
Les Cahiers du GERAD ISSN: 0711–2440

Variable Neighborhood Search
Heuristics for the MaxMinSum
(p-Dispersion-Sum) Problem

B. Saboonchi, P. Hansen,
S. Perron

G–2012–28

May 2012
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Abstract

Dispersion problems consist of the selection of a fixed number of vertices from a given set so that
some function of the distances among the vertices is maximized. Such problems impose a challenge on
heuristic and metaheuristic solution procedures. Among different variations of the dispersion models, the
MaxMinMin (p-dispersion) and the MaxSumSum (maximum diversity) problems have been subject of
much research, yet the MaxMinSum problem has not been well explored in the literature. In this paper we
have developed several heuristics based on the Variable Neighborhood Search metaheuristic framework,
including various greedy constructive procedures and different shaking strategies. Finally we discuss the
tradeoffs among different solution strategies and compare our results with that of exact methods for
smaller sized instances which confirm the high quality of our solutions. To the best of our knowledge
this is the first application of any heuristic for the MaxMinSum dispersion problem and the results of our
extensive computational experiments on large datasets would set a new benchmark for future comparison
purposes.

Key Words: Combinatorial optimization, Dispersion problems, Metaheuristics, Variable Neighborhood
Search.

Résumé

Les problèmes de dispersion consistent à choisir, parmi un ensemble de points, un sous-ensemble de
taille donnée permettant de maximiser une fonction mesurant la distance entre les points choisis. De
tels problèmes apportent un défi au niveau de la conception de méthodes de résolution heuristiques et
métaheuristiques. Parmi les différentes variantes de problèmes de dispersion, les problèmes de MaxMin-
Min (p-dispersion) et de MaxSumSum (maximum diversity) ont fait l’objet de plusieurs travaux de
recherche alors que le problème de MaxMinSum a été très peu étudié. Dans cet article, nous nous at-
taquons au développement de méthodes heuristiques pour ce dernier problème. Ces méthodes sont basées
sur la métaheuristique de recherche à voisinage variable (Variable Neighborhood Search) et diffèrent no-
tamment au niveau des stratégies de recherche locale et de perturbation. Des tests empiriques nous
permettent de comparer l’efficacité des différentes méthodes développées dans cet article. Enfin, une
comparaison entre les résultats heuristiques et ceux d’une méthode exacte pour des instances de petite
taille nous permet de confirmer la qualité des solutions heuristiques obtenues. À notre connaissance, il
s’agit de la première application d’une méthode heuristique pour résoudre le problème de MaxMinSum.
Ainsi, les résultats reportés dans cet article serviront de base de comparaison pour les développements
futurs.

Acknowledgments: This research was funded by NSERC (Natural Sciences and Engineering Research
Council of Canada) grant PGSD2-392404-2010, and FQRNT (Fonds de recherche du Québec - Nature et
technologies) grant 134582. Pierre Hansen has been partially supported by NSERC grant 105574-2007,
Sylvain Perron has been partially supported by NSERC grant 327435-06, and they were both partially
supported by FQRNT team grant PR-131365.





Les Cahiers du GERAD G–2012–28 1

1 Introduction

In the family of the dispersion problems, given a set of n vertices we intend to select a subset of size p in a

way that some measure of the distance among the selected vertices is maximized. This is useful when some

measure of distance or diversity in the solutions is desirable. For instance in the logistics context it can be used

in the location of the missile silos where dispersion can reduce the chances of being all attacked by an attacker

or for locating obnoxious facilities to be far from population zones [5]. The dispersion can also be a desirable

factor when it comes to franchise location problems where we intend to avoid the cannibalization effects

within the chain.The difference is not always translated into the physical distance. For instance dispersion

models can also be used in order to design a portfolio of new products where it is desirable to enter the

market with a group of products which are as dissimilar as possible in terms of the quality, price, shape

etc. Another example would be in multi-objective problems where the decision maker may be interested in

selecting a collection of solutions as far as possible for each objective [15].

Erkut and Neuman [6] propose four different types of the dispersion models based on different dispersion

metrics. The first one is the MaxMinMin problem which maximizes the minimum distance between each pair

of facilities. The second one is the MaxSumMin which seeks to maximize the sum of the minimum distances

from each facility to its closest neighbor. The third formulation is called MaxMinSum which takes the sum

of the distances from each facility to all its neighbors, and maximizes the minimum sum of the distances.

