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Montréal (Québec) Canada, H3T 2A7

ali.boudhina@hec.ca

michele.breton@hec.ca

April 2013

Les Cahiers du GERAD

G–2013–30

Copyright c© 2013 GERAD



ii G–2013–30 Les Cahiers du GERAD

Abstract: We propose a new numerical method for evaluating long-maturity American put options. Most
existing numerical approaches are based on the time discretization of the exercise strategy, and their con-
vergence to continuous exercise opportunities is very slow. Instead of assuming a finite number of exercise
dates, we allow the option holder to exercise continuously, using an optimal barrier approach combined with
a cubic spline interpolation technique. Our method is shown to converge to the American option price much
more quickly than the Bermudian approximation, making it especially appropriate for long-maturity options.
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1 Introduction

An American option gives its holder the right to exercise a contract (e.g. buy or sell the underlying asset)

at a date prior to maturity. This early exercise right complicates the evaluation of such options, even in

the most simple “vanilla” case (the so-called American put). The option holder’s exercise strategy is usually

characterized by an exercise frontier such that the option is exercised if the underlying asset price falls below

the frontier. In the absence of an analytical solution, the literature offers a multitude of numerical approaches

and approximation formulas for determining the exercise frontier, and evaluating the price of the American

put (see Barone-Adesi 2005 for a survey).

The first numerical approaches proposed in the literature include Brennan and Schwartz (1977), who use

a finite-difference approximation of the solution of the partial differential equation characterizing the option

value, and Cox, Ross and Rubinstein (1979), who introduce the binomial tree to represent the evolution of

its value. Despite their relative inefficiency in terms of computation time, these two approaches are still the

most widely used in practice because of their simplicity and flexibility.

Johnson (1983) and Broadie and Detemple (1996) exploit the fact that the value of the American put

can be circumscribed in an interval bounded by the price of two European puts, making it obtainable

through a weighted average of these two bounds. To improve the method’s accuracy, the authors propose an

optimization procedure for the weights.

Geske and Johnson (1984) assume that exercise is possible at a finite number of dates, thus equating the

American put to a compound option. The formula for evaluating the compound option involves the solution

of an implicit equation, and a multivariate normal distribution whose complexity increases rapidly with the

number of exercise dates. Bunch and Johnson (1992) propose extrapolation and optimization approaches to

select exercise dates in order to improve the accuracy of the compound option method.

Omberg (1987) and Chesney and Lefoll (1996) approach the subject from the point of view of the exercise

frontier. By restricting the exercise strategy to an exponential function of time, they obtain a closed-form

expression for the value of the option, using the joint distribution of the underlying asset price and the

first passage time through the exercise frontier. The approximate price for the American put is obtained by

optimizing the expression of the exercise frontier.

Barone-Adesi and Whaley (1987) propose a closed-form analytical approximation using the partial differ-

ential equation characterizing the option. The simple expression they obtain for the price of the American

put is useful for very short and very long maturities, but its accuracy deteriorates for average maturities.

Longstaff and Schwartz (2001) propose a recursive method for the evaluation of the American put at

discrete times, where the value of holding the option is evaluated by Monte Carlo simulation on a finite grid

and then interpolated by ordinary least squares. This method has the advantage of being easily applicable

when the value of the option depends on many underlying assets or factors. In the same family of approaches,

Ben Ameur et al. (2009) propose a dynamic program for the valuation of Bermudian options under a GARCH

specification, using a piecewise polynomial interpolation of the option value.

These last two methods, based on a discrete-time dynamic programming (DP) model, liken the American

put option to an equivalent Bermudian put with a large number of exercise opportunities. This equivalence is

also used in the compound option, binomial tree and finite difference approaches. This assumption is justified

by the view that the option holder does not observe the underlying asset price in continuous time. However,

an increasing volume of transactions are now performed by high-frequency transaction algorithms. A study

by the Aite Group, reported in The Economist (February 2012), shows that the percentage of algorithmic

trading was 65% of equity trading and 30% of option trading in 2012, with a high forecasted positive trend for

option trading. Algorithmic trading in financial markets is closer to the assumption of continuous-time than

that of discrete-time exercise strategies. The aim of this paper is to propose a dynamic programming pricing

algorithm that can efficiently price American options under the assumption that the price of the underlying

asset is observed in continuous time.

The rest of the paper is organized as follows. Section 2 analyzes the convergence of Bermudian option

prices under a general DP model as the time discretization becomes finer. We note that the convergence
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of Bermudian option prices to their American counterparts is slow when the number of exercise opportuni-

ties becomes infinitely large, making the Bermudian approximation unsatisfactory for long-maturity options.

Section 3 introduces a technique based on the successive optimization of a portfolio of barrier options, which

yields better convergence in terms of time steps, although the computational burden of the successive opti-

mization steps is significant. The third approach, presented in Section 4, significantly reduces the computation

time while approaching the precision of the portfolio of barrier options. Our numerical experiments show the

efficiency of this method, especially for long-maturity options. A brief conclusion is presented in Section 5.

2 The Bermudian approximation

Most existing numerical approaches for the evaluation of American options are based on an approximation

using Bermudian options with a high exercise frequency. Indeed, the Bermudian option price converges to

that of an American option with the same characteristics when the time interval between two exercise dates

tends to 0. This section presents numerical experiments showing that the convergence of the Bermudian

approximation is relatively slow, making this family of approaches computationally costly for long-maturity

options.

