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GERAD & École Polytechnique de Montréal
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Abstract

In many situations, such as art auctions, privatization of public assets and allocation of television
airwaves to wireless carriers, the value of the object on sale (product, service or asset) is not known be-
forehand, and a market has to be designed to determine its price. The market (or mechanism) designer
has to set the rules of the game in a context where typically none of the parties has complete information
about the preferences of the others. Finding a solution amounts at determining some Bayesian-Nash
equilibria to that game, given that the designer has an interest in the outcome. In this article, we intro-
duce the idea of return function, and use it to compute Bayesian-Nash equilibria in mechanism design.
In a nutshell, given a player’s choice of action, the other players’ strategies and the mechanism chosen by
the market designer, the return function of that given player is the density of the means of the probability
distribution function of the outcome. Further, we define and consider optimality concepts for general
forms of the principal’s objective function. We also introduce the ideality gap function to assess the
difference between the optimality of a mechanism with perfect information and its implementability con-
straint. Finally, we give a method for computing Bayesian-Nash equilibria and optimizing mechanisms,
which is based on the return function.

Key Words: Mechanism Design; Return Function; Bayesian-Nash Equilibrium: Cake-Cutting Prob-
lem.

Résumé

De nombreux problèmes tels que la régulation des marchés, les enchères ou les choix politiques con-
sistent à définir un système d’interaction entre différents agents. Ceci correspond à un problème de
conception de mécanisme, dont la difficulté réside dans le fait que les agents agissent de façon rationnelle
et égöıste. Ainsi, il n’est pas raisonnable de s’attendre à ce qu’ils soient honnêtes. Afin d’anticiper leurs
actions, nous proposons une nouvelle méthode fondée sur la fonction de retour, qui aux actions des joueurs
associe la densité de probabilité du résultat. Cette fonction est estimée empiriquement, et permet ensuite
de développer une optimisation de mécanisme.
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1 Introduction

Mechanism (or market) design has proven to be a successful approach for efficiently determining the value of

a product or a service when there is no natural price that can be posted or negotiated for that product, as

the case for, e.g., a painting by Picasso, energy prices in a deregulated electricity market, or the exploitation

rights for a hydrocarbon-rich basin. These examples, and many others, share the following features: (i) There

is a finite number of strategic agents (players, bidders or claimers) interested in acquiring the object (product,

service or resource). (ii) Each agent has a private value for the object under consideration, and does not

know how much the other agents value the same object. For instance, the cost of producing a kilowatt is not

the same for all electricity companies participating in a given market, and each company knows its own cost,

but only has incomplete knowledge of its competitors’ costs. Similarly, a Picasso painting does not have the

same value for all art collectors. (iii) The rules of the game are not given in advance, but are designed by an

agent, called a mechanism designer, principal or regulator, who has an interest in the outcome. For instance,

a public commission may auction off television airwaves to wireless carriers to create faster and more reliable

networks, or to maximize its own revenues. A parent may ask kids at a party to express their preferences

for different flavors, to fairly allocate a heterogeneous birthday cake.

One important issue that must be dealt with when designing a mechanism is that the agents may not

behave truthfully. For instance, in the cake-cutting problem, some participants may hide their preferences

in the hopes of obtaining a better piece than the one they would get by telling the truth. In such context,

the relevant question is whether is it possible to design a mechanism in such a way that the participants in

the game would find it in their best interest to truthfully report their private information. This question

attracted the attention of economists, game theorists and operations research analysts.

The first focus was on designing auctions. In a seminal paper, Vickrey (1961) proposed second-highest-

price auction, where the highest bidder wins the contract but pays the second-highest proposed sealed bid.

The bidder with the highest valuation is more motivated to reveal his true valuation of the object in this

type of auction than in other traditional auctions such as the classical English auction, where the highest

bidder pays his actual bid. Another cornerstone in building the theory of mechanism design is the revelation

principle, introduced by Gibbard (1973) for dominant strategies, and later generalized to any strategy by

Dasgupta, Hammond, and Maskin (1979), Holmstrom (1977) and and Myerson (1979). This principle states

that for any Bayesian-Nash equilibrium of a game of incomplete information, there exists a payoff-equivalent

revelation mechanism that has an equilibrium where the players truthfully report their types. The revelation

principle greatly simplifies the task of finding a mechanism-design solution, because the designer only needs

to look at the set of equilibria characterized by incentive compatibility. This means that if the designer wants

to reach some outcome or implement some property, then he can restrict his search to mechanisms in which

players are willing to reveal their private information to the mechanism designer that has that outcome or

property. If no such direct and truthful mechanism exists, then the conclusion is that no mechanism can

be implemented to achieve this outcome or property. By narrowing the search, the problem of finding a

mechanism becomes much easier.

During the last two decades or so, important developments in market design have taken place for three

main reasons: “(i) The creation by government agencies, private firms or industrial associations of a number

of markets to privatize public assets, restructure deregulated industries, or enhance inter-firm relations; (ii)

a renewed focus on strategic analysis and game theory that together with the emergence of experimental

economics contributed to the establishment of market design as a serious research field in economics; (iii)

and, most importantly, the explosive development of electronic business, e-business tools that can embed the

most complex market rules and facilitate their deployment.” (Bourbeau et al. (2005)). Recent operations-

research literature include work on assignment problems: see, e.g., Su and Zenios (2006) for kidney-transplant

trade-off; Abdulkadirolu and Sönmez (2003) or Pathak (2011) for school choice; in supply chains, see, e.g.,

Jain and Raghavan (2009), Chen and Cheng (2012), Mes et al. (2011); and in revenue management, see, e.g.,

Vulcano et al. (2002), Manelli and Vincent (2007), Devenur and Hayes (2009).

In this article, we propose a new tool, which we call the return function, to compute Bayesian-Nash

equilibria in the context of mechanism design. In a nutshell, given a player’s choice of action, the other



2 G–2012–70 Les Cahiers du GERAD

players’ strategies and the mechanism chosen by the market designer, the return function of that given player

is the density of the means of the probability distribution function of the outcome. Given this return

function, the expected utility of the outcome of a player is then defined as a function of this return function

and the player’s type. Our formulation is fairly general and accounts for outcomes that cannot be defined

deterministically. Further, we define and consider optimality concepts for general forms of the principal’s

objective function. We also introduce the ideality gap function to assess the difference between the optimality

of a mechanism with perfect information and its implementability constraint. Finally, we give a method for

computing Bayesian-Nash equilibria and optimizing mechanisms, which is based on the return function.

The rest of the paper is organized as follows: In Section 2, we introduce the return function and recall

the definition of an equilibrium. In Section 3, we define some mechanism designs and establish some of their

properties. Section 4 is devoted to showing how the return function can be used to compute Bayesian-Nash

equilibria. In Section 5, we provide an illustration in the context of a cake-cutting problem. Section 6

concludes.

