorithm should be interleaved with one of Algorithm 6.1, 6.2, 6.3 or 6.4, which we indicate with comments
in lines 1 and 9.

Algorithm 7.1 Gauss-Radau Convergence Test

Require: Ûk, d ∈ N0, τ ∈ (0, 1), a ∈ (0, 1)
1: // Generate ς1 and ζ1
2: Set ν1 := 0, c1 := 0, χ1 := ζ1, Ξ2 := χ2

1, k := 1 and converged := false.
3: while k < kmax do
4: `2k = ς2k + ν2

k − a− c
2
k, δk = ς2kν

2
k+1/`

2
k, c2k+1 = ν2

k+1/`
2
k

5: ωk+1 = a+ δk, uk+1 =
√
ωk+1 − ν

2
k+1

6: χk+1 = −νk+1ζk/uk+1, Ξ2 =
∑k
j=1 ζ

2
j + χ2

k+1

7: if k ≥ d then
8: converged =

(∑k
j=k−d+1 ζ

2
j ≤ τΞ2

)
9: // Compute ζk+1

Theorem 6.4 of Golub and Meurant (2010) ensures that Algorithm 7.1 computes an upper bound on the
direct error. In typical situations, the major inconvenient of the Gauss-Radau approach is the need for an
accurate estimate of the smallest eigenvalue of T̂, which can be very difficult in general. It is remarkable
that in our case, the nature of T̂ guarantees that any value 0 < a < 1 is such an estimate and produces an
upper bound on the error.

The choice of the delay d is driven by the application and the values of M and N. If M and N can be
chosen such that the elliptic singular values of A become bounded in an interval independent of n and m, the
delay parameter d can be quite small. We expect this to be the case in certain fluid flow problems such as
Stokes and stabilized Stokes for then, M and N are spectrally equivalent to operators defining appropriate
norms in the relevant function spaces.
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8 Full-Space Methods

In this section we investigate the relation between the methods of §6 and two well-known Lanczos-based
methods applied directly to the SQD system (1.1) with appropriate right-hand side: the conjugate gradient
method and the minimum residual method.

8.1 Full-Space Lanczos Process: I

Upon pasting the relations (4.1) together, we have[
M A

AT −N

] [
Uk+1

Vk

]
=

[
M

N

] [
Uk+1

Vk

] [
Ik+1 Ek

ET
k −Ik

]
+

[
0

αk+1Nvk+1

]
eT

2k+1 (8.1a)[
M A

AT −N

] [
Uk

Vk

]
=

[
M

N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

]
+

[
βk+1Muk+1

0

]
eT

2k. (8.1b)

We claim that (8.1) describe a Lanczos process on the coefficient matrix of (1.1) using a metric defined by
the block diagonal matrix blkdiag(M,N) and that the matrix generated after k steps is itself SQD. Indeed,
using the permutation matrix P :=

[
e1 ek+1 e2 ek+2 . . . ek e2k

]
, we have

PT

[
Ik+1 Ek

ET
k −Ik

]
P = T2k+1 :=



1 α1

α1 −1 β1

β1 1 α2

. . . . . . . . .
αk −1 βk+1

βk+1 1


(8.2)

=

[
T2k βk+1e2k

βk+1e
T
2k 1

]
, (8.3)

which is the tridiagonal matrix T2k+1 generated after 2k + 1 steps of the Lanczos process described above.
The Lanczos vectors sk generated by the above process have the form s2k+1 := (uk,0) and s2k+2 := (0,vk)

for k ≥ 0. Moreover, the permutation P restores the order in which those vectors are generated by the
algorithm, i.e.,

PT

[
Uk

Vk

]
P =

[
s1 s2 · · · s2k

]
.

8.2 Relation with the Direct Lanczos Method

According to Definition 1.1, T2k and T2k+1 defined in (8.2) and (8.3) are symmetric and quasi-definite. They
therefore possess the Cholesky-like factorizations without pivoting:

T2k = L2kD2kL
T
2k

and, using (8.2)–(8.3),

T2k+1 =

[
L2kD2kL

T
2k βk+1e2k

βk+1e
T
2k 1

]

=

[
L2k

`2ke
T
2k 1

] [
D2k

d2k+1

] [
LT

2k `2ke2k

1

]
= L2k+1D2k+1L

T
2k+1,

where d2k+1 > 0. Similarly, T2k+2 is given by[
L2k+1

`2k+1e
T
2k+1 1

] [
D2k+1

d2k+2

] [
LT

2k+1 `2k+1e2k+1

1

]
= L2k+2D2k+2L

T
2k+2,
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where d2k+2 < 0. The factors are computed using the recursions

d1 = 1, dj+1 = tj+1,j+1 − dj`
2
j , `j = tj+1,j/dj , j = 1, 2, . . .

The entries ti,j of Tk are given by (8.2), i.e., tj,j = (−1)j+1, t2j,2j−1 = αj and t2j+1,2j = βj .

The direct Lanczos method, referred to as DLanczos by Saad (2003, Algorithm 6.17), is simply the
Lanczos process in which the tridiagonal system with coefficient Tk and with right-hand side β1e1 is solved
at each iteration. Our approach is to compute the factors Lk and Dk of Tk and update them at each iteration.
Systems involving Tk are then solved by way of the usual forward and backward substitutions. Note that
each Lk is unit lower bidiagonal.

