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Abstract

The BIRCH algorithm (Balanced Iterative Reducing and Clustering Hierarchies) handles massive
dataset by reading the data file only once, clustering the data as it is read, and retaining only a few
clustering features to summarize the data read so far. Using BIRCH allows to analyze datasets that are
too large to fit in the computer main memory. We propose estimates of Spearman’s ρ and Kendall’s τ
that are calculated from a BIRCH output and assess their performance through Monte Carlo studies.
The numerical results show that the BIRCH-based estimates can achieve the same efficiency as the usual
estimates of ρ and τ while using only a fraction of the memory otherwise required.

Key Words: Correlation; Rank statistics; Massive dataset; Kendall’s tau; Spearman’s rho; BIRCH.
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1 Introduction

The BIRCH algorithm (Balanced Iterative Reducing and Clustering Hierarchies) of Zhang [20] was developed

to handle massive datasets that are too large to be contained in the main memory (RAM). To minimize I/O

costs, every datum is read once and only once. Harrington and Salibián-Barrera [9] have implemented a

version of BIRCH that is described in detail therein. Their code is available in the “birch” R package [2] and

includes functions to compute approximate solutions to robust inference problems.

Spearman’s ρ and Kendall’s τ are coefficients of correlation that have desirable properties because they

are based on ranks. Embrechts et al. [3] argue that for the estimation of the dependence structure, such

multivariate rank statistics should be preferred to Pearson’s correlation.

Computing rank statistics on massive datasets can be challenging, especially if the dataset is too large to

fit in the main memory. The BIRCH algorithm builds clusters in the data using a limited amount a memory

and a linear I/O cost. We use the BIRCH algorithm to compute approximate rank statistics by assuming

equal ranks for the data within each of these clusters. The BIRCH output yields numerous ties, we therefore

consider estimates of Spearman’s ρ and Kendall’s τ that are designed to handle ties.

The asymptotic properties of the BIRCH algorithm are not well known. The behavior of the BIRCH-

based estimates is thus assessed through an extensive Monte Carlo study. As long as the tuning parameter

of BIRCH (called the radius) is set to a reasonable value, we observe that the performance of BIRCH-based

estimates is superior to the traditional estimates of ρ or τ calculated on a subsample that uses a larger

amount of memory as BIRCH.

Section 2 gives an overview of how BIRCH handles massive datasets by creating compact clusters and

how we use its output to compute approximate ranks. We also introduce five estimates of Spearman’s ρ and

Kendall’s τ . Section 3 shows the results of Monte Carlo studies that evaluate the properties and performances

of the estimates. We look at the general behavior of the estimates using three widely used families of copula,

examine the effect of different margins on the performances of the BIRCH-based estimates, and examine the

behavior of the estimates on multivariate datasets and massive datasets. Recommendations on the choice

of radius for the BIRCH clustering step are formulated in Section 4. Simulations are used to support these

recommendations.

2 Details of the algorithm

As the RAM of a computer is the only storage directly accessible to the CPU (processor), working with a

dataset too big to fit here in increases the I/O costs of every calculation on this. To minimize I/O costs, the

BIRCH algorithm reads the data file only once, one datum at a time, and allocates each datum to a cluster

before reading the next one. The first datum is a cluster by itself, then subsequent steps determine the

closest existing cluster based on the Euclidean distance. To decide whether the datum should be allocated

to that cluster or become the first member of a new cluster, criteria of closeness and compactness are used.

To optimize further memory usage, the clusters are contained in a tree structure. Detailed definitions of the

criteria and structures are described by Harrington and Salibián-Barrera [9].

In the general BIRCH setting, the main memory of the computer is deemed insufficient to hold the whole

dataset. The dataset can be stored in any other secondary storage such as hard disk drives or external

databases. Let Xi = (Xi1, . . . , Xip) be the ith datum from the dataset of size n and Lj the set of indices of

the data in the jth cluster created by BIRCH. To limit memory requirements, only a vector of three elements,

the clusering features, is retained for each cluster,

CFj =

∑
i∈Lj

1,
∑
i∈Lj

Xi,
∑
i∈Lj

XiX
>
i

 .

The output of the BIRCH algorithm consists therefore in a list of m clusters with their CFj . For models

such as linear regression, the CFj provide complete information for the fit. For calculating ranks, however,

the loss of individual information means that data within each cluster will have to be treated as ties.



2 G–2012–76 Les Cahiers du GERAD

The most widely used approach for treating ties is the attribution of mid-ranks to all tied data, see e.g. [1].

To be more specific, the Nj =
∑

i∈Lj
1 points in cluster Lj will be associated with a vector of ranks whose

kth component is equal to (Nj + 1)/2 +
∑m

i=1Ni1(X̄ik < X̄jk) where X̄jk is the kth element of the vector

of means X̄j =
∑

i∈Lj
Xi/Nj and 1(·) is the indicator function. The distribution of the data is assumed

continuous, hence the probability of ties between clusters is null.

Let us consider a bivariate dataset. The vector of ranks allocated to the Ni data points in cluster i will

be noted (Ri, Si). If each cluster were a singleton and there were no ties, Ri would correspond to the rank

of Xi1 in an ordered list of X•1 and similarly for Si and Xi2. This is equivalent to the classic problem where

the usual estimate of Spearman [16] can be written as

ρ =

∑n
i=1

(
Ri − R̄

) (
Si − S̄

)√∑n
i=1

(
Ri − R̄

)2√∑n
i=1

(
Si − S̄

)2
with R̄ = S̄ = n(n+ 1)/2 since there are no ties.

Under this classic paradigm, the τ of Kendall [11] can also be expressed as a function of the ranks, but is

more often written as

τ =
C −D(

n
2

)
where

C =
∑

1≤i<j≤n 1{
(
X̄i1 − X̄j1

) (
X̄i2 − X̄j2

)
> 0}

D =
∑

1≤i<j≤n 1{
(
X̄i1 − X̄j1

) (
X̄i2 − X̄j2

)
< 0}

are the number of concordant and discordant pairs respectively.

Kendall [10] surveys strategies that lead to different estimates of ρ and τ in the presence of ties. Attributed

to Woodbury [19], the estimates ρW and τW , are derived by averaging over all possible permutations of the

ties. The estimates ρS and τS use the mid-rank method without further adjustments and are attributed to

Student [18]. In addition,we also consider τC , an estimate proposed by Stuart [17] that is akin to τS except

that an approximation is used for its denominator.

The fact that the output of BIRCH yields the same number of ties on both axes, simplifies some formulas.

In this context, other estimates such as τa and τb (see e.g. [8]) are equivalent to τS .