2.1 Evaluation of a Bermudian put option

We first present a general algorithm for the computation of the price of a Bermudian put option on an

underlying asset having a price process denoted by St and assumed to satisfy the assumptions of the Black

and Scholes (1973) model. Under these assumptions, the evolution of the underlying asset price under the

risk-neutral measure is described by
dSt
dt

= rdt+ σdWt

where

r is the risk-less rate,

σ is the underlying asset price volatility, and

Wt is a standard Brownian motion.

The solution of this diffusion equation yields the price of the asset at a given date t > 0:

St = S0 exp

((
r − σ2

2

)
t+ σWt

)
. (1)

Define

µ ≡ r − σ2

2
.

Using (1), the return of the price process in a time interval δ is a random variable Yδ satisfying

lnYδ = δµ+ σ
√
δε

where ε ∼ N(0, 1).

Consider a Bermudian put option of maturity T where the holder has the right to exercise at a finite

number M of equally spaced exercise dates denoted by tm = m T
M , m = 1, . . . ,M , with t0 = 0. Denote by

δ = T
M the interval between two exercise dates. At a given exercise date, when the underlying asset price is

s, the exercise value of the option is given by (K − s)+ , where (x)
+

is the function max {x, 0} and K is the

contractual strike price. At each exercise date, the holder chooses between exercising his option, or holding

it until at least the next exercise date. If the holder is using an optimal strategy, the Bermudian option value

at any date tm, m = 0, . . . ,M, when the underlying asset price is s is given by the dynamic program
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VM (s) = (K − s)+ (2)

Vm−1(s) = max
{

(K − s)+ ; exp(−rδ)E [Vm(sYδ)]
}
, m = 2, . . . ,M (3)

V0(s) = exp(−rδ)E [V1 (sYδ)] (4)

where E [·] denotes the expectation under the risk-neutral measure. The term

exp(−rδ)E [Vm (sYδ)] (5)

is the holding value of the option at (tm−1, s) ; it represents the value of the potential future cash flows of the

option, and is defined recursively by the expected value of the option at the next exercise date, discounted

at rate r, given the current observed price of the underlying asset.

The numerical solution of the dynamic program (2)–(4) consists in recursively computing Vm at discrete

points of the state space (0,∞), starting from the known function VM . Clearly, the issue lies in the compu-

tation of the holding value (5), which involves evaluating the expected value of a function that is only known

on a discrete subset of the state space.

We propose the use of cubic spline interpolation functions, which are continuous, twice differentiable

piecewise polynomials that can be integrated analytically under the log-normal return assumption. Consider

a grid Gn ≡{si}i=1,...,n ⊂ (0,∞), where s0 = 0 < s1 < s2 < . . . < sn < sn+1 = ∞ and a function

V : (0,∞)→ R, the value of which is known on Gn. The cubic spline interpolation of V is given by

V̂ (s) =

n∑
i=0

3∑
d=0

cids
dIs [si , si+1) (6)

where IxI is the indicator function

IxI =

{
1 if x ∈ I
0 otherwise,

and where the coefficients cid are chosen so that V̂ is twice differentiable and coincides with V on Gn.1

Assume that the value of Vm is known on Gn. The holding value at a given (tm−1, s) is obtained by

approximating E [Vm(sYδ)] by E
[
V̂m(sYδ)

]
. We obtain, using (6):

E
[
V̂m(sYδ)

]
= E

[
n∑
i=0

3∑
d=0

(
cmid (sYδ)

d
)
IsYδ [si , si+1)

]

=

n−1∑
i=0

3∑
d=0

cmids
dE
[
(Yδ)

d IYδ
[si
s
,
si+1

s

)]
=

n−1∑
i=0

3∑
d=0

cmids
dE
[
exp

(
dδµ+ dσ

√
δε
)
Iε [ai, ai+1)

]
=

n−1∑
i=0

3∑
d=0

cmids
d exp (dδµ)E

[
exp

(
dσ
√
δε
)
Iε [ai, ai+1)

]
where

ai =
log
(
si
s

)
− µδ

σ
√
δ

and ε ∼ N(0, 1).

Define

Ω(s, i, d) ≡ exp (dδµ)E
[
exp

(
dσ
√
δε
)
Iε [ai, ai+1)

]
, ε ∼ N(0, 1);

1This set of condition yields a linear system of equations; additional conditions are needed at the boundaries to completely
specify the interpolation coefficients. The MATLAB function spline can be used to obtain these coefficients.
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this function can be obtained analytically from the normal cumulative function (details are given in Ap-

pendix 6.1). We finally get

E
[
V̂m(sYδ)

]
=

n∑
i=0

3∑
d=0

cmids
dΩ(s, i, d). (7)

The numerical procedure for the evaluation of a Bermudian put option is summarized in the following

algorithm:

Algorithm 1

1. Define parameters T,M, n, δ = T
M , sn,K.

2. Discretize time: tm = m T
M , m = 0, . . .M and asset price space: si = i snn , i = 0, . . . n.

3. Compute Ω(si, j, d) for i = 0, . . . n, j = 0, . . . n− 1 and d = 0, . . . , 3.

4. Compute coefficients cMid for i = 0, . . . , n and d = 0, . . . , 3 interpolating VM using (2).

5. For m = M − 1 until m = 1

5.1 Compute Vm(si), i = 0, . . . , n using (3) and (7)

5.2 Compute coefficients cmid for i = 0, . . . , n and d = 0, . . . , 3 interpolating Vm.

6. Compute V0(si), i = 0, . . . , n using (4) and (7) and stop.

The choice of the grid Gn depends on the option’s volatility and maturity; in fact, the boundary sn should

be chosen so that the error due to extrapolation outside the evaluation grid is negligible. This can be achieved

by ensuring that the probability of the underlying asset price attaining sn is small, or that the option value

for s > sn is negligible (the value of a put option vanishes when the underlying asset price is very high). On

the other hand, the interval [s0, sn] cannot be arbitrarily large since increasing the size of the interpolation

interval means that a larger number n of grid points is required to ensure that the interpolation error is

small. In all our numerical experiments, we use sn = K exp
(
µT + 4σ

√
T
)
, and equally spaced grid points.

