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Abstract

Standard real options theory states that there is a value of waiting and that irreversible investment
should be postponed when revenue is uncertain. Past literature has shown that competition under com-
plete information generates a preemption effect that reduces this value of waiting without completely
eliminating it. This paper studies what happens to the value of waiting when a firm has incomplete in-
formation about its competitor in an oligopoly framework. We find that the value of waiting depends on
the quality of the information, the size of the first-mover advantage and the number of competitors. We
show that a unique and symmetric equilibrium exists under common and consistent priors. Investment is
accelerated when one firm acquires complete information about the profitability of the other firm, while
the other firm’s information remains incomplete. We calculate the value of (acquiring) information under
different assumptions on the priors.

Key Words: Game theory, real options, investment decisions, dynamic oligopoly.
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1 Introduction

It is well-known that the widely used net present value criterion usually leads to suboptimal investment

decisions. The real options paradigm exploits the analogy with financial options theory and enables decision

makers to derive the optimal investment timing when a fixed-size investment with uncertain future returns

is irreversible and can be postponed. A value of waiting is associated with the resolution of some market

uncertainties over time and suggests that it is optimal to postpone investment beyond the net present value

trigger.

Unlike on financial markets, the value of a real option to invest often depends on the decision of other

agents to exercise their options. Interdependency and non-exclusivity affect optimal investment timing and

warrant the recent development of option games. We can think of multiple firms competing to invest first in a

prime location – as in Ghemawat (1986)’s Harvard Business School case study on Wal-Mart’s strategy – buyers

bidding on a property in a declining market, or researchers in a patent race. In an early application, Smets

(1991) compares foreign direct investment with exports. Pawlina and Kort (2006) show that while the threat

of preemption accelerates investment, the value of waiting remains relevant under imperfect competition when

firms are asymmetric in investment costs only and when there is a first-mover advantage. The asymmetry

endogenously determines which firm invests first.

Several authors (e.g. Kijima and Shibata (2005)) discuss whether this result continues to hold qualitatively

under incomplete information about a competitor’s profit. The present paper explores that question in detail.

Following Pawlina and Kort (2006), our model involves incomplete information over investment costs only,

but in general it is easy to find equivalent models where incomplete information affects some other private

determinant of profitability.

We find that incomplete information about a competitor’s investment cost can reduce or enhance the

(perceived) option value of waiting, depending on the shape of uncertainty. Furthermore, we find that more

competition or a greater first-mover advantage reduce the option value of waiting. This result is quite similar

to the one in Kijima and Shibata (2005) for complete information. Moreover, we apply auction theory to

show that a unique and symmetric equilibrium exists in a duopoly under the standard assumption of common

and consistent priors. Finally, we solve a case where one firm has full information, while the other firm’s

information is incomplete. It turns out that firms rarely want to invest in information when this fact is

common knowledge, as this always speeds up investment relative to incomplete information.

The remainder of this paper is structured as follows. First, we provide an overview of the literature in

Section 2, after which we briefly review the classical case of the monopolist in Section 3. Section 4 expands

on some aspects of the new market model of Pawlina and Kort (2006) that will serve as the basis for our

generalization in Section 5. In Sections 5.1 to 5.3 and 5.7, we derive the optimal investment rule of a single

firm in a non-strategic duopoly. We briefly consider the effect of the number of firms in Section 5.4 and root

our generalized model firmly in the literature in Section 5.5. In Section 5.6 we study the effect of information

quality by varying uncertainty around a constant mean. We show in Section 6 that there exists a unique

symmetric equilibrium under the standard assumption of common and consistent priors.

In Section 7, we let go of the common and consistent prior assumption and study a case of asymmetric

information. Finally, in Section 8, we summarize the main findings and we outline some directions for further

research.

2 Literature

We distinguish literature on classical models, option games and models under incomplete information. Most

of the classical references are reviewed in Dixit and Pindyck (1994), who also describe the symmetric duopoly

of Smets (1991) that was later generalized and improved by Huisman (2000). The model that we develop in

Sections 5 to 7 is based in turn on generalizations of this model (the case of negative externalities) by Huisman

et al. (2004) (existing market model) and Pawlina and Kort (2006) (characterization of equilibria). In the

model of Boyer et al. (2001) firms differ in initial capacity rather than investment costs. Their tacit collusion
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equilibrium is the non-cooperative simultaneous equilibrium of Pawlina and Kort (2006). Wu (2006) studies

capacity investments in an industry that will start to shrink as it enters the last phase of its (product)lifecycle,

at an exponentially distributed state. Huisman and Kort (2011) model strategic capacity investment and

weigh flexibility versus scale. Kijima and Shibata (2005) extend Huisman (2000) model to an oligopoly

and find, just as Grenadier (2002), that the value of waiting disappears in the limit of perfect competition.

Shackleton et al. (2004) consider a two-dimensional switching monopolist model where operational profits are

imperfectly correlated. Chu and Sing (2007) also allow for a firm-specific shock. Both Huisman et al. (2005)

and Boyer et al. (2004) give an overview of the real option literature in a strategic environment.

This paper presents an option game under incomplete information. We generalize some related papers that

essentially treat monopolies. Lambrecht and Perraudin (2003) describe two incompletely informed firms that

fight over a natural monopoly. Pawlina and Kort (2005) describe the effect of a policy change on a monopolist,

but their model can be given a dominant firm-competitive fringe interpretation. Hsu and Lambrecht (2007)

consider asymmetric information in a game between an informed entrant and a non-informed incumbent.

It is a monopoly persistence model. Graham (2011) finds that if firms are symmetric, but asymmetrically

informed about their future profits, there may be no equilibrium. Nishihara and Fukushima (2008) study the

scenario of a small pioneer that will someday be pushed out of the market by a more efficient player.

Usually, incomplete information applies to other parameters of the model. Bobtcheff and Mariotti (2010)

study a monopoly with potential competition. Competitors are born (and become visible) at random. The

firm that waits to invest (or the researcher that waits to publish), runs the risk that an unknown competitor

surfaces and exercises his option first. Decamps et al. (2003) describe a firm whose profit flow fluctuates with

the state variable only with some probability. In the traditional domain of contract theory, financing real

options has attracted some attention. Lambrecht (2004) and Morellec and Zhdanov (2005) analyze a take-over

battle where outsiders have incomplete information. Martzoukos and Zacharias (2008) consider a case where

firms get access to better information about a potential monopolistic investment by pre-investments and

cooperation. Grenadier and Malenko (2011) study a signal-jamming model, Morellec and Schrhoff (2011),

Bustamante (2008), and Hennessy et al. (2010) treat true signaling, while Bouvard (2010) and Grenadier and

Wang (2005) offer a screening approach.

3 The classical case: monopoly

A monopolist has a single, fixed-sized investment project with Marshallian (or immediate investment) value

function

VM (x(t) | m) =
D1x(t)

r − µ
− k, (3.1)

where D1 indicates that there is only one active firm. The state variable x(t) represents operational profit

flow, m is the investment trigger, r is the discount rate, µ is the drift rate and the investment cost is k.

A decision maker that refers to the classical net present value criterion will invest whenever its operational

profits are equal to the Marshallian trigger

m =
r − µ
D1

k. (3.2)

However, it is well-known that this criterion leads to suboptimally early investment for investments with

uncertain future returns that are irreversible and can be postponed. This is because it neglects the value

of waiting that arises under these circumstances. Modeling uncertainty of the profit flow over time t as a

geometric Brownian Motion1

dx(t) = µx(t)dt+ σx(t)dB(t), (3.3)

1 This is standard in the real options literature but certainly not imperative (e.g. Kijima and Shibata, 2002). While under a
Geometric Brownian Motion we can often derive analytical solutions, Davis (1998) actually fails to find broad empirical support.
Returns on stocks for example have a fat tailed distribution over longer periods of time while the Geometric Brownian Motion
implies a lognormal distribution. We will drop the time denotation for clarity henceforth.
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with B a standard Wiener process and σ a measure for market volatility, we obtain the value function2

V l(x | l) =

{ (
l

r−µ − k
) (

x
l

)β
before investment (x < l)

x
r−µ − k after investment (x ≥ l)

, (3.4)

using the tools of dynamic programming. β > 1 is the positive root of the associated fundamental quadratic

Q =
1

2
σ2β(β − 1) + (r − µ)β − r = 0

and depends on σ, µ and r. It is often seen as an inverse measure of market volatility (with constant r and

µ). We further note that
(
x
l

)β
equals the stochastic discount factor E0(e−rT ), where T is the time that x

hits l. The optimal investment trigger can be obtained from the so called value-matching and smooth-pasting

conditions (see, e.g. Dixit and Pindyck (1994)):

l =
β

β − 1
(r − µ)k.

4 A duopoly under complete information

4.1 Introduction

When firms compete for an investment opportunity, the value of waiting has to be weighted against the

threat of preemption. This section briefly describes the asymmetric new market3 duopoly model of Pawlina

and Kort (2006) and we derive the subgame perfect equilibria of this game under complete information.

Models under complete information assume that all relevant information about one’s competitor is public.

In Section 4.2, we state the basic assumptions. Then, there are basically three steps to follow. First, in

Section 4.3 we temporarily assume that the leader invests immediately at the start of the game, i.e. at

x(0), and we associate a leader and a follower role (with their associated value functions) to each firm.

Second, we find the relevant equilibrium solution and endogeneously determine which firm leads and follows

in Section 4.4. Finally, in Section 4.5, we let the leader’s optimal investment timing influence the authentic

value functions. This game has its earliest roots in Fudenberg and Tirole (1985). Simon and Stinchcombe

(1989) described an asymmetric model, but Huisman (2000) was the first to provide a complete analysis for

a stochastic and asymmetric model in continuous time.

