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Montréal (Québec) Canada, H3C 3A7

charles.audet@gerad.ca

October 2012

Les Cahiers du GERAD

G–2012–53

Copyright c© 2012 GERAD





Les Cahiers du GERAD G–2012–53 v

Abstract

Blackbox optimization typically arises when the functions defining the objective and constraints of
an optimization problem are computed through a computer simulation. The blackbox is expensive to
compute, can have limited precision and be contaminated with numerical noise. It may also fail to return
a valid output, even when the input appears acceptable. Launching twice the simulation from the same
input may produce different outputs. These unreliable properties are frequently encountered when deal-
ing with real optimization problems. The term blackbox is used to indicate that the internal structure
of the target problem, such as derivatives or their approximations, cannot be exploited as it may be
unknown, hidden, unreliable or inexistent. There are situations where some structure such as bound or
linear constraints may be exploited and in some cases, a surrogate of the problem is supplied or a model
may be constructed and trusted. This chapter surveys algorithms for this class of problems, including
a supporting convergence analysis based on the nonsmooth calculus. The chapter also lists numerous
published applications of these methods to real optimization problems.

Acknowledgments: This work was supported by NSERC grant 239436 and AFOSR FA9550-12-1-0198.
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1 Introduction

In many situations, one is interested in identifying the values of a set of variables that maximize or minimize

some objective function. Furthermore, the variables cannot take arbitrary values, as they are confined to an

admissible region and need to satisfy some prescribed requirements. Optimization studies problems of the

form:

min
x∈Ω

f(x) , (1)

where x represents the variables which must be taken in the admissible region Ω, a subset of Rn, and where

f(·) is the objective that we wish to minimize. The goal is to identify x ∈ Ω that has the least objective

function value f(x). The nature of f and of Ω dictates the type of optimization methods that should be used

to tackle a given problem. In general, properties such as linearity, convexity, monotonicity and integrality

may be used to identify appropriate optimization methods [68].

The paper focuses on optimization problems for which the nature of f or Ω is difficult or impossible to

exploit. These are called blackbox optimization problems. Frequent examples are when the functions defining

the problems are computed through a time consuming simulation. Some of the constraints defining Ω may

be evaluated prior to launching the simulation, and others may only be evaluated a posteriori. In [116, 112]

for example, launching a single simulation at a given tentative trial point x ∈ Rn to evaluate the objective

function value f(x) and to verify whether x belongs to Ω or not requires as much as 2000 computational

hours. In other situations, the simulation can fail to return a value even when the tentative x belongs to Ω.

In [37], 60% of the simulation calls return an error. There are also situations where the simulation is not

deterministic. The simulation might involve random numbers, and may return different values of f(x) for

the same input x. In [29], the objective function value represents the time required to perform a series of

tasks, and varies slightly even when the same conditions are prescribed.

There are situations where the evaluation of f is done through a blackbox simulation, but the problem is

not as ill-conditioned as in the above-mentioned examples. Model-based derivative-free methods target this

class of problems by constructing approximations of the objective function [44, 45, 46]. They do not assume

explicit knowledge of the derivatives, but assume existence of the derivatives. The book [47] on derivative-free

method distinguishes model-based and directional-based optimization method. The present work discusses

directional-based optimization methods for general blackbox optimization on which no assumptions are made

on the objective function or on the admissible region.

The chapter studies the optimization problem (1) and is structured as follows. Section 2 gives a high level

overview of some directional-based methods designed to solve blackbox optimization problems. Section 3

describes typical exploitable specificities of the target problem. In particular, specific types of constraints

and variables are discussed. Then, Section 4 describes how one can use surrogates and develop a model of the

target problem to ease the solution process. These tools are used to guide the optimization so that it consumes

less time evaluating the original expensive problem. That section also mentions work on the exploitation

of parallelism in direct-search methods. Section 5 presents the theoretical foundations upon which these

methods rely. The convergence analysis is hierarchical in the sense that the stronger the hypotheses on the

objective and feasible region, the stronger the resulting theoretical guarantees. Finally, Section 6 surveys

some selected published applications of these directional direct-search methods. Concluding remarks are

drawn in the final section.

2 Directional direct search methods

Direct-search methods were introduced more than half a century ago. They are named this way because

they interact directly with the function values, and do not attempt to use or estimate derivatives. Pioneer

methods include the famous coordinate search (Cs) method used by [62] on one of the first digital computers

back in 1952, the Nelder-Mead [122] and the Hooke and Jeeves [87] algorithms. This section first gives a

general overview of the Cs method, followed by some of its descendants.
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2.1 The coordinate search algorithm

Part of the structure of some modern direct search methods is present in the Cs method for unconstrained

optimization, i.e., problem (1) with Ω = Rn. This iterative method can be simply described as follows.

At iteration k ∈ {0, 1, 2, . . .}, the current best known solution is denoted by xk and called the current

incumbent solution. At the initial iteration, the starting point x0 ∈ Rn is supplied by the user of the method.

An initial step size parameter ∆0 > 0 is also supplied by the user.