With our notation the estimates considered are thus:

ρW = 1−
∑m

i=1Ni

(
N2

i − 1
)
− 6

∑m
i=1Ni(Ri − Si)

2

n (n2 − 1)

ρS = 1−
6
∑m

i=1Ni(Ri − Si)
2

n (n2 − 1)−
∑m

i=1Ni (N2
i − 1)

τW =
2C −

{(
n
2

)
−
∑m

i=1

(
Ni

2

)}(
n
2

)
τS =

2C −
{(

n
2

)
−
∑m

i=1

(
Ni

2

)}{(
n
2

)
−
∑m

i=1

(
Ni

2

)}
τC =

2m
[
2C −

{(
n
2

)
−
∑m

i=1

(
Ni

2

)}]
n2 (m− 1)

where

C =
∑

1≤i<j≤mNiNj1{
(
X̄i1 − X̄j1

) (
X̄i2 − X̄j2

)
> 0}

to take the ties into consideration.
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The next section of this article propose a numerical study of the properties of these estimates when

calculated from a BIRCH output on a large dataset. We limit the scope of our numerical endeavor to the

estimation of ρ and τ , but further work could also look at the behavior of the ranks in other estimation

problems. For instance, one could use mid-ranks in the pseudo-likelihood of Genest et al. [6] to fit a family

of copulas to a massive dataset.

As pointed out by Harrington and Salibián-Barrera [9], clusters from a BIRCH output can overlap. As a

consequence, a list of the data sorted according to the individual values of X may not result in an increasing

sequence of ranks because of some inversions. The results of the next sections show that this behavior does

not hinder the performance of the estimates.

3 Numerical results

We perform an extensive Monte Carlo experiment to assess the properties of the BIRCH-based estimates of

ρ and τ .

The population values of ρ and τ are typically expressed as a function of the copula underlying the data. A

copula is a cumulative distribution function whose margins are uniform on [0, 1]. All continuous distributions

have a unique underlying copula that contains all information about their dependence structure. It is thus

not surprising that copulas arise naturally in the population values of ρ and τ . For an introduction to copulas,

see e.g. [15] or [7].

Because of their central role in dependence modeling, we use families of copulas in many of the simulations.

Specifically, we use the Normal, Clayton and Gumbel-Hougaard copulas. Technical details about these

families are described by Nelsen [13]. For numerical operations, including the generation of pseudo-random

observations, we use the “copula” R package [12].

The three families of copulas considered have one parameter in bijective relation with Spearman’s corre-

lation and admit the whole positive range of correlations. To make simulations comparable, the parameter

of the copula is set to the value that yields a specific theoretical value of Spearman’s ρ. Therefore, the

parameters are always expressed in terms of ρ. The values are obtained using the calibration function avail-

able in the “copula” R package. The function returns a moment estimate of the parameter using numerical

approximation techniques when there are no closed-form expressions for Kendall’s τ or Spearman’s ρ.

The creation of new clusters in BIRCH is controlled by tuning parameters. We use the same approach as

Harrington and Salibián-Barrera [9] for the closeness and compactness criteria of the BIRCH algorithm. A

single tuning parameter, the radius, is used to trigger the creation of a new cluster in the algorithm. In our

context, this parameter can be thought of as a bandwidth: smaller values of the radius yield a larger number

of clusters in the output, hence a better resolution. More details on the choice of the radius and its impact

on the results are given in the next section.

When facing a massive dataset too large to be held in the memory, the typical solution consists in drawing

a simple random sample from the dataset hence discarding a (possibly large) part of the data. BIRCH allows

to use information from all the data points in the analysis. Although allocating the same ranks to the data

within each cluster of BIRCH is expected to cause some bias, the fact that more data contribute to this

approximation is likely to reduce the variance. As a consequence, mean squared error (MSE) will be the

preferred measure of performance since it takes into consideration both bias and variance.

3.1 Global assessment

We first consider scenarios with different correlations and different radii to describe the general behavior of

the BIRCH-based estimates of ρ and τ .

Datasets of size 10000 are generated, a small size in the context of BIRCH which is nonetheless sufficient

to study the properties of the BIRCH-based estimates. Choosing a larger number would multiply the running
time of the simulations without providing a sizable advantage.
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Data are simulated from three families of copulas, the Normal, Clayton and Gumbel-Hougaard families,

and their parameter was set to yield a Speaman’s correlation of 0, 0.3, 0.6 and 0.9.

The number of clusters that BIRCH yields depends on its tuning parameter, the radius. The “birch” R

package [2] uses the squared radius as an argument. We thus consider eight different values for the squared

radius ranging from 10−5 to 0.1 and report the average number of clusters produced by BIRCH for each

simulated scenario.

Each choice of radius, copula and correlation forms a scenario. Each scenario is simulated 1000 times.

The five estimates of ρ and τ defined in the previous section are calculated, as well as the usual estimates of

ρ and τ on the whole sample.

Table 1 displays the results of the simulation for the Normal copula. The column m̄ shows the average

number of clusters produced by BIRCH for each scenario. The usual estimates of ρ and τ are asymptotically

unbiased and we verified numerically that their MSE is due almost exclusively to the variance of the estimate,

even for sample sizes as small as 100 data points.

The values in Table 1 are relative values of the MSE corresponding to 100 times the MSE of the usual

estimate of ρ (or τ) on the whole sample divided by the MSE of the proposed estimate evaluated on the

BIRCH output. We will refer to these numbers as relative efficiencies (RE).

Table 2 and 3 display the same results as Table 1 for the Clayton and Gumbel-Hougaard copulas respec-

tively. Note that the case ρ = 0 corresponds to the independent copula which belongs to the three families

considered. We arbitrarily chose to include these results in Table 1 only.

Table 1: MSE of the different estimates expressed in terms of the relative efficiency (RE) of the BIRCH-based
estimates compared to the usual estimates on the whole sample. Samples of size 10000 are simulated from a Normal
copula under different scenarios. Each figure corresponds to an average over 1000 repetitions.