Finally the fourth formulation corresponds to the MaxSumSum which aims at maximizing the sum of all the

hub distances for all located facilities. The model tries to locate p facilities far from a given set of nodes and

far from each other.

The idea of permuting the operators sum and max in order to create new location problems has also been

used for other well known problems such as the p-median and p-center [8]. The classical p-median problem

has a p-sum-sum objective function (i.e., the sum over p facilities of the sum of the distances to the clients

assigned to it), and the classical p-center problems has a p-max-max objective function (i.e., the maximum

over p facilities of the maximum distance to each client assigned to it). Hansen et al. [8] introduce two new

variants of such problems and discuss their real life applications.

As mentioned by Curtin and Church [3], the MaxMinSum dispersion problem was first introduced in the

location literature with the review of the dispersion objective metrics by Erkut and Neuman [6]. They [3]

use this problem as part of their family of multiple-type dispersion formulations. They consider the distances

included in the objective function as a hub distance where each facility located at location i is at the hub of

a wheel and the spokes of the wheel radiate out from i to all other located facilities j.

This problem is similar to the MaxSumSum (maximum diversity) problem in the sense that they both

share the concept of the sum measure for the distances, yet in the latter the sum of the distances for all

the selected locations is considered in the objective function. On the other hand it is also similar to the

MaxMinMin (p-dispersion) problem which aims at maximizing the smallest closest distance between any

selected location and the other selected ones. Both objectives try to optimize the worst-case performance,

yet in the former the sum of the distances from each selected location to all others is used in the objective

function.

Due to this similarity, throughout this paper we would call the MaxMinSum problem as the “p-dispersion-

sum problem”. This problem was first modeled by Erkut and Neuman [6] as the following mixed 0-1 linear

program:
max Z

s. t Z ≤
n∑

i=1

d(vi, vj)xi +M(1− xj) 1 ≤ j ≤ n
n∑

i=1

xi = p

xi = {0, 1} 1 ≤ i ≤ n,

where xi is a binary decision variable defining if vertex vi is selected and d(vi, vj) is the distance between any

pair of the located facilities at locations i and j. The distances between all the vertices are taken as an input
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and stored in an n× n upper-triangular matrix with d(vi, vi) = 0. It should be noted that M is a sufficiently

large value which could be set as p× dmax, where dmax is the largest distance between any pair of locations.

In Section 3.3 an upper bounding technique in order to obtain tighter bounds is discussed.

In Section 2 we present a detailed explanation of our proposed VNS heuristic solution procedure for the p-

dispersion-sum problem. Then we discuss our computational experiments on known benchmark test problems

and also the comparison with exact methods in Section 3. Finally we conclude our paper by highlighting our

contributions and suggestions for future research.

2 VNS for the p-dispersion-sum problem

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuristics which is based

on the idea of a systematic change of the neighborhood in order to escape from the valleys surrounding local

optima, followed by a local search to find improved solutions. This general method has been proposed by

Mladenović and Hansen [13] and has proven to lead to very successful heuristics for solving large combinatorial

programs with applications in location theory, cluster analysis and several other fields. For a recent survey

see e.g. [10].

Within the family of dispersion problems the VNS method has been applied only to the maximum diver-

sity problem and has shown to be among the most efficient methods compared to other heuristics [2, 12].

Therefore, we have decided to develop a heuristic method within the VNS framework that is well-suited to

the p-dispersion-sum problem.

We first express the p-dispersion-sum problem in graph theoretical terms. Let V = {vi,∀i = 1, . . . , n}, be

a set of n vertices (potential locations) and vi representing each member of this set. Let E be the set of
(
n
2

)
edges of an undirected and fully connected graph G(V,E), with de ≥ 0 representing the distance over each

edge e ∈ E. The value p is an integer such that 3 ≤ p ≤ |V |. We define S as any subset of p vertices such

that S ⊆ V, |S| = p. The subset of the vertices not present in the current solution is defined as S̄ such that

S̄ = V \ S, |S̄| = n− p.

The objective function value f(S) at each step is defined as the smallest sum of the distances between

each selected vertex and the rest of the selected vertices induced by the subset S:

f(S) = min
vi∈S

∑
vj∈S

d(vi, vj)


The p-dispersion-sum problem intends to find the optimal subgraph

G(S∗, E(S∗)), where:

S∗ = arg maxS f(S).