4.2 Assumptions of the model

Two firms are considering a single investment in a new market to obtain an operational profit flow4 of

π(x,DN ) = xDN ,

that depends multiplicatively on market uncertainty x -that follows a Geometric Brownian Motion- and a

deterministic factor DN -that depends on the number of active firms N = {0, 1, 2}. The assumption of

negative externalities D1 > D2 implies that monopoly profits are higher than duopoly profits. The first-

mover advantage can be measured by D1

D2
. We normalize D0 = 0 and assume that firms can make a profit

in a duopoly, i.e. D2 > D0. Firms i = 1, 2 only differ in (sunk) investment costs k1 resp k2. We call
k2
k1

the cost asymmetry. The stochastic process starts at t = 0 from x(0) low enough so that immediate

investment is not optimal for either firm. Investment cost asymmetry can be caused by differences in R&D,

organizational flexibility (absorptive capacity), embedded real options, access to financial markets or other

exogenous factors.

2 See for example Dixit and Pindyck (1994).
3 Pawlina and Kort (2006) also evaluate investments in existing markets.
4 For simplicity we assume that prices and operational costs are the same for all firms.
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4.3 Immediate investment value functions

We ascribe a hypothetical leader and a follower role to each firm. To simplify, assume for now that the leader

invests at the start of the game at x(0). Pawlina and Kort (2006) show that the value function for follower

i = {1, 2} after investment by leader j = {2, 1} is strictly increasing, strictly convex, differentiable almost

everywhere, and given by

V Fi (x | fi) =


(
fiD2

r−µ − ki
)(

x
fi

)β
if x ≤ fi (wait)

xD2

r−µ − ki if x > fi (invest)
. (4.1)

Follower i’s investment trigger is

fi =
β

β − 1

(r − µ)ki
D2

. (4.2)

The value function for leader i, when firm j is the follower, is strictly concave, differentiable almost everywhere,

and given by

V Li (x | fj) =

 xD1

r−µ − ki +
fj(D2−D1)

r−µ

(
x
fj

)β
if x ≤ fj

xD2

r−µ − ki if x > fj
. (4.3)

The term xD1

r−µ − ki is the operational profit for a perpetual monopolist i that invests immediately. The

correction factor

CLi ≡
fj(D2 −D1)

r − µ

(
x

fj

)β
(4.4)

reflects the decrease in the present value of the expected profit because of the eventual investment by follower

j. From fj onwards, firm i can only recuperate the duopoly profit xD2

r−µ − ki. The leader value is usually not

monotonic in x.

4.4 Strategic and non-strategic equilibrium

Firm i does not need to behave strategically if the investment cost kj of its opponent is much higher than

its own investment cost ki. Firm i can act as a monopolist and invest at its non-strategic trigger

li =
β

β − 1

r − µ
D1

ki

in the non-strategic domain, i.e. as long as kj ≥ kSj . We want to find kSj such that for all kj ≥ kSj , firm j

does not want to preempt firm i if the latter invests at li. This condition is satisfied if V Lj (x) < V Fj (x) for

all x < li. Then, firm i can behave as a monopolist and completely ignore the eventual investment of its

competitor. This is so because that investment affects firm i’s value before and after investment in the same

way. Pawlina and Kort (2006) call this the irrelevance of future alternatives. The non-strategic equilibrium

is given by the vector
[
li fj

]
. We stress that our kSj is smaller than the k∗j that Pawlina and Kort (2006)

define as

k∗j =


(
D1

D2

)β
− 1

β
(
D1

D2
− 1
)


1
β−1

ki (4.5)

and that separates the preemptive region
[
ki, k

∗
j

)
from the sequential region

[
k∗j ,∞

)
. Their k∗j is the solution

of the system {
ξj(pi(k

∗
j ), k∗j ) = 0

∂ξj(pi(k
∗
j ),k

∗
j )

∂x = 0
.

where the break-even function ξj(x) is defined as

ξj(x) ≡ V Lj (x)− V Fj (x).
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Hence, at k∗j , firm j’s leader value is tangent to its follower value. This implies that V Lj (x) < V Fj (x) for all

x where kj > k∗j . This condition is too strong. The inequality V Lj (x) < V Fj (x) needs to hold only for x < li
because it does not matter if firm j wants to invest as a leader (or: the value functions cross) for x > li. In

practice, it is relatively easy to compute kSj as the solution to li = pi(k
S
j ). The function pi(·) is the topic of

Proposition 5.1.

In the strategic domain, i.e. kj ∈
[
ki, k

S
j

)
, firm i can not disregard its opponent. It runs the risk of

being preempted, because there exists an interval x ∈
[
bj , bj

]
where V Lj (x) ≥ V Fj (x), and with bj < li. The

break-even point bj is the lowest value of x where the high-cost firm j is indifferent between leading and

following. It is thus the smallest real root of the breakeven function ξj(x), i.e.

ξj(bj) ≡
bjD1

r − µ
− kj +

fi(D2 −D1)

r − µ

(
bj
fi

)β
−
(
fjD2

r − µ
− kj

)(
bj
fj

)β
= 0. (4.6)

The strategic equilibrium is given by the vector
[
pi fj

]
, where pi ≡ bj − ε is the strategic trigger.

Proposition 4.1 The strategic trigger pi is optimal in the strategic domain, the non-strategic trigger li is

optimal in the non-strategic domain.

Proof. See appendix.

In this game, the less efficient firm is a natural follower because the break-even trigger for a more efficient

firm is always lower than that for a less efficient firm. Therefore, the lower bound of the strategic domain of

firm i is ki.

We illustrate the relationship between kj and firm value for firm i with respect to kj at x = 4 in Figure 4.1.

break-even point bj is the lowest value of x where the high-cost firm j is indifferent between leading and
following. It is thus the smallest real root of the breakeven function ξj(x), i.e.

ξj(bj) ≡
bjD1

r − µ − kj +
fi(D2 −D1)

r − µ

(
bj
fi

)β
−
(
fjD2

r − µ − kj
)(

bj
fj

)β
= 0. (4.6)

The strategic equilibrium is given by the vector
[
pi fj

]
, where pi ≡ bj − ε is the strategic trigger.

Proposition 4.1. The strategic trigger pi is optimal in the strategic domain, the non-strategic trigger li is
optimal in the non-strategic domain.

Proof See appendix.
In this game, the less effi cient firm is a natural follower because the break-even trigger for a more effi cient

firm is always lower than that for a less effi cient firm. Therefore, the lower bound of the strategic domain of
firm i is ki.
We illustrate the relationship between kj and firm value for firm i with respect to kj at x = 4 in figure 4.1.

To construct this figure, we calculated three value functions, each corresponding to one trigger, respectively
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Figure 4.1: Composite value function for firm i in function of kj for x = 4 (thick). The follower value holds for
kj < ki. In [1, kSj ] firm i is the strategic leader. Beyond kSj firm i invests as a monopolist. Parametervalues
are r = 0.05; µ = 0.015; β = 2; D2 = 1; D1 = 1.33 and ki = 1.

fi, pi, li over a broad range of kj . The composite value function, indicated with a bold and solid line,
selects the optimal feasible trigger at each kj given the competitor’s optimal strategy. Preemption precludes
investment at the non-strategic trigger in the follower and strategic domains (bold and dashed line).
For symmetric firms, break-even and preemption points coincide. If one introduces the following tie-

breaking rule that is common knowledge: each firm receives the leader value with equal probability7 , then
there exists a mixed strategy equilibrium. The latter can be motivated as the limit of a pure-strategy
Bayesian equilibrium of a slightly perturbed game of incomplete information Harsanyi (1973). We derive
such a game of incomplete information in section 5.
Existence of a value of waiting is implied by V Li (pi) > 0. This is so because, with leader i, V Li (pi) ≥

V Lj (pi) ≥ V Lj (pi) − V Fj (pi) = 0, with equality in a symmetric natural monopoly. This implies that a value
of waiting remains in a duopoly under complete information and suggests that the race to invest intensifies
with weaker prospects for the follower and increasing symmetry.
To ensure that the strategic domain is indeed an interval, it is suffi cient that the strategic trigger is

increasing in kj . We will show this in proposition (5.1).

7Under this rule, Huisman’s (2001) non-zero probability of mistake vanishes at the preemption point (we have assumed that
immediate investment is not optimal for either firm). Hence, firms are indifferent between leading and following and we obtain
rent-equalization.

6

Figure 4.1: Composite value function for firm i in function of kj for x = 4 (thick). The follower value holds
for kj < ki. In [1, kSj ] firm i is the strategic leader. Beyond kSj firm i invests as a monopolist. Parametervalues
are r = 0.05; µ = 0.015; β = 2; D2 = 1; D1 = 1.33 and ki = 1.

To construct this figure, we calculated three value functions, each corresponding to one trigger, respectively

fi, pi, li over a broad range of kj . The composite value function, indicated with a bold and solid line, selects the

optimal feasible trigger at each kj given the competitor’s optimal strategy. Preemption precludes investment

at the non-strategic trigger in the follower and strategic domains (bold and dashed line).

For symmetric firms, break-even and preemption points coincide. If one introduces the following tie-

breaking rule that is common knowledge: each firm receives the leader value with equal probability,5 then

5 Under this rule, Huisman’s (2001) non-zero probability of mistake vanishes at the preemption point (we have assumed that
immediate investment is not optimal for either firm). Hence, firms are indifferent between leading and following and we obtain
rent-equalization.
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there exists a mixed strategy equilibrium. The latter can be motivated as the limit of a pure-strategy Bayesian

equilibrium of a slightly perturbed game of incomplete information Harsanyi (1973). We derive such a game

of incomplete information in Section 5.

Existence of a value of waiting is implied by V Li (pi) > 0. This is so because, with leader i, V Li (pi) ≥
V Lj (pi) ≥ V Lj (pi) − V Fj (pi) = 0, with equality in a symmetric natural monopoly. This implies that a value

of waiting remains in a duopoly under complete information and suggests that the race to invest intensifies

with weaker prospects for the follower and increasing symmetry.

To ensure that the strategic domain is indeed an interval, it is sufficient that the strategic trigger is

increasing in kj . We will show this in Proposition 5.1.

4.5 Authentic value functions

Now, instead of requiring immediate investment, we let the leader i choose its optimal investment timing.

Proposition 4.2 As the optimal investment timing for the leader affects both leader and follower value

functions in the same way, it does not affect the optimal investment triggers pi and li.

Proof. See appendix.

We establish the following properties for future reference.

Proposition 4.3 Both V LLi (x | xi, fj) and V FFj (x | xi, fj) are strictly increasing in x.