Then, at each iteration, a total of 2n trial points are generated in hopes of improving the current in-

cumbent. Each trial point is obtained by varying a single coordinate of the vector xk by a fixed step size of

magnitude ∆k. These are called the poll points and belong to the set

Pk = {xk ±∆kei : i = 1, 2, . . . , n}

where ei is the i-th coordinate vector in Rn. The objective function f is then evaluated at each of these points,

and there are two possible outcomes. One possibility is that a trial point t ∈ Pk satisfying f(t) < f(xk) is

identified. In that case the iteraration is declared successful and xk+1 is set to t and the step size parameter

∆k+1 to ∆k. The alternate possibility is that all 2n trial points were tested, but none improved the objective

function value. In that case the iteration is said to be unsuccessful and xk+1 is set to xk, but the step size

parameter ∆k+1 is set to be half of ∆k. The iteration then ends, the counter k is incremented by one and a

new iteration is initiated.

This method is simple to implement. Furthermore, it may be applied to any unconstrained optimization

problem, without any assumptions on the smoothness of the objective function. The Cs algorithm is also

known under the name compass search [96]. Section 5 reports that even if this method may seem naive, it

is supported by a convergence analysis showing that it may produce a stationary point when the objective

function is locally strictly differentiable.

2.2 The pattern search class of algorithms

Development and analyses of direct-search methods were not intensive for a few decades, but renewed interest

occurred in the nineties. In [119], it was shown that the Nelder-Mead method could fail to converge to a

local solution, even on a strictly convex unconstrained two-dimensional minimization problem.

An unified framework was proposed in [139], generalizing the following direct search methods: Cs, Hooke

and Jeeves, multidirectional search [57] as well as an evolutionary operation method [38]. The framework was

called pattern search, or generalized pattern search (Gps), and one of the main contribution was to provide

sufficient conditions on the target problem ensuring convergence to a stationary point for unconstrained

optimization.

The Gps framework generalizes Cs by increasing its flexibility. The main algorithmic improvements are

the following.

1. The directions used to generate the poll set Pk are not restricted to the coordinate vectors.

2. When the iteration succeeds in improving the incumbent, the parameter ∆k+1 is allowed to increase or

to remain the same as ∆k.

3. At every iteration, the algorithm allows exploration at a finite number of trial points other than the

poll points.

The first improvement allows a richer set of polling directions. Lewis and Torczon [104] propose the use

of positive bases [54, 15] to generate the polling directions. Positive bases are not bases, but are minimal sets

of directions whose nonnegative linear combinations span Rn. The set of positive and negative coordinate

directions in Rn used by Cs is an example of a positive basis. The flexibility of the construction of the polling

directions is exploited in [13] for molecular geometry problems.

The second improvement allows the algorithm to dynamically adapt to the nature of the problem. Indeed,

if the initial step size ∆0 was chosen to be too small, then a series of successful iterations will increase ∆k



Les Cahiers du GERAD G–2012–53 3

and large steps will soon be taken. This modification was shown useful in practice, but the analysis of the

behaviour of the parameter ∆k gets more technical. Torczon [139] sets some rules on the way in which the

parameter is increased or decreased, including a requirement that the factor by which it is modified be a

rational number. She then gives sufficient conditions under which the limit inferior of the parameter ∆k goes

to zero as the iteration number k goes to infinity. This fundamental result is the first cornerstone of the

convergence analysis. The rationality requirement was later shown to be necessary for the analysis [14].

The third generalization is introduced for practical reasons. A user of a pattern search method is often

tempted to alter an optimization code to make it more efficient by integrating his knowledge of the target

problem. Modifications of the poll set Pk could lead to loss of the structure necessary for the theoretical

support. So, an additional exploration phase, later called the search step [37], is introduced at every

iteration. The search step allows the evaluation of the objective function at finitely many trial points,

located on a discretization of the space of variables. The discretization is called the mesh, and its coarseness

is parameterized by the step size parameter ∆k. The mesh is formally described in the next subsection.

2.3 The mesh adaptive direct search class of algorithms

There are two main practical and theoretical limitations to Gps. First, the directions used to construct the

mesh and the poll set need to be chosen from a fixed finite set D ⊂ Rn. The algorithm and its convergence

analysis heavily rely on this requirement. A negative consequence of limiting the polling directions is exposed

in [96] where Cs is applied to a modification of the Dennis-Wood function [59] and the iterates converge to a

non-stationary point. The objective function of this problem is simply the maximum of two strictly convex

quadratics in R2, and the problem is unconstrained. If one knew in advance the polling directions, it would

be easy to devise a similar example for Gps.

The second limitation of Gps is that it cannot handle general constraints. In fact, it can only treat explicit

linear constraints and bounds on the variables. In [23], the Mesh Adaptive Direct-Search (Mads) class of

algorithms is introduced to address these limitations.

In Mads, the role of the step size parameter ∆k is divided in two. That parameter is replaced by the

mesh and the poll size parameters ∆m
k and ∆p

k. As its name indicates, the poll size parameter is used to

construct the poll set Pk. The poll points are constructed around the current incumbent solution xk and

the distance separating the incumbent to each poll point is limited by ∆p
k. In comparison, that distance is

systematically equal to ∆k with Cs. The mesh size parameter dictates the coarseness or fineness of the mesh.