Let k = 2i be an even iteration number. Consider the system (1.1) with right-hand side (b,0) and an
approximation in the k-th Krylov subspace of the form (xk,yk) = (Ukx̄k,Vkȳk). Upon premultiplying (1.1)
with blkdiag(UT

k ,V
T
k ) and using (8.1b), the M-orthogonality of the vectors {uk} and the N-orthogonality

of the vectors {vk}, we obtain (6.13), which is a step of g-Craig and is precisely the subproblem solved at
iteration k of DLanczos. Observe that the choice ȳk = BT

k x̄k automatically satisfies the second block of
the equations (6.13) when x̄k solves (6.17). Consider now an approximation in the (k+ 1)-st Krylov space of
the form (xk+1,yk) = (Uk+1x̄k+1,Vkȳk). Proceeding as above, we obtain (6.3), which is a step of g-Lsqr
and is precisely the subproblem solved at iteration k+ 1 of DLanczos. In particular, ȳk satisfies the normal
equations (6.1) and x̄k+1 satisfies the first (k + 1) equations of (6.3).

This behaviour is a consequence of the expressions (5.16) and (5.17) for the Krylov spaces, which alternate
between

Ki
(

D̄,

[
b
0

])
=

[
Ki(D̄1,b)

0

]
and K̄Ki

(
D̄,

[
b
0

])
=

[
Ki(D̄1,b)

Ki(D̄2, Ā
Tb)

]
.

The above shows that the DLanczos method does not break down when applied to the SQD system (1.1)
with f = b and g = 0. Moreover, the underlying Lanczos process generates SQD matrices at each iteration.
In particular, in exact arithmetic, the conjugate gradient method alternates between the minimization of the
convex part of the quadratic form generated by the SQD matrix and the maximization of its concave part.
In other words, upon denoting ex,k = x− xk and ey,k = y− yk, the DLanczos method solves the problem

minimize
x

maximize
y

[
eT
x,k eT

y,k

] [M A

AT −N

] [
ex,k

ey,k

]
subject to (x,y) ∈ Kk

(
H−1K,

[
M−1b

0

])
.

(8.4)

A consequence of the previous paragraphs and the stability analysis of the LDLT factorization of SQD
matrices due to Gill et al. (1996) is that there is no need for a symmetric indefinite factorization of Tk in the
vein of Marcia (2008) for problem (1.1).

We have proved the following result.

Theorem 8.1 The DLanczos method on the SQD system (1.1) with right-hand side (b,0) is well defined
and will not break down. At each iteration, the tridiagonal matrix generated by the Lanczos process is SQD.
Every odd step is a generalized Lsqr step. Every even step is a generalized Craig step.

If we denote zk = (xk,yk), xk = Ukx̄k, yk = Vkȳk, and z̄k = (x̄k, ȳk), the tridiagonal system (6.13) may
be written T2kz̄2k = β1e1. Taking into account the factorization of Tk, we obtain

zk = Skz̄k = SkL
−T
k D−1

k L−1
k (β1e1) = Wkqk,

where we defined
Wk := SkL

−T
k D−1

k and qk := L−1
k (β1e1).
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This is equivalent to the usual derivation of the DLanczos method based on the LU factorization of the
Lanczos tridiagonal. However, our usage of the LDLT factorization highlights the fact that each Tk is SQD.
The components (γ1, . . . , γk) of qk are easily found by recursion:

γ1 = β1, γj+1 = −`jγj , j = 1, 2, . . .

Similarly, using the equivalent identity LkDkW
T
k = ST

k , we find the rows of WT
k , i.e., vectors w1, . . . ,wk,

recursively based on the vectors sk:

w1 = s1/d1, wj+1 = (sj+1 − `jdjwj)/dj+1, j = 1, 2, . . .

Knowledge of the vectors wk leads to an efficient update of zk, bypassing the computation of z̄k altogether:

zk = Wkqk = zk−1 + γkwk.

As we show below, the matrix Wk forms a partial factor of K, as defined in (3.5). This is a form of
orthonormality of the vectors wk in spite of the fact that K is indefinite. Indeed, the LDLT factorization of
Tk can be arranged so that Lk is lower bidiagonal, but not with unit diagonal and Dk has ±1 on its diagonal.
With this alternative factorization, we have the updates

γ1 = β1/`1,1, γj+1 = −`j+1,jγj/`j+1,j+1, j = 1, 2, . . . (8.5)

and
w1 = s1/`1,1, wj+1 = (sj+1 − `j+1,jwj)/`j+1,j+1, j = 1, 2, . . . (8.6)

Thus without loss of generality, we may understand Dk as having diagonal elements (−1)j+1.