2 Model and Equilibrium

Let N = {1, . . . , n} be the set of players and A the set of actions of player j ∈ N. Denote by aj an action of j,

by a = (a1, . . . , an) ∈ An, the vector of all players’ actions, and by a−j = (a1, . . . , aj−1, aj+1,..., an) ∈ An−1,

the vector of the actions of all players other than j. Similar notations will be used throughout the paper for

vectors of objects that refer to all players, or to n− 1 players. Also, if E and F are two sets, then the set of

functions from E to F will be denoted F(E,F ). For clarity of exposition, we are assuming here that the set

of actions is the same for all players. Admittedly, this is not the most general formulation, but in principle,

there is no conceptual difficulty in extending the analysis to the case where the players have different action

sets.

Given the players’ choice of a ∈ An, the mechanism designer selects an outcome x from the set of admissible

outcomes X, according to a certain mechanism M, that is, M (a) = x ∈ X. To illustrate, x could be, e.g.,

the workers’ schedule for a given week, the shares of a cake allocated to the different claimers, or the quantity

of energy to be supplied the next day by the bidding electricity companies. The mechanismM could be, e.g.,

one that minimizes the total system cost or maximizes customer satisfaction. By admissible outcomes, we

mean that X contains only those allocations that satisfy all problem constraints, such as satisfying workers’

contracts and companies service requirements, full allocation of the cake, etc.

In practice, this outcome may not be deterministically specified, because of some inherent random events.

For instance, the next day’s electricity demand depends on temperature, which cannot be predicted with

certainty. To reflect this, we let mechanismM to be function in ∆(X), where ∆(X) is the set of probability

density functions (PDFs), over the set of outcomes X. More specifically,

Definition 1 A mechanism M is a function that, to actions a ∈ An, associates a PDF M(a) ∈ ∆(X) of

the outcome. The set of admissible mechanisms is M = F(An,∆(X)).

We make the following remarks:

Remark 1 If the mechanism is deterministic, then M(a) would have a Dirac distribution.

Remark 2 If the set of admissible PDFs must be restricted, for any reason, to ∆X , with ∆X ⊂ ∆(X), then

the set of admissible mechanisms will consequently be restricted to M = F(An,∆X).

Remark 3 If the set of admissible actions A is chosen by the mechanism designer, then the set of admissible

mechanisms is the union of sets, that is, M =
⋃
A

F(An,∆X).

The context covered by this last remark is natural in some applications, e.g., personnel scheduling, where

the set of possible work shifts from which workers can choose is set by management (mechanism designer).
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Each player j ∈ N is defined by his type θj . Now, for each player j, a utility function matches his type

and the outcome with a real number, as follows:

uj (θj , x) ≥ uj (θj , x
′) for x � x′,

where the symbol � means preferred to. Let θ = (θ1, . . . , θn) ∈ Θn, where Θ is the set of types, assumed

to be the same for all players. As we are dealing with mechanisms M(a) ∈ ∆(X), we extend the domain

of definition of uj(θj , .) to the set ∆(X) of PDFs over outcomes by considering that, for all θj ∈ Θ and all

χ ∈ ∆(X),

uj(θj , χ) = Ex;χ[uj(θj , x)],

where x; χ means that the random variable x has the probability density function χ.

Remark 4 The assumption that the set of types is the same for all players can easily be relaxed by defining

a set Θj for each j ∈ N . As we will be considering PDFs over types, this would then be equivalent to saying

that each player has a set of types Θ =
⋃
j∈N

Θj with a nil distribution over Θ−Θj.

As usual, we assume that each player knows his type, and has incomplete knowledge of the other players’

types. We also suppose that the principal only has incomplete knowledge of the players’ types. Denote

by f ∈ ∆(Θn) the PDFs over types of all players, and by f−j ∈ ∆(Θ−j) the PDFs over types of all other

players but j. The PDF f−j represents beliefs held by player j about the other players’ types. Note that

we assume, for generality, that f−j does not depend on the type of player j ∈ N .

Denote by σj a strategy of player j, and by Σ the set of strategies of this player. As for the set of actions,

we assume, without any loss of generality, that the set of strategies is the same for all players. A strategy is

a mapping that associates an action aj to a type, i.e., σj (θj) = aj . Let σ = (σ1, . . . , σn) ∈ Σn.

2.1 Return Function

For each player j, we define a return function ϕj that, to an action aj ∈ A, a vector of other players’ strategies

σ−j ∈ Σ−j , a PDF f−j ∈ ∆(Θ−j) and a mechanismM∈M, associates a PDF over the set of outcomes, i.e.,

ϕj ∈ F(A× Σ−j ×M×∆(Θ−j),∆(X)),

that is,

ϕj(aj , σ−j ,M, f−j) = Eθ−j;f−j
[M(aj , σ−j(θ−j))]. (1)

Put differently, the return function ϕj(aj , σ−j ,M, f−j) is the density of the means of the PDFs of the

outcome when: player j plays action aj , the other players use strategies σ−j , the vector of types of the other

players have the PDF f−j and the principal chooses the mechanism M. Given ϕj , the expected utility of

the outcome of player j with type θj is equal to uj (θj , ϕj (aj , σ−j ,M, f−j)).

Remark 5 When all players have the same PDF for θ−j, it is natural to assume that ϕj (·) = ϕ (·) ,∀j ∈
N . This would occur in, e.g., games with a large number of players, where excluding a player will not

fundamentally affect the probabilistic representation of the game for the other players. Clearly, in that case

the mechanism needs to be symmetric, that is, for any permutation τ : N → N , we have the following

property:

∀v ∈ V n,∀a ∈ An,∀j ∈ N, θj = θτ(j) ⇒ uj(θj ,M(aj)) = uτ(j)(θτ(j),M(aτ(j))). (2)

We will provide later on an illustrative example with symmetric players. We end this section by recalling

the definitions of best-reply strategies and Bayesian-Nash equilibria.

Definition 2 The set of best-reply strategies σBRj for player j to strategies σ−j of the other players with a

PDF f−j , and a given mechanism M∈M selected by the principal is given by

ΣBRj (σ−j ,M, f−j) = arg max
σj∈Σ

Eθj;fj

[
uj (θj , ϕj (σj(θj), σ−j ,M, f−j))

]
. (3)
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The set ΣBR(σ,M, f) of vectors σBR of best-reply strategies for all players is given by

ΣBR(σ,M, f) =
{
σBR ∈ Σn | ∀j ∈ N, σBRj ∈ ΣBRj (σ−j ,M, f−j)

}
. (4)

Definition 3 The set ΣBN (M, f) of Bayesian-Nash equilibria is the set of strategies that are best replies

against themselves, i.e.,

ΣBN (M, f) =
{
σBN ∈ Σn | σBN ∈ ΣBR(σBN ,M, f)

}
. (5)

3 Mechanism Design

Up to now, everything has been done assuming a given mechanism, M ∈ M. In this section, we deal with

the choice of a mechanism that yields some desirable outcome to the designer. To do this, we will define

the notion of a direct mechanism and then introduce an objective function for the mechanism designer. We

will show some theoretical results and describe a practical method to optimize mechanisms. The revelation

principle will be a key component in the forthcoming construction.

