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Abstract

The MaxSumSum (maximum diversity) problem consists of the selection of p facilities among n can-
didate locations in a way that the total sum of the distances between each pair of the located facilities
is maximized. The Basic Variable Neighborhood Search heuristic (BVNS) has already been applied to
solve this problem with success. In this work we have developed a Greedy Variable Neighborhood Search
heuristic which adds a new type of plateau search mechanism to its general framework. This newly
incorporated local search technique helps the exploration of the solution space and facilitates finding
higher quality solutions. The proposed solution procedure further improves the already high performance
of the BVNS and finds new improved solutions for several of the largest benchmark datasets in the literature.

Key Words: Combinatorial optimization, Dispersion problems, Metaheuristics, Variable Neighborhood
Search.
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1 Introduction

In the family of the dispersion problems, given a set of n vertices we intend to select a subset of size p in a way

that a function of the distance among the selected vertices is maximized. This is useful when some measure

of diversity in the solutions is desirable. For instance in the logistics context it can be used in the location

of missile silos where dispersion can reduce the chances of all of them being attacked by an attacker or for

locating obnoxious facilities to be far from population zones [4]. The dispersion can also be a desirable factor

when it comes to franchise location problems where we intend to avoid the cannibalization effects within the

chain. The difference is not always translated into the physical distance. For instance dispersion models can

also be used in order to design a portfolio of new products where it is desirable to enter the market with

a group of products which are as dissimilar as possible in terms of the quality, price, shape etc. Another

example would be in multi-objective problems where the decision maker may be interested in selecting a

collection of solutions as far as possible for each objective [13].

Erkut and Neuman [5] propose four different types of the dispersion models based on different dispersion

metrics. The first one is the MaxMinMin problem which maximizes the minimum distance between each pair

of facilities. The second one is the MaxSumMin which seeks to maximize the sum of the minimum distances

from each facility to its closest neighbor. The third formulation is called MaxMinSum which takes the sum

of the distances from each facility to all its neighbors, and maximizes the minimum sum of the distances.

Finally the fourth formulation corresponds to the MaxSumSum which aims at maximizing the sum of all the

hub distances for all located facilities. This model tries to locate p facilities far from a given set of nodes and

far from each other and is the one studied in this paper.

Hansen and Moon prove that the discrete version of the MaxSumSum p-dispersion problem on general

networks is strongly NP-complete, by reduction to the stable set problem [2, 5, 9, 10, 14]. Yet, metaheuristics

have shown to be very successful in finding high quality solutions to this problem and have been widely

discussed and compared in the literature [1, 9, 10]. An extensive comparison is done by Mart́ı et al. [10]

where they compare 10 heuristics and 20 applications of metaheuristics for this problem. They conclude that

the Basic Variable Neighborhood Search (BVNS) method by Brimberg et al. [2] and the Iterated Tabu Search

(ITS) method by Palubeckis [12] are the most powerful applications of metaheuristics.

The ITS [12] applies a tabu search step followed by a local search in case a better incumbent solution

has been found. Then a perturbation procedure is applied by swapping a random number of selected and

unselected points which is similar to the shake procedure in VNS except that the shake size is random at each

iteration.

The VNS method applied by Brimberg et al. [2] to the heaviest k-subgraph problem (HSP) can also be

adapted to solve the MaxSumSum problem. In fact HSP is more general than the MaxSumSum problem

as the edge weights do not have to represent distances and the graph is not necessarily fully connected.

They compare the basic VNS (BVNS), skewed VNS (SVNS) and the greedy add and greedy drop construction

procedures followed by VNS, and finally conclude that the BVNS is the overall best method. The BVNS consists

of a random shaking perturbation strategy followed by a local search construction phase. Their data structure

allows an efficient update of the values and thus has also been applied in this paper. The BVNS is among

the most successful methods to address the MaxSumSum problem and in this work we further improve the

capabilities of the VNS by developing more elaborated modules.

Another successful recent method is the Iterated Greedy metaheuristic (IG) and its fine-tuned version

(TIG) by Lozano et al. [9] which generates a sequence of solutions by iterating over greedy construction and

destruction phases. This method has not been considered in the comprehensive literature review of Mart́ı et

al. [10].