Theorem 8.2 Let Wk be defined as above and let Tk = LkDkL
T
k where Lk is lower bidiagonal and Dk is

diagonal. Then, for k = 1, . . . , n+m, we have the partial factorization

WT
k KWk = D−1

k . (8.7)

The DLanczos iterates satisfy

zk =

k∑
j=1

γjwj (8.8)

and

zTkKzk =

k∑
j=1

γ2
j

dj
=

dk/2e∑
j=1

γ2
2j−1

d2j−1

−
bk/2c∑
j=1

γ2
2j

(−d2j)
, (8.9)

as well as the error identity

(z− zk)TK(z− zk) =

n+m∑
j=k+1

γ2
j

dj
=

dn+m
2 e∑

j=k+1

γ2
2j−1

d2j−1

−
bn+m

2 c∑
j=k+1

γ2
2j

(−d2j)
, (8.10)

where z is an exact solution of (1.1) with f = b and g = 0.

Proof. It suffices to note that, after applying the permutation P, we have from (8.1b)

ST
kKSk = ST

kHSkTk = LT
kDkLk,

where H is defined in (3.6) and where we used the fact that the vectors sk are orthonormal in the metric
defined by H. Introducing now the definition of Wk, we obtain

WT
k KWk = D−1

k L−1
k ST

kKSkL
−T
k D−1

k = D−1
k .

The rest of the proof follows directly, as in previous sections.
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It is important to note that K, being indefinite, does not define a norm. It does however define a distance
and this is why we do not use the norm notation in (8.9) and (8.10). Indeed, d2k < 0 and d2k+1 > 0. Following
the nomenclature of Gohberg, Lancaster, and Rodman (2005, Chapter 2), the vectors wk are orthogonal in
the metric K and orthonormal if the factorization of Tk is arranged so that

D2k+1 = PT

[
Ik+1

−Ik

]
P.

For these reasons, we emphasized the negative terms in (8.9) and (8.10) by separating odd and even in-
dices. The sum over odd indices corresponds to g-Craig iterations where d2j−1 > 0 and where the primal,
minimum-norm, problem is solved. The sum over even indices corresponds to g-Lsqr iterations where the
dual, negative least-squares, problem is solved.

The conjugate gradient method is simply a reformulation of DLanczos in which the LU factorization of
Tk is computed instead. Therefore, the conclusions above also apply to Cg with appropriate redefinitions
of Lk and Dk. Interestingly, even in the present indefinite context, the conjugate gradient algorithm con-
tinues to perform its well-known minimization of the error in the energy “norm” with the difference that it
alternates between minimization steps in one problem and maximization steps in the dual problem viewed
as a maximization problem. In particular, it is possible to define a corresponding stopping test based on
the direct error in “energy norm”. Select an integer d > 0 and a threshold τ > 0. We may terminate the
DLanczos iterations as soon as the partial sums (8.10) computed only over the past d iterations stabilize.
More precisely, we terminate the iterations as soon as

d k+d+1
2 e∑

j=k+1

γ2
2j−1

d2j−1

< τ2

d k+d+1
2 e∑
j=1

γ2
2j−1

d2j−1

and
b k+d+1

2 c∑
j=k+1

γ2
2j

(−d2j)
< τ2

b k+d+1
2 c∑
j=1

γ2
2j

(−d2j)
.

In exact arithmetic, it is equivalent to stop as soon as

k+d+1∑
j=k+1
dj>0

γ2
j

dj
< τ2

k+d+1∑
j=1
dj>0

γ2
j

dj
and

k+d+1∑
j=k+1
dj<0

γ2
j

(−dj)
< τ2

k+d+1∑
j=1
dj<0

γ2
j

(−dj)
. (8.11)

Alternatively, it is also possible to stop as soon as

k+d+1∑
j=k+1

γ2
j

|dj |
< τ2

k+d+1∑
j=1

γ2
j

|dj |
.

We stress that the error (8.10) measured in the metric K can be either positive or negative. Although we
have not formally established this fact, in practice, its sign typically alternates, as does the sign of the pivots
dj , and exhibits an oscillatory behavior. It approaches zero in absolute value as k approaches n + m. This
is illustrated in the numerical experiments of §9.

8.3 Full-Space Lanczos Process: II

The two methods g-Lsmr and g-Craig-mr of §6.5 and §6.7 turn out to combine to become equivalent to
an appropriately-preconditioned Minres on (1.1). This result parallels Theorem 8.1 and the combination
of g-Lsqr and g-Craig to form g-Cg. Upon pasting the Lanzcos processes (6.38) and (6.48) together, we
obtain[

M + AN−1AT

N + ATM−1A

] [
Uk

Vk

]
=

[
M

N

]([
Uk

Vk

] [
BkB

T
k + Ik

ET
kEk + Ik

]
+

[
αkβk+1uk+1e

T
k

αk+1βk+1vk+1e
T
k

])
. (8.12)
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As already noted in (5.10),[
M A

AT −N

] [
M−1

N−1

] [
M A

AT −N

]
=

[
M + AN−1AT

N + ATM−1A

]
.

Upon premultiplying (8.12) by blkdiag(UT
k ,V

T
k ) and using the M-orthogonality of the vectors uk and the

N-orthogonality of the vectors vk, the Lanczos process may be equivalently rewritten[
Uk

Vk

]T [
M + AN−1AT

N + ATM−1A

] [
Uk

Vk

]
=[

BkB
T
k + Ik

ET
kEk + Ik

]
=

[
BkB

T
k + Ik

BT
kBk + Ik

]
+ β2

k+1e2ke
T
2k.