In Mads, ∆m
k is updated in a way that it converges to zero much faster than ∆p

k. The consequence is that

the tentative search and poll points can be chosen on a finer mesh than the mesh defined by the poll size

parameter ∆p
k.

As in Gps, Mads uses a fixed finite set of directions called D . Typically, D is composed of the 2n positive

and negative coordinate directions. At iteration k, the mesh is a discretization of the space of variables on

which all tentative search and poll points need to be selected. Formally, the mesh is defined as

Mk = {x+ ∆m
k Dz : x ∈ Vk, z ∈ NnD} ⊂ Rn,

where Vk denotes the set of trial points where the simulation was launched by the start of iteration k. That

set is also known as the cache as it contains the history of all evaluated trial points.

The poll set Pk is composed of mesh points whose distance (the infinity norm is frequently used) from

the current incumbent solution xk is bounded above by a constant c > 0 times the poll size parameter

Pk ⊆ {x ∈Mk : ‖x− xk‖ ≤ c∆p
k}.

Notice that if the constant c equals one, if ∆p
k = ∆m

k and if D = [I; −I], then the set on right-hand-side of

this inclusion corresponds exactly to the poll set Pk of Section 2.1, with the additional point xk.

The poll set Pk must contain at least n + 1 points since xk must lie in the strict interior of its convex

hull. An equivalent way of stating this last requirement is that the polling directions must form a positive

spanning set.
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Figure 1 illustrates the effect of different mesh and poll size parameters in R2. In all plots, the arrows

represent the directions of the positive spanning set D used to construct the mesh. The mesh is represented

by the intersection of the lines. The darker lines delimit the region in which the poll points must be chosen.

The incumbent solution xk is located at the intersection of the arrows at the centre of each subfigure.
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Figure 1: Examples of meshes in R2.

The leftmost figure represents the situation in which both mesh and poll size parameters are equal, and

in which the mesh directions of D are the positive and negative coordinate directions, i.e, it depicts the Cs

poll set. There is only one possibility to define the poll set with Gps.

The central figure represents an instance of Mads in which the mesh size parameter is half the poll size

parameter. The directions are once again the positive and negative coordinate directions, but the poll points

of Pk can be chosen with more flexibility as they do not need to be located at the endpoints of the arrows.

Any combination that contain xk in the strict interior of its convex hull can be chosen.

The rightmost figure is conceptually identical to the middle one, except that the mesh directions are not

the coordinate directions. Again, there is great flexibility in choosing the poll points inside the hexagonal

frame.

The key algorithmic element introduced in Mads is that the polling directions are not restricted to a fixed

finite set. As ∆m
k and ∆p

k converge to zero, the set of normalized directions which may be used to construct

the poll set Pk becomes dense in the unit sphere. In the leftmost figure, there are 32 − 1 mesh points from

which Pk can be chosen. In the central figure, with a ratio of 1
2 for

∆m
k

∆p
k

that number grows to 52 − 1. For a

ratio equal to λ ∈ N, that number reaches (2λ+ 1)2 − 1 for a generalization of this example.

Figure 2 gives a high-level description of a Mads algorithm. Aside from the blackboxes defining the

problem, the only element that the user must supply is a starting point x0, at which the simulation runs

successfully. As detailed in the next section, this does not mean that the initial point must be feasible, but

only requires that the simulation does not fail. This is modeled by requiring that f(x0) <∞.

In practice, a typical termination criteria for direct-search algorithms is based on an overall budget of calls

to the simulation, or on wall clock time. Another possibility is to terminate when the mesh size parameter

drops below a certain threshold.

The first instantiation of Mads, called LtMads [23] uses randomly generated non-singular triangular

matrices to generate the directions used to construct the poll set Pk. Three years later, the OrthoMads

instantiation [10] used Householder matrices to generate orthogonal maximal positive bases.
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Initialization
User-defined starting point: x0 ∈ Rn with f(x0) <∞.
Initial mesh and poll size parameters: typically ∆m

0 = ∆p
0 = 1.

Iteration counter: k ← 0.

While stopping criteria are not met
search and poll steps

search (optional)
Launch the simulation on a finite number of mesh points.

poll (optional if search was successful)
Launch the simulation on the set Pk of poll points.

Updates
Update the cache Vk+1, the incumbent xk+1 and the mesh and

poll size parameters ∆m
k+1 and ∆p

k+1.
Increase the iteration counter k ← k + 1.

Figure 2: High level description of the Mads algorithm for solving the optimization problem (1).

2.4 Sufficient decrease methods

As mentioned in the previous section, Mads generalizes Gps by decoupling the role of the mesh and poll size

parameters. An alternate strategy to allow a rich set of directions consists in removing the mesh requirement,

but in accepting a trial point as being the new incumbent solution only if the decrease in the objective function

value is sufficiently important. For continuously differentiable functions, such strategies were proposed and

analyzed in [111] and [72] as well as in the frame-based method described in [48, 127] and in the generating

set search (Gss) methods [96, 98].