Finally, Wang et al. [14] compare the most successful candidate methods for the MaxSumSum problem

with their Learnable Tabu Search method guided by Estimation of Distribution Algorithm (LTS-EDA).

Their method can extract knowledge during the tabu search procedure and adapts the search structure. The

clustered EDA is a learnable constructive method in order to create new starting solutions, coupled with the
TS as an improvement method. They use either some of the executable codes provided by various authors or
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code the suggested algorithms in the literature themselves, and compare all the metaheuristics including the

ITS, VNS, TIG and LTS-EDA under the same conditions. Their final comparison shows that the LTS-EDA

obtains the best improvements over the existing large benchmark test problems. The best results are obtained

in the long run version of the experiments, that will be used as the best ever solutions in the literature in

Section 4.

In Section 2 we describe the problem in graph theoretical terms followed by its mixed integer formulation.

Section 3 presents a detailed explanation of our proposed greedy VNS heuristic solution procedure for the

MaxSumSum p-dispersion problem. Then we discuss our computational experiments on the largest known

benchmark test problems and finally conclude the paper by highlighting our contributions and suggestions

for future research.

2 Problem statement and mathematical formulation

This section expresses the MaxSumSum p-dispersion problem in graph theoretical terms and then presents its

respective mathematical formulation. Let V = {vi,∀i = 1, . . . , n}, be a set of n vertices (potential locations)

and vi representing each member of this set. Let E be the set of
(
n
2

)
edges of an undirected and fully

connected graph G(V,E), with de ≥ 0 representing the distance over each edge e ∈ E. The value p is an

integer such that 3 ≤ p ≤ |V |. We define S as any subset of p vertices such that S ⊆ V, |S| = p. The subset

of the vertices not present in the current solution is defined as S̄ such that S̄ = V \ S, |S̄| = n− p.

The objective function value f(S) is defined as the total sum of the distances among all the p selected

vertices induced by the subset S:

f(S) =
∑
vi∈S

∑
vj∈S

d(vi, vj).

The MaxSumSum p-dispersion problem intends to find the optimal subgraph G(S∗, E(S∗)), where:

S∗ = arg maxS f(S).

The MaxSumSum p-dispersion problem could be modeled as the following 0-1 mixed integer program as

suggested in [5]:

max

n∑
i=1

Zi

s.t. Zi ≤Mxi 1 ≤ i ≤ n

Zi ≤
n∑

j=1

d(vi, vj)xj 1 ≤ i ≤ n

n∑
i=1

xi = p

xi = {0, 1} 1 ≤ i ≤ n,

where xi is a binary decision variable defining if vertex vi is selected, d(vi, vj) is the distance between any

pair of the located facilities at locations i and j and M is a sufficiently large number which could be set as

the sum of the p largest distances among the n vertices. The distances between all the vertices are taken as

an input and stored in an n× n upper-triangular matrix with d(vi, vi) = 0.

3 VNS for the p-dispersion-sum problem

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuristics which is based

on the idea of a systematic change of the neighborhood in order to escape from the valleys surrounding local
optima, followed by a local search to find improved solutions. This general method has been proposed by
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Mladenović and Hansen [11] and has proven to lead to very successful heuristics for solving large combinatorial

programs with applications in location theory, cluster analysis and several other fields. For a recent survey

of the theoretical developments and applications including several hundred references see [7, 8].

The Basic Variable Neighborhood Search method (BVNS) has already been applied to the heaviest k -

subgraph problem and has shown to be among the most efficient methods compared to other heuristics for

the maximum diversity problem [2, 10]. Brimberg et al. [2] suggest the examination of different VNS strategies

and also extensive experimental testings of VNS on different types of graphs as a future extension to their

work. Therefore, we have decided to develop a more elaborated heuristic method within the VNS framework

that is well-suited to the MaxSumSum p-dispersion problem.

In order to represent the solution at each step of the heuristic we use the data structure suggested in [2].

The solution is represented by an array of the n indices corresponding to each vertex or candidate location,

where the first p elements correspond to the subset of the current solution S.