3.1 Direct Mechanism

If the principal knew the different players’ types, then he could straightforwardly use them to design a direct

mechanism and select an admissible outcome. More specifically:

Definition 4 A direct mechanism D ∈ D = F(Θn,∆X) is a function that, to a vector of types θ ∈ Θn,

associates an admissible PDF over outcomes D(θ) ∈ ∆X .

Note that, whereas an admissible mechanismM maps the set of actions An into ∆X , a direct mechanism

D maps the set of types into ∆X . The two mechanisms would be the same if the set of players’ actions

coincided with the set of types. In the example provided later on, we suppose such a coincidence. The

introduction of this direct mechanism will allow us to analyze the optimality of mechanisms when the players

behave truthfully.

A strategy profile σtruth is truthful if it satisfies σtruth (θ) = θ, ∀θ ∈ Θn.

Definition 5 A direct mechanism D is Bayesian Incentive Compatible (BIC) if the strategy profile σtruth is
a Bayesian-Nash equilibrium, that is, σtruth ∈ ΣBN (D, f).

A Bayesian Incentive Compatible (BIC) direct mechanism D is denoted DBIC . The set of DBIC mecha-

nisms depends on the PDF f over types, and is denoted DBIC(f).

Definition 6 A direct mechanism is Dominant Strategy Incentive Compatible (DSIC) if σtruthj is a dominant

strategy for all j ∈ N .

The set of DSIC direct mechanisms is denoted DDSIC . The difference between the above two definitions

is straightforward. In the first case, players have an incentive to be truthful, provided the other players are

truthful. In the second case, players have an incentive to be truthful no matter what the others are.

The following theorem characterizes the relationship between the DSIC and BIC mechanisms:

Theorem 1 A direct mechanism D is a DSIC direct mechanism if and only if it is a BIC direct mechanism

for any PDF f , i.e.,

DDSIC =
⋂

f∈∆(Θn)

DBIC(f). (6)

Proof. Clearly, a DSIC direct mechanism is always BIC. Hence, DDSIC ⊂
⋂
f∈∆(Θn) DBIC(f).
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Now, consider a direct mechanism D ∈
⋂
f∈∆(Θn) DBIC(f). We need to prove that D is DSIC. For this,

we must show that for σtruth−j (θ−j) , the best response of player j is σtruthj (θj) , for all θ ∈ Θn. This is

equivalent to saying that D ∈ DBIC(δ(θ)), where δ(θ) is the density of the Dirac distribution with support∏
j∈N
{θj}. Since δ(θ) ∈ ∆(Θn), we have

⋂
DBIC(f) ⊂ DBIC(δ(θ)), which implies that D ∈ DBIC(δ(θ)). This

proves the opposite inclusion.

As recalled in the introduction, the revelation principle states that for any Bayesian-Nash equilibrium of a

game of incomplete information, there exists a payoff-equivalent revelation mechanism that has an equilibrium

in which the players truthfully report their types. Following a similar idea, we construct a revelation-direct

mechanism as follows: given a mechanismM∈M and a Bayesian-Nash equilibrium σBN ∈ ΣBN (M, f), and

given the players’ types θ, we compute the corresponding actions a = σBN (θ), and the PDF on the outcomes

x given by M (a).

Denote by the symbol “◦” the composition of functions. To any mechanism M∈M, and any Bayesian-

Nash equilibrium σBN ∈ ΣBN (M, f), we associate a revelation-direct mechanism DR = M ◦ σBN . The

outcome is then given by DR(θ) =M(σBN (θ)). The set of revelation-direct mechanisms is denoted DR (f) .

A graphical representation of the construction of the revelation-direct mechanism is given in Figure 1.

In this figure, there are three main sets we have to deal with: the set of types Θn, the set of actions An and

the set of admissible PDFs over outcomes ∆X . Note that σBN depends on the PDF f . We now have the

following result, which is a corollary of the revelation principle.

Figure 1: Construction of the revelation-direct mechanism

Theorem 2 The set of constructed revelation-direct mechanisms coincide with the set of BIC direct mecha-

nisms, i.e.,
∀f ∈ ∆(Θn),DR(f) = DBIC(f).

Proof. By definition, for any DBIC , the truthful strategy profile is a Bayesian-Nash equilibrium. Therefore,

the constructed mechanism DBIC ◦ σtruth is the mechanism DBIC . Hence, any BIC direct mechanism is a

revelation-direct mechanism.

Reciprocally, let us a consider a revelation-direct mechanism DR =M◦ σBN . We need to show that DR
is BIC. Denote by σR the players’ strategies when playing DR. Assume player j’s type is θj . The PDF over

outcomes is given by the return function:

ϕj(σ
R
j (θj), σ

R
−j ,DR, f−j) = Eθ−j;f−j

[
DR(σRj (θj), σ

R
−j(θ−j))

]
(7)

= Eθ−j;f−j

[
M(σBNj (σRj (θj)), σ

BN
−j (σR−j(θ−j)))

]
(8)

= ϕj(σ
BN
j (σRj (θj)), σ

BN
−j ◦ σR−j ,M, f−j) (9)

Suppose now that all players but j are truthful, that is σR−j = σtruth−j . Therefore, σBN−j ◦ σR−j = σBN−j . As

a result, and since σBNj is the best reply of σBN−j when playing mechanism M, we have the following upper

bound on player j’s utility of the outcome:
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uj(θj , ϕj(σ
R
j (θj), σ

truth
−j ,DR, f−j)) = uj(θj , ϕj(σ

BN
j (σRj (θj)), σ

BN
−j ,M, f−j)) (10)

≤ uj(θj , ϕj(σBNj (θj), σ
BN
−j ,M, f−j)). (11)

The equality is achieved for σRj = σtruthj . Therefore, for the revelation-direct mechanism, for any player,

truthfulness is a best reply to the other players’ truthfulness. Equivalently, the revelation-direct mechanism

is BIC.

For the mechanism designer, there are two advantages to using the revelation-direct mechanism, namely:

(i) he knows that it is in the best interest of the players to act truthfully; (ii) he learns, in the sense of

having a better approximation of, the PDF of the players’ types. From the point of view of the players,

the equilibrium strategy profile is “simple,” that is, not many computations are involved in determining the

equilibrium strategies.

3.2 Principal’s Objective Function

The principal’s objective could be to achieve an optimal result in terms of profit, utility, cost, etc., or to

reach an outcome having some desirable properties, e.g., fairness. To illustrate, let us consider a liberalized

electricity market where the market operator is interested in satisfying consumer demand at the lowest cost.

To do so, the operator asks the electricity generators to submit their supply functions, which give the quantity

they are willing to deliver and the corresponding price. Player j’s supply function is his action aj , given

by his strategy σj (θj). The mechanism designer aggregates the supply functions of the different producers

and computes the outcome x, i.e., the price per unit to be paid to all generators whose supplies are needed.