For Lipschitz continuous functions, such sufficient decrease methods ensure a minimal displacement in

the space of variables when accepting a new incumbent. This displacement plays a role similar to that of the

mesh requirement and prevents the iterates to converge prematurely to an undesirable solution.

3 Exploitable specificities of the target problem

Even if the target problem is provided as a blackbox, there are situations where some structure is available

and may be exploited. This section lists some examples.

3.1 Integer and categorical variables

Integer variables can easily be handled by mesh-based methods such as Gps and Mads. Indeed, the mesh

Mk imposes a discrete structure on the space of variables. It suffices to make sure that the mesh points are

integers, and the natural stopping criteria consists in terminating as soon as the mesh size parameter drops

below the value one. This is illustrated by the two first plots of Figure 1. Using the coordinate directions

to define the mesh and an integral mesh size parameter ensures that all trial points satisfy the integrality

requirement.

Discrete optimization variables are said to be categorical if the objective function or the constraints

can not be evaluated unless the variables take one of a prescribed enumerable set of values. Categorical

variables differ from integer variables as they do not possess any natural ordering. These variables need to be

accompanied by a user-defined notion of neighbourhood, specific to the target problem. The Gps and Mads

algorithms are extended to allow such variables in [20] and [7], respectively. In these papers, the variables are

partitioned into three groups: continuous, integer and categorical variables. There is no special treatment

for the continuous variables. The integer variables are handled by making sure that the mesh only contains
integer points. This is done easily by specifying a minimal mesh size for these variables. The user-defined

neighbourhood is used to defined the poll points of the categorical variables.
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3.2 Explicit bound and linear constraints

Gps algorithms are adapted in [105, 106] to handle bound and linear inequalities. The extension consists

of making sure at each iteration that the poll directions positively span the tangent cone at the nearly

active constraints. In bound constraint optimization, it suffices to take the positive and negative coordinate

directions. For linear inequalities and equalities, the explicit knowledge of the constraints is used to generate

the tangent cone [103]. Degeneracy issues can be handled by the strategy proposed in [11].

3.3 General constraints

Of the methods enumerated above, only Mads can handle general nonsmooth constraints. The union of nor-

malized Mads poll directions grows asymptotically dense in the unit sphere, and this allows the treatment of

constraints by the extreme barrier in which infeasible trial points are simply rejected from consideration. This

aggressive treatment of constraints is necessary when the simulation cannot be launched when a constraint

is violated. For example, a simulation that computes logarithms or square roots cannot be trusted when

negative values are entered. These are called unrelaxable constraints. There are also practical situations

where the simulation fails inexplicably. These are often refereed to as hidden constraints [40].

The extreme barrier has the merit of being simple to implement, but there are more subtle ways to handle

the relaxable constraints whose amount by which they are violated is available. For continuously differentiable

functions, augmented Lagrangian approaches are presented in [107, 97] for Gps and Gss, respectively.

In [67, 66], a filter method is proposed for nonlinear programming. The main component of a filter method

is a constraint violation function h that aggregates the violations of each individual constraint. The function

h is nonnegative, and equal to zero only when the corresponding trial point is feasible. Filter methods exploit

tradeoffs between the reduction of the objective f and the constraint violation h. Filter methods are adapted

to Gps [22, 9] and to frame-based methods [56].

More recently, another mechanism called the progressive barrier was proposed [24] to treat nonsmooth

quantifiable constraints. The progressive barrier imposes a maximal threshold on the constraint violation h

which is progressively reduced. Trial points whose constraint violation value exceed the threshold are rejected

from consideration. Among all infeasible trial points that are not rejected by the progressive barrier, a local

exploration is conducted around the one with the best objective function value.

An hybrid method is presented in [26] for the situation where the initial point x0 does not satisfy all

of the quantifiable constraints. Under this strategy, the constraints are initially handled by the progressive

barrier, and as soon as an individual constraint is satisfied by an incumbent solution, then the treatment of

that constraint is done by the extreme barrier.

3.4 Minimax optimization problems

The lack of differentiability may come from a variety of sources. One one them occurs when the objection

function of Problem (1) is obtained by taking the maximum of finitely many functions f i : X → R∪{∞} for

i = 1, 2, . . . , q:

f(x) = max{f1(x), f2(x), . . . , fq(x)}.

The maximum operator introduces nondifferentiability, even if the finitely many functions are differentiable.

Minimax optimization problems can be used to model worst case scenarios: one may wish to minimize the

highest possible loss, i.e.., to minimize the largest of the f i(x) values..

This class of problem is in [109] in the case where Ω is defined by linear constraints, and the functions

f i are twice continuously differentiable. The finite minimax structure is exploited by a smoothing technique

based on an exponential penalty function.

More recently, [83] studies the unconstrained case where the functions are continuously differentiable.

They exploit the structure of the problem by identifying the active manifold and then treat the objective as

a smooth function restricted to the manifold.
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3.5 Multi-objective optimization and trade-off studies

There are situations where one is interested in analyzing the tradeoffs between multiple objectives f (p), p =

1, 2, . . . , q. There is no single objective function that encapsulates the totality of the design process. In such

a situation, the goal of the optimization is not to produce a single solution, but to produce the collection

of Pareto undominated solutions. The required computational effort increases rapidly with the number of

objectives. A feasible solution x is said to be dominated by another x′ ∈ Ω when f (p)(x′) ≤ f (p)(x) for every

objective functions with a strict inequality for at least one objective function. The Pareto set is defined to

be the set of undominated solutions.