Radius2 m̄ ρW ρS τW τS τC
0.00001 8910 100.0 100.0 100.0 100.0 100.0
0.0001 4490 100.0 100.0 100.0 100.0 100.0
0.0005 1420 100.0 100.0 99.9 99.8 99.8
0.001 812 98.9 98.9 99.3 99.0 99.1

ρ = 0 0.005 147 85.0 85.0 81.1 79.8 80.0
0.01 66 47.7 47.6 42.4 41.1 41.1
0.05 15 1.9 1.9 1.7 1.4 1.4
0.1 8 0.4 0.4 0.4 0.3 0.3

0.00001 8820 100.0 100.0 100.0 100.0 100.0
0.0001 4350 100.0 100.0 99.9 99.8 99.8
0.0005 1410 99.3 99.3 99.1 98.3 98.6
0.001 764 97.2 97.2 96.3 94.1 94.8

ρ = 0.3 0.005 137 57.0 56.9 49.1 37.6 39.3
0.01 67 20.4 20.3 16.7 11.6 12.1
0.05 16 0.7 0.7 0.7 0.4 0.4
0.1 9 0.2 0.2 0.2 0.1 0.1

0.00001 8520 100.0 100.0 100.0 100.0 100.0
0.0001 3970 99.9 99.9 99.8 99.4 99.6
0.0005 1310 98.4 98.4 96.1 91.5 93.8
0.001 726 93.7 93.7 86.9 74.5 80.1

ρ = 0.6 0.005 130 31.9 31.5 18.6 10.0 12.0
0.01 67 10.6 10.3 6.2 3.1 3.7
0.05 17 0.6 0.5 0.5 0.2 0.2
0.1 9 .02 0.2 0.2 0.1 0.1

0.00001 7490 100.0 100.0 100.0 99.7 99.9
0.0001 2820 99.8 99.8 97.8 91.0 95.5
0.0005 886 89.2 88.8 74.0 39.1 56.9
0.001 461 66.0 64.9 45.8 15.7 27.2

ρ = 0.9 0.005 94 9.6 8.6 7.2 1.4 2.5
0.01 55 3.8 3.1 3.4 0.6 1.0
0.05 15 0.6 0.3 0.8 0.1 0.1
0.1 8 0.3 0.1 0.4 0.02 0.04
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Table 2: MSE of the different estimates expressed in terms of the relative efficiency (RE) of the BIRCH-based
estimates compared to the usual estimates on the whole sample. Samples of size 10000 are simulated from a Clayton
copula under different scenarios. Each figure corresponds to an average over 1000 repetitions.

Radius2 m̄ ρW ρS τW τS τC
0.00001 8770 100.0 100.0 100.0 100.0 100.0
0.0001 4320 100.0 100.0 99.9 99.8 99.9
0.0005 1400 100.0 100.0 98.9 98.1 98.5
0.001 787 99.4 99.4 96.5 94.4 95.2

ρ = 0.3 0.005 139 73.0 72.8 57.1 44.7 47.0
0.01 67 31.5 31.3 23.1 16.0 16.8
0.05 16 1.4 1.4 1.3 0.8 0.8
0.1 9 0.3 0.3 0.3 0.2 0.2

0.00001 8370 100.0 100.0 100.0 100.0 100.0
0.0001 3860 99.8 99.8 99.7 99.3 99.6
0.0005 1280 98.7 98.6 98.0 93.7 96.4
0.001 721 95.5 95.4 93.7 82.6 89.0

ρ = 0.6 0.005 131 55.5 54.6 46.2 21.5 28.4
0.01 67 23.3 22.5 18.2 7.3 9.6
0.05 17 1.4 1.3 1.3 0.5 0.6
0.1 10 0.4 0.3 0.4 0.1 0.2

0.00001 7150 100.0 100.0 100.0 99.7 99.9
0.0001 2650 99.6 99.6 98.9 91.9 97.3
0.0005 844 92.8 92.3 87.8 45.8 72.3
0.001 498 78.7 77.3 67.4 21.5 44.5

ρ = 0.9 0.005 93 15.3 13.2 12.8 1.9 4.2
0.01 54 5.6 4.4 5.3 0.7 1.6
0.05 16 0.7 0.4 1.1 0.1 0.2
0.1 9 0.6 0.2 1.4 0.04 0.1

Table 3: MSE of the different estimates expressed in terms of the relative efficiency (RE) of the BIRCH-based
estimates compared to the usual estimates on the whole sample. Samples of size 10000 are simulated from a Gumbel-
Hougaard copula under different scenarios. Each figure corresponds to an average over 1000 repetitions.

Radius2 m̄ ρW ρS τW τS τC
0.00001 8800 100.0 100.0 100.0 100.0 100.0
0.0001 4380 100.0 100.0 99.9 99.7 99.8
0.0005 1400 101.0 101.0 98.8 97.9 98.3
0.001 790 102.0 102.0 96.2 93.9 94.7

ρ = 0.3 0.005 139 79.0 78.9 53.0 41.2 43.2
0.01 67 32.1 31.9 21.8 14.9 15.6
0.05 16 1.2 1.1 1.0 0.6 0.7
0.1 9 0.3 0.2 0.3 0.2 0.2

0.00001 8420 100.0 100.0 100.0 99.9 100.0
0.0001 3940 99.5 99.5 99.6 99.1 99.4
0.0005 1300 97.0 96.9 96.9 92.4 95.0
0.001 752 91.7 91.6 89.9 78.1 84.4

ρ = 0.6 0.005 133 38.8 38.2 29.5 14.7 18.6
0.01 68 14.7 14.3 11.0 4.8 6.0
0.05 17 0.9 0.8 0.8 0.3 0.4
0.1 10 0.3 0.2 0.3 0.1 0.1

0.00001 7310 100.0 100.0 100.0 99.8 100.0
0.0001 2770 99.0 99.0 98.4 92.2 96.8
0.0005 905 87.8 87.4 78.2 42.4 63.6
0.001 530 69.2 68.1 54.4 18.6 35.3

ρ = 0.9 0.005 104 12.3 10.9 9.2 1.7 3.5
0.01 59 5.0 4.1 4.5 0.7 1.4
0.05 18 0.8 0.4 1.1 0.1 0.2
0.1 10 0.5 0.2 1.0 0.04 0.1

It appears that the strength in the structure of the data has an effect on the performance of the estimates.

Whether we compare similar radii or similar numbers of clusters, the performance of the estimates degrades

as the theoretical correlation increases. For the three families of copulas, the best performances are achieved

under independence.
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The relative efficiency of each estimate stays very high even for small number of clusters. The relative

efficiency of the estimates of Spearman’s ρ remains above 50%e even when the average number of clusters

(m̄) reaches values as small as about 1.5% of the total number of observations. For the estimates of Kendall’s

τ , the relative efficiency degrades faster but with as few as 500 clusters, a relative efficiency above 50% is

observed in almost all scenarios for at least one estimate.

Relative efficiency is often interpreted as the ratio of sample sizes that are required to achieve comparable

performances with the two estimates. Comparing the same estimate on samples of size 5000 and 10000 should

thus yield about 50%. We numerically verified this interpretation for Spearman’s ρ and Kendall’s τ under

the different simulated scenarios and obtained values ranging from 40% to 55%.