As alluded to before, this outcome depends on the players’ actions, and there is no a priori certainty that

the generators will report their true supply functions (actions). The role of the market operator is of course

to design a mechanism that induces a truthful strategy and optimizes his objective, which, in this case is to

have the lowest price.

Definition 7 A principal’s objective function P ∈ F(D×∆(Θn),R) is a function that, to a direct mechanism

D ∈ D and a PDF f ∈ ∆(Θn), associates a real number P(D, f).

To illustrate, here are possible examples of the mechanism designer’s objective function:

P(D, f) = Eθ;f [p(D(θ))], (12)

P(D, f) = Eθ;f

[∑
j∈N

uj(θj ,D(θ))− λ
√
V ar

{
uj(θj ,D(θ))

}
j∈N

]
, (13)

P(D, f) = −Eθ;f

[
V ar

{
Eθ′−j;f−j

[uj(θj ,D(θj , θ
′
−j))]

}
j∈N

]
, (14)

In the first case, the principal wants to maximize the expected value of some function p of the outcome.

In the second case, the principal wants to maximize the expected value of the sum of outcome utilities minus

a weighted value of the standard deviation of the utility of the outcome. In the last case, the principal wants

to minimize the expected value of the variance of the individual expected outcome utilities.

We now define what is meant by an ideal mechanism.

Definition 8 A direct mechanism Dideal ∈ D is ideal, if it maximizes the principal’s objective function,

i.e.,Dideal ∈ arg maxD∈D P(D, f). Let P∗ideal (f) = P(Dideal, f).

Definition 9 A mechanism M∗ ∈ M is BIC-optimal, if it maximizes the principal’s objective function at a

Bayesian-Nash equilibrium, i.e.,M∗ ∈ arg maxM∈M P(M◦σBN , f), with σBN ∈ ΣBN (M, f). Let P∗BIC(f) =

P(M∗ ◦ σBN , f).

A corollary of Theorem 2, which states that revelation-direct mechanisms are BIC direct mechanisms, is

the following result.
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Theorem 3 It holds that

P∗BIC(f) = sup
DBIC∈DBIC(f)

P(DBIC , f). (15)

Proof. By definition, we have the following equality:

P∗BIC(f) = sup
M∈M

σBN∈ΣBN (M,f)

P(M◦ σBN , f). (16)

Yet, the set of direct-revelation mechanisms M◦ σBN we can obtain with M ∈ M and σBN ∈ ΣBN (M, f)

is actually the entire set of direct-revelation mechanisms. According to Theorem 2, this set is also equal to

the set of BIC direct mechanisms. This proves the result.

To recapitulate, the mechanism designer would ideally like to construct a direct mechanism that yields

the value P∗ideal (f). However, this construction requires the knowledge of the different players’ types, which

is not available in practice. The alternative is to proceed with the traditional construction of a revelation-

direct mechanism, that is, the mechanism DR =M◦ σBN , yielding P∗BIC(f) as its BIC-optimal value. To

compare the two results, we introduce the ideality gap which compares the two defined values, that is,

G (f) = P∗ideal (f)− P∗BIC(f) ≥ 0.

The following theorem characterizes a condition under which this gap is zero.

Theorem 4 There exists a mechanismM for which there exists a Bayesian-Nash equilibrium σBN such that

the principal’s objective at the equilibrium is P(M◦σBN , f) = P∗BIC(f) if and only if there exists a DidealBIC .

Proof. If there exists a direct mechanism DidealBIC , which is ideal and BIC, then it is an ideal mechanism at

the truthful strategy profile σtruth, which is a Bayesian-Nash equilibrium. Therefore, the mechanism DidealBIC

and its Bayesian-Nash equilibrium are such that P(DidealBIC ◦ σtruth, f) = P(DidealBIC , f) = P∗D(f).

Reciprocally, suppose there exists a mechanismM and a Bayesian equilibrium σBN such that P(DidealBIC ◦
σtruth, f). Then direct-revelation mechanism DR constructed with M at σBN has the same principal’s

objective value and, according Theorem 2, it is BIC; thus, DR is a direct mechanism that is both ideal and

BIC.

An implication of the above theorem is that if all ideal direct mechanisms Dideal are not BIC, then no

mechanism can achieve P(M ◦ σBN , f) = P∗D(f). Indeed, in Section 4 we will provide an example where

such a mechanism does not exist. In such cases, there is a good chance that the ideality gap G(f) is

positive, although it is still possible that a sequence of mechanisms and their Bayesian-Nash equilibria have

a principal’s objective value limit equal to P∗D(f), in which case the ideality gap would still be equal to zero.

Now, if the choice of the set of actions is part of the definition of the mechanism, then the following result

would enable us to determine this set of actions.

Theorem 5 If there exists a BIC-optimal mechanismM∗, then there exists a BIC-optimal direct mechanism.

Proof. A revelation-direct mechanism based on a BIC-optimal mechanism is a BIC direct mechanism with

the same principal’s Bayesian-Nash objective value and is therefore BIC-optimal too.

An important implication of this theorem is that, when searching for a BIC-optimal mechanism, we can

restrict our research space to direct mechanisms.
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4 Computation of Equilibria with the Return Function

Recalling that the set of best-reply strategies σBRj for player j against strategies σ−j with a PDF f−j , and

given a mechanism M∈M is given by

ΣBRj (σ−j ,M, f−j) = arg max
σj∈Σ

Eθj;fj

[
uj (θj , ϕj (σj(θj), σ−j ,M, f−j))

]
, (17)

the objective of this section is to show how the Bayesian-Nash equilibrium can be computed using the return

function. To do this, we will iteratively compute the return function using a learning process of the types.

Our approach is similar to the idea of fictitious play, however with an important difference. Indeed, whereas

in fictitious play, we determine a player’s best reply to the other players’ mixed strategies, here, we compute

the best action for each player given his evaluation of how his actions affected the outcome in the previous

iteration.

Note that in the rest of this section, we assume that the PDF f over types and the mechanism M are

fixed. Therefore, the focus is on the determination of the Bayesian equilibrium of the game for given f

and M.

4.1 Computing the Return Function

Denote by {σi}i∈N a sequence of strategies. This sequence converges toward a Bayesian equilibrium if

∀i ∈ N, σi+1 ∈ ΣBR(σi,M, f), (18)

with σ0 randomly given. Instead of directly considering the players’ strategies, our approach consists, at each

iteration, in maximizing uj
(
θj , ϕ

i
j

)
with respect to aj , and next compute the strategies using σij (θj) = aij .

In the sequel, we determine the next term ϕi+1
j (aj) using the following approximation, which is in the spirit

of (18):

ϕi+1
j (aj) ≈ ϕj(aj , σi−j ,M, f−j).