The solution apace U is represented by the
(
n
p

)
subsets of V with cardinality p. In order to apply VNS a

metric function is defined to evaluate the distance between any two solutions S and S′:

δ(S, S′) = δ(S′, S) = |S \ S′|.

Based on the metric distance function defined above, the neighborhood of size k of a solution S is defined as:

Nk(S) = {S′ ∈ U |δ(S, S′) = k}; k = 1, 2, . . . ,min{p, n− p}.

In order to represent the solution at each step of the heuristic we use the data structure suggested by

Brimberg et al. [2]. The solution is represented by an array of the n indices corresponding to each vertex or

candidate location, where the first p elements correspond to the subset of the current solution S.

Throughout this paper the following notations are used:
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• f(Sbest/cur): the best/current objective function value that corresponds to the smallest sum of the

distances for each vertex in the best/current solution set S;

• W (vi): the sum of the distances from any vertex vi (i = 1, . . . , n) to all the vertices in the solution set

S;

• S: the vertices present in the current solution set;

• S̄: the vertices outside the current solution set;

• vexit: the vertex inside the solution set that is a candidate to leave the solution set (vexit ∈ S);

• venter: the vertex outside the solution set that is a candidate to enter the solution set (venter ∈ S̄).

These values are first computed at the construction of the initial solution and are updated each time a

new solution is found.

In Algorithm 1 we define our VNS function and then in the following sections we explain in details the

functions embedded in our general framework. The stopping criterion is the total execution time tmax and

the already elapsed cumulative time in the overall procedure is noted by telapsed. The kmin and kstep (step

size) parameters are set by default to 1, and the kmax (maximum shake size) is set to min{p, n− p}.

function VNS (kmin, kstep, kmax, S);
Sbest ← Initialize(S);
Scur ← Sbest;
telapsed = 0;
kmax = min{p, n− p};
while telapsed ≤ tmax do

kcur ← kmin;
while kcur ≤ kmax and telapsed ≤ tmax do

Scur ← Shake(Scur) ;
Scur ← LocalSearch(Scur) ;
if f(Scur) ≥ f(Sbest) then

Sbest ← Scur;
kcur ← kmin;

else
kcur ← kcur + kstep;

end

end

end

Algorithm 1: Pseudo code for the VNS framework

2.1 Initialization

The initial solution could be created at random or in a greedy manner. Based on the random method the

initial solution is simply created by choosing at random p indices.

Two Greedy construction heuristics have been widely used in the literature in order to create initial

solutions for the dispersion problems [7]. The Greedy deletion heuristic starts with all the n vertices and

eliminates one vertex at each iteration. The objective function value improves by removing vertices, as the

result for our problem the deletion candidate is the one with the smallest sum of the distances with the rest

of the remaining vertices at each iteration, and the ties are broken arbitrarily. Of course this procedure is

repeated (n− p) times until exactly p vertices remain in the solution set.

The Greedy add heuristic selects a starting vertex at random and creates the complete solution set in

(p − 1) iterations by adding the vertex with the smallest decrease in the objective value [1, 2, 11]. As the

result the size of the under construction solution set is smaller than p and will gradually reach the complete

size as the construction phase is terminated. The under construction solution set could be represented as C,

and the set of the vertices outside this set as C̄. At each iteration the objective function value is the smallest
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W (vi) value for all the vi ∈ C. After the addition of the entering vertex venter ∈ C̄, the existing sum of

the distances values will be updated as: W (vi) + d(vi, venter) for all the vi ∈ C. As the result the objective

function value after the addition of each venter will be the minimum value among the updated W (vi) for all

the vi ∈ C, and the newly added W (venter) value. By adding vertices to the under construction solution set

the objective value will decrease or remain unchanged, as the result at each iteration the candidate vertex

which will lead to the least decrease in the objective value is chosen.

This heuristic could be repeated n times based on different starting vertices and then the best one

leading to the highest objective value could be selected. Based on preliminary results we observed that this

heuristic is very time consuming (much more than the Greedy deletion heuristic), and for large datasets it is

not worthwhile to take this procedure just to further improve the initial solution. In order to overcome this

drawback the Greedy add heuristic is initialized by choosing the two furthest vertices as the initial vertices and

by repeating the above-mentioned procedure (p−2) times. We know empirically that the results obtained by

this method is among the highest possibilities for the Greedy add without spending too much computational

time on the initial solution.