8.4 Relation with the Minimum Residual Method

In Minres, the system (1.1) with f = b and g = 0 is tackled directly using sequential approximations in a
Lanczos subspace by iteratively minimizing the norm of the residual. Typically, the Euclidian norm is used
but other norms can be used via preconditioning. It turns out that the relevant Lanczos process in this case
is precisely (8.1) and the k-th Krylov subspace Kk is spanned by the vectors (uk,0) and (0,vk). Let (xk,yk)

be our approximation of (x,y) in Kk. The corresponding residual is given by[
rk
sk

]
:=

[
b
0

]
−
[
M A

AT −N

] [
xk
yk

]
(8.13)

=

[
β1Mu1

0

]
−
[
M A

AT −N

] [
Uk

Vk

] [
x̄k
ȳk

]
, (8.14)

for some vector (x̄k, ȳk). In this section we show that the Lanczos process (8.1) determines an implementation
of Minres in which the residual (8.13) is minimized in the norm defined by blkdiag(M−1,N−1), which
imposes that (x̄k, ȳk) satisfy the Ritz-Galerkin condition[

Uk

Vk

]T [
M A

AT −N

] [
M−1

N−1

] [
rk
sk

]
=

[
0
0

]
. (8.15)

Upon premultiplying (8.1b) with[
Uk

Vk

]T [
M A

AT −N

]T [
M−1

N−1

]
,

we obtain a sum of two terms. The first term is[
UT
k

VT
k

][
M A

AT −N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

]
.

Using (8.1b) itself, this term may be rewritten[
UT
k

VT
k

] [
M

N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

]2

+[
UT
k

VT
k

] [
βk+1Muk+1

0

]
eT

2k

[
Ik Bk

BT
k −Ik

]
=

[
Ik Bk

BT
k −Ik

]2

,

where we used the M-orthogonality of {v1, . . . ,vk} and the N-orthogonality of {u1, . . . ,uk}. The second
term is [

Uk

Vk

]T [
M A

AT −N

] [
M−1

N−1

] [
βk+1Muk+1

0

]
eT

2k = β2
k+1e2ke

T
2k,
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where we used (8.1b) and the orthogonality properties of the Lanczos vectors one more time, in the same
way as for the first term. We have just showed that

[
Uk

Vk

]T [
M A

AT −N

] [
M−1

N−1

][
M A

AT −N

] [
Uk

Vk

]
=

[
Ik Bk

BT
k −Ik

]2

+ β2
k+1e2ke

T
2k (8.16)

is the underlying Lanczos process governing the minimum residual method. The first matrix in the right-hand
side of this last equality is the square of a symmetric permutation of T2k. It is thus a symmetric permutation
of the pentadiagonal matrix T 2

2k.

On the other hand, since

[
Uk

Vk

]T [
M A

AT −N

]T [
M−1

N−1

] [
β1Mu1

0

]
=

[
β1e1

α1β1e1

]
,

the condition (8.15) amounts to the (psychologically) pentadiagonal system([
Ik Bk

BT
k −Ik

]2

+ β2
k+1e2ke

T
2k

)[
x̄k
ȳk

]
=

[
β1e1

α1β1e1

]
. (8.17)

The system (8.17) is precisely the system solved by the standard Minres at iteration k (Paige and Saunders,
1975, Equations (6.1) and (6.2)). It is also easy to verify that (8.17) represents the optimality conditions of
the linear least-squares problem

minimize
x̄,ȳ

1
2

∥∥∥∥[Ik+1 Ek

ET
k −Ik

] [
x̄
ȳ

]
−
[
β1e1

0

]∥∥∥∥2

2

.

As a consequence, we obtain the generalized Minres by substituting the standard Lanczos process used at
each iteration of Minres with (8.1). We have just proved the following theorem.

Theorem 8.3 The generalized Minres iterates on (1.1) with right-hand side (b,0) are the same as those
generated by Minres on (1.1) with preconditioner blkdiag(M−1,N−1). In addition, every even step is a
g-Lsmr step and every odd step is a g-Craig-mr step.

Proof. It suffices to note that [
BkB

T
k + Ik

BT
kBk + Ik

]
=

[
Ik Bk

BT
k −Ik

]2

and that the Lanczos processes (8.12) and (8.16) are identical. This common Lanczos process implies that
the g-Minres method applied to (1.1) with right-hand side (b,0) and preconditioner blkdiag(M−1,N−1)

alternates between g-Craig-mr steps and g-Lsmr steps.