The following algorithm develops this idea, and in particular the learning aspect involved in the computations:

Algorithm 1 Optimization of the parameterized mechanism

while the convergence criterion is not verified do
Generate a set of players with type θi according to PDF f .
Compute the actions aij maximizing the utility of the approximated return function uij

(
θj , ϕ

i
j(a

i
j)
)
.

Given actions ai, compute an outcome xi, according to PDF M
(
ai
)
.

Update the return functions ϕi+1
j given the actions aij and the outcome xi.

Increment i.
end while

If the convergence is met, then the resulting Bayesian-Nash equilibrium is the best-reply strategy to the

computed return function.1 The first and the third steps of this algorithm are as difficult as the problem’s

inputs, i.e., the PDF f and the mechanismM. In some problems, the mechanism may require solving a large

optimization problem, which may be quite difficult of itself. That being said, it is the second step that is

most demanding in most applications, as it involves n non-linear optimization problems with a potentially

large action space. To get around some of these difficulties, we will use some local optimization tools (e.g.,

a gradient-based method), interpolation and perturbation schemes. Finally, the fourth step represents the

learning process used by a player to update his return function. We now deal in detail with the steps of the

above algorithm.

To empirically estimate the return function of player j, that is, ϕi+1
j (aj) for all j ∈ N , using the approx-

imation
ϕi+1
j (aj) ≈ ϕj(aj , σi−j ,M, f−j),

1It is worth mentioning that this algorithm can easily be parallelized, to speed up the learning process.
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we need to generate actions aj , j ∈ N . As an action is a consequence of θj , we randomly draw types using

their PDFs. We call an observation for player j at iteration i, the couple

(aij , x
i) ∈ A×X.

Technically speaking, the return function ϕj for player j ∈ N will be computed by a mapping container

with keys a ∈ A. The values of the mapping container representing the return functions will be mapping

containers with keys x ∈ X .

In our implementation, we will use the following smoothing procedure to compute ϕi+1
j (aij) :

ϕi+1
j (aij) = µix

i + (1− µi)ϕij(aij), µi ∈ (0, 1) , ∀j ∈ N, (19)

that is, a weighted sum of the last observed outcome xi and the previous estimation of the return function

ϕij(a
i
j). The sequence can be selected using the following result:

Theorem 6 Suppose that, for any type θj ∈ Θ and any action aj,j ∈ N , the utility function uj(θj , .) is

bounded and that the sequence uj(θj , x
i) for aij = aj converges, i.e.,

∃u∞j (aj) ∈ R+, u
∞
j (aj) = lim

i→+∞
Exi|aij=aj [uj(θj , x

i)]. (20)

Also, assume that types are bounded and that
∑
µi diverges but that

∑
µ2
i converges. Then, uj(θj , ϕ

i
j(aj))

converges in probability to u∞j .

Proof. See Appendix.

The sequence µi = 2/(i + 1) satisfies the requirements in the above theorem, and will be used in the

sequel. One intuitively appealing property of this sequence is that µi > (1− µi)µi−1, which means that the

last observation is more weighted than each of the previous ones.

4.2 Interpolation

The accuracy of the estimation of the return function depends on the number of observed actions. Since

the set of actions may be very large, or even infinite, and thus not all possible actions could be considered

at each iteration, we use an interpolation scheme to estimate ϕj . We suppose from now on that the return

function ϕj is continuous in action aj . This is a realistic hypothesis, as the PDF over others’ types obtained

through θ−j ; f−j will smooth (through averaging) the return function. Denote by dA(aj , a
′i
j ) a distance

between the actions aj and a′j , and by w(dA(aj , a
′i
j )) a weight assigned to this distance, which is decreasing

in dA(aj , a
′i
j ).2

Let

BiA(aj , α) = {a′j ∈ A : | : dA(aj , a
′i
j ) ≤ α},

be the ball of center aj and radius α, where α is an arbitrary positive number. Given θj ∈ Θ, the interpolated

value for player j when he chooses action aj is estimated by

ūj(θj , ϕ
i
j(aj)) =

∑
a′ij ∈Bi

A(aj ,α)

uj(θj , ϕ
i
j(a
′
j))w(dA(aj , a

′
j))∑

a′ij ∈Bi
A(aj ,α)

w(dA(aj , a′j))
. (21)

Remark 6 To avoid being stuck at a solution that is not optimal, we perturb the solution (vector of actions)

obtained at the last iteration, and re-feed the approximation in (19). In our case, we will simply add a

random number drawn from a given interval to each element of the last action vector. As observations pile

up, this interval is narrowed.

2To illustrate, in Section 4, we will take w(d (a, a′)) = 1/(1 + 5d (a, a′))2.
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4.3 Parametrized Mechanisms

Recall that the set of mechanisms is given by M, and up to now, we have not imposed any restrictions on this

set. In practice, the mechanism designer will consider, for obvious tractability reasons, a “manageable” set

of possibilities. We will assume from now on that the set M contains elements of the formMt, where t, t ∈ T
is a given parameter that can be adjusted (or optimized) by the mechanism designer. For instance, in our

example in the next section, t represents a couple of real numbers, and hence, T = R+ × R+. Following

this parametrization, the return functions and the Bayesian-Nash equilibria will also depend on t. Then, the

mechanism designer solves the following optimization problem:

max
t∈T
P(Mt ◦ σBNt , f), (22)

subject to : σBNt ∈ ΣBN (Mt, f), (23)

where σBNt is a Bayesian-Nash equilibrium for the mechanism Mt.

To solve the above optimization problem, we propose the following algorithm:

Algorithm 2 Optimization of the parameterized mechanism

while the convergence criterion is not verified do
Generate a set of players with type θi according to PDF f .
Compute the actions aij maximizing the utility of the approximated return function uij

(
θj , ϕ

i
j(a

i
j)
)
.

Given action aij , compute an outcome xi according to the PDF Mti
(
ai
)
.

Update the return functions ϕi+1
j given the actions aij and the outcome xi.

Compute the principal’s objective function for the last iterations and find a better parameter ti+1.
Increment i.

end while

5 Illustrative Example: A Cake-Cutting Problem

To illustrate the theory developed above, we provide an example of a cake-cutting problem, which is of great

use in operations research, as it allows the modelling of an assignment problem that includes the preferences of

the agents involved. For instance, some shift-scheduling and matching problems exactly fit the cake-cutting

problem (CCP) formalism. This problem can be stated as follows: given a cake and a set of players having

additive utility functions over the subsets of the cake, the problem is how to allocate the cake to optimize

a certain objective, while satisfying some constraints, such as fairness. This class of problems has been the

subject of numerous papers; see, e.g., Brams and Taylor (1995), Brams and Taylor (1996), Robertson and

Webb (1998), and recent papers, e.g., Mossel and Tamuz (2010) and Chen et al. (2010).