Figure 1 plots the relative interpolation error as a function of the number of grid points, for a European

put option maturing in one year evaluated at (0, s) using Algorithm 1 with two time steps (without exercise

opportunities). As can be seen, when the number of interpolation points reaches 200, the error is around

10−8. In our numerical experiments, the number of interpolation points is chosen in such a way that the

interpolation error is smaller that the precision of the reported results, given the number of time steps over

which this error can accumulate. In that case, the difference in value between an American and a Bermudian

option can be assigned to the number of exercise opportunities.

2.2 Approximation of an American option by a Bermudian option

Because the American put gives its holder an infinite number of exercise opportunities, one expects the

Bermudian put to become a good approximation of the American put when the number of exercise dates is

sufficiently high. Numerical methods based on time discretization usually assume a day-long time interval

between two exercise opportunities. Assuming that the holder can only observe the underlying asset price at

discrete times, one observation per day seems a reasonable approximation of the holder’s exercise strategy.

We now evaluate the quality of this approximation by examining the convergence of the Bermudian option

with increasing frequency of exercise opportunities. Representative results are presented in Tables 1 and 2.

In reviewing these results, we observe that convergence to a stable value with an increasing frequency of

exercise opportunities is slow, particularly for long-maturity2 or high-volatility options. In both cases, the

number of exercise dates needs to be very high to approximate the continuous case. Recall that the numerical

evaluation of the Bermudian option requires a spline interpolation at each exercise date, and therefore,

the interpolation error may accumulate when the number of time steps becomes very large; moreover, the

2Long-maturity options include LEAPS (Long-term Equity Anticipation Securities, up to 3 years maturity on the CBOE)
and put options embedded in protected capital notes (5 to 10 years maturity).
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Figure 1: Convergence of spline interpolation to the exact value of the European put. Parameter values are
σ = 20%, r = 4%, K = 100, T = 1 and M = 2.

Table 1: Value of a Bermudian option as a function of the number of exercise opportunities. Parameter values
are K = 100, r = 4% , σ = 20%, n = 200 for T = 1 and n = 300 for T = 5.

T = 1 year T = 5 years

M s = 90 s = 100 s = 110 s = 90 s = 100 s = 110

1 10.8414 6.0040 3.0476 11.4751 8.5766 6.3926
2 11.3951 6.2020 3.1018 13.4674 9.8514 7.1863
4 11.6227 6.2937 3.1457 14.4277 10.4229 7.5420
8 11.7173 6.3464 3.1739 14.8472 10.6843 7.7294
16 11.7614 6.3746 3.1894 15.0285 10.8168 7.8308
32 11.7839 6.3891 3.1977 15.1186 10.8873 7.8843
64 11.7953 6.3966 3.2021 15.1654 10.9221 7.9109
128 11.8009 6.4004 3.2043 15.1901 10.9406 7.9247
512 11.8052 6.4032 3.2060 15.2059 10.9541 7.9353
1024 11.8061 6.4038 3.2063 15.2084 10.9561 7.9370
1500 11.8065 6.4040 3.2064 15.2093 10.9567 7.9375
2000 11.8067 6.4041 3.2065 15.2098 10.9571 7.9378

interpolation grid domain [0, sn] also expands with increasing maturity and volatility. For such options, the

use of a fine time discretization may be computationally expensive.

3 Approach using a portfolio of barrier options

The numerical method proposed in this section is based on Ingersoll (1998), where the American put is

equated with a portfolio containing one European “down-and-out” (DO) put option, and one digital “first-

touch” (FT) option, both options having the same barrier. In doing so, the author assumes that the holder

of the American put uses a constant-barrier exercise strategy. He then shows numerically that the value of

the American put can be approximated by the value of the equivalent portfolio when the (constant) barrier

is optimal.
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Table 2: Value of a Bermudian option as a function of the number of exercise opportunities. Parameter
values are K = 100, r = 4% , σ = 40%.Value of a Bermudian option as a function of the number of exercise
opportunities. Parameter values are K = 100, r = 4% , σ = 20%, n = 300 for T = 1 and n = 500 for T = 5.

T = 1 year T = 5 years

M s = 90 s = 100 s = 110 s = 90 s = 100 s = 110

1 17.9818 13.6572 10.2849 25.7637 23.0630 20.7195
2 18.2946 13.8303 10.3772 27.7787 24.6866 22.0320
4 18.4325 13.9313 10.4523 28.5908 25.3507 22.5907
8 18.5082 13.9915 10.4985 28.9455 25.6678 22.8788
16 18.5479 14.0234 10.5236 29.1390 25.8429 23.0369
32 18.5683 14.0401 10.5369 29.2338 25.9312 23.1187
64 18.5786 14.0486 10.5438 29.2793 25.9731 23.1575
128 18.5837 14.0528 10.5472 29.3033 25.9943 23.1766
512 18.5876 14.0561 10.5499 29.3243 26.0126 23.1929
1024 18.5883 14.0567 10.5504 29.3284 26.0161 23.1960
1500 18.5886 14.0569 10.5505 29.3296 26.0171 23.1968
2000 18.5888 14.0571 10.5507 29.3301 26.0175 23.1971

3.1 The options

A DO put option is knocked out worthless if the asset falls to the barrier B before maturity, and, if it does

not, the holder receives the payoff of a vanilla put. Denote by τB the first passage time of St under the barrier

B:

τB = inf {τ ≥ 0 : Sτ ≤ B} .