By definition of Minres, the quantity ‖M− 1
2 rk‖

2
2 + ‖N−

1
2 sk‖

2
2 = ‖rk‖

2

M
−1 + ‖sk‖

2

N
−1 is nonincreasing

with k. As we now show, Minres also lends itself to an interpretation in terms of direct error, as opposed
to residual, and a related stopping condition emerges. We begin with generalities on Minres that lead to a
new result indicating the appropriate norm in which Minres measures direct errors. Because this result is
general and always applies to Minres, it is given in a separate section. We next specialize this result to the
current SQD framework to provide an interpretation of Minres as a decoupled combination of g-Lsmr and
g-Craig-mr.
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8.4.1 Generalities on Minres

In this section, we use the same notation as in §3. Consider a generic linear system Hx = d where H = HT.
Minres generates Lanczos vectors sk and a symmetric tridiagonal matrix Ωk according to (3.1). The process
is summarized by (3.2). Much as in the previous section, Minres can be summarized with the identity

ST
k H2Sk = Ω2

k + β2
k+1eke

T
k , (8.18)

where the columns of Sk are theoretically orthonormal. Paige and Saunders (1975) compute the LQ factor-
ization of Ωk and show that

Ω2
k + β2

k+1eke
T
k = LkL

T
k , (8.19)

where Lk is lower tridiagonal. The iterates are updated according to

xk = Wktk =

k∑
j=1

τjwj = xk−1 + τkwk,

where tk = (τ1, . . . , τk) and Wk := SkL
−T
k . The scalar τk is easily obtained by way of a recurrence at each

iteration. We refer the reader to (Paige and Saunders, 1975, Section 6) for details. The above is sufficient to
establish the following result.

Theorem 8.4 Let Wk be defined as above. Then, for k = 1, . . . , n, we have the partial factorization

WT
k H2Wk = Ik. (8.20)

The Minres iterates satisfy

xk =

k∑
j=1

τjwj , (8.21)

and

‖xk‖
2
H

2 =

k∑
j=1

τ2
j , (8.22)

as well as the error identity

‖x− xk‖
2
H

2 =

n∑
j=k+1

τ2
j , (8.23)

where x is the solution of Hx = d.

Proof. It suffices to note that

WT
k H2Wk = L−1

k ST
kH2SkL

−T
k = L−1

k LkL
T
kL−Tk = Ik,

where we used (8.18) and (8.19). The rest of the proof is analogous to those of previous similar results.

In the next section, we specialize Theorem 8.4 to the SQD context.

8.4.2 An Error Estimate for Minres

In the SQD context, the generic identity (8.18) is paralleled by (8.16). The matrix multiplied left and right
by the Lanczos vectors in the left-hand side of (8.16) is precisely the block-diagonal matrix D given by (5.9).
Minres performs an LQ factorization of [

Ik Bk

BT
k −Ik

]
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in such a way that [
Uk

Vk

]T [
M + AN−1AT

N + ATM−1A

] [
Uk

Vk

]
= LkL

T
k ,

where Lk is lower tridiagonal. The following result is a simple rewrite of Theorem 8.4.

Corollary 8.5 Let Wk be defined as in Theorem 8.4. Then, for k = 1, . . . , n + m, we have the partial
factorization

WT
k DWk = Ik (8.24)

where D is defined in (5.9). In addition, the Minres iterates satisfy[
xk
yk

]
=

k∑
j=1

τjwj , (8.25)

and

‖(xk,yk)‖2D = ‖xk‖
2

M+AN
−1

A
T + ‖yk‖

2

N+A
T
M

−1
A

=

k∑
j=1

τ2
j , (8.26)

as well as the error identity

‖(x− xk,y − yk)‖2D = ‖x− xk‖
2

M+AN
−1

A
T + ‖y − yk‖

2

N+A
T
M

−1
A

=

n+m∑
j=k+1

τ2
j ,

(8.27)

where (x,y) is the solution of (1.1) with f = b and g = 0.

In particular, applying Minres on (1.1) consists in applying g-Lsmr in the variable y and g-Craig-mr
in the variable x in a decoupled manner. This comes from the fact that D is block diagonal. It is then clear
that, by contrast with Cg, Minres performs twice the work as it applies both g-Lsmr and g-Craig-mr
and terminates when both have reached satisfactory accuracy.

Note that the energy norm given in (8.26) and (8.27) differs from that of Silvester and Simoncini (2011),
who use the norm defined by the matrix H of (3.6) in the context of systems of partial differential equations.
The two error norms are related in some cases such as the simulation of Stokes flows by way of a mixed
finite-element discretization. In this case, N is typically assumed to spectrally equivalent to the appropriate
mass matrix Q in the sense that there exist positive constants γ1 and γ2 such that

γ1 ≤
qT(N + ATM−1A)q

qTQq
≤ γ2

for all appropriate vectors q (Elman et al., 2005). Similarly, it is typically assumed that

γ1 ≤
vT(M + AQ−1AT)v

vTMv
≤ γ2

for all appropriate vectors v. Under such assumptions, the preconditioner H defines a natural error norm
and it is spectrally equivalent to the error norm of Corollary 8.5.

9 Implementation and Numerical Experiments

Implementing the methods of Section 6 can be done by modifying existing implementations of the standard
Lsqr and Lsmr. Each code has two lines in its initialization that compute the first Golub-Kahan vectors
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ū1 and v̄1. Those two lines should be replaced by those of Algorithm 4.2 that compute u1 and v1. Similarly,
the two lines in the main loop that compute ūj+1 and v̄j+1 should be replaced by the two lines in the main
loop of Algorithm 4.2 using appropriate callbacks to solve systems with M and N. Our implementation is in
the Python language using the Lsqr and Lsmr implementations from the PyKrylov package (Orban, 2011).
The implementations of Craig and Craig-mr are original.