5.1 The Model

To simplify the computations, while still being able to illustrate our approach, we suppose that the cake is

initially cut into a set K of homogenous portions. An outcome is a matrix

x = {xjk} ∈ [0, 1]N×K ,

where xjk is the portion k ∈ K allocated to player j ∈ N . Note that the set X of admissible outcomes

(allocations) is given by

X = {x ∈ [0, 1]N×K |∀k ∈ K,
∑
j∈N

xjk ≤ 1}.

Denote by θjk ≥ 0 the utility of player j ∈ N for portion k ∈ K. Thus, the type of player j is the vector
θj , and his utility function over any subset xj of the cake is uj (θj , xj) =

∑
k∈K

θjkxjk. We normalize the utility
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function of each player for the whole cake to one. Therefore, if 1K = {1}k∈K is the allocation of the cake, then

uj(θj , 1K) =
∑
k∈K

θjk = 1. As a result, the set Θ of types is the polytope Θ = {θj ∈ RK+ : | :
∑
k∈K

θjk = 1}.

One approach to allocating the cake would be to solve the following linear optimization problem:

max
x

u

subject to :
∑
k∈K

ajkxjk = u, ∀j ∈ N, (24)

x ∈ X.

We will refer to this approach as mechanism M0, that is, the mechanism that associates an outcome x to

a vector a of actions. We define an admissible action for player j to be one that satisfies the constraints

ajk ≥ 0, k ∈ K, and
∑
k∈K

ajk = 1. The normalization of the admissibility constraints on the types and actions

has two implications, namely: (i) the set of actions and types are the same, i.e, A = Θ; and (ii) the mechanism

M0 is a direct mechanism. Note that if the above optimization problem has multiple solutions, then we will

simply choose one of them randomly.

An example of a PDF f of types is obtained through the following process: for each player j ∈ N , we

randomly generate a vector in [0, 1]K according to the uniform distribution. Then, we normalize this vector

by dividing each component by the sum of all components, hence obtaining a vector θj ∈ Θ. Note that

this mechanism M0 is symmetric in the sense of (2), and the PDFs are symmetric too, due to our way

of generating the vector θj , j ∈ N . A consequence of these symmetries is that the return function ϕj is

independent of j, and therefore we have ϕj = ϕ for all j ∈ N .

5.2 A Simple Two-Player Example

In principle, the above problem can be solved for any number of players and any set K. However, for the

sake of clarity, we focus here on the simplest possible setting of two players, and |K| = 2. Let a1 = (a11, a12)

and a2 = (a21, a22). In this context, problem (24) becomes

max u (25)

subject to :u = a11x11 + (1− a11)x12, (26)

u = a21(1− x11) + (1− a21)(1− x12), (27)

x11, x12 ≥ 0, (28)

where xjk represents the portion k = 1, 2 allocated to player j = 1, 2. The description of the type θj and

the action aj of each player j can now be reduced to one real variable each in [0, 1] that is, θj1 and aj1. As

a result, a strategy σj is a mapping from [0, 1] into [0, 1].

To simplify the theoretical analysis, we assume that the PDF f of types is obtained by drawing uniformly

randomly θj1 in [0, 1], hence obtaining θj2 = 1− θj1.

Using the algorithm defined in (1), we compute a Bayesian-Nash equilibrium. In Figure 2, the dots

represent the equilibrium strategy σBN1 of player 1, and the the line corresponds to the truthful strategy

σtruth1 . As the mechanism is symmetric, the equilibrium strategy of player 2 is the same. As we can see on

this figure, the equilibrium strategy σBNj consists of overvaluing the portion he desires less, and undervaluing

the portion he prefers.

Also, in this simple example of two players and two attributes, we can draw the mechanism as done in

Figure 3.

A linear approximation of the strategy in Figure 2 consists of choosing the action a11 such that

a11 = σBN (θ11) = a∗min + (1− 2a∗min)θ11.

The numerical value of a∗min is approximately 0.3.
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Figure 2: Bayesian-Nash Equilibrium of mechanism M0

Figure 3: Mechanism of the cake-cutting problem with 2 attributes and 2 players

Now, supposing that player 2 chooses to play the computed Bayesian-Nash equilibrium, we can evaluate

the return function for player 1, and write his payoff if he chooses action a11 and has a type θ1:

u1(θ1, ϕ(a1, σ,M, f)) =

∫
u2

u1(θ11,M(a1, σ(θ2)))f(θ2)dθ2, (29)

=

∫ 1−a∗min

a2=a∗min

u1(θ11,M(a1, a2))

1− 2a∗min
da2. (30)

If a11 ≤ 1/2, we can separate the integral into the cases where a21 ≤ a11, a11 ≤ a21 ≤ 1 − a11 and

a21 ≥ 1− a11. The three resulting terms are

1

1− 2a∗min

[∫ θ11

a∗min

[
θ11 + (1− θ11)(1− 1

2− a11 − a21
)
]
da21

]
, (31)

1

1− 2a∗min

[∫ 1−a11

a11

1− θ11

2− a11 − a21
da21

]
, (32)
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1

1− 2a∗min

[∫ 1−a∗min

1−a11

[
θ11(1− 1

a11 + a21
) + (1− θ11)

]
da21

]
. (33)

Calculating these integrals yields

(1− 2a∗min)u1(θ11, ϕ(a1)) = 2(a11 − a∗min) + ln
4(1− a11)2

2− a11 − a∗min
+ θ11 ln

2− a11 − a∗min
4(1− a11)2(1 + a11 − a∗min)

. (34)

Therefore, level curves, for which v1(ϕ(a1)) is constant, are described by the following equation:

θ11 =
k − 2a11 − ln 4(1−a11)2

2−a11−a∗min

ln
2−a11−a∗min

4(1−a11)2(1+a11−a∗min)

, for a11 ≤ 1/2 (35)

with k = (1 − 2a∗min)u1(θ11, ϕ(a1)) + 2a∗min. Therefore, we get u1(θ11, ϕ(a1)) =
k−2a∗min

1−2a∗min
. The level curves

for expected utility u1(θ11, ϕ(a1)), as functions of θ11 and a11, at the Bayesian-Nash equilibrium are shown

in Figure 4, where the best-reply strategy is drawn in red.

Figure 4: Level curves of expected utilities of a player at a Bayesian-Nash equilibrium

The best-reply action of player 1 is the action that maximizes the expected value of u1(θ11, ϕ(a1)), given

a value of θ11. Therefore, if θ11 = 0.2 for instance, the largest value he can obtain for u1(θ11, ϕ(a1)) is 0.75,

which is reached by choosing action a11 = 0.35. As we can easily see, the best-reply strategy does not

coincide with the computed Bayesian-Nash equilibrium, but is very close to it. This shows that the use of

the return-function method is efficient for computing the Bayesian-Nash equilibrium.