Proof. See appendix.

5 A duopoly under incomplete information: non-strategic com-
petitor

Because firms usually have no more than a rough idea about the profitability of their competitors’ projects,

even if they are all public companies, complete information may not adequately reflect reality. In our model

of incomplete information, firm-specific information is private while market information remains public. In

particular, we assume that each firm has the same information about the state variable and knows its own

investment cost with certainty, but is uncertain about the investment cost of its opponent -up to a priorGi(kj).

In this section, we assume that a firm i plays against a non-strategic competitor.6 To solve this problem,

we begin by characterizing the functional relationship between a firm’s optimal strategic trigger pi and the

opponent’s investment cost kj in the strategic domain in Section 5.1. We will use this functional relationship

to translate initial uncertainty over a firm’s opponent investment costs Gi(kj) into uncertainty over a firm’s

own optimal strategic investment trigger ψi(pi) in Section 5.2. This also enables us to update our prior as more

information becomes available. In Section 5.3, we derive the optimal Markovian investment rule of a single

firm facing a non-strategic opponent. We briefly consider the effect of the number of firms in Section 5.4 and

consider how our model generalizes previous models of incomplete information in Section 5.5. In Section 5.6

we study the effect of information quality using the mean-preserving spread. Then, in Section 5.7 we revert to

the original problem with uncertainty over kj instead of pi. Finally, we allow for strategic interaction between

firms. Section 6 shows that there exists a unique and symmetric Markovian Bayesian-Nash equilibrium under

the standard assumption of common and consistent priors. In Section 7, we consider asymmetric information.

6 Hence, we solve a single player decision problem. We do this primarly for pedagogical reasons, but we want to underline
the relevance of this solution under the realistic assumption that priors are independent (see later).
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5.1 Investment triggers and investment costs

To study the relationship between firm i’s optimal investment trigger and its opponent’s investment cost, we

consider kj as a variable. Neither the follower trigger fi nor the non-strategic investment trigger li (irrelevance

of future alternatives) depend on kj . The strategic investment trigger pi = bj − ε does depend on kj , directly

and indirectly via fj(kj). As before, we define bj as the smallest positive real solution of the competitor’s

break-even function

ξj(bj | kj , fj) = V Lj (bj | kj)− V Fj (bj | fj , kj) = 0.

Firm j’s follower trigger can readily be expressed as a function of its investment cost kj

fj(kj) =
β

β − 1

r − µ
D2

kj =
fi
ki
kj =

kj
ki
fi, (5.1)

where ki and fi are known to firm i. We rewrite the break-even function as

ξj(bj , kj) =
bjD1

r − µ
− kj +

fi(D2 −D1)

r − µ

(
bj
fi

)β
−

(
kj
ki
fiD2

r − µ
− kj

)(
bj
kj
ki
fi

)β
= 0. (5.2)

The implicit function theorem implies that there exists a unique optimal strategic investment trigger pi = bj−ε
for firm i for each kj in the strategic domain.

Proposition 5.1 There exists a continuously differentiable, (strictly) increasing and strictly convex function

pi(kj) on
[
0, k∗j

]
that maps on codomain [0, li)

Proof. See appendix.

k∗j is the upper bound of the domain7 of pi(kj) and p′i(k
∗
j )→ +∞. The pre-image of the strategic domain[

ki, k
S
j

]
maps on [fi, li]. In the strategic domain, we can invoke the inverse function theorem.

Proposition 5.2 There exists a continuously differentiable, (strictly) increasing and strictly concave function

kj(pi) on [fi, li] that maps on
[
ki, k

S
j

]
.

Proof. See appendix.

Proposition 5.2 says that if firm i knows its optimal investment trigger pi, then it also knows the (unique)

investment cost of its opponent kj . We will use this proposition in Section 5.2.

We illustrate Proposition 5.1 in Figure 5.1. The dashed lines form the contour of ξj(x, kj) at ξj(pi, kj) = 0.

Limiting ourselves to the smallest real solution, the implicit function theorem describes a function pi(kj),

illustrated by the bold and dashed line. We use the bold and solid line to indicate the strategic trigger and

the non-strategic triggers in their respective domains. We show that kSj < k∗j and that li = pi(k
S
j ). Finally,

the thin and solid line indicates the follower trigger fi that applies on kj ∈ (0, ki).

The implicit function theorem proves the existence of pi(kj), but it may not yet be straigthforward to

determine pi(kj). When β is an integer, then ξj(·) is a polynomial and we can obtain pi(kj) analytically.

Otherwise, several strategies exist. First, we can apply the implicit function theorem to Equation (5.2) and

numerically solve the resulting differential equation p′i(kj) with boundary condition lim
kj→0

pi(kj) = 0. This

boundary condition expresses that immediate preemption is called for if your opponent has investment cost

zero. Because the problem is convex, a numerical solution can probably be obtained more efficiently using

the Newton-Raphson root-finding method on some grid of kj . If the functional form of pi(kj) is required,

splines, spectral method interpolation or econometric techniques can be used.

7 Pawlina and Kort’s (2006) preemptive domain is the pre-image
[
ki, k

∗
j

]
of this function. See footnote (5).
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Proposition 5.1. There exists a continuously differentiable, (strictly) increasing and strictly convex func-
tion pi(kj) on

[
0, k∗j

]
that maps on codomain [0, li)

Proof See appendix.
k∗j is the upper bound of the domain

9 of pi(kj) and p′i(k
∗
j )→ +∞. The pre-image of the strategic domain[

ki, k
S
j

]
maps on [fi, li]. In the strategic domain, we can invoke the inverse function theorem.

Proposition 5.2. There exists a continuously differentiable, (strictly) increasing and strictly concave func-
tion kj(pi) on [fi, li] that maps on

[
ki, k

S
j

]
.

Proof See appendix.
Proposition 5.2 says that if firm i knows its optimal investment trigger pi, then it also knows the (unique)

investment cost of its opponent kj . We will use this proposition in section 5.2.
We illustrate proposition 5.1 in figure 5.1. The dashed lines form the contour of ξj(x, kj) at ξj(pi, kj) = 0.

Limiting ourselves to the smallest real solution, the implicit function theorem describes a function pi(kj),
illustrated by the bold and dashed line. We use the bold and solid line to indicate the strategic trigger
and the non-strategic triggers in their respective domains. We show that kSj < k∗j and that li = pi(k

S
j ).

Finally, the thin and solid line indicates the follower trigger fi that applies on kj ∈ (0, ki). The implicit
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Figure 5.1: Functional relationship between kj and investment triggers. Parameter values are r = 0.05;
µ = 0.015; β = 2; D2 = 1; D1 = 1.33 and ki = 1.

function theorem proves the existence of pi(kj), but it may not yet be straigthforward to determine pi(kj).
When β is an integer, then ξj(·) is a polynomial and we can obtain pi(kj) analytically. Otherwise, several
strategies exist. First, we can apply the implicit function theorem to equation (5.2) and numerically solve
the resulting differential equation p′i(kj) with boundary condition lim

kj→0
pi(kj) = 0. This boundary condition

expresses that immediate preemption is called for if your opponent has investment cost zero. Because the
problem is convex, a numerical solution can probably be obtained more effi ciently using the Newton-Raphson
root-finding method on some grid of kj . If the functional form of pi(kj) is required, splines, spectral method
interpolation or econometric techniques can be used.

5.2. Uncertainty and structure of learning

Assume that the uncertainty of firm i over its competitor’s investment cost kj is given by a prior gi(kj)
with support over an open interval (kjL, kjH) ⊂ R+0 such that it is associated to a continuously differentiable
cumulative density function Gi(kj). By proposition 5.2, every pi maps on a unique kj ∈ [ki, k

S
j ], so we can

define a composition ψi(pi) ≡ Gi(kj(pi)). Again by proposition 5.2, this composition is an increasing function

9Pawlina and Kort’s (2006) preemptive domain is the pre-image
[
ki, k

∗
j

]
of this function. See footnote (5).
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5.2 Uncertainty and structure of learning

Assume that the uncertainty of firm i over its competitor’s investment cost kj is given by a prior gi(kj) with

support over an open interval (kjL, kjH) ⊂ R+
0 such that it is associated to a continuously differentiable

cumulative density function Gi(kj). By Proposition 5.2, every pi maps on a unique kj ∈ [ki, k
S
j ], so we can

define a composition ψi(pi) ≡ Gi(kj(pi)). Again by Proposition 5.2, this composition is an increasing function

of pi and thus qualifies as a cumulative probability distribution with support (piL, piH) ≡ (pi(kjL), pi(kjH)) ⊂
R+

0 . In this way, we have derived a powerful expression ψi(pi) of firm i’s uncertainty over its own optimal

strategic investment trigger in the strategic domain. In effect, ψi(pi) denotes the probability that firm j will

invest first.8

We introduce a new state variable x̂t ≡ max0≤τ≤t {xτ} to incorporate learning in our model. Each time

x reaches a new high x̂ in (piL, piH) and firm j does not invest, firm i learns that no positive probability

should have been atttributed to investment by its opponent at (or below) x̂t. The truncated distribution

ψi(pi | pi > x̂t) =
ψi(pi)− ψi(x̂t)

1− ψi(x̂t)
(5.3)

denotes firm i’s beliefs on the probability that firm j will invest first, conditional on the highest realization

of the state, where the denominator inflates the conditional distribution so that the density still integrates

to unity.

5.3 The expected value function and the optimal investment trigger for firm i

For an arbitrary trigger zi, firm i invests first with probability 1−ψi(zi)
1−ψi(x̂) to capture the expected (authentic)

leader value Ei
[
V LLi (x, zi)

]
. Otherwise, firm i will be the follower and its value will be V FFi (x, zi). Firm i

chooses zi such that its expected value before investment by either firm

Ei
[
V Ti (x, x̂, zi)

]
=

1− ψi(zi)
1− ψi(x̂)

Ei
[
V LLi (x, zi)

]
+

(
1− 1− ψi(zi)

1− ψi(x̂)

)
V FFi (x, zi) (5.4)

is maximized. The expected leader value Ei
[
V LLi (x, zi)

]
depends on firm i’s expectations about the follower

trigger for firm j. The latter depends on his expectation over firm j’s investment cost kj and can in turn be

written as a function of the leader i’s investment trigger zi

Ei [fj(zi)] =
fi
ki
Ei [kj(zi)] =

fi
ki

∫ piH

piL

kj(z)ψ
′
i(z)dz,

8 To be precise, ψi(pi) = ψi(pj ≤ pi) denotes the probability that firm i attributes to firm j investing at a pj smaller than pi.
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because kj(zi) is non-negative and increasing, and where the first equality sign is implied by expression (5.1).