2.2 Local search

After having created the initial solution, the LocalSearch procedure is implemented performing 1-interchange

swaps on the current solution as shown in Algorithm 2. This means that at each iteration only one vertex

is swapped at a time. The swap could be done whenever the first (first improvement strategy) or the best

(best improvement strategy) contribution is made to the current objective value.

In order to start the LocalSearch procedure the gain obtained from swapping the selected entering

candidate with the selected leaving candidate should be evaluated. The two main Contribution and Update

functions will be explained in details in the following.

function LocalSearch(S);
gain = 0;
while gain > 0 do

(vexit, venter, gain)← Contribution(S) ;
if gain > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end

end

Algorithm 2: Pseudo code for the local search

2.2.1 Contribution

In Algorithm 3 the Contribution function in discussed. In the proposed LocalSearch procedure for each

leaving vertex vexit ∈ S chosen randomly, the Contribution function can determine the first or best entering

candidate venter ∈ S̄, as well as its corresponding contribution to the current objective function value.

Unlike the MaxSumSum (maximum diversity) problem, the evaluation of the change in the objective

function value associated with each swap is not straightforward. The reason is that in the MaxSumSum

problem the overall sum of all the distances among the vertices in the solution set should be evaluated,

whereas in the p-dispersion-sum problem the smallest sum of the distances (the worst case scenario) should

be improved in each LocalSearch iteration.

In order to initiate the Contribution function a random leaving candidate vexit ∈ S, and a random

entering candidate venter ∈ S̄ are chosen. Before evaluating the possible gain derived from the swap, a

preliminary check is done in order to verify if the selected random entering candidate venter would not

deteriorate the current solution. In order to do so the updated W (venter) is calculated which corresponds

to the sum of the distances value for the entering candidate in case it enters the solution set. This value is
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function Contribution(S);
gain ← 0;
choose a random vexit and venter;
i = 0; j = p;
while i ≤ p do

while j ≤ n− p do
f(Stemp) = f(Scur) ;
if W (venter)− d(vexit, venter) ≥ f(Scur) then

forall the (vi ∈ S; i 6= exit) do
W (vi)←W (vi)− d(vi, vexit) + d(vi, venter);
remove W (vexit) from f(Stemp) ;
add W (venter)− d(vexit, venter) to f(Stemp) ;
f(Stemp)← minW (vi);

end
if f(Stemp) > f(Scur) then

gain ← f(Stemp)− f(Scur) ;
return (vexit, venter, gain);
i = n;
j = n− p;

else
j + +;

end

else
j + +;

end

end
i+ +;

end

Algorithm 3: Pseudo code for determining the first improving swap and its contribution (first im-
provement strategy)

updated by: W (venter)− d(vexit, venter) and will be added to the objective function, so if it’s already smaller

than the current objective function value (the already smallest sum of the distances) the new solution after

the swap will be worse. As the result such a swap will be abandoned and the algorithm moves on to the next

entering candidate.

If the swap candidate passes the preliminary check we are assured that the objective function value will

remain unchanged or may improve after the swap. In order to calculate the possible gain after the swap the

updated sum of the distances values for the vertices already in the solution set (for all the vi ∈ S) are required

by calculating W (vi)− d(vi, vexit) + d(vi, venter). Then the W (vexit) is removed from, and the W (venter) is

added to the objective function. The smallest updated sum of the distances W (vi) for all vi ∈ S after the

possible swap will determine the new objective function value. This value is calculated in O(p) time and if

it’s better than the current solution the swap will be accepted, if not the algorithm will proceed to the next

entering candidate until it finds an improvement.

With the first improvement strategy the Contribution function stops as soon as an improving solution

is found, as the result in the worst case it is implemented in O(p(n− p)p) = O(np2) time per LocalSearch

iteration. Of course the best improvement strategy will be implemented in exactly O(np2) time as every

possible swap should be evaluated.
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2.2.2 Update

The Update procedure performs all the required updates before proceeding to the subsequent iteration. It

is implemented in two different phases in order to update all the W (vi) sum of the distances, and then to

update the f(Scur) which represents the objective function value for the current solution.

The update for the W (vi) is straightforward and is performed in O(n) total time. As already mentioned

the chosen leaving candidate is represented by vexit and the entering candidate by venter, thus the updated

W (vi) would be:

W (vi) = W (vi) + d(vi, venter)− d(vi, vexit), i = 1, 2, . . . , n.