The price of a DO put option of maturity δ at s is given by the following risk-neutral expectation, where

Es [·] indicates that the expectation is conditional to the current price observation s:

D(s;B, δ) = e−rδEs
[
(K − sYδ)+ Iτ (δ,∞)

]
.

This price can be obtained in closed form under the Black-Scholes assumptions:

D(s;B, δ) = Ke−rδ
(
N2

( s
K

)
−N2

( s
B

))
− s

(
N1

( s
K

)
−N1

( s
B

))
−
(
B

s

) 2µ

σ2
(
Ke−rδ

(
N2

(
B2

sK

)
−N2

(
B

s

))
+B2

(
N1

(
B2

sK

)
−N1

(
B

s

)))
where the functions N1 and N2 are defined by:

N1(x) = Φ

(
− ln (x) + µδ

σ
√
δ

− σ
√
δ

)
N2(x) = Φ

(
− ln (x) + µδ

σ
√
δ

)
and where Φ is the cumulative standard normal distribution function.

The holder of a digital FT option receives the strike price at the underlying asset price first passage time

under the barrier. The value of a FT option of maturity δ at s is then given by

F (s;B, δ) = (K −B)Es
[
e−rτ Iτ [0, δ]

]
,

which also has an analytical expression under the Black-Scholes assumptions:

F (s;B, δ) = (K −B)

(( s
B

) β−µ
σ2

Φ
(
−N+

)
−
( s
B

) β+µ
σ2

Φ
(
−N−

))
(8)

β =
√
µ2 + 2rσ2

N+ =
ln
(
s
B

)
+ βδ

σ
√
δ

;N− =
ln
(
s
B

)
− βδ

σ
√
δ

.
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3.2 Constant exercise strategy

For a given barrier B, the value at (t, s) of a portfolio containing the two options and maturing at date T

is therefore equal to D(s;B, T − t) + F (s;B, T − t). The approximation of the American put proposed by

Ingersoll (1998) is obtained by finding the barrier maximizing the value of this portfolio, that is,

P 1
t (s) = max

0≤B≤s
{D(s;B, T − t) + F (s;B, T − t)} . (9)

In fact, the exact value of the American put at (t, s) is the solution of the following optimization problem:

P (t, s) = max
U∈U([t,T ])

Es
[
e−rτ (K − Sτ )

+
]

(10)

s.t.

τ = inf [τ ≥ t : Sτ ≤ U(τ)] ,

where U(X) represents the set of functions U : X → R+. Thus, to evaluate an American put at (t, s), one

needs to identify the optimal exercise frontier among the functions U : [t, T ]→ R+, i.e., the optimal exercise

frontier is a function of time. Program (9), which restricts the solution space to barriers that are constant

over time, thus provides a lower bound for the value of the American put. To get a better approximation,

one can expand the solution space of the exercise strategy optimization problem.

A simple alternative is to consider the set of piecewise constant exercise barriers. Thus, we assume that

the option holder can change the composition of his portfolio of barrier options several times before maturity,

which should give a better approximation of the price of the American put.

3.3 An exercise strategy involving two barriers

First assume that the option holder can modify his portfolio at date T/2; The optimization problem with

two barriers is then written at (0, s):

P 2(s) = max
B1,B2∈V

{
e−rTEs

[
(K − Yδs) Iτ2 (T,∞) Iτ1

(
T

2
,∞
)]

(11)

+ (K −B2)Es
[
e−rτ2Iτ2

[
T

2
, T

]]
+ (K −B1)Es

[
e−rτ1Iτ1

[
0,
T

2

]]}
s.t.

τ1 = inf {τ ≥ 0 : Sτ ≤ B1}

τ2 = inf

{
τ ≥ T

2
: Sτ ≤ B2

}
where V represents the set of functions B : R+ → R+, that is, the exercise barriers B1(·) and B2(·) are not

constants, but feedback strategies. Thus, at date T
2 , the option holder chooses the best barrier B2 according

to the observed asset price ST
2

, maximizing the value of his portfolio given the information available to him

at that date. In the same way, at date 0, the optimal value for B1 depends on s.

Notice that the second and third terms of (11) are equal to the value of FT options of maturity T
2 .

The following recursive representation of problem (11) is more helpful for the characterization of feedback

strategies, and will be generalized in the sequel:
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P 2(s) = max
B1

{
e−r

T
2 Es

[
P 1
T/2(sYT/2)Iτ1

(
T

2
,∞
)]

+ F

(
s;B1,

T

2

)}
(12)

s.t.

τ1 = inf {τ ≥ 0 : Sτ ≤ B1} ,

where P 1
T/2 is given by (9).

The solution of (11) reveals that the optimal barriers B1 and B2 actually depend on the level of the

underlying asset price. This is a direct consequence of the choice of a piecewise constant exercise barrier.

In fact, determining the optimal constant barrier at a given s involves the probability that the price of the

underlying asset will eventually reach the barrier, which obviously depends on the current price.

It should be noted that the optimization problem (11) is different from that of an a priori approximation

of the exercise frontier by a piecewise constant function. Indeed, deciding on constant values B1 and B2 at

date 0 would commit the option holder to successive levels that would be independent of the evolution of the

underlying asset, while the feedback strategy obtained by the solution of (11) will necessarily yield a higher

value for the option.