Based on this interpretation, the simulations show that with a number of clusters as little as 1.5% of the

sample size (5% for Kendall’s τ), the BIRCH-based estimates can achieve performances at least as good as

an estimate based on 50% of the dataset. In terms of memory usage optimization, this is a huge gain as

the memory may not even be able to accommodate 50% of the dataset, but be large enough to retain the

clustering features of the BIRCH clusters.

Looking at Spearman’s ρ estimates, we see that ρW achieves slightly better performances than ρS , and

does so systematically. Therefore, ρW seems to be a better choice. For Kendall’s τ , the estimate τW presents

the best performance overall while τC performs better than τS for high correlations.

For the Clayton copula, we observe the same patterns, except that the estimates seem to achieve a better

performance in terms of their MSE.

The performance for the Gumbel-Hougaard copula seems to be slightly lower than for the Clayton, but

it appears to be better than for the Normal copula.

As mentioned in the previous section, it is expected that tied ranks in each cluster will introduce some

bias. Table 4 displays the bias of the considered estimates when the data follow a Normal copula. The bias

figures are multiplied by 1000 for improved readability. Again, the column m̄ shows the average number of

clusters produced by BIRCH for each scenario. Table 5 and Table 6 display the same results for the Clayton

and Gumbel-Hougaard copulas respectively.

It appears that the strength of the correlation affects the performance of the estimates. However, no clear

pattern between the theoretical value of ρ and the bias of the estimates arises and different behaviors are

observed for different radii.

The first section of Table 4 displays results obtained under the independence copula. The bias of each
estimator in this context remains small, even with very few clusters. For instance, choosing a radius of 0.1

yields an average of 8 clusters to summarize the 10000 data points. Nonetheless, the bias is about 0.004 and

0.002 respectively for the estimates of Spearman’s ρ and Kendall’s τ .

The bias of all estimates of Kendall’s τ is always positive, meaning that correlation is overestimated in all

the simulated scenarios. For Spearman’s ρ, exceptions arise for smaller correlations under the Clayton and

Gumbel-Hougaard copulas.

Overall ρW achieves a smaller bias than ρS , but for small correlations or small radii, their performances

often tie. The advantage of ρW over ρS shows more for a large correlation and a small number of clusters.

For Kendall’s estimates, τW systematically features the lowest bias and τS the highest bias, except under

independence where the three estimates perform equally well.

In summary, with an appropriate choice of radius, BIRCH-based estimates feature performances compa-

rable to using the whole sample, while using only a fraction of the memory that would otherwise be required.

In many cases, the performance does not degrade significantly until the number of clusters falls below 10%

of the original sample size.

When comparing the different estimates, ρW and τW are the clear winners as they uniformly outperform

the other contenders in terms of MSE and bias. As a consequence, further simulations will only report results

for these two estimates.
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Table 4: Bias (×1000) of the different estimates. Samples of size 10000 are simulated from a Normal copula under
different scenarios. Each figure corresponds to an average over 1000 repetitions.

Radius2 m̄ ρW ρS τW τS τC
0.00001 8910 0.19 0.19 0.13 0.13 0.13
0.0001 4490 0.19 0.19 0.13 0.13 0.13
0.0005 1420 0.19 0.19 0.12 0.13 0.12
0.001 812 0.21 0.21 0.15 0.15 0.15

ρ = 0 0.005 147 0.28 0.28 0.11 0.11 0.11
0.01 66 1.3 1.3 0.9 0.91 0.91
0.05 15 3.5 3.5 2.5 2.7 2.7
0.1 8 4 4 1.8 2 2

0.00001 8820 0.19 0.19 0.15 0.16 0.16
0.0001 4350 0.24 0.24 0.19 0.24 0.22
0.0005 1410 0.86 0.86 0.46 0.65 0.59
0.001 764 1.1 1.1 0.88 1.2 1.1

ρ = 0.3 0.005 137 6.7 6.7 5.3 7.1 6.8
0.01 67 15 15 11 15 14
0.05 16 87 89 61 81 79
0.1 9 180 190 120 170 160

0.00001 8520 0.098 0.098 0.13 0.15 0.14
0.0001 3970 0.19 0.19 0.24 0.37 0.3
0.0005 1310 0.77 0.77 0.92 1.5 1.2
0.001 726 1.6 1.6 1.9 2.9 2.5

ρ = 0.6 0.005 130 8.9 9 9.9 15 13
0.01 67 18 18 18 28 25
0.05 17 80 85 69 110 100
0.1 9 140 160 110 190 170

0.00001 7490 0.0013 0.0014 0.087 0.15 0.11
0.0001 2820 0.11 0.11 0.39 0.84 0.58
0.0005 886 0.72 0.73 1.6 3.4 2.4
0.001 461 1.5 1.5 2.9 6.4 4.5

ρ = 0.9 0.005 94 6.1 6.5 8.8 23 17
0.01 55 9.9 11 12 37 26
0.05 15 25 36 22 100 73
0.1 8 37 66 28 180 140

3.2 Effect of different margins

Important properties of rank statistics arise from their invariance to monotone transformations of the marginal

distributions. The BIRCH algorithm, however, does not share this invariance as a change in the margins

will affect the clustering of the data. To evaluate the effect of such transformations, we simulate data with

a Normal copula and different marginal distributions.

It is known that changes of scales have an effect on the output of BIRCH. Harrington and Salibián-

Barrera [9] suggest to use a first pass of the BIRCH algorithm to determine the standard deviation of each

variable. For subsequent passes, data can be normalized appropriately. This strategy is reflected in our

choice of distributions since we only consider scenarios where marginal distributions are on similar scales.

The data of the simulations in Section 3.1 are generated from copulas, meaning that their marginal

distributions are uniform on [0, 1]. We generate data from a multivariate Normal distribution, i.e. with the

same dependence structure as the Normal copula of Section 3.1, but with Normal marginals. Ideally, the

effect of this change should be mild.

To test the limitations of BIRCH, we also simulate pseudo-observations with Cauchy margins. The

Cauchy distribution generates a large number of extreme values. As a consequence, BIRCH will generate

many singleton clusters along the axes to capture these extreme values, leaving fewer clusters to represent

the core of the data. In such a challenging setting, one should expect a loss of performance, but we want to

see if the method holds reasonably well.

To measure the performance of the estimates, MSE and bias are evaluated in the same terms as in

Section 3.1. Even if the same nominal values were used for the squared radius, comparisons for the different
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Table 5: Bias (×1000) of the different estimates. Samples of size 10000 are simulated from a Clayton copula under
different scenarios. Each figure corresponds to an average over 1000 repetitions.