We present below numerical results on two categories of test cases: problems originating from optimization
and from discretized partial-differential equations for fluid flow. In both cases the stopping conditions for
all methods are those described in Algorithms 6.1, 6.2, 6.3 and 6.4 with τ = 10−12. This results in more
iterations than would typically be necessary but illustrates the decrease of the relevant error estimates to
tight tolerances. The stopping test used for DLanczos is that described in (8.11). The latter proved more
reliable than a test based on even and odd iterations as in practice, due to occasional instabilities in the
factorization of the Lanczos tridiagonal, pivots do not always alternate sign at each iteration. As we explain
below, it was necessary to select looser values of τ for this method. The stopping test used for Minres is
similar to those of §6 based on (8.27) with τ = 10−12.

Among other stopping conditions, both g-Lsqr and g-Lsmr declare optimality when either the relative
residual or the relative residual of the normal equations falls below a certain threshold. More precisely, with
εa = εr = 10−12, the first stopping conditions is

r̄k
‖b‖2

≤ εa + εr
‖A‖2‖ȳk‖2
‖b‖2

, (9.1)

where r̄k is the value of the objective function of (2.4) at yk = Vkȳk and ‖A‖2 is estimated by both g-Lsqr
and g-Lsmr at each iteration. The second condition is

ρ̄k
‖A‖2r̄k

≤ εa, (9.2)

where ρ̄k is the right-hand side of (6.37). In our experiments, those stopping conditions were never the reason
for terminating.

For the purpose of the numerical illustration below, linear systems with coefficient M or N are solved
using a one-time Cholesky factorization. In practice, the application should dictate the most appropriate
solution method. It should be noted that no attempt was made to ensure clustering of the generalized singular
values of A. Each problem name is followed by a tuple (n,m) where n is the order of M and m is the order
of N. For each iterative method, we report the history of the relative direct error in the appropriate metric
together with relative error estimates for d = 5 and d = 15. At each iteration k, the direct error estimates
are the quantities of the general form (6.11) while relative error estimates have the general form k∑

j=k−d+1

ζ2
j /

k∑
j=1

ζ2
j

 1
2

.

The error metric for each method is as given by Theorems 6.2, 6.4, 6.6, 6.8, 8.2 and Corollary 8.5. Because
DLanczos and Minres combine two methods for the normal or Schur-complement equations, the value of
d is doubled for them, i.e., setting d = 5 corresponds to an effective d = 10, so both underlying methods have
time to converge.

Table 2 collects statistics on our test problems.

Table 2: Summary of test problems.
Name Type n m nnz(M) nnz(A) nnz(N)
DUAL1 Optimization 255 171 3728 425 171
STCQP1 Optimization 12291 10246 34797 29726 10246
COLLIDE Stokes 578 289 2202 3465 1345
LID Stokes 578 289 2202 3465 1345
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9.1 Problems from Optimization

The two problems below are generated at the third iteration of the primal-dual regularized interior-point
method of Friedlander and Orban (2012). They originate from quadratic programming problems in standard
form

minimize
x∈Rn

gTx + 1
2xTHx subject to Cx = d, x ≥ 0,

where g ∈ Rn and H = HT ∈ Rn×n is positive semi-definite, and result in linear systems with coefficient
matrix [

H + X−1Z + ρI CT

C −δI

]
where ρ > 0 and δ > 0 are regularization parameters. The system is initially shifted as in §6.1 to recover
a right-hand side with all zeros in its last m components. The quadratic programs are part of the CUTEr
collection (Gould et al., 2003) and were chosen because they are representative of the behavior of the error
curves. The numerical behavior of each method is illustrated in Figs 9.1 and 9.2.

Note that for both values of the window size d, the error estimates for g-Lsqr and g-Lsmr qualitatively
follow the exact error although they underestimate it by one or two orders of magnitude. This is typical
of the problems we tested In g-Craig and g-Craig-mr, the error estimates are not monotonic and this
behavior is more apparent on DUAL1. The exact error curve for both methods exhibits a temporary plateau
and at this point the error estimates try to recover from an under-estimation. Due to the window size, this
recovery takes a number of iterations. The estimates otherwise closely follow the exact error curve. The
hump in the error estimates is echoed in the g-Minres curves, which combines g-Lsmr and g-Craig-mr,
located directly above it in the figure. Note that the hump occurs around iteration 80 for g-Craig-mr and
around iteration 160 for Minres, which consolidates the fact that every other Minres step is a g-Craig-mr
step.

The curves for DLanczos are less intuitive. Note first that Theorem 8.2 states that the error is measured
in an indefinite metric while Theorem 8.1 explains that DLanczos steps alternate between g-Lsqr and
g-Craig steps, again located directly above the DLanczos plot in the figure. Following (8.10), the error
changes between positive and negative values but globally decreases in absolute value. Figure 9.1 and those
that follow plot the exact error curve for DLanczos on a symmetric logarithmic scale, i.e., a logarithmic scale
in both positive and negative values. DLanczos turns out to be significantly less stable numerically than
the other methods. Setting τ = 10−12 results in failure for several problems due to roundoff errors, possibly
including fatal loss of orthogonality and instability of the factorization of the Lanczos tridiagonal. Similarly,
a window size of 15 iterations resulted in failures for at least one problem. Those failures are consistently
due to the norm of the preconditioned residual becoming negative. Following this, DLanczos exits with an
error message stating that the preconditioner is not positive definite. Another sign of numerical instability is
that consecutive pivots occasionally have the same sign. We expect that an alternative implementation such
as Symmlq (Paige and Saunders, 1975) would be more stable, although it is not yet clear how to recover the
error estimates in Symmlq.