3.3.1 An M−piecewise constant exercise strategy

We now generalize the approach presented in the previous section by using the following recursive principle:

the set of exercise strategies involving k constant barriers is a proper subset of the set of strategies involving

k+1 constant barriers. Thus, by increasing the number of times that the option holder can adjust his portfolio

by modifying the barriers of the two options, the value of this portfolio necessarily increases, attaining at the

limit, the price of the American put when the exercise frontier becomes a continuous function of time:

P 1
0 (s) ≤ P 2(s) ≤ P k(s) ≤ P∞(s) = P (0, s).

We also note that, when their decision dates tm, m = 1, . . . ,M coincide, an exercise strategy involving M

constant barriers gives the holder the same exercise opportunities as a Bermudian put option at tm, and also

allows him to exercise during the time interval (tm, tm+1) for m = 1, . . . ,M − 1, which implies

V0(s) ≤ PM (s) ≤ P (0, s).

These two ordered relations can be used to design an approximation algorithm for the American put. The in-

troduction of FT options makes it possible to consider continuous-time exercise opportunities, which improves

the time-step convergence with respect to the Bermudian option approximation.

Consider again a finite number M of equally spaced dates denoted by tm = mδ, m = 1, . . . ,M , δ = T/M.

Denote by Pm(s) the value of a portfolio of barrier options at (tm, s) when the option holder uses an exercise

strategy involving M −m constant barriers. The recursive formulation of the option holder’s optimization

problem defines the dynamic program:

PM (s) = (K − s)+ (13)

PM−1(s) = max
0≤BM≤s

{D(s;BM , δ) + F (s;BM , δ)} (14)

Pm−1(s) = max
Bm;τm=inf{τ≥0:Sτ≤Bm}

{
e−rδEs [Pm(sYδ)Iτm(tm,∞)] (15)

+ F (s;Bm, δ)} , m = 1, . . . ,M − 1.

The numerical solution of the dynamic program (13)–(15) consists in evaluating the function Pm on a grid

Gn, and interpolating it using a cubic spline P̂m. At date tM−1, since the option holder uses a constant barrier

strategy, the value of PM−1(s) is given by Ingersoll (1998), as in (9).

For m = 1, . . . ,M − 1, the first term of (15) involves the computation of the expected value of a function

that is only known on Gn. Using (6):
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Es [Pm(sYδ)Iτm(tm,∞)] ' Es
[
P̂m(sYδ)Iτm(tm,∞)

]
=

n∑
i=0

3∑
d=0

cmidEs
[
(sYδ)

dIsYδ(si, si+1)Iτm (tm,∞)
]

where

Yδ = exp (µδ + σWδ) .

Applying the following change of measure:

W̃t =
µ

σ
t+Wt,

W̃t is also a Brownian motion and

Yδ = exp
(
σW̃δ

)
.

By Girsanov theorem:

Es
[
(sYδ)

dIsYδ(si, si+1)Iτm (tm,∞)
]

= EQ̃s

[
(sYδ)

dIsYδ(si, si+1)Iτm (tm,∞) exp

(
−
(
µ
σ

)2
2

δ +
µ

σ
W̃δ

)]

= sdEQ̃s
[
exp

(
dσW̃δ

)
IsYδ(si, si+1)Iτm (tm,∞) exp

(
−µ

2δ

2σ2
+
µ

σ
W̃δ

)]
= sd exp

(
−µ

2δ

2σ2

)
EQ̃s
[
exp

((
dσ +

µ

σ

)
W̃δ

)
I
W̃δ

(ai, ai+1)Iτm (tm,∞)
]

where

ai =
1

σ
ln(

si
s

).

We finally have

Es
[
P̂m(sYδ)Iτm(tm,∞)

]
=

n−1∑
i=0

3∑
d=0

cmids
dΨ(s, i, d) (16)

where function Ψ can be written in closed-form using the normal cumulative distribution (details are provided

in Appendix 6.2).

The approximation of the American put can be obtained using the following algorithm:

Algorithm 2

1. Define parameters T,M, n, δ = T
M , sn,K.

2. Discretize time: tm = m T
M , m = 0, . . .M and asset price space: si = i snn , i = 0, . . . n.

3. Compute Ψ(si, j, d) for i = 0, . . . n, j = 0, . . . n− 1 and d = 0, . . . , 3.

4. Compute PM−1(si), i = 0, . . . , n using (14).

5. For m = M − 1 until m = 0

5.1 Compute coefficients cmid for i = 0, . . . , n and d = 0, . . . , 3 interpolating Pm

5.2 Compute Pm(si), i = 0, . . . , n using (15) and (16).

6. Stop.

In our implementation, the optimization in (14) and (15) is performed by a derivative-free line search

routine (e.g. the fminsearch Matlab function). Our numerical experiments show that Algorithm 2 converges

very rapidly with increasing values of M . Tables 3 and 4 present a representative illustration of these

numerical experiments, reporting the approximation of the option value as a function of M. We see that, even

with only two time steps, the approximation is very close to the American put value, and that penny accuracy
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is reached in 16 time steps (corresponding to a 3-month time interval) for the long-maturity, high-volatility

options. However, each time step requires the solution of n optimization problems, which is computationally

intensive—for instance, 1200 cpu seconds (20 mins) were required to solve on a desktop computer the instance

involving 128 time steps with 300 interpolation points.

Table 3: American put evaluation using a portfolio of barrier options. Parameter values are K = 100 , r = 4%
, σ = 20%, n = 200 for T = 1 and n = 300 for T = 5.