Radius2 m̄ ρW ρS τW τS τC
0.00001 8770 -0.51 -0.51 0.12 0.12 0.12
0.0001 4320 -0.46 -0.46 0.18 0.23 0.2
0.0005 1400 -0.11 -0.11 0.5 0.71 0.63
0.001 787 0.37 0.37 0.93 1.3 1.2

ρ = 0.3 0.005 139 4.6 4.7 4.7 6.5 6.2
0.01 67 11 11 9.3 13 12
0.05 16 58 60 39 58 56
0.1 9 140 140 88 130 130

0.00001 8370 0.4 0.4 0.1 0.12 0.11
0.0001 3860 0.47 0.47 0.22 0.38 0.29
0.0005 1280 0.89 0.89 0.7 1.4 1
0.001 721 1.4 1.5 1.3 2.5 1.8

ρ = 0.6 0.005 131 5.8 5.9 5.1 10 8.4
0.01 67 11 11 8.9 19 16
0.05 17 47 52 34 74 63
0.1 10 95 110 64 140 120

0.00001 7150 0.056 0.056 0.038 0.13 0.068
0.0001 2650 0.21 0.22 0.31 0.92 0.51
0.0005 844 0.71 0.73 1.2 3.5 2
0.001 498 1.3 1.4 2.1 6.2 3.6

ρ = 0.9 0.005 93 5.6 6.2 6.9 23 15
0.01 54 9.6 11 10 38 25
0.05 16 28 41 21 110 72
0.1 9 30 61 8.2 160 100

Table 6: Bias (×1000) of the different estimates. Samples of size 10000 are simulated from a Gumbel-Hougaard
copula under different scenarios. Each figure corresponds to an average over 1000 repetitions.

Radius2 m̄ ρW ρS τW τS τC
0.00001 8800 -2 -2 0.2 0.21 0.21
0.0001 4380 -1.9 -1.9 0.25 0.3 0.28
0.0005 1400 -1.6 -1.6 0.58 0.78 0.71
0.001 790 -1.1 -1.1 1 1.4 1.3

ρ = 0.3 0.005 139 3.9 4 5.2 7 6.7
0.01 67 11 11 10 14 13
0.05 16 71 73 50 69 67
0.1 9 160 170 100 150 140

0.00001 8420 1 1 0.15 0.17 0.16
0.0001 3940 1.1 1.1 0.27 0.42 0.34
0.0005 1300 1.6 1.6 0.89 1.5 1.2
0.001 752 2.3 2.3 1.7 2.8 2.2

ρ = 0.6 0.005 133 8.5 8.6 7.8 13 11
0.01 68 16 16 14 24 21
0.05 17 70 75 55 95 84
0.1 10 130 140 88 160 150

0.00001 7310 0.2 0.2 0.023 0.097 0.05
0.0001 2770 0.32 0.32 0.32 0.85 0.51
0.0005 905 0.92 0.94 1.5 3.6 2.3
0.001 530 1.6 1.7 2.7 6.5 4.1

ρ = 0.9 0.005 104 6.3 6.8 8.7 24 16
0.01 59 10 11 12 37 25
0.05 18 26 36 22 100 67
0.1 10 30 56 13 150 97

marginal distributions would not be straightforward because the choice of margins has an effect on the number

of clusters. A fair comparison should look at the performance of the estimates when they use a similar amount

of memory, i.e. produce the same number of clusters.

An approximate conversion factor can also be found by expressing the radius as a multiple of a measure

of dispersion such as the inter-quartile range (IQR). With the three marginals considered, a radius for
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copula RCopula, a radius for Normal margins RNormal and a radius for Cauchy margins RCauchy would be

approximately equivalent if they respect the equation

R =
RCopula

1/2
=
RNormal

1.34898
=
RCauchy

2
. (1)

Table 7 presents the MSE and bias of ρW and τW for different correlations and different radii when

the data are generated from a multivariate Normal distribution. Table 8 presents the same results for a

distribution that has a Normal copula and Cauchy margins.

For multivariate Normal data, the average number of clusters produced by the BIRCH algorithm seems

more affected for large correlations. The performance of the estimates is similar, but possibly slightly inferior,

to that observed when the data come from a Normal copula (with uniform marginal distributions). The

methods keep performing well for fairly large radii that lead to a small number of clusters. The performance

in terms of bias is also comparable to that for the Normal copula.

The fact that the Cauchy distribution causes numerous extreme values close to the axes means that BIRCH

has a harder time capturing the structure of the data. Despite these difficulties, Table 8 shows reasonable

results for a large range of radii. While for other marginal distributions, excellent results are achieved with as

few as 100 clusters, a breakdown seems to occur shortly after m̄ falls below 1500 or so with Cauchy margins.

Before that point, however, the performances are excellent. The BIRCH-based estimate therefore manages

Table 7: MSE and bias of ρW and τW . The MSE is expressed in terms of the relative efficiency (RE) of the BIRCH-
based estimates compared to the usual estimates on the whole sample. The bias is multiplied by 1000 for improved
readability. Samples of size 10000 are simulated from a Normal distribution under different scenarios. Each figure
corresponds to an average over 1000 repetitions.

RE 1000×Bias
Radius2 m̄ ρW τW ρW τW
0.00001 9900 100.0 100.0 -0.55 -0.36
0.0001 9120 100.0 100.0 -0.46 -0.3
0.0005 6870 100.0 100.0 -0.51 -0.35
0.001 5420 99.9 100.0 0.53 0.4
0.005 2350 99.9 99.8 -0.077 -0.027

ρ = 0.3 0.01 1500 99.2 98.8 0.56 0.42
0.05 428 88.2 83.0 2.5 1.7
0.1 232 61.2 50.9 4.6 3.4
0.5 61 7.5 5.0 14 7.6

1 39 2.7 1.9 15 6.8
5 12 0.4 0.4 62 34

0.00001 9880 100.0 100.0 0.094 0.12
0.0001 8950 100.0 100.0 0.1 0.1
0.0005 6480 100.0 100.0 -0.58 -0.4
0.001 5010 100.0 99.9 -0.14 -0.052
0.005 2080 99.7 99.4 0.31 0.29

ρ = 0.6 0.01 13.0 98.1 97.20 0.85 0.7
0.05 362 65.8 58.1 4 3.4
0.1 186 30.6 24.7 8.5 7
0.5 55 3.6 3.0 22 13

1 35 1.5 1.4 33 19
5 8 0.1 0.1 180 150

0.00001 9780 100.0 100.0 0.14 0.26
0.0001 8220 100.0 100.0 0.0095 0.089
0.0005 5130 100.0 99.8 -0.0011 0.088
0.001 3680 100.0 100.0 -0.03 0.036
0.005 1310 88.9 85.2 0.78 1.2

ρ = 0.9 0.01 789 73.3 66.2 1.2 1.9
0.05 204 12.1 10.4 5.7 7.6
0.1 119 4.1 4.0 9.4 11
0.5 36 0.5 0.5 28 33

1 18 0.1 0.1 58 86
5 6 4.2 5.0 7.9 -7.3
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Table 8: MSE and bias of ρW and τW . The MSE is expressed in terms of the relative efficiency (RE) of the BIRCH-
based estimates compared to the usual estimates on the whole sample. The bias is multiplied by 1000 for improved
readability. Samples of size 10000 are simulated from a distribution with a Normal copula and Cauchy margins under
different scenarios. Each figure corresponds to an average over 1000 repetitions.