The solution space U is represented by the
(
n
p

)
subsets of V with cardinality p. In order to apply VNS a

metric function is defined to evaluate the distance between any two solutions S and S′:

δ(S, S′) = δ(S′, S) = |S \ S′|,

i.e, the Hamming distance between the indicator vectors.

Based on the metric distance function defined above, the neighborhood of size k of a solution S is defined

as:

Nk(S) = {S′ ∈ U |δ(S, S′) = k}; k = 1, 2, . . . ,min{p, n− p}.

Throughout this paper the following notations are used:

• Sbest/cur: the best/current solution set corresponding to the best/current objective function value;

• f(Sbest/cur): the best/current objective function value that corresponds to the sum of the distances

among all the selected vertices in the best/current solution set S;

• W (vi): the sum of the distances from any vertex vi (i = 1, . . . , n) to all the vertices in the solution set

S;

• vexit: the vertex inside the solution set that is a candidate to leave the solution set (vexit ∈ S);

• venter: the vertex outside the solution set that is a candidate to enter the solution set (venter ∈ S̄).

These values are first computed at the construction of the initial solution and are updated each time a

new solution is found.

In Algorithm 1 we define our VNS function and then in the following sections we explain in details the

functions embedded in our general framework. The stopping criterion is the total execution time tmax and the

already elapsed cumulative time in the overall procedure is noted by telapsed. The kmin and kstep (step size)

parameters are set by default to 1, and the kmax (maximum shake size) is set to a coefficient of min{p, n−p}
as discussed later.

3.1 Initialization

The initial solution could be created at random or in a greedy manner. Based on the random method the

initial solution is simply created by choosing p vertices at random.

Two Greedy construction heuristics have been widely used in the literature in order to create initial

solutions for the dispersion problems [6]. The Greedy deletion heuristic starts with all the n vertices and

eliminates one vertex at each iteration. For this problem the deletion candidate is the one with the smallest

sum of the distances value with the rest of the remaining vertices at each iteration, and the ties are broken

arbitrarily. Of course this procedure is repeated (n− p) times until exactly p vertices remain in the solution

set.
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function VNS (kmin, kstep, kmax, S);
Sbest ← Initialize(S);
Scur ← Sbest;
telapsed = 0;
kmax = min{p, n− p};
while telapsed ≤ tmax do

kcur ← kmin;
while kcur ≤ kmax and telapsed ≤ tmax do

Scur ← Shake(Scur) ;
Scur ← LocalSearch(Scur) ;
Scur ← RefinedLocalSearch(Scur) ;
if f(Scur) ≥ f(Sbest) then

Sbest ← Scur;
kcur ← kmin;

else
kcur ← kcur + kstep;

end

end

end

Algorithm 1: Pseudo code for the VNS framework

The Greedy add heuristic selects a starting vertex at random and creates the complete solution set in

(p − 1) iterations. As a result, the size of the under construction solution set is smaller than p and will

gradually reach the complete size as the construction phase is executed. If we represent the solution set

under construction (i.e. the size of the set is smaller than p) as C, and the set of the vertices outside this

set as C̄, the entering candidate would be the one with the largest sum of distances value with the vertices

vi ∈ C [1, 9]. At each iteration the objective function value is the total sum of the W (vi) values for all the

vertices vi ∈ C. After the addition of the entering vertex venter ∈ C̄, the existing sum of the distances values

will be updated as: W (vi) + d(vi, venter) for all the vi ∈ C. As the result the objective function value after

the addition of each venter will be: f(scur) +
∑

vi∈C d(vi, venter).

This heuristic could be repeated n times based on different starting vertices and then the best one leading

to the highest objective value could be selected. Based on preliminary results we know that this heuristic

is very time consuming (much more than the Greedy deletion heuristic), and for large datasets it is not

worthwhile to take this procedure just to further improve the initial solution. In order to overcome this

drawback the Greedy add heuristic is initialized by choosing the two furthest vertices as the initial vertices

and by repeating the above-mentioned procedure (p − 2) times. We observed empirically that the results

obtained by this method are among the highest possibilities for the Greedy add heuristic without spending

too much computational time on the initial solution.