T = 1 year T = 5 years

M s = 90 s = 100 s = 110 s = 90 s = 100 s = 110

1 11.7439 6.3542 3.1780 15.1126 10.8789 7.8703
2 11.7848 6.3826 3.1912 15.1841 10.9274 7.9085
4 11.7988 6.3950 3.1994 15.2016 10.9457 7.9256
8 11.8036 6.4003 3.2033 15.2080 10.9530 7.9330
16 11.8054 6.4025 3.2051 15.2107 10.9562 7.9363
32 11.8062 6.4035 3.2059 15.2118 10.9576 7.9377
64 11.8065 6.4039 3.2063 15.2123 10.95826 7.9383
128 11.8066 6.4040 3.2064 15.2125 10.9584 7.9386
256 11.8066 6.4041 3.2065 15.2127 10.9586 7.9388

Table 4: American put evaluation using a portfolio of barrier options. Parameter values are K = 100 , r = 4%
, σ = 40%, n = 300 for T = 1 and n = 500 for T = 5.

T = 1 year T = 5 years

M s = 90 s = 100 s = 110 s = 90 s = 100 s = 110

1 18.4921 13.9781 10.4891 28.8674 25.6526 22.9015
2 18.5490 14.0202 10.5186 29.2470 25.9336 23.1138
4 18.5722 14.0408 10.5358 29.3012 25.9874 23.1661
8 18.5822 14.0503 10.5442 29.3200 26.0070 23.1860
16 18.5862 14.0543 10.5480 29.3270 26.0145 23.1938
32 18.5878 14.0560 10.5496 29.3301 26.0179 23.1973
64 18.5885 14.0567 10.5503 29.3313 26.0193 23.1989
128 18.5887 14.0570 10.5506 29.3320 26.0200 23.1997
256 18.5889 14.0571 10.5507 29.3330 26.0210 23.2007

4 An adjusted Bermudian option approach

Convergence with respect to the time step is usually the major problem when numerically evaluating long-

maturity American options. Indeed, the continuous exercise feature of American options requires a fine time

discretization, and the corresponding computational burden may become impracticable for long-maturity

options. In addition, the evaluation of a long-maturity option usually requires large evaluation grids, to

account for a broader range of possible values for the state variables over long periods. The barrier-option

portfolio approach proposed in the preceding section does not require a fine time discretization, but we saw

that this approach is still computationally costly due to the optimization problems that must be solved at

each point of the asset price discretization grid.

This section proposes an alternative method for efficiently pricing long-maturity American puts. This

method is an adaptation of the Bermudian approximation; however we allow the option holder to exercise

his option in continuous time. Thus, we again discretize time into decision dates. At each decision date, the

option holder makes two separate decisions: he chooses whether or not to immediately exercise the option,

and if not, he also chooses a barrier that will trigger the exercise of his option if it is reached by the underlying

asset price before the next decision date.

It should be noted that the exercise frontier U∗(t) of the American put defined by (10) is actually inde-

pendent of the underlying asset price level, and that the exercise frontier sbm of the corresponding Bermudian
put at tm satisfies sbm > U∗(tm). On the other hand, the barrier portfolio approach consists in approximating
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U∗(t) by a constant function on [tm, tm+1). As was observed in the previous section, the best approximation

of U∗(t) at tm depends on the current price of the underlying asset.

In the implementation presented here, the optimum barrier chosen by the option holder at each decision

date is independent of the price of the underlying asset. At each decision date tm, we find the optimal barrier

at a single point, chosen near U∗(tm). This iteratively provides an approximation of U∗(t) by a piecewise

constant function, and this exercise frontier is used to evaluate the option on all grid points. Thus, compared

to the approach implemented in Algorithm 2, the barrier is optimized only once, which significantly reduces

the computation time. We denote by Am(s) the evaluation of the American put obtained by this third

approach, which is defined by the following dynamic program:

AM (s) = (K − s)+ (17)

BM = arg max
0≤B≤s∗M

{D(s∗M ;B, δ) + F (s∗M ;B, δ)} (18)

AM−1(s) = D(s;BM , δ) + F (s;BM , δ) (19)

Bm = arg max
0≤B≤s∗m

{
e−rδEs∗m [Am(s∗mYδ)Iτm(tm,∞)] + F (s∗m;B, δ)

: τm = inf {τ ≥ 0 : Sτ ≤ B}} ,m = 1, . . . ,M − 1 (20)

Am−1(s) = e−rδEs [Am(sYδ)Iτm(tm,∞)] + F (s;Bm, δ),

τm = inf {τ ≥ 0 : Sτ ≤ Bm} ,m = 1, . . . ,M − 1, (21)

where s∗m satisfies

e−rδE [Am (s∗mYδ)] = K − s∗m. (22)

It should be noted that s∗m is not exactly equal to U∗(tm−1) since this point is obtained from the approximation

Am of the American put. For the same reason, s∗m is not exactly on the exercise frontier of the Bermudian

option. It is easy to show that

P (tm, s) ≥ Am ≥ Vm
and therefore

U∗(tm) < s∗m+1 < sbm.

The cubic spline interpolation Âm of Am is given by (6), and the computation of expectations Es
[
Am(sYδ)

Iτm(tm,∞)
]

and E [Am (s∗mYδ)] is obtained using (16) and (7) respectively. Algorithm 3 describes the imple-

mentation of the dynamic program (17)–(22).