For the reasons above, the plots presented in this section for DLanczos use τ = 10−6 and window sizes of
5 and 10. In exact arithmetic we expect that the oscillations of the exact error should be contained between
two enveloping monotonic curves. It is almost the case for STCQP1 but we see that the curve exhibits a
spike for DUAL1. It is not entirely clear what the origin of this spike is but we speculate that it is partly due
to DLanczos not exactly reducing to a decoupled combination of g-Lsqr and g-Craig in finite-precision
arithmetic. It also appears to overlap the plateau in the g-Craig error. The DLanczos error remains
positive for a few iterations during which the g-Craig error does not decrease significantly. During those
iterations, g-Lsqr is essentially working alone towards reducing the error. For DUAL1, the error estimates
are not particularly close to the exact error. For STCQP1, the error estimates follow the exact error more
faithfully.
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Figure 9.1: Problem DUAL1 (255, 171). Note the symmetric logarithmic scale of the vertical axis for DLanc-
zos used to capture the fact that the error is measured in an indefinite metric.
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Figure 9.2: Problem STCQP1 (12291, 10246). Note the symmetric logarithmic scale of the vertical axis for
DLanczos used to capture the fact that the error is measured in an indefinite metric.
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9.2 Problems from Discretized PDEs

The two test cases of this section are discretizations of the stabilized Stokes equations for incompressible
fluid flow (1.2) over a two-dimensional domain. The mesh and discretization are generated by the software
IFISS 3.1 of Elman et al. (2007). The problems originate from (Elman et al., 2005). In both problems, the
domain is Ω := (−1, 1) × (−1, 1) and the stabilization parameter is set to β = 0.25. These are examples
where the regularization term N is not diagonal—in both examples, N is tridiagonal with semi-bandwidth
18. For both problems, the discretization occurs on a 16× 16 grid with Q1-Q1 elements.

The first problem describes a colliding flow with analytic solution

u(x, y) = (20xy3, 5x4 − 5y4), p = 60x2y − 20y3 + constant

in Ω. Dirichlet boundary conditions are imposed along the whole boundary using the interpolant of the
finite-element discretization of u(x, y). Results are summarized in Fig. 9.3.

The second problem describes a flow in a lid-driven regularized cavity. The lid velocity is given by
u(x, y) = (1− x4, 0). Results are summarized in Figs. 9.3 and 9.4.

The behavior of the error estimates is smoother than in the case of optimization problems. In all cases the
error estimates for d = 5 and d = 15 are superposed and follow closely the exact error curve. For g-Lsqr,
g-Craig, g-Lsmr and g-Craig-mr, it would take of the order of 30 iterations to reduce the error by a
factor of 106.

We set the DLanczos stopping tolerance to τ = 10−3, which is reasonable given the discretization step
size. For tighter tolerances, DLanczos again fails, complaining about an indefinite preconditioner, which
indicates that the method has been driven past the numerical convergence point.

In the case of the lid-driven cavity problem, the exact error curve for Minres increases in the last few
iterations and we believe that this is due to cancellation when computing the error. This behavior is visible
to a lesser extent in g-Lsqr and g-Lsmr.

10 Discussion

In all instances, methods for the normal or Schur-complement equations are attractive because the lower
bounds estimates of the direct error follow the same trend as the exact error. Our experiments illustrate that
the two are tighter in Schur-complement equations methods. The behavior of DLanczos, and therefore or
the conjugate gradient method and of Symmlq, on SQD systems is instructive. Those methods solve the
min-max problem

minimize
x∈Rn

maximize
y∈Rm

L(x,y)

where
L(x,y) := 1

2‖x‖
2
2 + xTĀy − 1

2‖y‖
2
2 − fTM− 1

2 x− gTN−
1
2 y,

whose first-order optimality conditions coincide with (1.1) preconditioned with H defined in (3.6), and in
which the sign of the error alternates. Every other step is a minimization step on the convex part of L, i.e.,
the function x 7→ L(x,y) for fixed y, while the next step is a maximization step on the concave part of L,
i.e., y 7→ L(x,y) for fixed x.

It is possible to develop an upper bound estimate of the direct error for full-space methods using the
same principles as in §7. In full-space methods, the tridiagonal T̂ has the form (8.2) and is itself SQD.
Implementing a Gauss-Radau upper bound requires an accurate estimate of the smallest eigenvalue of T̂.

Theorem 5.1 indicates that this smallest eigenvalue is −
√

1 + σ2
max where σmax is the largest elliptic singular

value of A. In general, such an estimate is not directly available.