RE 1000×Bias
Radius2 m̄ ρW τW ρW τW
0.00001 9970 100.0 100.0 0.058 0.057
0.0001 9720 100.0 100.0 -0.033 0.0051
0.0005 8840 100.0 100.0 -0.15 -0.075
0.001 8090 100.0 100.0 0.43 0.34
0.005 5710 99.9 99.9 0.24 0.19

ρ = 0.3 0.01 4700 99.9 99.9 0.17 0.16
0.05 2800 97.4 96.6 1.1 0.81
0.1 2190 95.5 91.0 1.4 1
0.5 1200 42.7 28.6 6.3 3.9

1 912 17.6 10.8 11 6.9
5 478 0.9 0.8 74 48

0.00001 9960 100.0 100.0 -0.39 -0.27
0.0001 9650 100.0 100.0 0.18 0.19
0.0005 8610 100.0 100.0 0.11 0.14
0.001 7770 100.0 100.0 -0.046 -0.011
0.005 5340 100.0 99.8 -0.42 -0.28

ρ = 0.6 0.01 4360 99.8 99.8 0.18 0.17
0.05 2580 95.9 93.9 1.3 1.1
0.1 2030 82.0 78.1 2.8 2.1
0.5 1140 17.6 13.7 12 8.5

1 884 5.7 4.8 22 15
5 486 0.4 0.4 94 72

0.00001 9930 100.0 100.0 -0.15 -0.13
0.0001 9340 100.0 100.0 -0.16 -0.15
0.0005 7720 100.0 100.0 -0.029 0.037
0.001 6680 100.0 100.0 -0.061 0.0014
0.005 4300 99.3 98.4 0.2 0.36

ρ = 0.9 0.01 3460 97.0 95.6 0.43 0.65
0.05 2060 42.3 36.7 2.4 3.3
0.1 1640 16.4 15.2 4.5 5.6
0.5 973 1.9 2.0 14 15

1 770 0.6 0.8 25 28
5 439 0.2 0.2 47 63

to yield acceptable results even in a situation where BIRCH is seriously challenged. The performance of the

method degrades faster with a high correlation, but even then, performances are acceptable for a squared

radius as big as 0.01 which corresponds to 5% of the IQR of the marginal.

We do not report squared radii beyond 5 in Table 8 because the radius is then large enough to cover a

large part of the distribution (the IQR of the margins equals 2). Simulations that were run show that for

exaggeratedly large radii, the RE tends to 0. This is already observed in Table 8 for a radius of 1 or 5.

With very large radii, the core of the data is likely to be in a single cluster with individual clusters capturing

extreme values along the axes. Essentially, information about the dependence structure of the data is then

lost.

Spearman’s ρ and Kendall’s τ draw properties from their invariance to marginal transformations. The

BIRCH-based estimates do not retain these theoretical properties, but the bias shown in Table 7 and 8 is

small for all reasonable values of the radius. Even though the estimates are not theoretically invariant to

monotone transformations of the data, they feature some robustness to such changes, meaning that they

remain good choices for inference from a massive dataset.

3.3 One BIRCH for many correlations

The simulations performed so far focused on a single correlation and the BIRCH algorithm was performed

on the two variables of interest. In practice, a single pass of BIRCH may be used on more dimensions. The
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resulting clustering can be used to estimate the correlation between two of the variables, or the complete

correlation matrix.

To link our next simulation to a real-life context, we use the famous Iris dataset from Fisher [4] which

was downloaded from the UCI Machine Learning Repository [5]. The variables sepal length, sepal width,

petal length and petal width are measured in centimeters for 50 Iris Setosa, 50 Iris Versicolour and 50 Iris

Virginica. We arbitrarily chose to focus on the Iris Setosa and used estimates of its mean and covariance as

the parameters for our simulation. Note that the marginal distributions of the four characteristics of the Iris

Setosa have standard deviations that range from 0.107 to 0.381. Because these values are of relatively similar

magnitude, we decided to proceed directly with BIRCH rather than considering a two-stage approach where

the data are first normalized.

In this simulation, the BIRCH algorithm is applied to the four dimensions of the data at once. The clusters

will have to represent the behavior of the data on all four dimensions. For an equal number of clusters, it

would not be surprising to observe reduced performances when comparing to results where BIRCH is applied

to the two variables of interest only.

Samples of 10000 four-variate Normal distributions are generated and the BIRCH algorithm is performed

for different values of the squared radius that range from 0.001 to 0.1.

Table 9 displays the MSE (expressed as an RE) and average bias of ρW and τW for estimating the corre-

lation matrix of the data. For all scenarios and both estimates, the RE is quite good with a reasonable choice

of radius, which we will discuss later. However, performances are not as good as the previous simulations

where the clusters produced by BIRCH summarized the information about the two variables of interest only.

With more dimensions, the clusters have to summarize more information and cannot achieve the same level

of performance for all pairs of two variables with the same number of clusters.

A specific correlation may be of interest even if BIRCH is applied to a multivariate dataset. Equations 2

and 3 show the MSE and bias of ρW and τW for estimating each correlation individually using a squared

radius of 0.01. Since the correlation matrix is symmetric, the upper triangular half displays the performance

of ρW and the lower triangular half that of τW .

[
RE(ρW )

RE(τW )

]
=


59.1 81.4 42.6

55.4 89.6 44.1
80.5 88.9 28.8
41.0 42.4 27.2

 (2)

1000

[
Bias(ρW )

Bias(τW )

]
=


4.2 4.2 10

4.0 2.8 10
2.9 1.9 14
7.3 7.2 10

 (3)

We note that the performances of ρW and τW are quite similar, especially for the RE. Depending on

which correlation is of interest, the performance may be excellent or mild, both in terms of MSE and bias.