The first direct search algorithm for biobjective optimization was introduced in [30] and then generalized

to more than two objectives in [31] by incorporating the normal-boundary intersection [53] technique. The

method approximates the Pareto front by launching a series of optimization on single-objective reformulations

of the problem. A different mechanism is proposed in [51].

In [27], two strategies are developed to analyze the sensitivity of an optimal solution to general con-

straints, including bounds on variables, with the help of a direct-search solver. A simple method performed

immediately after a single optimization by inspecting the cache, and a detailed one performing biobjective

optimization on the minimization of the objective versus the constraint of interest. The resulting analysis

helps in identifying the relative importance of the constraints.

4 Tools for dealing with costlty blackboxes

In addition to the specificities outlined in the previous section, there are situations where additional tools

are available. This section discusses surrogates, models and parallelism.

4.1 Static surrogate functions

In blackbox optimization, the functions defining the target problem are expensive to evaluate. A frequently

used strategy consists in designing a second blackbox optimization problem called the surrogate. A surrogate

needs to share some similarities with the expensive optimization problem, but must be cheaper to evaluate.

Static surrogates may be constructed by reducing the number of internal iterations, or through simplified

physics model for example. The surrogate management framework [58, 37] manages the interplay between

the fidelity of the surrogate problem to ensure that the optimization process converges to a solution of the

original target problem. The variable precision of a surrogate is exploited in [125] to reduce the overall

computational effort.

In the context of Gps and Mads algorithms, the surrogate may be used at many places in the algorithm.

A first obvious usage consists in solving the surrogate optimization problem and to use the best solution(s)

as starting points for the optimization of the true problem. Other usages consist in solving subproblems on

the surrogate, and only to evaluate the true function at the solution of the subproblem. For example, in [20],

an extended poll is conducted when categorical variables are modified. The extended poll can be viewed

as a descent in a subspace of variables, using the surrogate problem. In [16], the variable neighborhood

search (VNS) metaheuristic [120, 121] is used to attempt to escape locally optimal solutions. The descent is

performed on the surrogate problem since VNS may be expensive in terms of function evaluations.

In addition, surrogates may be used at every iteration to order the tentative search and poll points so that

the most promising ones are treated first. The list of tentative points is sorted with regards to their surrogate

values and then, the expensive simulation is launched on the most promising ones first. An ordering in the

presence of constraints is proposed in [43]. The process terminates as soon as a new incumbent is generated,

thereby reducing the number of expensive function calls.

Notice that for a surrogate to be efficient, it does not need to be an accurate model of the true problem.

The introduction of the chapter mentioned a problem [29] in which the objective function value represents

the time required to perform a set of tasks. The surrogate used in that work consists of the time to perform
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a small number of these tasks. The units for the surrogate values are seconds, and the units for the true

simulations are hours. The surrogate value is not at all a good approximation, but it is very useful as it

shares some similarities with the true problem.

4.2 Dynamic models

Static surrogates are usually supplied by the developer of the optimization problem. An alternate way to

define a surrogate is to construct approximations of the objective and constraints. These models are then

used in the search and poll steps of Algorithm 2 as detailed in the previous subsection. As the algorithm

is deployed on a problem, more and more simulations are launched, and the newly collected information can

be used to recalibrate and improve the fidelity of the models. This dynamic way of constructing models is

done in the update step of algorithm 2.

A natural option is to consider the quadratic models described in [52, 43] which are constructed and

updated by considering past evaluations from the cache that are close to the current incumbent solution. For

target problems that are not noisy, quadratic models may lead to significant improvements and increase the

speed of convergence to a local solution.

Other strategies to dynamically construct models include DACE Kriging [34, 110, 134, 50], treed Gaussian

processes [78] and radial basis functions [33, 128, 123, 142].

4.3 Parallelism

Most modern machines now have multiple processors. A first parallel synchronous version of Gps is presented

in [57]. The Asynchronous Parallel Pattern Search algorithm Apps [88, 80, 95] removes this synchronization

barrier. Adaptation to Gss are presented in [82, 81]. The asynchronous versions are especially useful when

the blackbox has heterogeneous computing times depending on the trial point where it is evaluated. A

convergence analysis is presented in [99] for the smooth case.

Based on a remark of [60] stating that the parallel variable distribution of Ferris and Mangasarian [63]

should be paired with Gps, [25] proposes another strategy to exploit parallelism.

5 Theoretical foundations

None of the methods surveyed in this paper can guarantee convergence to a global minimizer of Problem (1).

As stated in its title [136], global optimization requires global information. In blackbox optimization there

is no information available, even less global information.

The convergence analysis looks at the sequence of trial points, and studies some of its accumulation

points as the iteration number goes to infinity. Of course, this is a theoretical analysis since in practice one

cannot let k → ∞. But the analysis is useful as it shows limiting behaviors. Based on local properties of

the objective and constraints, the analysis ensures that some necessary optimality conditions are met. This

section summarizes the analysis for smooth and nonsmooth problems.