We define

κj(zi) ≡ Ei [kj(zi)] =

∫ piH

piL

kj(z)ψ
′
i(z)dz

and write the expected leader value as

Ei
[
V LLi (x, zi)

]
=

 ziD1

r − µ
− ki +

fi
ki
κj(zi) (D2 −D1)

r − µ

(
zi

fi
ki
κj(zi)

)β( x
zi

)β
.

κj(zi) shares the basic properties of kj(zi) because expectation is a linear and monotonic operator and the

weighted (integral) sum of strictly concave functions is still strictly concave.

Corollary 5.1 κj(pi) inherits the continuity, monotonicity and concavity properties from kj(pi) on [fi, li].

This yields the following result:

Proposition 5.3 Firm i’s expected value function before investment by either firm is

Ei
[
V Ti (x, x̂ | pi)

]
=

1− ψi(pi)
1− ψi(x̂)

Ei
[
V LLi (x | pi)

]
+

(
1− 1− ψi(pi)

1− ψi(x̂)

)
V FFi (x | pi), (5.5)

where firm i’s unique optimal strategic investment trigger pi is implicitly defined by the first order condition

hi(pi) ≡
ψ′i(pi)

1− ψi(pi)
=

Ei
[
V LL′i (pi)

]
Ei
[
V LLi (pi)

]
− V FFi (pi)

. (5.6)

That is, if the solution is interior, if the problem is compact valued, and if the second order condition is

(strictly) satisfied, and where hi(pi) =
ψ′i(pi)

1−ψi(pi) is the hazard rate.

Proof. See appendix.

The hazard rate is the conditional probability that firm j invests at the very next instant, i.e. the risk of

immediate preemption. The solution is not interior if either ψi(pi) = 1 or ψi(pi) = 0. In these cases, we have

complete information and the optimal investment triggers are fi and li, respectively. For ψi(x̂) = 1 the value

of the problem would not be compact and a maximum would not necessarily exist. However, this is ruled out

by the standard assumption that the true optimal trigger pi ∈ (piL, piH); implying that lim
pi→piH

ψi(pi) = 1

too.

Under complete information, we have hi(pi) → ∞ at the preemption point and we obtain the familiar

condition Ei
[
V LLi (pi)

]
− V FFi (pi) = 0 from the first order condition (5.6). Rewriting it as[
Ei
[
V LLi (pi)

]
− V FFi (pi)

]
ψ′i(pi) = Ei

[
V LL′i (pi)

]
(1− ψi(pi)) (5.7)

helps the interpretation. Firm i weighs the (cumulative) probability 1−ψi(pi) that marginal delay increases

profits with Ei
[
V LL′i (pi)

]
against the (point) probability ψ′i(pi) that it loses the expected incremental value of

immediately investing first Ei
[
V LLi (pi)

]
−V FFi (pi). So, Equation (5.6) explains how firms weigh the expected

marginal benefits of waiting against its expected marginal costs.

Before investment, both firms are valued at E
[
V Ti,j(x, x̂ | pi)

]
. A substantial part of uncertainty is resolved

after investment by the leader i at pi, so its value exhibits a positive jump to E
[
V LLi (x | pi)

]
while the follower

j is valued lower at E
[
V FFj (x | pi)

]
. The precise value of a firm is not known by incompletely informed

investors9 (nor by the leader) until all firms have invested, but the follower has complete information at this

point and values the firms at the true V LLi (x | pi) and V FFj (x | pi) respectively. When the follower invests,

9 We assume that investors and firms have consistent beliefs based on public data.
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a second jump in the value occurs to V LLi (x | pi) and V FFj (x | pi). The direction of the second jump cannot

be a priori determined. These jumps may explain volatility on financial markets.

If we expand the first order condition to

0 = (1− β) D1

r−µ + β kipi + (1− β)

κ′j(pi)
ki

fi(D2−D1)

r−µ

(
ki

κj(pi)
pi
fi

)β
−
(
D1pi
r−µ − ki +

κj(pi)

ki
fi(D2−D1)

r−µ

(
ki

κj(pi)fi

)β
−
(
fiD1

r−µ − ki
)(

pi
fi

)β)
hi(pi),

(5.8)

it becomes apparent that the optimal investment trigger does not explicity depend on the state variables.10

This is because firms use threshold policies and, as such, firm i invests optimally when x reaches pi for the

first time, i.e. pi = x = x̂. To see this, interpret Ei
[
V Ti (x | x̂, pi)

]
as a family of value functions in the (x, V )

plane, where each function corresponds to a specific value of x̂ and is valid only in its domain x ∈ [x(0), x̂].

If firm j does not invest at a certain x = x̂, then firm i’s value is given by a higher x̂-curve. The value

function corresponds to an envelope curve Ei
[
V Ti (x | x̂, pi)

]∣∣
x=x̂

, composed of the end-points of all these

x̂-curves precisely because pi = x = x̂. At the optimal trigger, the envelope curve touches the Marshallian

value function VM from Section 3 (the value matching and smooth-pasting conditions).

The second order condition may be hard to verify. Proposition 5.4 provides a simplification.

Proposition 5.4 A sufficient (but not necessary) condition that simplifies the second order condition is

h′i(pi) ≥ 0.

Proof. See appendix.

This condition applies to most common distributions and ensures that the value function is continuous

and strictly concave in x.

5.4 Oligopoly and perfect competition

The generalization to an oligopoly with n firms is tedious yet rather straightforward. The terminology of

leader and follower is no longer adequate. If firm i invests as the kth (active) firm, its investment profit Dk

will be corrected by all subsequent n− k investments

Ei
[
V ki (x | xi, xk+1...xn)

]
=

xiDk

r − µ
− ki +

n∑
j=k+1

(
xj (Dj −Dj−1)

r − µ

)(
xi
xj

)β( x

xi

)β
, (5.9)

where xi is the optimal trigger when firm i invests as the kth firm and xj 6=i are the expected triggers of all

firms that have not invested yet. To invest first when competing against n − 1 firms, firm i has to invest

before its most efficient competitor. If firm i has the same prior for each competitor, the probability that

firm i invests as the kth firm is given by

1− ψ̃ki (xi) ≡
n−k∏
j=1

[1− ψi(xj < xi)] = (1− ψi(xi))n−k . (5.10)

To find the optimal investment trigger, we construct the weighted value function.

Corollary 5.2 The expected value function of firm i competing against n − m − 1 competitors and after

investment by m ∈ {0, ..., n− 1} firms is

10 V FF ′i (x) = 0, so both x and ψi(x̂) apply to all terms of the first order condition (the derivative of the follower value is
zero) and can be divided away.
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Ei
[
V Ti,m(x, x̂ | m,xi, x1, ..., xi−1, xi+1, ..., xn−m)

]
=

n−m−1∑
k=m+1

1− ψ̃ki (xi)

1− ψi(x̂)
Ei
[
V ki (x | xi,xk+1...xn−m)

]
+

(
1−

n−m−1∑
k=m+1

1− ψ̃ki (xi)

1− ψi(x̂)

)
V ni (x | xi),

where the value maximizing trigger xi can be found by applying the first and second order conditions if the

solution is interior and if the problem is compact.

It follows immediately from Equation (5.10) that more competition leads to earlier investment.

Corollary 5.3 Under perfect competition (n→∞) each firm invests at its break-even trigger.

Information is no longer truly incomplete because ψi(pi) is no longer a probability distribution, but

reflects the actual number of firms that will invest before firm i. As such, no firm can do better postponing

investment. Thus, the value of waiting vanishes in the limit of perfect competition.

5.5 Natural monopoly and dominant leader versus competitive fringe

Lambrecht and Perraudin (2003) present a natural monopoly model under incomplete information. Firms

race to invest first, but only one firm (the leader i) can actually make a profit. Their model is a special case

of ours with V Fj (x) = 0 for all x. This implies that fj →∞ and thus that CLj = 0; see Equation (4.4). Firm

i’s expected value becomes

Ei
[
V Ti (x, x̂ | pi)

]
=

1− ψi(pi)
1− ψi(x̂)

(
piD1

r − µ
− ki

)(
x

pi

)β
. (5.11)

On the other hand, we can imagine a situation where the follower(s) capture some positive value, but do not

affect the leader’s profit. For example, a large part of the market is locked-in by the leader’s technology (e.g.

the Google search engine), but a fringe of smaller followers exist that share the remainder of the market with

an alternative technology (e.g. Bing, Yahoo). The behavior of this fringe hardly affects the leader’s profits,

i.e. CLj = 0 even if V Fj (x) 6= 0. We obtain the expected value function11

Ei
[
V Ti (x, x̂ | pi)

]
=

(
piD1

r − µ
− ki

)(
x

pi

)β
1− ψi(pi)
1− ψi(x̂)

+

(
fiD2

r − µ
− ki

)(
x

fi

)β (
1− 1− ψi(pi)

1− ψi(x̂)

)
. (5.12)

In both these models, the leader gains a perpetual monopoly, so its value function does not depend on the

investment trigger of the follower. Therefore, the value of a firm jumps only when it invests. The prospect

of a perpetual monopoly profit accelerates investment compared to the situation of a duopoly in both these

models. Moreover, waiting becomes riskier with decreasing follower payoff. Finally, asymmetry positively

affects the value of waiting. In the limits of a natural monopoly (Lambrecht and Perraudin, 2003), the value

of waiting vanishes completely. We conclude that real options theory is most relevant when there is a small

first-mover advantage, the number of competitors is small, and where firms are (ex-post) more asymmetric.