5.3 The Principal’s Objective Function

To pursue our illustration, let us assume that the mechanism designer is interested by some fairness consid-

erations when allocating the cake to the two players. This idea can be captured by defining the principal’s

objective function P(D, f) as follows (here n = 2):

P(D, f) = λEθ;f

[ 1

n

∑
j∈N

uj(θj ,D(θ))
]
− (1− λ)Eθ;f

[√
: V ar :

(
{uj(θj ,D(θ))}j∈N

)]
, (36)

= E(θ1,θ2);f

[
λ
u1(θ1, D(θ)) + u2(θ2, D(θ))

2
− (1− λ) |u1(θ1, D(θ))− u2(θ2, D(θ))|

]
, (37)



14 G–2012–70 Les Cahiers du GERAD

that is, a weighted sum of the average utilities and the standard deviation, with λ ∈ [0, 1] . In the sequel, we

use λ = 1/2.

Now, using the return-function method, we can compute the Bayesian-Nash equilibrium σBN0 . The value

of the objective function of the principal is then given by3

P(M0 ◦ σBN , f) ≈ 0.543. (38)

Note that this is also the value that we would get by cutting each of the two pieces of cake into two subpieces

and giving each of these subpieces to one player. Indeed, each player would get a utility of 0.5, and the

standard deviation would be equal to zero.

Although the choice of mechanism M0 is intuitive, there is no reason to believe that it is a BIC-optimal

mechanism. (Indeed, we will show later on thatM0 is not BIC-optimal.) However, in this particular setting

of λ = 1/2, we have the following interesting result.

Proposition 1 The direct mechanism M0 is an ideal direct mechanism.

Proof. The perfect direct mechanism could easily be obtained by choosing a solution of the following linear

program:

max
x

u1/2 + u2/2− δ (39)

subject to :u1 = θ11x11 + (1− θ11)x12 (40)

u2 = θ21(1− x11) + (1− θ21)(1− x12) (41)

δ ≥ u1 − u2 (42)

δ ≥ u2 − u1. (43)

If u1 = u2 at the optimum, then the point (x1, x2) is feasible in the program (25). Thus, as the objective

functions are equivalent, and there are no additional constraints, the allocation found is the same as the one

we would have found using program (25).

Suppose now that u1 > u2 at the optimum. Then, δ = u1 − u2. Thus, the objective function can be

written 3u2/2 − u1/2. This is obviously a strictly decreasing function in both x1 and x2. This leads to a

contradiction in the open set u1 > u2. We have a similar result when assuming u1 < u2.

Therefore, the optimum is always the same as the one found with program (25), which means that the

two direct mechanisms are equivalent. In particular, M0 is an ideal mechanism.

We can use this ideal direct mechanism M0 to compute the ideal value, and obtain

P
(
M0, f

)
= P∗ideal(f) = 0.611. (44)

As we already found that the two players do not behave truthfully in equilibrium, we note that the

mechanism M0 is not ideal at equilibrium. Therefore, what remains to be done is to find a BIC-optimal

mechanism. This issue is tackled in the next subsection.

5.4 Mechanism Optimization

To start, we state the following “impossibility” results.

Proposition 2 For our cake-cutting problem, there does not exist a mechanism M, such that P(M ◦
σBN , f) = PD(f), where σBN is a Bayesian-Nash equilibrium of M.

3Observe that, from Figure 4, we see that the average of the utilities is a about 0.68, when the utilities vary almost uniformly
between 0.54 and 0.84. Therefore, the standard deviation is about 0.15, which gives us a principal’s Bayesian-Nash objective
value of 0.68 − 0.15 ≈ 0.54, which is very close to the value of 0.51 obtained above by our numerical simulations.
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Proof. An ideal direct mechanism provides the following solution:

1. If the players have different types, then any ideal direct mechanism will provide a unique solution, i.e.,

the solution (allocation) given by the linear program (39).

2. If the players have the same type θj , then the ideal direct mechanisms may give different allocations to

the players, but all having the same utility of 0.5 for each player. The reason is that the average of their

utilities is necessarily 0.5 because the sum of the utilities is u1(θ1, x1) + u2(θ2, x2) = u1(θ1, x1 + x2) =

u1(θ1, 1K) = 1 and the standard deviation is minimized when both players receive 0.5.

To complete the proof, it suffices to observe that none of these ideal direct mechanisms is BIC, as players

have incentives to overbid the parts they do not want (see Figure 2). Therefore, by applying Theorem 4, the

proposition is proved.

Note that the use of “our” in the above theorem refers to our definition of the objective of the principal,

P(D, f), and the definition of the PDFs.

Conjecture 1 The ideality gap G(f) is positive.

Now, the problem with mechanismM0 is that each player has an incentive to overvalue (undervalue) the

portions of the cake he prefers less (more). This can easily be seen from Figure 2, which shows the strategy

of player 1; a similar observation can be made for player 2. The explanation is that, as long as player 1

(similarly for player 2) claims his utility of his preferred share is higher than the other player’s utility of that

same share, he will appear to be less satisfied with the received outcome than he actually is. This is due to

the discontinuity of the mechanism at points a11 = a21.

Let us consider Figure 3 to explain this in more detail. Suppose that player 1 really prefers portion 1.

Then he will be interested in areas where x11 is high, that is, mainly the bottom. Then, the upper area is

very good too (with values of x11 in [1/2, 1]). The right area is relatively bad (with values of x11 in [0, 1/2]).

If the other player is truthful, he will choose a21 = θ21, which is distributed all over [0, 1], but has more values

in the middle area. Obviously, player 1, who prefers portion 1, should claim a11 > 1/2 to avoid the left area

and have the right area instead.

If he chooses to be truthful, then he will obtain the vertical solid line on the right of the following figure.

But if he plays the dotted vertical line on the left, then he will almost always get better. Thus, he will not

be truthful and will play the dotted line.

Figure 5: Outcome of the mechanism
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Part of the problem comes from the fact that, when we are in the right side, since x12 = 0, player 1’s

utility only come from portion 1. But since he has undervalued his utility for portion 1, the linear program

considers that he is more disappointed than he actually is. Thus, player 1 is taking advantage of the fact

that the allocations of each portion are extreme, that is, often equal to 0 or 1.

To get around this problem, we modify the mechanism to include the following relationship:

xj1
xj2

= h

(
aj1
aj2

)
, j = 1, 2, (45)

where h (·) is increasing in its argument. To be more specific, we first impose the following two properties

on h, namely:

h (1) = 1, h

(
1

y

)
=

1

h (y)
,

that is, if aj1 = aj2, then xj1 = xj2, and permuting aj1 and aj2, implies that xj1 and xj2 must be also

permuted. Next, we specify the function h (·) as follows:

h (y) = yt1 ,

where t1 is a positive real number. The relationship in (45), then becomes

xj1(1− aj1)t1 = xj2a
t1
j1, j = 1, 2.

Since directly adding the above equations as constraints to linear program (39) may lead to an infeasible

program, we proceed differently and add them to the objective function in the form of penalty terms. We

denote by

t2γj = t2|xj1(1− aj1)t1 − xj2at1j1|, j = 1, 2,

these penalty terms, where t2 is a weight to be optimized.