3.2 Local search

After having created the initial solution, the LocalSearch procedure is implemented performing 1-interchange

swaps on the current solution as shown in Algorithm 2. This means that at each iteration only one vertex

is swapped at a time. The swap could be done whenever the first (first improvement strategy) or the best

(best improvement strategy) contribution is made to the current objective value.

In order to start the LocalSearch procedure the gain obtained from swapping the selected entering

candidate with the selected leaving candidate should be evaluated. The two main Contribution and Update

functions will be explained in details in the following subsection.
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function LocalSearch(S);
gain = 0;
while gain ≥ 0 do

(vexit, venter, gain)← Contribution(S) ;
if gain > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end

end

Algorithm 2: Pseudo code for the Local Search

3.2.1 Contribution and Update

In the proposed LocalSearch procedure the Contribution function can determine the first or best entering

candidate venter ∈ S̄, as well as its corresponding contribution to the current objective function value.

In order to initiate the Contribution function a random leaving candidate vexit ∈ S, and a random

entering candidate venter ∈ S̄ are chosen. The change in the objective function value resulted from any swap

will be calculated as :

change←W (venter)−W (vexit)− d(vexit, venter).

With the first improvement strategy the Contribution function stops as soon as an improving solution

is found, as the result in the worst case it is implemented in O(p(n − p)) = O(np) time per LocalSearch

iteration. Of course the best improvement strategy will be implemented in exactly O(np) time as every

possible swap should be evaluated.

The Update procedure performs all the required updates before proceeding to the subsequent iteration.

It is implemented in two different phases in order to update all the W (vi) sum of the distances values, and

then to update the objective function value f(Scur). The update for the W (vi) is straightforward and is

performed in O(n) total time, whereas the update of the objective function is done in O(p) time at each

iteration. Thus the updated values would be:

W (vi) = W (vi) + d(vi, venter)− d(vi, vexit), i = 1, 2, . . . , n;

f(Scur) = f(Scur) +

p∑
i=1

d(vi, venter)−
p∑

i=1

d(vi, vexit).

3.3 Refined local search

The existence of plateaus or the flat landscapes of the MaxSumSum problem make it more difficult for the

descent procedures to find an improvement in the objective function especially as the size and the density

of the graphs increase [2]. This has inspired us to develop a plateau search mechanism within the VNS

metaheuristic framework.

The RefinedLocalSearch procedure demonstrated in Algorithm 3 is efficient both in the presence and

the absence of plateaus. The reason is that it makes all the possible swaps that will improve the quality of

the solution set by exchanging the low quality vertices with the ones of higher quality which will facilitate

further improvements by the LocalSearch procedure in the subsequent iterations. It should be noted that

in Algorithm 3 the smallest W (vexit) ∈ S is found in O(p) time and the largest W (venter) ∈ S̄ is determined

in O(n− p) time.



6 G–2012–46 Les Cahiers du GERAD

function RefinedLocalSearch(S);
gain = 0;
while gain ≥ 0 do

Find vexit in the solution subset S with the smallest W (vexit);
Find venter outside the solution subset S̄ with the largest W (venter);
change←W (venter)−W (vexit)− d(vexit, venter) ;
if change > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end

Algorithm 3: Pseudo code for the refined local search

Of course the RefinedLocalSearch procedure never worsens the actual solution and could even lead to

improvements in the objective function value if the whole plateau is removed. As discussed later in Section 4,

the addition of this module improves significantly the quality of the obtained solutions.

3.4 Shake

The perturbation in most VNS-based heuristics is done in a simple manner by choosing a random vertex

from the kth neighborhood, i.e. Nk(S) from the current solution S and then repeating k times the random

swap move. The RandomShake function does so by choosing one random leaving and entering candidate at

each iteration with updates in between each swap. However, here we have developed two additional shake

functions in order to control the perturbation operation in a more intelligent manner.

The SemiGreedyShake function fixes a random leaving candidate from the current solution set S and

then chooses an entering candidate that has the highest sum of the distances value in case it replaces the

exit candidate, i.e. the highest W (venter) − d(vexit, venter) value. As the result this shake method does

not guarantee that a deterioration in the objective function value would not occur, yet it simply chooses a

reasonable entering candidate after having fixed the leaving candidate. This procedure is repeated until the

shake size of k is attained. Each iteration is performed in O(n − p) time and after each swap the Update

function is called.