5.6 Incomplete information and the choice of a prior

We want to find out how optimal investment timing depends on the quality of information, but unfortunately

there is no simple answer. One traditional measure is the mean-preserving spread. In the mean-preserving

spread, we start from the optimal investment trigger for firm i under complete information pCi and a given

11 Pawlina and Kort (2005) consider a single firm that anticipates a policy change that will adversely affect its investment
cost at an uncertain, but state-dependent moment in the future. Substitution of

kiH ≡
fi (D1 −D2) + (r − µ)ki

r − µ

in Equation (5.12), shows that we obtain an interpretation of their model in the context of industrial organization.
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distribution and slowly increase the variance ω2 around pCi . We measure how the optimal trigger changes.

A change in variance affects the optimal trigger only indirectly via its effect on the hazard rate

∂pi
∂ω2

=
∂pi

∂hi(pi | ω2)

∂hi(ω
2 | pi)

∂ω2
. (5.13)

The sign of ∂hi(ω
2|pi)

∂ω2 does not have a straightforward practical connotation.12 The effect of an increase of the

variance on the hazard rate depends entirely on the distribution and on the initial pi. We can show however

that an increased risk of immediate preemption causes firms to invest sooner. This is very intuitive: a higher

marginal probability that competitor j invests in the next moment, accelerates optimal investment by firm i.

Proposition 5.5 The optimal investment trigger decreases monotonically in the hazard rate.

∂pi
∂h(pi | ω2)

< 0. (5.14)

Proof. See appendix.

The first factor in Equation (5.13) expresses how pi must adapt to maintain equality in the first order

condition (5.6) after a variance-induced change in the hazard rate. The change in the optimal investment

trigger depends thus indirectly on the slope of the expected leader value function and the difference between

expected leader and follower value at the current pi.

Pawlina and Kort (2005) examine a normal distribution N(pCi , ω
2) and find that the optimal investment

trigger first decreases but then starts to increase as the quality of information deteriorates in the mean-

preserving spread. There is thus a finite standard deviation ωe that corresponds to the lowest investment

trigger. Beyond this critical value, greater uncertainty results in later investment:{
∂pi
∂ω2 < 0 for ω < ωe
∂pi
∂ω2 > 0 for ω > ωe

.

This non-monotonicity is the result of repeated marginal analysis of Equation (5.6) and depends in a com-

plicated and non-intuitive way on all the parameters of the model, and in particular on the shape of the

distribution.13 The hazard rate of uniform distributions is decreasing in ω2 everywhere. This implies that

additional uncertainty always delays investment. With sufficient uncertainty, investment may even be post-

poned relative to the complete information case. The hazard rate of a Pareto distributed variable decreases

in ω2 as well. However, due to its distinct asymmetry, it is not well-defined in the limit going to complete

information, and the optimal investment trigger at the mean jumps down dramatically and then slowly in-

creases when we introduce uncertainty. This can be easily checked, because these distributions have a closed

form solution.

This warns us that careful determination of the prior is very important and can affect the optimal

investment trigger in dramatic and non-trivial ways. In particular, it seems hard to justify the use of a

Pareto distribution empirically14 as the latter would imply a very high probability that an opponent has

an investment cost just a little larger than a known and fixed minimum cost that carries zero probability

itself. Apart from the (truncated) normal distribution, some other distributions with positive support could

constitute more empirically plausible priors. The family of Weibull distributions with shape parameter

λ ≥ 3.36 approach a more and more leptokurtic normal distribution, while the t-distribution has fatter tails.

For symmetric Gi(·) we obtain a left-skewed ψi(·) because pi(kj) is convex. So, ψi(·) can be approximated

directly by a loglogistic, lognormal, inverse-Gaussian, F or χ2 distribution.

12 Geometrically, the hazard rate is the point probability at pi divided by the probability mass to the right of pi (or the
survival rate).

13 Contrary to what Pawlina and Kort (2005) suggest, this monotonicity is not due to a trade-off between useful information
and increasing noise. Applied to uniform or Pareto distributions, this argument would imply that these distributions are so
noisy that they contain no useful information at all.

14 The Pareto-distribution is nonetheless prominent in auction and preemption literature because it often allows analytical
solutions.
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5.7 A solution in terms of Gi(kj)

We initially assumed uncertainty over the opponent’s investment cost, but so far we have solved the problem

only in terms of uncertainty over a firm’s own optimal trigger. In this section we use the composition

Gi(kj(pi)) = ψi(pi) to express the solution once again in terms of the prior over kj . The problem then

becomes a single non-linear first-order differential equation (5.15). To obtain a boundary condition (5.16),

we determine piH from the fact that information about the opponent’s investment trigger is complete at the

upper boundary of the support of

lim
pi→piH

Gi(kj(pi)) = lim
pi→piH

ψi(pi) = 1.

Proposition 5.6 Firm i with prior Gi(kj) solves the non-linear differential equation

k′j(pi) =
1−Gi(kj(pi))
G′i(kj(pi))

Ei
[
V LL′i (pi)

]
Ei
[
V LLi (pi)

]
− V FFi (pi)

, (5.15)

with implicit boundary condition

kj

(
piH =

(r − µ)

D1
k̃i(piH)

)
= kjH , (5.16)

where k̃i(piH) ≡ ki + V Fi − Ei
[
CLi (piH)

]
is firm i’s virtual investment cost at the upper boundary of the

support of its prior.

Proof. See appendix.

The inverse of the solution kj(pi) for Equation (5.15) with boundary condition (5.16) provides the optimal

investment trigger for firm i. This inverse exists if kj(pi) is strictly increasing, which requires a well-set

problem. A well-set problem has exactly one local solution through (kj , pi) and the solution curves of

differential equation (5.15) form a normal curve family in the strategic domain. To show that a problem

is well-set, we need to show existence, uniqueness and continuity of the solution on the initial conditions.

Standard uniqueness proofs do not apply because k′j(pi) in Equation (5.15) is not Lipschitz continuous at bi
(where V LLi (bi) = V FFi (bi)). The proof is somewhat more involved.

Proposition 5.7 There exists a unique solution to differential equation (5.15) if bi < piH

Proof. See appendix.

If piH ≤ bi then firm i is the high cost firm (Gi(kj) = 1) and invests as a follower. On the contrary, firm

i invests at its non-strategic trigger li if Gi(kj) = 0.

6 A duopoly under incomplete information: common and consis-
tent priors

In an imperfectly competitive situation, players behave strategically and optimal strategies become interde-

pendent. In order to avoid infinite regress (the need to specify beliefs and beliefs about beliefs and so on)

under incomplete information and close our model, we require assumptions on the interdependence of the

players’ beliefs. The standard assumption is that each firm observes its own investment cost, while each

firm’s cost is drawn independently from a common and consistent15 prior G(kj) with support (kL, kH). In a

Bayesian-Nash equilibrium, no player can do better by unilaterally changing his strategy, given these beliefs.

15 Common priors are common knowledge among the players. Consistent priors are priors that are the same for all players.
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A Markovian version of such equilibrium [(ki, kj), (G(ki), G(kj))] solves the following system of nonlinear

first-order differential equations of the form (5.15) and boundary conditions of the form (5.16)

k′j(p) =
1−G(kj(p))
G′(kj(p))

Ei[V LL′i (p)]
Ei[V LLi (p)]−V FFi (p)

k′i(p) = 1−G(ki(p))
G′(ki(p))

Ej[V LL′j (p)]
Ej[V LLj (p)]−V FFi (p)

kj

(
pH = (r−µ)

D1
k̃i(pH)

)
= kH

ki

(
pH = (r−µ)

D1
k̃j(pH)

)
= kH

, (6.1)

where k̃i(piH) =
(
ki + V Fi − Ei

[
CLi (piH)

])
. This game possesses the characteristics of a first-price (or sealed

high-bid) auction with a continuum of types Maskin and Riley (1986) and has a unique and symmetric

equilibrium. In the language of auction theory, this is a private value auction because the value of investment

differs between firms. We briefly check the conditions. First, kj(p) is a continuous function on the strategic

domain. This is true because the (sufficient) condition for a maximum h′i(p) ≥ 0 ensures that the first order

conditions yield a bijective mapping p : kj → p(kj) between costs and (optimal) investment triggers in the

strategic domain. Second, kj(p) is strictly increasing on the strategic domain. We have established this in

Proposition 5.7. Third, the optimal triggers coincide at the boundaries of the distribution over the investment

costs. We show this in Proposition 6.1.

Proposition 6.1 The endpoints of the prior map on the same values for both firms, i.e. pi(kL) = pj(kL)

and pi(kH) = pj(kH).

Proof. See appendix.

Proposition 6.2 There exists a unique, symmetric equilibrium for the game of system (6.1) if bi < pH and

bj < pH

Proof. See appendix.

Once again, the optimal investment trigger is the inverse of the solution of system (6.1). In Section 5.6,

we investigated the impact of information quality on the optimal investment trigger of a single firm. Under

common and consistent priors, these results should remain valid as both firms react in the same fashion.

While philosophically captivating,16 common and consistent priors are a safe assumption only when

nature’s moves represent public events that are common knowledge (e.g. Binmore (2007); Fudenberg and

Tirole (1991)). This assumption, that nature attributes a cost from the same distribution G(·) to each firm,

implies here that both firms have a priori identical information about each other’s investment costs.

7 A duopoly under incomplete information: pure asymmetric in-
formation

Now we study what happens if information is not identically distributed over the firms.17 Firms may be able

to achieve a competitive advantage if they possess better information than their competitor(s). Competition

between a public (uninformed) firm, that has to divulge a wealth of sensitive information to its stakeholders,

and a private (informed) firm is an example. In this case, we can assume that priors are common but not

consistent. Competition between a firm that carefully studies its competitor by an elaborate marketing infor-

mation system or resorts to outright industrial espionage, and a firm that does not pursue such endeavours

16 The so-called Harsanyi doctrine has strong philosophical foundations going back to Rawls (1971) veil of ignorance.
17 Surprisingly little has been published on alternative assumptions. Maskin and Riley (2000a,b) and Lebrun (1999) show

when an equilibrium exists in independent private value auctions (common but inconsistent priors) and identify the interesting
case of first order stochastic dominance, where ∀ki, kj : |G(kj)−G(ki)| ≥ 0. Lebrun (2006) and Maskin and Riley (2003)
provide sufficient conditions for uniqueness. Lizzeri and Persico (2000) and Maskin and Riley (2000a,b, 2003) also establish
uniqueness and existence under affiliation (pairwise correlated distributions).
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provides another example. In the latter example, priors become common when espionage is detected and it

is known what strategic data have been stolen.18

Since a full analysis would be quite untractable,19 we investigate – in neo-classical economic tradition –

only an extreme case of pure asymmetric information20 where the informed firm i has complete information

about the investment cost of the uninformed firm u, but the latter is only certain about the investment cost

of firm i up to a prior Gu(ki). We maintain the common prior assumption.