5.1 Smooth unconstrained optimization

Like Newton’s method for unconstrained optimization, the Cs and Gps algorithm may get stuck at saddle

points if the polling directions are not properly chosen. For example, if Newton’s method or Cs is applied to

the unconstrained minimization of the quadratic function f(x) = x1x2 from the origin, then the sequence of

iterates stagnate at the origin which is a stationary point.

However, [5] shows that Gps and Cs cannot converge to a strict local maximizer, unlike Newton’s method.

This may appear to be surprising that a method using first and second derivatives of a C2 function ensures

weaker convergence results than a method that uses only function values, without using nor estimating

derivatives. This study is generalized in [6] for Mads.
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It is shown in [61] that if ∇f(·) is Lipschitz continuous, then at an unsuccessful iteration k of Gps,

∇f(xk) is bounded above by a constant times the current mesh size parameter, whose limit inferior converges

to zero [139]. An interesting consequence of this result is that it provides a theoretical justification of the

stopping criteria based on a small mesh size parameter.

5.2 Nonsmooth analysis for unconstrained optimization

As mentioned in the introduction, the target problems for which the direct-search methods are designed are

typically blackbox problems. The function values returned by the blackbox are the result of an expensive

simulation. There is no reason to believe that they should be differentiable nor even continuous functions.

Therefore, the convergence results outlined in the previous subsection are certainly true, but are somewhat

incompatible with the target problems.

The paper [21] studies the convergence of the Gps method under les restrictive assumptions for uncon-

strained optimization. They propose a hierarchy of convergence results based on local smoothness of the

objective function. In order to achieve this, they consider the set of unsuccessful iterations, i.e., the itera-

tions where the incumbent solution xk is shown to have an objective function value less than or equal to

that of the neighbouring poll points in Pk. Such an incumbent is call a mesh local optimizer. They then

consider subsequence of unsuccessful iterations for which the corresponding incumbent solutions converge to

a limit point denoted x̂ and for which the corresponding subsequence of mesh size parameters converges to

zero. Such a subsequence of iterates is called a refined subsequence, and x̂ a refined point.

The fundamental convergence result does not require any assumption on the objective function. It is

called the zero-th order result, and states that x̂ is the limit of mesh local optimizers on meshes that get

arbitrarily fine.

The Clarke calculus for nonsmooth function [42] generalizes notions such as the directional derivative

and the gradient to non-differentiable functions. The fundamental convergence theorem of [21] states that

the Clarke generalized directional derivative at a refined point x̂ in a direction d used infinitely often in the

refining subsequence

f◦(x̂; d) := lim sup
y→x̂, t↓0

f(y + td)− f(y)

t

is nonnegative, if f is locally Lipschitz near x̂. The convergence analysis then progressively adds assumptions

on f such as local regularity and strict differentiability [102].

The convergence analysis of Mads [23, 17] strengthens this result to f◦(x̂; d) ≥ 0 for every direction
d ∈ Rn. This last result can be stated in an equivalent way as follows: 0 belongs to the generalized gradient

of f at x̂. A similar convergence analysis is developed for the DIRECT algorithm [64] and to sampling

methods for perturbed Lipschitz functions [65].

5.3 Nonsmooth stationarity for constrained optimization

In smooth optimization, a necessary optimality condition states that if x̂ is a local minimizer of the function

f over the domain Ω ⊆ Rn, then the directional derivative of f at x̂ in every tangent direction d to Ω is

nonnegative:

f ′(x̂; d) ≥ 0, for every d ∈ TΩ(x̂).

Another way to see this optimality condition is to state that there are no feasible descent directions at x̂.

Using the Clarke calculus, and generalizations of the tangent cone, [23] shows that the refined point x̂

generated by the Mads algorithm under the extreme barrier satisfies

f◦(x̂; d) ≥ 0, for every d ∈ TH
Ω (x̂)

under the assumption that f is locally Lipschitz near x̂, and where TH
Ω (x̂) is called the hypertangent cone [89,

130], and is a nonsmooth generalization of the tangent cone. The Rockafellar upper subderivative [130] is

defined for non-Lipshitz functions, and is analyzed in [141] to enrich the convergence hierarchy.
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When handling some relaxable quantifiable constraints with the progressive [24] rather than the extreme

barrier, the method may generate feasible or infeasible refined points. The same necessary optimality con-

ditions are guaranteed for the feasible refined points. However, the analysis shows that an infeasible refined

point x̂ satisfies

h◦(x̂; d) ≥ 0, for every d ∈ TH
X (x̂)

where h is the constraint violation function mentioned in Section 3.3, and X is the domain corresponding to

the unrelaxable or non-quantifiable constraints, and are handled by the extreme barrier. Roughly speaking,

this suggests that the algorithm reached at a local minima of the constraint violation. This occurs in particular

when there are no feasible solutions to the optimization problem.

6 Applications to real blackbox problems

The methods discussed above were created to be applied on real blackbox optimization problems. The

present section lists some of these applications. They are presented in non-disjoint groups and the list is not

exhaustive. Other applications can be found in the introductory chapter of [47].