In order to have a more intensified shake operation the GreedyShake function has been developed which

for a shake of size k, selects the k vertices with the smallest W (vi) values for all vi ∈ S, and swaps all of them

with the k vertices with the largest W (vi) values for all vi ∈ S̄. This greedy fashion of selecting the entering

candidates could provide better starting vertices for the subsequent LocalSearch procedure. In order to

keep the random nature of the shake procedure, the k leaving and entering candidates are chosen all at once

and are not changed while the updates are performed between the swaps. The performance of the two shake

functions will be compared in details in Section 4.

4 Computational experiments

In this section we have selected four of the largest benchmark instances that were used for comparison

purposes in the maximum diversity problem literature leading to 50 instances in total [2, 9, 10, 12, 14]. A

brief description of the characteristics of the datasets is given below:

• MDG-a: this dataset consists of 20 matrices with real numbers randomly selected between 0 and 10

from a uniform distribution by Duarte and Mart́ı [3] with n = 2000 and p = 200.

• MDG-c: this dataset consists of 20 matrices with n = 3000 and p = 300 (MDG-c-1 to 5), 400 (MDG-c-6

to 10), 500 (MDG-c-11 to 15) and 600 (MDG-c-16 to 20) [3].
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• p5000 and p3000: these datasets consist of 10 matrices each with integer numbers generated from 0 to

100 from a uniform distribution by Palubeckis [12]. There are five instances with n = 3000 and p =

0.5n, and five instances with n =5000 and p = 0.5n with a matrix density of 10, 30, 50, 80 and 100%.

First we describe our experiments that were designed to study the performance of different settings within

the VNS framework and then we compare and analyze the tradeoffs and overall results obtained by different

methods over all the test problems. Finally we tune our framework based on the preliminary results and

compare our results with that of the state of the art heuristics in the literature.

All the heuristics were coded in C ++ and run on a linux machine, with 2.667 GHz and 3Gb Ram. The

best results obtained after two hours of running time are reported as suggested in [10].

4.1 Preliminary experiments setup

As mentioned in Section 3 our VNS implementation allows various settings and methods within its framework.

In order to initialize the VNS three different methods have been discussed: Random add (RA), Greedy add

(GA) and Greedy deletion (GD). There are also three different shaking possibilities: Random shake (RS ),

Semi-Greedy shake (SG) and Greedy shake (GS ). In the general framework presented in Section 3 the shake

size at each iteration increases systematically and will be reset to kmin whenever an improvement is made

or when the kmax value is reached. The kmax is a parameter whose value by default is min{p, n− p}, which

could be a large value depending on the problem size. As the result we are interested in trying smaller values,

i.e. 0.5 ∗min{p, n − p} and 0.75 ∗min{p, n − p} as well to verify if it helps improve the performance of the

heuristic. Besides each experiment could be done with or without the RefinedLocalSearch module. This

will lead to 3× 3× 3× 2 = 54 combinations of different VNS modules.

On the other hand at each iteration of VNS either an improvement is made or not. In case of no im-

provement a decision on how to start the next iteration should be made. The next iteration is either started

form the already best solution obtained (from best or FB), or from the current solution just obtained (from

current or FC ). The former will lead to more intensification in the search, whereas the latter favors diver-

sification. Besides, the LocalSearch procedure can pursue a first improvement strategy (FirstI ) favoring

more diversification, versus best improvement strategy (BestI ) leading to more intensification. The above

mentioned intensification and diversification strategies will lead to four general VNS frameworks. As the result

the datasets are run under the 54× 4 = 216 total combinations.

We do not allow longer running times in order to get further improvements, as the result the tests are run

only once under two hours of running time as used in [10]. Throughout the paper we present the average %

deviation from the best solutions obtained by the 216 combinations for each group of dataset:

% deviation =
best obtained value - actual value

best obtained value
× 100.

Table 1 represents the average deviation from the best solutions obtained for all the 50 data instances for

each of the four VNS general frameworks, three initialization methods, three shaking strategies, three possible

kmax sizes and the presence or absence of the RefinedLocalSearch module. The average deviations are all

calculated based on the results presented under the G-VNS column of Tables 2 to 4 which refer to the best

solutions obtained by a single run of the 216 combinations. The smallest average deviation values for each

group are shown in bold under the Average column of Table 1. Same representation has also been done to

highlight the smallest average deviation values for each of the four datasets.