Table 9: MSE and average bias for estimating the Spearman and Kendall correlation matrices with ρW and τW .
The MSE is expressed in terms of the relative efficiency (RE) of the BIRCH-based estimates compared to the usual
estimates on the whole sample. The bias is multiplied by 1000 for improved readability. Samples of size 10000 are
simulated from a four-variate multivariate Normal distribution whose parameters correspond to the characteristics of
Iris Setosa. Each figure corresponds to an average over 1000 repetitions and 4 variables.

RE 1000×Bias
Radius2 m̄ ρW τW ρW τW

0.001 9420 99.9 99.9 0.21 0.16
0.005 5210 90.6 89.4 1.7 1.3
0.01 2900 57.6 55.9 5.7 4.2
0.02 1340 28.8 28.3 13 9.4
0.05 386 9.0 8.7 34 24
0.1 135 3.3 3.1 87 63
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The RE remains high except for the correlation between petal length and petal width that features the

worst performance. With standard deviations of 0.174 and 0.107 respectively, these two variables feature

the smallest variances among the four characteristics. Choosing a radius of
√

0.01 = 0.1, the resolution of

BIRCH is not fine enough to capture all the information about the structure of the data between these two

variables.

With a small improvement in the resolution, this behavior disappears. For a squared radius of 0.005, the

RE of the correlation between petal length and petal width is 77.6 for ρW and 75.4 for τW . Even though

those are the lowest RE for that radius, their nominal values are very high compared to what could be done

with a sample of 50% of the data (which would requiere approximately the same amount of memory than

the m̄ = 5210 clusters used).

Overall, the performance of the BIRCH-based estimates make them a viable option for analyzing a massive

multivariate dataset, even if a single multivariate BIRCH clustering is used to estimate many correlations.

3.4 Massive dataset

All simulations so far have used a sample size of 10000. In this section, we vary the sample size up to 2× 108

to verify the behavior of the BIRCH based estimates on larger datasets. Note that the default functions

and settings of R can hardly handle samples of size 107 and beyond, but with BIRCH, these sizes pose no

problems.

To see how the estimates evolve with an increase of the sample size, we simulate five datasets from

a Normal distribution with ρ = 0.6. The radius for BIRCH is set to 10% of the IQR of the marginal

distributions which seems to be a reasonable choice based on previous simulations, yielding a squared radius

of 0.01820. The BIRCH algorithm is suspended at different sample sizes in order to calculate ρW and τW for

all data read so far. Figure 1 shows the evolution of the two estimates. The horizontal line corresponds to

the true value of the parameter.

We note that the five lines tend to converge together, showing that the variance of the estimates decreases

as the sample size increases. That convergence appears to occur above the horizontal line, meaning that the

estimates are biased even for large sample sizes. This is expected since the chosen radius defines a resolution

beyond which the details of the data are lost and cannot be recovered from increasing the sample size.

As a consequence of this bias, the MSE of the estimates will have a lower bound beyond which further

improvements will not be possible, unless if the radius is replaced with a smaller value. The choice of radius

Figure 1: Evolution of ρW and τW as more data are read from five different datasets, each represented by a line. The
data are generated from a Normal distribution with ρ = 0.6. The squared radius is set to 0.01820. The horizontal
line shows the true value of ρ and τ . The evolution of the number of clusters is shown on the left-most panel. Note
the logarithmic scale for sample size.
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determines the number of clusters, thus the memory requirements. This means that the memory limitations

will constrain our ability to reduce the bias of the estimates to an arbitrarily small value.

Five samples are not enough to provide reliable estimates of the bias and mean squared errors. For sample

sizes 106 and 107 we generate 1000 samples from the same Normal distribution on which we calculate ρW
and τW . The results are summarized in Table 10. We also include in the table what we call an equivalent

sample size (ESS). As discussed in Section 3.1, the RE of an estimate can be interpreted as a ratio of the

sample sizes required to achieve a similar performance. The ESS uses this interpretation to determine what

size of a sample is required to match the performance of the BIRCH-based estimates here.

For both sample sizes, the RE may seem low, but the ESS is very large compared to m̄. BIRCH therefore

manages to summarize a large part of the information contained in the sample with a small amount of

memory.

The bias is fairly low in absolute terms and does not decrease a lot when moving from n = 106 to n = 107.

This behavior, expected from the observations on Figure 1, may explain why the ESS increases by only about

50% while the sample size is multiplied by 10 in this case. As a matter of fact, a squared bias of 1.23× 10−6

is observed for ρW with n = 107 where the MSE is 1.50 × 10−6. The MSE is thus driven by the bias at

that stage. We observed on Figure 1 that the bias does not seem to converge to 0. If a bias of 10−6 persists

asymptotically, the MSE will never fall below 10−12, yielding an ESS that cannot exceed 430000 in this case,

even if the sample size goes to infinity.

As samples become massive, they will not fit within main memory. Using BIRCH allows to produce

estimates with an ESS that is larger than the maximum sample size that could fit in memory since we

observed that ESS > m̄, even for the large datasets of Table 10 where the ratio between the two numbers is

quite impressive. Within the limitations of the computer, BIRCH can yield a better estimate than taking a

random subsample.

Table 10: MSE and bias of ρW and τW . The MSE is expressed in terms of the relative efficiency (RE) of the
BIRCH-based estimates compared to the usual estimates on the whole sample and in terms of an equivalent sample
size. The bias is multiplied by 1000 for improved readability. Samples of different sizes n are simulated from a Normal
distribution with ρ = 0.6. The squared radius was set to 0.01820 for BIRCH. Each figure corresponds to an average
over 1000 repetitions.

MSE as RE MSE as ESS 1000×Bias
n m̄ ρW τW ρW τW ρW τW

106 2491 19.0 16.0 190000 160000 1.2 0.97
107 3867 2.8 2.5 280000 250000 1.1 0.85

4 Choice of the radius

Harrington and Salibián-Barrera [9] mention that the choice of radius is scale dependent. Their suggestion

is to choose the radius based on the number of clusters produced by BIRCH. We agree with this approach,

but note that the marginal distribution of the data has an effect on the link between the number of clusters

and the sample size of the database. Figures 2 to 4 help in understanding this link and provide additional

guidance to make a wise choice of radius. On massive datasets, some attention must also be paid to the

stability of BIRCH, which we discuss first.