We evaluate the decision of the uninformed firm first. The uninformed firm choses its optimal investment

trigger pu, in the knowledge that it will be preempted if the break-even trigger of the informed firm is lower.

This happens with probability21

ψu(bi < pu) = Gu(ki(bi)) = Gu(ki).

This probability cannot be larger than ψi(pi < pu) from Section 5.2 because bi ≤ pi. It follows immediately

that the asymmetric information forces the uninformed firm to give up more value of waiting than in the

case of incomplete information. The value function of the uninformed firm is

Eu
[
V Tu (x, x̂ | pu)

]
=

1− ψu(pu)

1− ψu(x̂)
Eu
[
V LLu (x, pu)

]
+

(
1− 1− ψu(pu)

1− ψu(x̂)

)
V FFu (x, pu), (7.3)

with the optimal pu given by

hu(pu) =
Eu
[
V LL′u (pu)

]
Eu [V LLu (pu)]− V FFu (pu)

. (7.4)

Because of common knowledge, the informed firm can make the same calculations and will invest at pu− ε if

its true cost is such that bi < pu. The equilibrium thus has a distinct Stackelberg flavor with the uninformed

firm being the leader, because the informed firm can take pu as given before making its decision to invest.

Contrary to what one would expect, there is only one situation where the (informed) firm can benefit

from asymmetric information. The inefficient and informed firm can overcome its natural follower role and

capture the leader value if the efficient but uninformed firm underestimates the latter’s profitability so much

that it postpones investment beyond the break-even point of the inefficient firm. Public firms can be at such

strategic disadvantage if they seriously underestimate their privately owned competitors. Remember that

under incomplete information (and common and consistent priors), the efficient firm postpones investment

to maximize its expected value based on ψi(pj < pi). If it is known that an inefficient firm acquires complete

information, then its efficient but uninformed opponent wants to accelerate investment to max {befficient, pu}
with pu ≡ pasymmetricefficient < pincompleteefficient to maximize its expected value, taking ψu(bj < pi) as a reference. The

inefficient firm will invest first if pu ≥ binefficient.

An efficient firm can never benefit from complete information about its uninformed competitor if this is

common knowledge. The uninformed and inefficient firm will accelerate planned investment to

max {binefficient, pu} with pu ≡ pasymmetricinefficient < pincompleteinefficient and the efficient firm will have to ε-preempt

sooner, thereby losing some value of waiting.

18 Strategic information was allegedly stolen at Renault in 2011 and this fact received lots of publicity. See The economist
(2011) The Renault “spying” affair. A new twist. (March 10th, 2011) [online] Available at http://www.economist.com/node/

18332938/print Accessed on 07/09/2011.
19 We study a private value auction, while Graham (2011) studies a common value auction under asymmetric information.
20 This case is not covered by Maskin and Riley (2003a,b).
21 It is worth mentioning that Hsu and Lambrecht (2007) extend the model of Lambrecht and Perraudin (2003) to pure

asymmetric information and find that the efficient firm always invests at its break-even trigger. This simply cannot be true as
firms still use marginal analysis. With a follower value of zero, the value of the uninformed firm u

V Tu (x, x̂ | pu) =
1− ψu(pu)

1− ψu(x̂)

(
puD1

r − µ
− ku

)(
x

pu

)β
(7.1)

is maximized for

pu = −
β + puhu(pu)

1− β − puhu(pu)

(r − µ)

D1
ku (7.2)

and we conclude that pu → bu =
(r−µ)
D1

ku only if − β+puhu(pu)
1−β−puhu(pu)

→ 1, i.e. if hu(pu)→∞.

http://www.economist.com/node/18332938/print
http://www.economist.com/node/18332938/print
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Whether the efficient or inefficient firm engages in such activities, we conclude that espionage always works

counterproductively when discovered (because this always accelerates investment). Since no firm knows a

priori whether it is the more efficient firm or not, a firm i should only invest an amount Ci(=) to obtain

complete information where priors are common, if

0 ≤ −Ci(=) +
1− ψi(py)

1− ψi(x̂)
Ei
[
V LLi (pu)− V LLi (py)

]
+

(
1− 1− ψi(py)

1− ψi(x̂)

)(
1− ψu(pu)

1− ψu(x̂)
Ei
[
V LLi (pu)

]
+

(
1− 1− ψu(pu)

1− ψu(x̂)

)
V FFi (pu)− V FFi (py)

)
,

where py is the optimal trigger under incomplete information and pu is the optimal trigger under pure

asymmetric information. We conjecture that this is almost never true and that the net value of information

(given that it is common knowledge that the firm possesses this information) is almost always non-positive.

This obviously does not hold for espionage that remains covert. In that case, we conjecture that the

uninformed firm will keep investing as if information were incomplete for both firms and priors were common

and consistent; i.e. at the py ≡ pincompleteinefficient or the py ≡ pincompleteefficient from Section 6. The spying firm can invest

right before py as long as bi < py. It is optimal for a firm to invest in information if

0 ≤ −Ci(=) +

(
ψi(py)− ψu(py)

1− ψi(x̂)

)
Ei
[
V LLi (py)

]
+

(
ψu(py)− ψi(py)

1− ψi(x̂)

)
V FFi (py).

We conclude that espionage pays particularly where the first-mover advantage and the increase in probability

of investing first are large. Furthermore, we conclude that covert espionage can be more rewarding than open

espionage, because both the probability of becoming the leader and the leader value obtained are lower under

common priors.

8 Conclusion

We describe competition between firms that are racing to invest first in a new and uncertain market where

there is a first-mover advantage. Firms are not certain about each others’ investment cost either. Our model

generalizes the complete information model of Pawlina and Kort (2006), a reinterpreted Pawlina and Kort

(2005) and the natural monopoly models of Lambrecht and Perraudin (2003) and Hsu and Lambrecht (2007).

First, we derive the optimal investment trigger in a duopoly under the important assumption that one’s

opponent does not behave strategically. We find that investment is accelerated in markets with more com-

petitors, markets with an important first-mover advantage and markets where technological lock-in forces

competitors into the competitive fringe.

We evaluate how investment timing is affected by information quality as the mean-preserving spread

under a given distribution. We find that firms do not always invest sooner as the quality of their information

deteriorates and may even invest later than they would have under complete information. Firms postpone

investment as long as the increased expected marginal loss due to preemption is outweighed by the marginal

increase in the option value of waiting.

When we allow for strategic interaction, assumptions about the interdependence of beliefs characterize

the equilibrium solution. Under the standard assumption of common and consistent priors, we find that a

unique and symmetric Bayesian-Markov equilibrium exists.

We relax the consistent prior assumption to investigate what happens when it is known that one firm has

better information than its competitor. In a game between a public and a private firm, such a common prior

assumption is plausible. We find that firms invest sooner than under incomplete information in a game of

pure asymmetric information with common priors, where one firm has complete information but the other

firm does not. We conclude that firms will not usually benefit if it is known that they have acquired better

information and that industrial espionage is usually counterproductive when discovered.

The assumption that both firms are perfectly knowledgeable about what their opponents believe but not

about their investment costs seems to be quite a stretch, especially in a situation of industrial espionage
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(where these beliefs could be false). A more general model of asymmetric information could be the subject

of further research. However, without some assumption on the interdependence of the priors, an equilibrium

solution must be precluded. It is not clear what assumption would be both tractable and plausible and

perhaps a case could be made for the assumption that beliefs are often not interdependent in reality. In that

case, we conjecture that each firm might solve a single player decision problem of Section 5. In our opinion,

these rather philosophical questions have not attracted adequate attention.

Finally, our model does not easily generalize to more complicated existing market models (see Pawlina

& Kort, 2006). Such models have an additional continuum of equilibria, called simultaneous equilibria. We

think that the resulting equilibrium selection problem could be challenging under incomplete information.

A Appendix: Proofs of propositions

Proof of Proposition 4.1. First, because the strategic trigger is not defined for kj > k∗j (see Proposi-

tion 5.1), li is optimal there by default. Second, we show that there exists an interval
[
kSj , k

∗
j

)
. We observe

that li = pi(k
S
j ) on the lower bound of the non-strategic domain and solve ξj(li, k

S
j ) = 0 for kSj . We obtain

ξj(li, k
S
j ) ≡ liD1

r − µ
− kSj +

fi(D2 −D1)

r − µ

(
li
fi

)β
−
(
fjD2

r − µ
− kSj

)(
li
fj

)β
= 0. (A.1)

V Lj (x) and V Fj (x) intersect at bj = li for investment cost kSj . The former is increasing and strictly concave,

the latter is increasing and strictly convex. Therefore, kSj cannot lie to the right of k∗j (where V Lj (x) is

tangent to V Fj (x)). This proves that there exists an interval
[
kSj , k

∗
j

)
. Third, we show that firm i prefers its

non-strategic trigger li over its strategic trigger pi in this interval. First, we compute the authentic leader

value (see Section 4.5) for each trigger. We obtain

V LLi (kj | li) =

 liD1

r − µ
− ki +

fi
kj
ki

(D2 −D1)

r − µ

(
li

fi
kj
ki

)β(x
li

)β
for the non-strategic trigger, and (using Proposition 5.1), we find that the strategic trigger is:

V LLi (kj , pi(kj)) =

pi (kj)D1

r − µ
− ki +

fi
kj
ki

(D2 −D1)

r − µ

(
pi(kj)

fi
kj
ki

)β( x

pi(kj)

)β
.