Given these modifications, we can now define a parametrized mechanism Mt, where t = (t1, t2), defined

by the solution of the following linear program:

max
x
u1/2 + u2/2− δ − t2γ1 − t2γ2 (46)

subject to :u1 = a11x11 + (1− a11)x12

u2 = a21(1− x11) + (1− a21)(1− x12)

δ ≥ u1 − u2

δ ≥ u2 − u1

γ1 ≥ x11(1− a11)t − x12a
t1
11

γ1 ≥ x12a
t
11 − x11(1− a11)t1

γ2 ≥ x11(1− a21)t − x12a
t1
21

γ2 ≥ x12a
t
21 − x11(1− a21)t1 .

Note that if we let t1 go to zero, then we get xj1 = xj2, j = 1, 2. If t1 tends to +∞, then γj = 0, j = 1, 2,

and we are back to the linear program in (39).

Applying Algorithm (2), we obtain t∗1 ≈ 2 and t∗2 ≈ 1.5. Denote by σBNt∗ the corresponding Bayesian-Nash

equilibrium σBNt∗ . The principal’s objective value of mechanism Mt∗ at this equilibrium is given by

P(Mt∗ ◦ σBNt∗ , f) ≈ 0.564.

To assess this value, we can compare it to the other two previously computed values, namely,

P(M0 ◦ σBN , f) ≈ 0.543,

P∗ideal(f) = 0.611.
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We note that P(Mt∗ ◦ σBNt∗ , f) is somehow in the middle between the value achieved with mechanism M0

and the ideal value, which would have been obtained if the principal had known the two players’ types. The

improvement in the principal’s objective can be measured by

P(Mt∗ ◦ σBNt∗ , f)

P(M0 ◦ σBN , f)
≈ 1.04.

We have computed the Bayesian-Nash strategies at equilibrium in Figure 6.

Figure 6: Bayesian-Nash equilibrium for the computed optimal mechanism

As we see in this figure, the Bayesian-Nash equilibrium is closer to the truthful strategy profile than for

the mechanism M0.

6 Conclusion

In this paper, we introduced a new approach: the return function ϕ, for the computation of Bayesian-Nash

equilibria in the context of mechanism design. The conceptual developments shown here were triggered by

a problem of shift scheduling, where management is willing to account for some employee preferences when

allocating them to different shifts. The employees will be asked to submit their preferences and a system

will produce an allocation that also takes into account other elements, such as past allocation, seniority

and fairness. The numerical example presented here was meant to illustrate what can be done in this

area. Needless to say, a lot of development is still required before achieving a truly operational large-scale

system. For instance, the way we estimated the return function, especially its updating and its interpolation,

could definitely be improved by taking into account some specific features of the actual problem. Also, the

computation of the players’ best strategies is done by maximizing the utility of the return function. We used

a basic local optimizing approach, with the truthful action as the initial point. This can also be improved,

with, for instance, a sensitivity analysis.

Appendix: Proof of Theorem 6

Let ε > 0. We denote αki =
[ i∏
r=k+1

(1 − µr)
]
µk the weight of the observation made at iteration k for the

return function at iteration i, uin = un(ϕin(an)), uin = Exi
n
[un(xin)] and u∞n = u∞n (an). Then, we need to

show that limP(|uin − u∞n | ≥ ε) = 0. We know that

uin =

i∑
k=0

αkiu
k
n and

i∑
k=0

αki = 1 (47)
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First, we will prove that lim
i∏

r=0
(1− µr) = 0. As a matter of fact, if

∑
µi diverges (necessarily to +∞ since

µi is positive), then
∑

ln(1− µi) diverges to −∞. Thus, lim
i∏

r=0
(1− µr) = lim exp(

i∑
r=0

ln(1− µr)) = 0. As a

result, for any integer I, lim
I−1∑
k=0

αki = lim
i∏

r=I

(1− µr)
I−1∑
k=0

αk,I−1︸ ︷︷ ︸
=1

= 0.

Let us now prove that limE[uin] = u∞n . Note that we have the following inequality:

|E[uin]− u∞n | ≤
i∑

k=0

αki|E[ukn]− u∞n | (48)

Since we know that limE[uin] = u∞n , we know there exists an integer I1 so that for any i ≥ I1, we have

|E[uin]− u∞n | ≤ ε/4. Since
i∑

k=I1

αki ≤ 1, we now have:

|E[uin]− u∞n | ≤
I1−1∑
k=0

αki|E[ukn]− u∞n |+ ε/2 (49)

Moreover, since utility functions are bounded by a real number M , we know that |E[ukn]−u∞n | ≤ 2M . And,

as lim
I1−1∑
k=0

αki = 0, there exists a integer I2 ≥ I1 for which, whenever i ≥ I2, we have |
I1−1∑
k=0

αki| ≤ ε/(4M).

Therefore, we have ∀i ≥ I2, |E[uin]− u∞n | ≤ ε, which means that limE[uin]− u∞n = 0.

We also have |uin −E[uin]| ≤ |uin − u∞n |+ |u∞n −E[uin]|. Consequently, when i ≥ I2, if |uin − u∞n | ≤ ε, then

|uin − E[uin]| ≤ 2ε. Therefore,

∀i ≥ I2,P(|uin − u∞n | ≥ ε) ≤ P(|uin − E[uin]| ≥ 2ε) (50)

We can now use the Bienaymé-Tchebychev inequality to say that P(|uin−E[uin]| ≥ 2ε) ≤ V ar(ui
n)

4ε2 . Therefore,

the last thing we need to do is to prove that limV ar(uin) = 0.

In order to prove that, let δ > 0. Since V ar(uin) is positive, we will only need to show that for a high

enough n, the variance is less than δ. Notice that, since utility functions are bounded by M , their variances

are bounded by M2.

V ar(uin) =

i∑
k=0

α2
kiV ar(u

i
n) ≤M2

i∑
k=0

α2
ki (51)

Remark that αki =
[ i∏
r=k+1

(1− µr)
]
µk ≤ µk. Yet,

∑
µ2
i converges, which means that there exists an integer

I3 so that, for any i ≥ I3,
+∞∑
k=i

µ2
k ≤ δ/(2M2). Therefore, for any i ≥ I3, we have

i∑
k=I3

αki ≤ δ/(2M2). We

now have:

∀i ≥ I3, V ar(uin) ≤M2
I3−1∑
k=0

α2
ki +M2

i∑
k=I3

α2
ki (52)

Yet, ∀i ≥ I3,
I3−1∑
k=0

α2
ki ≤

( i∏
r=I3

(1− µr)
)2

, whose limits is 0. Therefore, there is an integer I4 ≥ I3, so that for

any i ≥ I3,
( i∏
r=I3

(1− µr)
)2

≤ δ/(2M2). From that we deduce that ∀i ≥ I4, V ar(uin) ≤ δ, which proves that

limV ar(uin) = 0, and that uin converges in probability to u∞n .
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