The first part of Table 1 which refers to the four general VNS frameworks reveals that the current iteration

strategy and first contribution local search strategy (FC-FirstI) leads to the overall lowest average deviation.

This is also true for each individual dataset except for the p3000 instances where the (FB-FirstI) strategy

leads to the lowest average deviation. In the second part which refers to the problem initialization methods,

the Greedy deletion strategy (GD) consistently leads to the lowest average deviation for all datasets. In

the third group which addresses the shaking strategy the Greedy shake (GS ) strategy has a significantly

lower average deviation across all the datasets which emphasizes the importance of more intelligent shaking
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Table 1: Average % deviation for individual methods

MDG-a MDG-c p3000 p5000 Average
General framework
FC-FirstI 0.72 0.45 0.24 0.19 0.4
FC-BestI 0.99 0.61 0.38 0.31 0.57
FB-FirstI 0.81 0.5 0.22 0.19 0.43
FB-BestI 1 0.64 0.32 0.27 0.56
Initialization
RA 5.57 0.96 0.66 0.56 1.94
GA 2.85 0.42 0.14 0.11 0.88
GD 2 0.29 0.07 0.05 0.6
Shake method
RS 6.34 1.07 0.74 0.62 2.19
SG 2.49 0.35 0.07 0.06 0.74
GS 1.73 0.24 0.06 0.04 0.52
Shake max size
0.5p 3.41 0.54 0.28 0.24 1.12
0.75p 3.51 0.56 0.29 0.24 1.15
p 3.63 0.57 0.3 0.24 1.19
Refined local search
Yes 1.25 0.19 0.03 0.03 0.38
No 5.79 0.92 0.55 0.45 1.93

strategies compared to pure random ones. The only parameter that we changed in our experiments is the

maximum shake size which is presented in the last comparison group. As it is seen the smaller maximum

shake size is slightly better for all instances, yet the difference among them is not significant. Finally in the

last part it is clearly observed that the existence of the RefinedLocalSearch module leads to significantly

lower average deviations which highlights the importance of addition of this new local search mechanism to

the classical body of VNS.

To summarize, four important observations can be highlighted:

• The current iteration strategies (FC-FirstI and FB-FirstI ) lead to the lowest average deviations com-

pared to other general frameworks.

• The Greedy deletion initialization method leads to the highest average quality.

• The Greedy Shake (GS) method leads to the lowest average deviations over all data instances.

• The Refined Local Search plateau search mechanism contributes strongly to the creation of high quality

solutions.

4.2 Results and analysis

The best preliminary results obtained in Section 4.1 are presented under the greedy VNS (G-VNS) column in

Tables 2 to 4. Based on the findings in the previous section, the following VNS setting is selected in order to

do the final experiments:

• Each iteration will start form the current solution just obtained (the current iteration strategie), and

the Local Search function will randomly choose between the first or best improvement strategies.

• The Random add initialization method is selected in order to obtain more diversified solutions due to

its random starts. The Greedy deletion strategy leads to robust hight quality solutions, yet obtains the

same results in multiple runs based on our preliminary experiments.

• The Greedy shake method is used with the maximum shake size randomly selected as 0.5∗min{p, n−p}
or 0.75 ∗min{p, n− p}.

• The Refined Local Search plateau search mechanism will be used in all the experiments.