The value functions coincide per definition at kSj . Now, we prove that their slopes coincide as well (see also

Figure 4.1). The authentic value for a non-strategic firm has positive derivative:

∂V LLi (kj | li)
∂kj

= (1− β)

(
fi
ki

)1−β
(D2 −D1)

r − µ
xβk−βj .

For a strategic firm we find derivative

∂V LLi (kj | pi (kj))

∂kj
= (1−β)

pi (kj)
−β

p′i (kj)D1

r − µ
xβ+βkipi(kj)

−β−1p′i(kj)x
β+(1−β)

(
fi
ki

)1−β
(D2 −D1)

r − µ
xβk−βj .

The difference between these derivatives is

∆ ≡ ∂V LLi (kj | pi (kj))

∂kj
− ∂V LLi (kj | li)

∂kj

=

(
(1− β)

pi (kj)D1

r − µ
+ βki

)
pi(kj)

−β−1p′i(kj)x
β .

The sign of ∆ depends on the the first factor, which we can multiply by 1
β−1

r−µ
D1

> 0 to obtain

sgn {∆} = sgn {(li − pi (kj))} .
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It follows immediately that 
∂V LLi (kj |pi(kj))

∂kj
<

∂V LLi (kj |li)
∂kj

for kj > kSj
∂V LLi (kj |pi(kj))

∂kj
>

∂V LLi (kj |li)
∂kj

for kj < kSj
∂V LLi (kj |pi(kj))

∂kj
=

∂V LLi (kj |li)
∂kj

for kj = kSj

.

Finally, because V LLi (kj | li) increases faster to the right of common point kSj and decreases slower to the

left than V LLi (kj | pi (kj)), we obtain that
V LLi (kj | pi (kj)) < V LLi (kj | li) for kj > kSj
V LLi (kj | pi (kj)) > V LLi (kj | li) for kj < kSj
V LLi (kj | pi (kj)) = V LLi (kj | li) for kj = kSj

.

Hence, firm i uses the strategic trigger when kj < kSj and the non-strategic trigger when kj ≥ kSj .

Proof of Proposition 4.2. Application of the Feynman-Kac theorem immediately yields the authentic

value function of leader i

V LLi (x | xi, fj) =

(
xiD1

r − µ
− ki +

fj (D2 −D1)

r − µ

(
xi
fj

)β)(
x

xi

)β
, (A.2)

where xi ∈ {pi, li} is the optimal investment trigger for the leader. Single firm optimization with respect to

xi now yields indeed the non-strategic trigger li. However, usually we have to take follower j into account.

The authentic value function for follower j is

V FFj (x | xi, fj) =

(
fjD2

r − µ
− kj

)(
xi
fj

)β (
x

xi

)β
. (A.3)

It then follows immediately that

V LLj (xi)− V FFj (xi) = V Lj (xi)− V Fj (xi). (A.4)

Proof of Proposition 4.3. We rewrite V FFi (x | xj , fi) as V Fi (xj)
(
x
xj

)β
. V Fi (x) is strictly increasing from

V Fi (0) = 0. So V Fi (xj) is a positive number.
(
x
xj

)β
is non-negative, strictly increasing and strictly convex,

and V FFi (x) inherits these properties. Similarly, V Li (xi) ≥ 0 because V Li (xi)− V Fi (xi) = 0 and V Fi (xi) > 0.

So V LLi (x) is also non-negative, strictly increasing and strictly convex.

Proof of Proposition 5.1. First, since ξj(p, kj) is continuously differentiable in an open set around each

(p0i , k
0
j ) in [0, kj

∗) with ξj(p
0
i , k

0
j ) = 0 and

∂ξj(p
0
i ,k

0
j )

∂pi
6= 0, we know by the implicit function theorem that a

function pi = pi(kj) exists locally22 and is continuously differentiable with derivative

dpi(kj)

dkj
= −

∂ξj(pi,kj)
∂kj

∂ξj(pi,kj)
∂pi

. (A.5)

Second, to show that p′i(kj) > 0 for kj ∈ [0, k∗j ), consider the numerator first. The derivative of Equation 5.2

with respect to kj is

∂ξj(pi, kj)

∂kj
= −1 + (β − 1)

(
fi
ki
D2

r − µ
− 1

)(
ki
fi

pi
kj

)β
.

22 Since we consider only the smallest real solution pi of ξj(x, kj), the implicit function theorem is also globally true. Every
pi of the domain has a unique image in R+.
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Using Equations (4.2) and (5.1) this simplifies to

∂ξj(pi, kj)

∂kj
= −1 +

(
pi
fj

)β
, (A.6)

and (because pi < fj) we conclude that
∂ξj(pi, kj)

∂kj
< 0.

The denominator

∂ξj(pi, kj)

∂pi
=

D10

r − µ
+ β

(
fi(D2 −D1)

r − µ

(
1

fi

)β
−
(
fjD2

r − µ
− kj

)(
1

fj

)β)
pβ−1i > 0

is zero at k∗j > kSj , where k∗j was defined in Equation (4.5). It is monotonically decreasing. To wit, its

derivative
∂2ξj(pi, kj)

∂p2i
= β(β − 1)

(
fi(D2 −D1)

r − µ

(
1

fi

)β
−
(
fjD2

r − µ
− kj

)(
1

fj

)β)
pβ−2i (A.7)

is negative because D2 < D1 (for the second term use Equation (5.1) again). We conclude that the denomi-

nator must be strictly positive for all kj ∈ [0, k∗j ) and it follows immediately that p′i(kj) is strictly increasing.

Finally, ξj(pi, kj) is strictly concave in pi and in kj because the Hessian

H =

∂2ξj(pi,kj)

∂k2j

∂2ξj(pi,kj)
∂kj∂pi

∂2ξj(pi,kj)
∂kj∂pi

∂2ξj(pi,kj)

∂p2i


is negative definite. (The leading principal minors of the negative of the Hessian are positive.) This in turn

implies strict convexity of pi(kj), which coincides with the upper level set of ξj(pi, kj) at ξj = 0.

Proof of Proposition 5.2. The strategic codomain [fi, li] is a subset of the image of [0, k∗j ), hence pi(kj)

is onto (surjective). Since pi(kj) is continuous and strictly increasing, it is a one-to-one mapping (injective).

By the inverse function theorem, kj can be mapped one-to-one onto pi for all kj in the strategic domain.

kj(pi) is well-defined because pi(kj) is a strictly increasing function. The inverse of a strictly increasing and

strictly convex function is strictly increasing and strictly concave. We conclude that kj(pi) is continuously

differentiable, strictly increasing and strictly concave in pi[ki, k
S).

Proof of Proposition 5.3. The value function can be obtained from Equation (5.4) as

max
zi∈[fi,li]

V Ti (x, x̂, zi) = V Ti (x, x̂ | pi). (A.8)

Assuming interior solutions and compactness, the strategic trigger pi optimizes V Ti (x, x̂, zi) in the strategic

domain. The first order condition is

max
pi∈(piL,piH)

V Ti (x, x̂ | pi) = 0, (A.9)

or equivalently

0 =
−ψ′i(pi)

1− ψi(x̂)
Ei
[
V LLi (x | pi)

]
+

1− ψi(pi)
1− ψi(x̂)

Ei
[
V LL′i (x | pi)

]
+

ψ′i(pi)

1− ψi(x̂)
V FFi (x | pi). (A.10)

We can rewrite this as

hi(pi) ≡
ψ′i(pi)

1− ψi(pi)
=

Ei
[
V LL′i (x | pi)

]
Ei
[
V LLi (x | pi)

]
− V FFi (pi)

. (A.11)



20 G–2012–30 Les Cahiers du GERAD

Proof of Proposition 5.4. We expand the expected value function by substitution of Equations (A.2)

and (A.3), and apply the results from Section 5.1 to obtain

V Ti (x, x̂ | pi) =

(
1− ψi(pi)
1− ψi(x̂)

)D1pi
r − µ

− ki +

(
κj(pi)
ki

fi (D2 −D1)

r − µ

)(
pi

κj(pi)
ki

fi

)β( x
pi

)β (A.12)

+

(
1− 1− ψi(pi)

1− ψi(x̂)

)[(
fiD2

r − µ
− ki

)(
pj
fi

)β (
x

pj

)β]
.

The expanded first-order condition is

(1− β)
D1p

−β
i

r−µ + βkip
−β−1
i + (1− β)

κ′jκ
−β
j kβ−1

i f1−β
i (D2−D1)

r−µ

+
(
−D1p

1−β
i

r−µ + kip
−β
i − κj(pi)

1−βkβ−1
i f1−β

i (D2−D1)

r−µ +
f1−β
i D2

r−µ − kif−βi
)
hi(pi) = 0

. (A.13)

We differentiate to find the second order condition for a (unique) maximum

−β(1− β)
D1p

−β−1
i

r−µ − β(β + 1)kip
−β−2
i + (1− β)

(
κ′′j κj − β

(
κ′j
)2) κ−βj kβ−1

i f1−β
i (D2−D1)

r−µ

+

(
−(1− β)

D1p
−β
i

r−µ − βkip
−β−1
i − (1− β)

κ′jκ
−β
j kβ−1

i f1−β
i (D2−D1)

r−µ

)
hi(pi)

+
(
−D1p

1−β
i

r−µ + kip
−β
i − κj

1−βkβ−1
i f1−β

i (D2−D1)

r−µ +
f1−β
i D11

r−µ − kif−βi
)
h′i(pi)

< 0. (A.14)

We rewrite the second order condition as

β [(β − 1)D1pi − (β + 1)(r − µ)ki] p
−β−2
i + (1− β)

(
κ′′j κj − β

(
κ′j
)2)

κ−βj kβ−1i f1−βi (D2 −D1)

+
(

[(β − 1)D1pi − β (r − µ) ki] p
−β−1
i − (1− β)κ′jκj

−βkβ−1i f1−βi (D2 −D1)
)
hi(pi)

+

(
1

β − 1
kif
−β
i − (D1pi − (r − µ)ki) p

−β
i − kj(pi)1−βkβ−1i f1−βi (D2 −D1)

)
h′i(pi)

< 0. (A.15)

and evaluate the sign of each line. We know that pi lies between the Marshallian and non-strategic trigger,

so r−µ
D1

ki < pi <
β
β−1

r−µ
D1

ki and we know that the hazard rate is positive (per definition). Finally,

κ′′j κj − β
(
κ′j
)2 ≤ 0 (A.16)

because κj is positive, increasing and strictly concave. If we impose the sufficient (but not necessary) condition

h′i(pi) ≥ 0, (A.17)

then each line in Equation (A.15) is negative and the second order condition is strictly satisfied.