Some of these applications were solved by the NOMAD [8, 100, 101] open source C++ implementation

of Mads for single or biobjective blackbox optimization problems of the form (1). NOMAD integrates

the features listed in the present paper, as well as others such as latin hypercube sampling [138], periodic

variables [28] and batch or library modes.

6.1 Shape optimization

The PhD thesis [112] applies the surrogate management framework mentioned in Section 4.1 to identify

the shape of a hydrofoil trailing-edge that minimizes the aerodynamic noise propagated to the far field.

Computations require large-eddy simulations. Unconstrained results for laminar flow are presented [114], and

deformation of upper and lower surfaces of the trailing-edge in laminar flow with lift and drag constraints are

analyzed in [115] resulting in as much as 70% reduction in noise. Reynolds-averaged Navier-Stokes calculations

are incorporated for constraint evaluation to make the optimization more efficient in [116] leading to a 89%

noise reduction.

A framework for coupling optimal shape design to time-accurate three-dimensional blood flow simulations

in idealized cardiovascular geometries is presented in [113]. Results on idealized Y-shaped baffle for the

Fontan surgery for children with congenital heart defects are shown in [143]. Uncertainties in the simulation

input parameters as well as shape design variables are accounted for in [132] using the adaptive stochastic

collocation technique of [131].

In [126], the evolution and propagation of cracks in two dimensional elastic domains are studied. The

simulation requires a finite element discretization and a set of partial differential equations with nonlinear

boundaries. The ultimate goal is to determine the optimal shape resulting in a crack path with as much

energy as possible without completely destroying the specimen.

6.2 Positioning problems

There are situations in which the blackbox is expensive to evaluate, but some properties of the variables

are know and may be exploited. One such family of problems are those where some or all of the variables

represent spacial coordinates. Over the last years, direct-search methods were applied to some nonsmooth

positioning problems.

Following the 2004 Indian Ocean tsunami, an effort lead by the National Oceanic and Atmospheric

Administration’s Pacific Marine Environmental Labs to identify the optimal position to deploy tsunamy

detection buoys in the Pacific Ocean [135]. The question was formulated as an optimization problem, where

the variables where the coordinates of the buoys, and the objective was to maximize the warning time to

coastal cities in the event of a tsunami. Constraints on water depth and bottom roughness were incorporated
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and NOMAD would then position a selected number of buoys within a sub-region of the ocean so as to

optimize the detection time for a set of unit sources.

In [70] a water supply problem and a hydraulic capture problem are proposed as a challenge to blackbox

optimization community. The objective of the water supply problem is to minimize the cost to supply a

specific quantity of water subject to a set of constraints on the net extraction rate, pumping rates, and

hydraulic head. The decision variables are the two-dimensional locations and pumping rates of the wells, as

well as the number of wells. The objective of the hydraulic capture CP is to minimize the cost needed to

prevent an initial contaminant plume from spreading by using wells to control the direction and extent of

advective fluid flow. The methods used in the study are APPS [88], Boeing DE [34, 50], DIRECT [90, 71],

IFFCO [75, 93], NOMAD and NSGA-II [55]. Additional tests with IFFCO are conduceted in [69].

More recently, researchers [41, 117] use snow-monitoring devices to estimate the quantity of water stored

in snow over a vast domain. When the accumulated snow melts in spring, important quantities of water are

liberated, and a precise estimation is necessary for efficient management of hydroelectrical dams. In [12],

the question of identifying the optimal position of these snow-monitoring devices is studied, to minimize the

overall kriging approximation error of the quantity of water. Different strategies of exploiting the fact that

the variables represent locations are presented.

In [118], the question of positioning antennas in an irregular-shaped domain and assigning radio frequencies

in a telecommunications network is studied as a blackbox optimization problem. The proposed methodology

combines Mads for the positioning problem with a tabu search for the radio frequencies.

6.3 Parameter estimation

There are situations in which a model is characterized by a set of parameters. The question of assigning good

values to the parameters may be formulated as an optimization problem in which the difference between

observed and actual data points needs to be minimized. Below are examples of such applications.

In [108] An automated flow is described for total-ionizing dose (TID)-aware SPICE model generation

that includes TID response and its dependence on process variability and layout. A differential evolution

algorithm is adapted for global exploration, and a modified Gps strategy is introduced for local exploration.

The optimizer efficiently reduces the value of different kinds of objective functions in the extraction at

reasonable cost and avoids premature convergence in most practical cases.

Facial recognition systems are studied in [39]. Given a database of image samples of known individuals

the task is to design a system that for any input image, identifies the input with one of the known individuals.

The classification problem involves designing a function to map feature vectors to the appropriate class label.

The Mads algorithm was shown to outperform heuristics both in accuracy and processing time.

In [137], a conditional averaging approach to estimate the parameters of a land surface water and energy

balance model is presented. The parameters are then used to classify net radiation and precipitation. The

paper proposes an objective function that approximates the temperature-and moisture-dependent errors in

terms of atmospheric forcing, surface states, and model parameters. Minimization of the approximated error

yields parameters for model applications.