The update of the objective function is done in O(p) time at each iteration by finding the minimum sum of

the distances for the vertices in S after having updated the respective W (vi) values.

2.3 Shake

The perturbation in most VNS-based heuristics is done in a simple manner by choosing a random vertex from

the kth neighborhood, i.e. Nk(S) from the current solution S and then repeating k times the random swap

move. The RandomShake function does so by choosing one random leaving and entering candidate at each

iteration with updates in between each swap. However, in this paper we have developed two additional shake

functions in order to control the perturbation operation in a more intelligent manner.

The SemiGreedyShake function fixes a random leaving candidate from the current solution set S and

then chooses an entering candidate that has the highest sum of the distances value in case it replaces the

exit candidate, i.e. the highest W (venter) − d(vexit, venter) value. This method does not guarantee that the

selected candidate is the best among all the insertion candidates. This is due to the fact that in order to find

the best swap (after having fixed the exit candidate) leading to the lowest deterioration or maybe highest

gain in the objective function value, we need to verify also the updated W (vi) values for all the vi ∈ S in

case the entering candidate is added to the solution set, and then calculate the overall objective function

value for all the entering candidates and then select the insertion candidate that has the highest gain, or

the lowest deterioration in the current objective function value. This approach would be the same as the

procedure already explained in the Contribution function. Yet, we decide not do to so as the first method is

performed in O(n− p) time, whereas the second one is done in O((n− p)p). As the result this shake method

does not guarantee that a deterioration in the objective function value would not occur, it simply chooses

a reasonable entering candidate after having fixed the leaving candidate. Besides, with our method we add

more randomness to the shake function rather than proceeding as the Contribution function and choose

the best swap. This procedure is repeated until the shake size of k is attained. Each iteration is performed

in O(n− p) time and after each swap the Update function is called.

In order to have a more intensified shake operation we have developed the GreedyShake function which

for a shake of size k, selects the k vertices with the smallest W (vi) values for all vi ∈ S, and swaps all of them

with the k vertices with the largest W (vi) values for all vi ∈ S̄. This greedy fashion of selecting the entering

candidates could provide better starting vertices for the subsequent LocalSearch procedure. In order to

keep the random nature of the shake procedure, the k leaving and entering candidates are chosen all at once

and are not changed while the updates are performed between the swaps. The performance of the two shake

functions will be compared in details in Section 3.

3 Computational experiments

In this section we have selected four of the largest benchmark instances in the maximum diversity problem

literature that were collected by Mart́ı et al. [12], leading to 80 instances in total. A brief description of the

characteristics of the datasets is given below:

• SOM-b: this dataset consists of 20 matrices each with random numbers between 0 and 9 generated

from an integer uniform distribution by Silva et al. [16]. The instance sizes are such that for n = 100,
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p = 10, 20, 30 and 40; for n= 200, p = 20, 40, 60 and 80; for n = 300, p = 30, 60, 90 and 120; for n

= 400, p = 40, 80, 120, and 160; and for n = 500, p = 50, 100, 150 and 200.

• MDG-a, MDG-b: these datasets consist of 20 matrices each with real numbers randomly selected

between 0 and 10 from a uniform distribution by Duarte and Mart́ı [4] with n = 2000 and p = 200.

• MDG-c: this dataset consists of 20 matrices with n = 3000 and p = 300, 400, 500 and 600. The MDG

instances have been used in [14].

First we describe our experiments that were designed to study the performance of different settings within

the VNS framework and then we compare and analyze the tradeoffs and overall results obtained by different

methods over all the test problems. Finally we compare our results with that of exact methods for relatively

smaller instances.

All the heuristics were coded in C ++ and run on a linux machine, with 2.667 GHz and 24Gb Ram. The

best obtained results after two hours of running time are reported as suggested in [12].

3.1 Experiments setup

As mentioned in Section 2 our VNS implementation allows various settings and methods within its framework.

In order to initialize the VNS three different methods have been discussed: Random add (RA), Greedy add

(GA) and Greedy deletion (GD). There are also three different shaking possibilities: Random shake (RS ),

Semi-Greedy shake (SG) and Greedy shake (GS ). In the general framework presented in Section 2 the shake

size at each iteration increases systematically and will be reset to kmin whenever an improvement is made

or when the kmax value is reached. The kmax is a parameter whose value by default is min{p, n− p}, which

could be a large value depending on the problem size. As the result we are interested in trying a smaller

value, i.e. (0.75 ∗min{p, n− p}) to verify if it helps improve the performance of the heuristic. This will lead

to 3× 3× 2 = 18 combinations for different VNS modules.