Proof of Proposition 5.5. We take the derivative of Equation (5.6) with respect to pi:

∂hi(pi)

∂pi
=

∂

∂pi

V LL
′

i (pi)

V LLi (pi)− V FFi (pi)
=
V LL

′′

i (pi)
[
V LLi (pi)− V FFi (pi)

]
−
[
V LL

′

i (pi)
]2

[
V LLi (pi)− V FFi (pi)

]2 < 0. (A.18)

The numerator is negative because V LL′i (pi) is decreasing in pi and V LLi (pi) − V FFi (pi) is positive (see

Proposition 4.3). Hence ∂hi(pi)
∂pi

and its inverse are negative as well. Pawlina and Kort (2005) provide an

alternative proof.

Proof of Proposition 5.6. We express the hazard rate in terms of Gi(kj(pi)) using the chain rule

hi(pi) =
ψ′i(pi)

1− ψi(pi)
=

G′i(kj(pi))

1−Gi(kj(pi))
k′j(pi) (A.19)
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and substitute in first order condition (5.6) to obtain Equation (5.15). The boundary condition reflects the

fact that information becomes complete if competitor j has not invested yet as x approaches piH = pi (kjH).

In the limit lim
pi→piH

ψi(pj ≤ pi) = 1, firm i is certain to be preempted in the next instant. Thus, its hazard

rate goes to infinity in the limit. Define h∗i (pi) ≡ pihi(pi) and rewrite the expanded first order condition (5.8)

as

(1− β − h∗i (pi))D1pi + (β + h∗i (pi)) (r − µ)ki+(
(1− β)

(
κj
ki

)−β′ κ′j
ki
fi (D2 −D1) pi −

(
κj
ki

)1−β
fi (D2 −D1)h∗i (pi) + fiD2h

∗
i (pi)

)(
pi
fi

)β
= 0.

Now, divide by h∗i (pi) and let pi → piH (and thus lim
pi→piH

h∗i (pi) = +∞). We obtain

piH =
(r − µ)

D1
ki +

(r − µ)

D1

(
fiD2

r − µ
− ki −

(
κj
ki

)1−β

fi

(
D2 −D1

r − µ

))(
piH
fi

)β
=

(r − µ)

D1

(
ki + V Fi − Ei

[
CLi (piH)

])
=

(r − µ)

D1
k̃i(piH),

with

k̃i(pi) ≡ ki + V Fi − Ei
[
CLi (pi)

]
).

So, the boundary condition is

ki

(
piH =

(r − µ)

D1
k̃i(piH)

)
= kiH . (A.20)

We call k̃i(pi) the virtual investment cost because it refers to an adjusted net present value criterion

D1

r − µ
− k̃i(pi) = 0.

that takes into account market uncertainty and duopolistic competition under complete information (or here

with preemption nearly certain at piH). Firm i behaves as a monopolist with investment cost k̃i(pi) in a

deterministic market. With k̃i(pi) ≥ ki under negative externalities, we find again that firm i postpones

investment relative to its Marshallian trigger pi ≥ (r−µ)
D1

ki.

Proof of Proposition 5.7. Let bi be the break-even threshold for firm i. Then,

lim
pi→bi

V LLi (pi)− V FFi (pi) = 0. (A.21)

We integrate Equation (5.15). If bi < pjH then the integral

ln [1−Gi(kj(pi))] = −
∫ pi

piL

V LL′i (z)

V LLi (z)− V FFi (z)
dz (A.22)

has to converge because the lefthand side is negative for all kj < kjH = kj(piH). Hence, there exists a

piL such that V LLi (bi) = V FFi (bi). We show that there exists a unique piL such that boundary condition

kj(piH) = kjH is respected. Suppose without loss of generality and to obtain a contradiction that there exist

two constants p∗iL > p∗∗iL such that there exists two solutions k∗j (pi) and k∗∗j (pi) to Equation (5.7). Since

k∗j (p∗i ) = k∗∗j (p∗∗i ) = kjL we have k∗j (p∗∗iL) < k∗∗j (p∗∗iL). Substitution in Equation (A.22) and substraction gives

us

ln
1−G(k∗j (p))

1−G(k∗∗j (p))
=

∫ p

p∗iL

V LL′i (z)

V LLi (z)− V FFi (z)
dz −

∫ p

p∗∗iL

V LL′i (z)

V LLi (z)− V FFi (z)
dz. (A.23)

For any pi ≥ p∗iL we have that
k∗j (pi)

k∗∗j (pi)
< 1 and decreasing in pi and cannot converge to unity when pi → bi (the

righthand side of Equation (A.23) goes to zero). It follows immediately that there exists a unique solution

to the differential equation and boundary condition kj(piH) = kjH whenever bi < pi(kjH).
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Proof of Proposition 6.1. First, suppose -to obtain a contradiction- that pj(kL) < pi(kL). Thus, firm

i does not invest in the interval [pj(kL), pi(kL)] and the preemption hazard for firm j is zero. Substitute

hj(pj) = 0 in firm j’s expanded first order conditions (cfr. 5.8) to obtain

pj =
β

β − 1

1

D1 +
k′L
kL

(
pj
fj

)β
fj (D2 −D1)

(r − µ)kL. (A.24)

Firm j postpones investment more than firm i, whose hazard is not zero at kL. Since the threat of preemption

accelerates investment ∂pi
∂hi

< 0 (see Proposition 5.5) we have pi(kL) < pj(kL). Alternatively, one can work out

the first order condition. We obtain a similar contradiction if we assume pi(kL) < pj(kL) and conclude that

pi(kL) = pj(kL). Second, suppose -again to obtain a contradiction- that pi(kH) < pj(kH). As x approaches

pi(kH) firm i’s hazard of preemption goes to infinity. Firm i invests at

pi(kH) =
(r − µ)

D1

(
kH + V Fi − CLi (kH)

)
,

as in Proposition 5.6. However, firm j’s hazard rate is less than infinity at this point and because ∂pi
∂hi

< 0,

we find that pj(kH) > pi(kH), another contradiction. A similar contradiction can be obtained for pi(kH) >

pj(kH), so we conclude that pj(kH) = pi(kH).

Proof of Proposition 6.2. Since k′j(bi) is not Lipschitz continuous at V Li (bi) − V Fi (bi), we cannot show

uniqueness easily. We show first that there cannot exist asymmetric equilibria. By integration of the system

of differential equations and application of the chain rule,
k′j(p) =

1−G(kj(p))
G′(kj(p))

Ei[V LL′i (p)]
Ei[V LLi (p)]−V FFi (p)

k′i(p) = 1−G(ki(p))
G′(ki(p))

Ej[V LL′j (p)]
Ej[V LLj (p)]−V FFj (p)

, (A.25)

we obtain 
ln [1−G(kj(p))] = −

∫ p
pL

Ei[V LL′i (z)]
Ei[V LLi (z)]−V FFi (z)

dz

ln [1−G(ki(p))] = −
∫ p
pL

Ej[V LL′j (z)]
Ej[V LLj (z)]−V FFj (z)

dz
. (A.26)

(Note that G(kL) = 0.) Substraction of the second equation from the first (with p < pH) leads to

ln
1−G(kj(p))

1−G(ki(p))
=

∫ p

pL

(
Ej
[
V LL′j (z)

]
Ej
[
V LLj (z)

]
− V FFj (z)

−
Ei
[
V LL′i (z)

]
Ei
[
V LLi (z)

]
− V FFi (z)

)
dz. (A.27)

Suppose first that ki < kj . The lefthand side of Equation (A.27) is then strictly negative. To obtain

a contradiction we must show that the integrand is nonnegative for all pL ≤ z ≤ p. Or, given that all

quantities are positive, we can show the stronger conditions that

Ej
[
V LLj (z)

]
− V FFj (z) ≤ Ei

[
V LLi (z)

]
− V FFi (z) (A.28)

and

Ej
[
V LL′j (z)

]
≥ Ei

[
V LL′i (z)

]
(A.29)

hold. Condition (A.28) should be intuitively clear. Low cost firm i -the natural leader- will finally invest at

p = bj − ε. There, ξj(bj) = 0, but firm i still has an incentive to become the leader, i.e. ξi(bj) > 0. A formal

proof for pL ≤ z ≤ p simply works out Condition (A.28) using Definitions (A.2) and (A.3). Now we consider

Condition (A.29), that says that the marginal benefit of waiting is higher for a high cost firm than for a low

cost firm for any value of the state. Substract the first positive derivative (zi < li)

Ei
[
V LL

′

i (z)
]

=

(1− β)
zD1

r − µ
+ βki + (1− β)

(
fi
ki

)1−β
κj(z)

−βκ′j(z) (D2 −D1)

r − µ

(x
z

)β 1

z
(A.30)
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from the second

Ej
[
V LL

′

j (z)
]

=

(1− β)
zD1

r − µ
+ βkj + (1− β)

(
fj
kj

)1−β
κi(z)

−βκ′i(z) (D2 −D1)

r − µ

(x
z

)β 1

z
(A.31)

and simplify to complete the proof using the rational conjecture that κj(z) = κi(z) under common and

consistent priors. Conditions (A.28) and (A.29) are enough for a contradiction and a similar contradiction

can be obtained for ki > kj . We conclude that ki(p) = kj(p). There are no asymmetric equilibria. Since

there are no asymmetric equilibria, the game in (6.1) reduces to k′(p) = 1−G(k(p))
G′(k(p))

E[V LL′(p)]
E[V LL(p)]−V FF (p)

k
(
p = (r−µ)

D1
k̃(p)

)
= kH

.

Existence and uniqueness then follow immediately from Proposition 5.7. Note that both the lefthand and

the righthand side of Equation (A.27) are zero for symmetric firms.
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