All the instances are run 15 times with the two hours of running time constraint under the above selected

settings and the obtained solutions for all the 50 data instances are presented under the TG-VNS columns

of Tables 2 to 4.
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Table 2: Comparison of the best known results for the MDG-a instances

Instance n p Best known G-VNS TG-VNS
Best Average CV

MDG-a-21 2000 200 114271 (ITS) 0 0 3.33 0.00003
MDG-a-22 2000 200 114327 (ITS) 0 0 0 0
MDG-a-23 2000 200 114195 (ITS) 0 0 0 0
MDG-a-24 2000 200 114093 (ITS) 0 0 5.2 0.00002
MDG-a-25 2000 200 114196 (ITS) 0 0 0 0
MDG-a-26 2000 200 114265 (ITS) 0 0 0 0
MDG-a-27 2000 200 114361 (ITS) 0 0 0 0
MDG-a-28 2000 200 114327 (ITS) 0 0 0 0
MDG-a-29 2000 200 114199 (ITS) 0 0 1.87 0.000005
MDG-a-30 2000 200 114229 (ITS) 0 0 0 0
MDG-a-31 2000 200 114214 (ITS) 0 0 6.6 0.00009
MDG-a-32 2000 200 114214 (ITS) 0 0 7 0.00007
MDG-a-33 2000 200 114233 (ITS) 0 0 3.73 0.00002
MDG-a-34 2000 200 114216 (ITS) 0 0 0 0
MDG-a-35 2000 200 114240 (ITS) 0 0 0.87 0.000003
MDG-a-36 2000 200 114335 (ITS) 0 0 0 0
MDG-a-37 2000 200 114255 (ITS) 0 0 0 0
MDG-a-38 2000 200 114408 (ITS) 0 0 1.73 0.00001
MDG-a-39 2000 200 114201 (ITS) 0 0 0 0
MDG-a-40 2000 200 114349 (ITS) 0 0 0 0

Table 3: Comparison of the best known results for the MDG-c instances

Instance n p Best known G-VNS TG-VNS
Best Average CV

MDG-c-1 3000 300 24924685 (BVNS) 0 -1659 270.33 0.003
MDG-c-2 3000 300 24909199 (BVNS) -3347 -3347 -2069.13 0.005
MDG-c-3 3000 300 24900820 (ITS) -4398 -4398 -2266.93 0.011
MDG-c-4 3000 300 24904964 (BVNS) -4746 -4746 -916.4 0.006
MDG-c-5 3000 300 24899703 (ITS) 3999 3999 5139.4 0.005
MDG-c-6 3000 400 43465087 (ITS) 20139 20139 24533.47 0.008
MDG-c-7 3000 400 43477267 (BVNS) 0 0 737.13 0.002
MDG-c-8 3000 400 43458007 (BVNS) -7565 -7565 -2944.33 0.005
MDG-c-9 3000 400 43448137 (BVNS) 0 0 394.87 0.001
MDG-c-10 3000 400 43476251 (ITS) 10690 10690 10782.73 0.001
MDG-c-11 3000 500 67009114 (BVNS) -12018 -12018 -6720.4 0.006
MDG-c-12 3000 500 67021888 (ITS) 7718 7718 9397.87 0.006
MDG-c-13 3000 500 67024373 (BVNS) 0 0 392 0.001
MDG-c-14 3000 500 67024804 (BVNS) -5386 -5386 -3395.87 0.004
MDG-c-15 3000 500 67056334 (BVNS) 1624 0 2448.2 0.004
MDG-c-16 3000 600 95637733 (BVNS) -1196 -1196 174.53 0.001
MDG-c-17 3000 600 95645826 (ITS) 74713 74713 76052 0.002
MDG-c-18 3000 600 95629207 (ITS) 97066 97100 100356.2 0.005
MDG-c-19 3000 600 95633549 (ITS) 34385 34385 35069.8 0.001
MDG-c-20 3000 600 95643586 (ITS) 59104 59104 59509.07 0.001

Table 4: Comparison of the best known results for the p3000 and p5000 instances

Instance n p Best known G-VNS TG-VNS
Best Average CV

p3000-1 3000 1500 6502308 (LTS) 208 -22 422.13 0.01
p3000-2 3000 1500 18272568 (LTS) 354 0 362.93 0.001
p3000-3 3000 1500 29867138 (ITS) 0 0 634.8 0.002
p3000-4 3000 1500 46915044 (LTS) 96 86 429.33 0.001
p3000-5 3000 1500 58095426 (LTS) 237 -41 1101.4 0.002
p5000-1 5000 2500 17509215 (LTS) 966 -112 419.93 0.005
p5000-2 5000 2500 50102729 (LTS) 1196 -156 836.6 0.004
p5000-3 5000 2500 82039686 (LTS) 1482 426 2746.73 0.003
p5000-4 5000 2500 129413112 (LTS) 59 -112 1878.13 0.001
p5000-5 5000 2500 160597781 (LTS) 430 -15 843.67 0.001
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In the Best Known column of Tables 2 to 4 the best known solutions for each of the instances are presented

which have been found by different powerful heuristic methods from various references. It should be noted

that the best results in the literature have been obtained by longer running times of 5h for smaller instances

and 10h for larger instances. Despite the fact that our running time is only two hours, we still keep these

best solutions as a benchmark in order to verify the quality of our solutions.