A method for determining the fire front positions for optically thin flames and the rate of spread of

forest or vegetation fires is presented in [91]. The first step of the method measures the heat fluxes coming

from the flame by a specific thermal sensor in four horizontal directions. In the second step, these heat

fluxes are approximated by a radiative transfer equation. Then, the positions of the fire front and the flame

characteristics are determined by applying an inverse method. The rate of spread is deduced by applying a

least-square regression on the position values.

In [84], a method for evaluating the kinetic constants in a rate expression for catalytic combustion appli-

cations using experimental light-off curves is presented. The method uses a finite element reactor model to

simulate reactor performance. The heat and mass transfer models used account for developing flow in the

entrance region. A Gps algorithm is used to determine the best fit parameters.
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6.4 Tuning of algorithms

Many algorithms depend on a set of parameters. As long as the parameters satisfy some prescribed re-

quirements, the algorithm may be trusted to perform adequately. The question of finding good parameter

values has been studied under different names, including parameter tuning, software automatic tuning and

parameter optimization. Direct-search methods are used in [85] to optimize computations involving matrices.

In [29], the question of adjusting the four trust-region algorithmic parameters so to minimize the overall com-

putational time to solve a large collection of CUTEr [77] test problems was studied and solved using NOMAD.

The sensitivity to the parameters was studied in [76].

A more general blackbox formulation of this question is proposed in [18] trough the Opal framework

and applied to the DFO algorithm [44]. The user of the Opal framework must supply a target algorithm

together with a set of metrics defining the notions of acceptable parameter values and of performance of the

algorithm as well as a collection of representative sets of valid input data for the target algorithm.

Parallelism may be used at various levels within the Opal framework. It may be used at the blackbox

solver level to concurrently test parameter values, or it can be used to assess the quality of a set of parameters

on different test problems. These two strategies and a combination of both are studied in [19].

The Opal framework is applied in [124] on a matrix multiplication algorithm where optimization with

respect to blocking, loop unrolling and compiler flags takes place. This application requires the use of

categorical variables.

A methodology based on variable selection and a sensitivity analysis of inputs is applied on several

instructive data sets, and a analysis of automatic computer code tuning is presented in [79]. A set of

extensible and portable search problems in automatic performance tuning is proposed in [32].

6.5 Engineering design applications

The papers [36, 35] and thesis [133] study a design problem of interest to Boeing. It consists of minimizing

a vibration measure of a helicopter rotor blade. A simplified surrogate simulation code is used, requiring

only a few minutes in contrasts with hours for the true simulation. In addition, approximately 60% of the

simulation calls fail to return a value. This work is the first to illustrate the use of the surrogate management

framework [37].

Categorical variables are studied in [94] to minimize the power required to maintain heat shields at

given temperatures in a thermal insulation system. Variables defining this optimization problem include
thicknesses, temperatures but also the types of materials used as insulators as well as the number of shields.

This means that the number of variables defining the problem is itself an optimization variable. Nonlinear

constraints are considered in [4]. A formulation of the problem without the use of categorical variables is

presented in [3].

The environmental impact of a commercial aircraft departure is defined by noise nuisance in the pro-

tected zones near airports, local air quality, and global warming. A multiobjective, constrained, nonlinear

optimization problem is formulated to obtain optimal departure procedures in [140].

Spent potliners are a toxic byproduct generated by the aluminum industry. A process treatment of spent

potliners is presented in [49], and the seven input parameters are optimized over four blackbox constraints.

The simulation requires the Aspen simulation software [1].

The Mads algorithm is applied in [92] in combination with full-field electromagnetic simulations to tailor

the broadband spectral response of gold and silver split-ring resonator metamaterials.

In a series of paper [73, 74, 129], the FactSage thermodynamic software [2] coupled with the NOMAD
software to optimize alloy and process designs. Mono and biobjective constrained problems are studied. The

FactSage database contains thermodynamic properties as functions of temperature, pressure and composition

for over 5000 pure substances and hundreds of multicomponent solid and liquid solutions.
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7 Discussion

Since the nineties, there has been a renewed interest in direct search methods for nonsmooth blackbox op-

timization without derivatives. Recent methods can now handle general constraints, multiple objectives,

integer and categorical variables, and can exploit models and surrogates to guide the optimization. An

important effort has been deployed to embed the methods into a general framework and to develop a con-

vergence analysis for this framework. Many of these methods are now supported by a hierarchical analysis

that ensures necessary stationary conditions based on local properties of the objective and constraints.

Section 6 shows that there are numerous applications of these optimization methods on real problems.

With only a few exceptions, most of these blackboxes are not openly distributed to the optimization commu-

nity. Some of them use proprietary codes, others can only be released internally. Consequently, there are not

many real blackbox optimization problems that can be shared and used for benchmarking different methods.

Comparing direct search methods for blackbox optimization on smooth problems from the CUTEr [77]

or from the Hock and Schittkowski [86] collection (or on some perturbed variants) is not ideal, as these

problems do not possess the same kind of difficulties than blackbox problems without derivatives from real

applications. Hopefully, more and more real test problems will be shared to help developers to design more

efficient optimization methods.
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