Algorithm 3

1. Define parameters T,M, n, δ = T
M , sn,K

2. Discretize time: tm = m T
M , m = 0, . . .M and asset price space: si = i snn , i = 0, . . . n.

3. Compute Ω(si, j, d) and Ψ(si, j, d) for i = 0, . . . n, j = 0, . . . n− 1 and d = 0, . . . , 3.

4. At tM−1 :

4.1 Find s∗M solving
{

(K − s)+ − e−rδE
[
(K − sYδ)+

]
= 0, s ∈ R+

}
using the Black-Scholes formula

4.2 Find BM using (18)

4.3 Compute AM−1(si), i = 0, . . . , n using (19)

5. For m = M − 1 until m = 1

5.1 Compute coefficients cmid for i = 0, . . . , n and d = 0, . . . , 3 interpolating Am

5.2 Find s∗m solving
{

(K − s)+ − e−rδE [Am (sYδ)] = 0, s ∈ R+

}
using (7)

5.3 Find Bm using (20) and (16)

5.4 Compute Am−1(si), i = 0, . . . , n using (21) and (16)

6. Stop.
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Tables 5 and 6 provide a representative illustration of our numerical experiments using Algorithm 3.

Figures 2 and 3 assess the performance of this third approach by comparing it to the other two approaches

discussed in this paper in terms of accuracy and computation time.3 The reference price pref used to compute

the relative approximation error |pref − p| /pref is obtained from an extrapolation by the epsilon algorithm

(Wynn 1966) of the sequence of prices provided by Algorithm 3.

Table 5: American put evaluation using an adjusted Bermudan approach. Parameter values are K = 100 ,
r = 4% , σ = 20%, n = 200 for T = 1 and n = 300 for T = 5.

T = 1 year T = 5 years

M s = 90 s = 100 s = 110 s = 90 s = 100 s = 110

1 11.6570 6.3495 3.1775 13.3609 9.7986 7.2047
2 11.7789 6.3763 3.1860 14.6321 10.5809 7.6815
4 11.7946 6.3902 3.1956 15.0649 10.8534 7.8611
8 11.8019 6.3983 3.2017 15.1907 10.9403 7.9236
16 11.8048 6.4017 3.2044 15.2096 10.9549 7.9349
32 11.8059 6.4031 3.2056 15.2114 10.9570 7.9371
64 11.8064 6.4037 3.2062 15.2121 10.9579 7.9381
128 11.8066 6.4040 3.2064 15.2125 10.9583 7.9385
512 11.8068 6.4042 3.2066 15.2128 10.9587 7.9388
1024 11.8070 6.4044 3.2066 15.2130 10.9589 7.9390
1500 11.8072 6.4045 3.2067 15.2131 10.9591 7.9391

Table 6: American put evaluation using an adjusted Bermudian approach. Parameter values are K = 100 ,
r = 4% , σ = 40%, n = 300 for T = 1 and n = 500 for T = 5.

T = 1 year T = 5 years

M s = 90 s = 100 s = 110 s = 90 s = 100 s = 110

1 18.4542 13.9709 10.4888 27.1345 24.2476 21.7532
2 18.5266 14.0027 10.5055 28.5846 25.3840 22.6491
4 18.5653 14.0346 10.5306 29.0746 25.7889 22.9912
8 18.5788 14.0470 10.5412 29.2618 25.9549 23.1392
16 18.5848 14.0529 10.5467 29.3204 26.0081 23.1877
32 18.5873 14.0554 10.5491 29.3291 26.0168 23.1962
64 18.5882 14.0565 10.5501 29.3309 26.0188 23.1983
128 18.5886 14.0569 10.5505 29.3318 26.0198 23.1995
512 18.5889 14.0572 10.5508 29.3351 26.0227 23.2021
1024 18.5891 14.0573 10.5509 29.3370 26.0243 23.2035
1500 18.5892 14.0574 10.5509 29.3374 26.0245 23.2037

5 Conclusion

This paper proposes two new numerical approaches for the evaluation of American put options. These

approaches are particularly suited for the evaluation of long-maturity contracts where the number of exercise

possibilities is large, and where an accurate approximation by a Bermudian option would require a large

number of time steps. Our numerical experiments show that allowing for exercise between two time steps

greatly improves the convergence of the approximation to the value of the American option.

In both cases, the exercise strategy and the value of the contract are characterized by a dynamic program

assuming that the holder chooses an exercise barrier at each decision date, and exercises his option if the

price of the underlying asset reaches the barrier at any time between two decision dates. The first approach

assumes that the optimal exercise barrier depends on the level of the underlying asset, and the option value

is likened to that of a portfolio of barrier options. This method yields a very good approximation of the

American put, even for a small number of time steps. However, the computation of the exercise barrier at

each point of the asset price discretization grid is computationally expensive. The second approach assumes

3Computation time is given in CPU seconds, on a Pentium R© Dual-Core 2.8GHz computer.
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Figure 2: Convergence of the approximation error with the number of time steps, r = 4% and K = 100.
Plotted values are averages for s = 90, 100 and 110.
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Figure 3: Approximation error as a function of the computation time, r = 4%, K = 100. Plotted values are
averages for s = 90, 100 and 110.

that the optimal exercise barrier is independent of the level of the underlying asset price and corresponds

to the approximation of the American put exercise frontier by a piecewise constant function. This hybrid

approach is interpreted by assuming that the holder can choose whether or not to exercise at each decision

date, as in the case of a Bermudian approximation, but that he also chooses, at each decision date, a constant

barrier that will trigger exercise if the underlying asset price reaches it before the next decision date. This

second approach is very efficient, yielding an accurate approximation of long-maturity American puts in a

low computation time. Being solutions of dynamic programs, both methods provide in a single run the
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price of options with various maturities, asset levels and strike prices, along with sensitivities and hedging

parameters.