We insist that we have concentrated on the case where systems with the diagonal blocks M and N

are easily and efficiently solved. There are clearly numerous practical cases where this assumption is not
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Figure 9.3: Colliding Flow (578, 289). Note the symmetric logarithmic scale of the vertical axis for DLanczos
used to capture the fact that the error is measured in an indefinite metric.
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Figure 9.4: Lid-Driven Cavity (578, 289). Note the symmetric logarithmic scale of the vertical axis for
DLanczos used to capture the fact that the error is measured in an indefinite metric.
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realistic. For instance, in optimization applications, M may represent a (possibly dense) quadratic term that
is not easily inverted. It remains relatively typical that systems with N are easily solved. For instance in
optimization N is usually diagonal. The same is not necessarily true in fluid flow applications where N may
represent a mass matrix but Wathen (1987) shows that such systems are efficiently solved in a few iterations
of the conjugate gradient method with diagonal preconditioner. The study of the general case, possibly
allowing for inexact solves with M and/or N, is the subject of ongoing research. As a special case, this
includes a finite-precision arithmetic extension of our framework.

The study of symmetric quasi-definite systems in the context of preconditioning is also the subject of
ongoing research. A first important aspect is the preconditioning of SQD systems. In particular, not all
preconditioners preserve the SQD structure. A second important aspect is that SQD operators may be used
to precondition standard saddle-point systems, whether symmetric or not. For instance, systems encountered
during the iterations of an iterative process to solve the Navier-Stokes equations typically have a zero (2, 2)

block. As pointed out by Benzi et al. (2005), it is possible to devise efficient SQD preconditioners for such
systems.

The methods presented in this paper are relevant to optimization contexts beyond the occurence of SQD
systems. Indeed, in trust-region based Gauss-Newton methods, subproblems such as (2.4) must be solved at
each iteration but an accurate solution is not necessarily sought. Rather, sufficient decrease in the residual
is acceptable and a constraint on the maximal norm of y is imposed. It is a property of standard Lsqr and
Lsmr that the iterates ȳk increase in Euclidian norm (Paige and Saunders, 1982; Fong and Saunders, 2011).
Thus the quantities ‖yk‖N increase along the generalized Lsqr and Lsmr iterations. Consequently, it is
reasonable to solve (2.4) with a trust-region constraint of the form ‖y‖N ≤ ∆ for some trust-region radius
∆ > 0 using the initial guess y0 = 0. As Lsqr is equivalent to the conjugate gradient method on the normal
equations, interrupting the iterations as soon as the boundary of the trust-region is crossed ensures sufficient
decrease. In the case of Lsmr, it remains necessary to establish that the decrease thus obtained is a fraction
of that obtained at the Cauchy point—we refer the interested reader to (Conn et al., 2000, Chapter 7) for
details.

All methods covered above apply equally to the SQD system (1.1) with f = 0 and g = b. Indeed the
system can be reduced to the normal equations

(AN−1AT + M)x = AN−1b,

which are the optimality conditions of the regularized and weighted linear least-squares problem

minimize
x∈Rn

1
2

∥∥∥∥∥
[

AT

M
1
2

]
x−

[
b
0

]∥∥∥∥∥
2

N
−1
+

.

All methods presented in this paper are based on the lower bidiagonalization procedure referred to as
“bidiag1” by Paige and Saunders (1982). A corresponding family of numerical methods may also be derived
from the “bidiag2” procedure in the same paper, which performs an upper bidiagonalization of A and is
initialized with ATb instead of b. Two variants of the Golub-Kahan process based on inner products defined
by M and N and corresponding to Algorithms 4.2 and 4.3 give rise to alternative generalizations of Lsqr,
Craig, Cg, Lsmr, Craig-mr and Minres. Whether one of those methods dominates the others numerically
should be determined via intensive testing. Arioli (2010) derives a generalized variant of Craig based on
“bidiag2” in the case where the bottom block of the matrix in (1.1) is zero, yet there exists an appropriate
metric N to measure the norm of y.

It does not appear possible to apply the conjugate gradient to SQD systems in general if the right-hand
side does not have the form (b,0). Consider for instance the SQD system[

I
−I

] [
x
y

]
=

[
e
e

]
,
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where e is the vector of all ones. At the first iteration, the conjugate gradient needs to generate the denomi-
nator [

eT eT
] [

I
−I

] [
e
e

]
= 0

and must break down.

We provide stopping criteria for each method based on estimates of the relative direct error measured
in the appropriate metric. It should be noted that our error estimates are not upper bounds on the actual
direct error as they are measured over a window of a fixed number of iterations. Ongoing research aims to
determine a cheaply-computable upper bound in the vein of Arioli (2010). For this it seems necessary to
obtain a lower bound on the smallest eigenvalue in absolute value of the preconditioned operator K̄. Thanks
to Theorem 5.1 an obvious lower bound is simply 1.

We gave an interpretation of the conjugate gradient method applied to a SQD system with appropriate
right-hand side in terms of a min-max problem on a saddle-point function and in terms of a combination
of Lsqr and Craig. Minres performs twice as much work as is really necessary since it aims to minimize
the residual of both the normal and Schur-complement equations. Computations can be saved by employing
only g-Lsmr or g-Craig-mr.

It appears from our analysis that, on the one hand, the generalized Lsqr and Craig, and on the other
hand the generalized Lsmr and Craig-mr are the appropriate implementations of Cg and Minres for SQD
systems.
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