The G-VNS column represents the proposed Greedy VNS results which shows the difference between the

best known solutions in the literature and the best solutions obtained in the preliminary experiments of 216

VNS module combinations presented in Section 4.1. A negative value represents an improvement in the best

solutions ever reported, a value of zero means that we have equaled the best ever value and a positive value

means that our solution is lower than the one reported in the literature. Here no average results are presented

as in the preliminary experiments each combination is run only once.

The following three columns are called TG-VNS representing the difference between the best known

literature results and the Best and Average results obtained by multiple runs of the Tuned Greedy VNS

setting presented in Section 4.2. The reported Best values are the best among 15 runs of the tuned greedy

heuristic, yet in order to have a better idea of the overall quality of all the 15 runs, the coefficient of variation

(CV) is presented for each dataset under the CV column:

CV =
standard deviation

mean
× 100.

As it is seen for all the 50 instances in Tables 2 to 4 the coefficient of variation value is very small, much

less than 0.01%, which shows that our random methods are also very robust.

As illustrated by the bold values in Table 2, our proposed method finds all of the best ever solutions for

the MDG-a instances in the G-VNS preliminary experiments and the TG-VNS Best case, and also 12 out

of 20 in the TG-VNS Average case. The best solutions have been initially obtained by the Iterated Tabu

Search (ITS) method in [12] and have also been found in the long run experiments of Tuned Iterated Greedy

method (TIG) in [9] and the Learnable Tabu Search method (LTS-EDA) in [14]. Yet, none of these methods

finds all the best solutions at once even in longer running times.

Most of the best results for the MDG-c instances in the literature have been obtained by the BVNS [2]

and the ITS [12]. Our method finds equal or better new solutions for 11 instances in the G-VNS preliminary

experiments, 12 instances in the TG-VNS Best case and 6 instances in TG-VNS Average case which are

represented in Table 3.

The best results in the literature for the p3000 and p5000 instances represent the best ever results obtained

by state of the art heuristics such as ITS, VNS, TIG and LTS-EDA under 5h and 10h running times. As

shown in Table 4, the TG-VNS method finds one equal solution with the G-VNS, and 8 out of 10 equal or new

solutions with the TG-VNS Best case, representing the best solutions in 15 runs of two hours of computation

each.

5 Conclusions and future work

In this work we applied an elaborated greedy VNS framework over 50 of the largest data instances for the

MaxSumSum p-dispersion problem. We first explained a detailed preliminary experimental setting which

captured a vast number of possibilities within the VNS framework, and then selected the most promising

setting in order to conduct the tuned experiments. We also incorporated a new local search module within

the VNS framework coupled with elaborated shake function. Our extensive computational experiments on

the largest benchmarks in the literature found new best solutions for several problems that proves the high

quality of our methods.

Of course in order to have a more precise comparison of various heuristics, the same executable codes of the

different authors should be run under the same conditions. Yet, we believe that the reported results represent
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a fair comparison with other state of the art heuristics, as we have considered the best ever solutions obtained

by all the heuristic methods ever studied in the literature under long running times as our benchmark.

One of the most interesting advantages of the Variable Neighborhood Search metaheuristic is its flexibility

and how it allows the decision maker to define and adapt the framework to its own problem specifications.

The choice of the best setting is always a matter of time and available computational resources, and also the

fact that if one is interested in a heuristic that provides more robust and higher quality solutions on average,

or a method that gives the opportunity of obtaining new improved solutions over repeated runs. As the

future work we suggest developing decomposed VNS frameworks in order to tackle large problem instances in

a more reasonable time and to possibly further improve the obtained results.
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