Our numerical experiments show that the use of a barrier between two discrete decision dates helps to

converge rapidly to the value of an American option, and that the choice of a piecewise constant frontier

independent of the underlying asset price level is the most efficient approach for long-maturity options.

Developments are presented in the context of a log-normal market model. In this case, closed-form expressions

are available for barrier options, and the interpolation of the value function by a cubic spline provides an

analytical expression for its expectation. Both numerical algorithms could easily be applied to other market

models; however, the numerical implementation could then require numerical integration for the computation

of expected values.

6 Appendix

6.1 Computation of function Ω

Define

Ω(s, i, d) ≡ exp (dδµ)E
[
exp

(
dσ
√
δε
)
Iε (ai, ai+1)

]
, ε ∼ N(0, 1).

We have

E
[
exp

(
dσ
√
δε
)
Iε (ai, ai+1)

]
=

1√
2π

∫ ai+1

ai

exp

(
−w2

2

)
exp

(
dσ
√
δw
)
dw

=
1√
2π

∫ ai+1

ai

exp

(
−w

2 − 2dσ
√
δw

2

)
dw

=
exp

(
d2σ2δ

2

)
√

2π

∫ ai+1

ai

exp

−
(
w − dσ

√
δ
)2

2

 dw

=
exp

(
d2σ2δ

2

)
√

2π

∫ ai+1−dσ
√
δ

ai−dσ
√
δ

exp

(
−w

2

2

)
dw

= exp

(
d2σ2δ

2

)(
Φ
(
ai+1 − dσ

√
δ
)
− Φ

(
ai − dσ

√
δ
))

where Φ is the standard normal cumulative distribution. We finally obtain

Ω(s, i, d) ≡ exp

(
1

2
dδ
(
2µ+ dσ2

))(
Φ
(
ai+1 − dσ

√
δ
)
− Φ

(
ai − dσ

√
δ
))

ai =
ln
(
si
s

)
− µδ

σ
√
δ

, i = 1, . . . , n.

6.2 Computation of function Ψ

Define

Ψ(s, i, d) = exp

(
−µ

2δ

2σ2

)
EQ̃s
[
exp

(
µ+ dσ2

σ
W̃δ

)
I
W̃δ

(ai, ai+1)Iτm (tm,∞)

]
ai =

1

σ
ln(

si
s

).
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We have

EQ̃s
[
exp

(
µ+ dσ2

σ
W̃δ

)
I
W̃δ

(ai, ai+1)Iτm (tm,∞)

]
= EQ̃s

[
exp

(
µ+ dσ2

σ
W̃δ

)
I
W̃δ

(ai, ai+1)

]
−EQ̃s

[
exp

(
µ+ dσ2

σ
W̃δ

)
I
W̃δ

(ai, ai+1)Iτm (tm, tm+1)

]
.

Now

EQ̃s
[
exp

(
µ+ dσ2

σ
W̃δ

)
I
W̃δ

(ai, ai+1)

]
=

1√
2π

∫ ai+1√
δ

ai√
δ

exp

(
µ+ dσ2

σ

√
δw

)
exp

(
−w2

2

)
dw

= exp

(
δ
(
µ+ dσ2

)2
2σ2

)
1√
2π

∫ ai+1√
δ

ai√
δ

exp

−
(
w −
√
δ µ+dσ

2

σ

)2
2

 dw

= exp

(
δ
(
µ+ dσ2

)2
2σ2

)(
Φ

(
ai+1√
δ
−
√
δ
µ+ dσ2

σ

)
− Φ

(
ai√
δ
−
√
δ
µ+ dσ2

σ

))
and

EQ̃s
[
exp

(
µ+ dσ2

σ
W̃δ

)
I
W̃δ

(ai, ai+1)Iτm (tm, tm+1)

]

=
1√
2π

∫ ai+1√
δ

ai√
δ

exp

(
w
√
δ
µ+ dσ2

σ

)
exp

−
(
w
√
δ − 2

σ ln
(
Bm
s

))2
2

 dw.

Using L ≡ 1
σ ln

(
Bm
s

)
,

1√
2π

∫ ai+1√
δ

ai√
δ

exp

(
w
√
δ
µ+ dσ2

σ

)
exp

−
(
w
√
δ − 2L

)2
2

 dw

=
1√
2π

∫ ai+1√
δ

ai√
δ

exp

w√δ µ+ dσ2

σ
−

(
w
√
δ − 2L

)2
2

 dw

= exp

((
dσ2 + µ

) (
dσ2 + 4Lσ + µ

)
2σ2

)
1√
2π

∫ ai+1√
δ

ai√
δ

exp−1

2

((
w
√
δ −

(
2L+ dσ +

1

σ
µ

))2
)
dw

= exp

((
dσ2 + µ

) (
dσ2 + 4Lσ + µ

)
2σ2

)(
Φ

(
ai+1 − 2L− dσ − 1

σ
µ

)
− Φ

(
ai − 2L− dσ − 1

σ
µ

))

Finally:

Ψ(s, i, d) = exp

(
−µ

2δ

2σ2

)(
exp

(
δ
(
µ+ dσ2

)2
2σ2

)(
Φ
(
a′i+1

)
− Φ (a′i)

)
− exp

((
dσ2 + µ

) (
dσ2 + 4Lσ + µ

)
2σ2

)(
Φ
(
a′′i+1

)
− Φ (a′′i )

))
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with

ai =
1

σ
ln(

si
s

)

a′i =
ai√
δ
−
√
δ
µ+ dσ2

σ

a′′i = ai − 2L− dσ − 1

σ
µ

L =
1

σ
ln

(
Bm
s

)
.
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