4.1 Stability of BIRCH for small radii and massive datasets

Running BIRCH on massive datasets unveiled a peculiar behavior. The BIRCH algorithm uses a tree structure

to speeds up calculations. When a certain number of clusters (called leafs in the context of a tree) is attained

(the default is MAXL = 100 in the birch package [2]), branches are created and the leafs are assigned to

them. The next datum is processed through the tree structure, following the closest branch before being

compared to the leaves of that branch only. The centroids of the leafs and branches get updated. When



14 G–2012–76 Les Cahiers du GERAD

the number of branches reaches a predefined limit (the default is MAXB = 100 in the birch package [2]), a

new level of branches is created and connected to the existing branches that are connected themselves to the

leaves. Further levels are possible as well and get created as needed.

Since the branches get updated dynamically, their centroids wobble as data are processed. Even if an

appropriate leaf exists for a new datum, the wobbling can cause the wrong branch to be closest to the datum,

hence rooting the latter to a branch where a new leaf will unnecessarily be created.

The movements of the branches can be negligible if the radius is large, but when a massive dataset is

analyzed with a small radius, we sometimes observe sudden explosions in the number of leafs, which are

explained by the behavior described above. None of the examples in this manuscript feature this instability.

In particular, such instability was never observed with fewer than 10000 leafs, or with a radius of 0.1IQR

or more. Our recommendation is thus to aim for a moderate number of leafs, or to select a somewhat large

radius. Otherwise, it would be well advised to monitor the construction of the BIRCH tree and be cautious.

4.2 Number of clusters versus sample size

To trace Figures 2 to 4, the BIRCH algorithm was applied to large datasets and the number of clusters was

recorded as the algorithm progressed through the data. The radii are expressed as a fraction of the IQR.

They can be recovered from Equation 1 by replacing R with 0.05, 0.075, 0.1 and 0.15. Five datasets were

used for each choice of radius. The line in the plots correspond to the average number of clusters for those

five datasets.

Since they have an effect of the tree structure, the internal parameters MAXL and MAXB discussed

above have an influence on the stability of BIRCH. For a radius equal to 0.05IQR and default values for

MAXL and MAXB, we observed datasets where the number of clusters exploded after the first few tens of

millions of observations. All figures in this section were thus produced with MAXL = 40 and MAXB = 40

which did not feature instability problems. We also tried MAXL = 200000, a large enough value to ensure

that all leafs stay within one branch. The plots for the number of clusters obtained were visually identical

to those displayed here.

If data are bounded (e.g. copulas yield random numbers on the unit square), it is expected that for a fixed

radius, the clusters will eventually cover the whole range of the data and no new clusters will be proposed

even if the sample size keeps increasing.

Figure 2 was produced by simulating samples of increasing sizes from a Normal copula with ρ = 0.6.
Every line corresponds to the average of five datasets to obtain a smoother line. For every radius considered,

the number of clusters seems to stall at some point, as expected.

At the opposite of the spectrum, the Cauchy has the potential to produce extreme values that are

unbounded. Figure 3 displays the number of clusters as a function of the sample size when the data are

generated from a distribution with a Normal copula (ρ = 0.6) and margins. Extreme values along the axes

are so sparse that they each become a singleton cluster. It is thus not surprising to see the number of

clusters increase approximately linearly with the sample size. With Cauchy margins (an extreme case which

is unlikely to occur in reality), the main memory of the computer is quickly filled to capacity.

In real-life situations, data are probably not bounded, nor full of extremes. In that sense, Figure 4 is more

representative of reality as it presents the number of clusters as a function of the sample size when the data

come from a multivariate normal distribution with ρ = 0.6. In this case, the number of clusters should not be

theoretically bounded as for any given clustering, a large enough sample will make probable the observation

of a datum outside the covered area, meaning that the number of clusters can become arbitrarily large.

It is however reinsuring to see on Figure 4 that the increase in the number of clusters slows down rapidly

and almost stalls.

The choice of a radius is linked to the available memory. If there are very many extremes (e.g. Cauchy),

one has to be more careful to avoid running out of memory. Otherwise, the choice of radius is not strongly
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Figure 2: Number of clusters produced by the BIRCH algorithm as a function of the sample size. The data are
generated from a Normal copula distribution with ρ = 0.6 and different values of the radius are considered. Each line
corresponds to an average on five datasets.

Figure 3: Number of clusters produced by the BIRCH algorithm as a function of the sample size. The data are
generated from a distribution with a Normal copula (ρ = 0.6) and Cauchy margins. Different values of the radius are
considered. Each line corresponds to an average on five datasets.

linked to the size of the database. This fact also opens the door to faster and less memory demanding pre-

processing strategies as the estimation of the scale and of the number of clusters could be performed using

only a part of the whole sample, even for the evaluation of m̄ and the choice of radius.
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Figure 4: Number of clusters produced by the BIRCH algorithm as a function of the sample size. The data are
generated from a multivariate Normal distribution with ρ = 0.6 and different values of the radius are considered.
Each line corresponds to an average on five datasets.

5 Conclusion

The BIRCH algorithm is designed to handle massive datasets with linear I/O costs by reading every datum

only once and summarizing them into clusters. We use the output of BIRCH to calculate approximate rank

statistics, specifically estimates of Spearman’s ρ and Kendall’s τ .

Different estimates that take into consideration the ties produced by BIRCH were considered, but ρW
and τW introduced by Woodbury [19] uniformly performed best when compared to the other contenders.

Rank statistics are popular because of their invariance to marginal transformations of the data. BIRCH

does not share this property, but simulations showed that the estimates have some robustness to varia-

tions in the margins. The BIRCH-based statistics thus estimate a quantity that is invariant to marginal

transformations, but those transformations can affect the performance of the estimation procedure.

In all simulations performed, we expressed the MSE of the estimates in terms of RE, the relative efficiency

of the BIRCH-based estimates compared to the classic estimate of ρ or τ evaluated on the whole sample. For

all reasonable choices of radii, we observed that RE remains high even with fairly small numbers of clusters,

meaning that when the main memory is limited, using BIRCH can lead to a better estimate than using the

largest possible subsample that fits into memory. The ratio between ESS and m̄ is especially impressive for

massive datasets where ESS reached values more than 70 times larger than m̄.

The BIRCH algorithm is available as a R package from CRAN [2]. The estimates of ρ and τ considered

in this paper are available therein.

This paper focused on the estimation of ρ and τ , but other rank statistics could be approximated by the

strategy that we used. The mid-ranks that we defined could be used in the pseudo-likelihood of Genest et

al. [6] to infer the parameter of a copula. If the asymptotic properties of BIRCH were developed, an empirical

estimate of the copula based on BIRCH could also be defined and used in different testing problems. For

instance, the equality of copulas could be tested on massive datasets by adapting the test of Rémillard and

Scaillet [14].
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