On the other hand at each iteration of VNS either an improvement is made or not. In case of no im-

provement a decision on how to start the next iteration should be made. The next iteration is either started

form the already best solution obtained (from best or FB), or from the current solution just obtained (from

current or FC ). The former will lead to more intensification in the search, whereas the latter favors diver-

sification. Besides, the LocalSearch procedure can pursue a first improvement strategy (FirstI ) favoring

more diversification, versus best improvement strategy (BestI ) leading to more intensification. The above

mentioned intensification and diversification strategies will lead to four general VNS frameworks. As the result

the datasets are run under the 18× 4 = 72 total combinations.

We do not allow longer running times in order to get further improvements, as the result the tests are

run only once under two hours of running time. Throughout the paper we present the average % deviation

from the best known solutions obtained by the 72 combinations for each group of dataset:

% deviation =
best value - actual value

best value
× 100.

The best known solutions for all the 80 data instances are presented in Table 4. The average deviations

presented in Tables 1 to 3 are all calculated based on the results presented in the fourth column (All methods)

of Table 4 which refer to the best solutions obtained by the 72 combinations.

Table 1 represents the average deviation from the best solutions obtained for all the 80 data instances

for each of the four VNS general frameworks, three initialization methods, three shaking strategies and the

two possible kmax sizes. The smallest average deviation values for each group are shown in bold under the

Average column. Same representation has also been done to highlight the smallest average deviation values

for each dataset separately. The first part of the table which refers to the four general VNS frameworks reveals

that the current iteration strategy and first contribution local search (FC-FirstI) leads to the lowest average

deviation. This is also true for each individual dataset except for the SOM-b instances where the (FB-FirstI)

strategy leads to the lowest average deviation. In the second part which refers to the problem initialization

methods, the Greedy deletion strategy (GD) consistently leads to the lowest average deviation for all datasets.
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In the third group which addresses the shaking strategy it is clearly observed that the Semi-Greedy shake

(SG) strategy has a significantly lower average deviation across all the datasets.The only parameter that

we changed in our experiments is the maximum shake size which is presented in the last comparison group.

As it is seen the smaller maximum shake size is slightly better for smaller-sized instances, and the bigger

maximum shake size leads to slightly lower average deviations for the largest dataset. The maximum shake

size is a parameter that can be tuned in order to obtain better results. Here we are more interested in the

main modules of VNS rather than tuning its parameters and since it is observed that the maximum shake

size does not make a large difference on the average deviations, we decide not to further experiment on this

factor.

Table 1: Average % deviation for individual methods

SOM-b MDG-a MDG-b MDG-c Average
General framework
FC-FirstI 2.58 2.55 2.25 1.45 2.21
FC-BestI 3.02 2.9 2.55 1.72 2.55
FB-FirstI 2.02 2.83 2.38 1.77 2.25
FB-BestI 3.6 3.52 2.98 2.13 3.06
Initialization
RA 4.58 5.73 5.5 3.72 4.88
GA 2.4 1.96 2.01 1.11 1.87
GD 1.44 1.16 0.99 0.47 1.02
Shake method
RS 5.58 6.02 5.28 3.72 5.15
SG 0.59 0.72 0.85 0.38 0.64
GS 2.25 2.1 2.37 1.21 1.98
Shake max
0.75p 2.75 2.94 2.82 1.77 2.57
p 2.86 2.96 2.85 1.76 2.61

The above mentioned results for individual factors and settings do not necessarily lead to overall better

combinations. As the result in Table 2 we present the same results as in Table 1 in a different manner by

calculating the average deviations of the 18 combinations based on the four different frameworks for all the

test problems. On the last row the overall average deviation for the four VNS frameworks has been calculated

and on the last column the same has been done for the 18 settings. It is clearly observed that the current

iteration strategy and first contribution local search (FC-FirstI) leads to the lowest average deviation over

all the datasets and settings followed by the (FB-FirstI). This shows the superior performance of the first

improvement strategy which has already been observed in the literature [2, 9]. Finally the three lowest

average deviations belong to (GD-SG-p), (GD-SG-0.75p) and (RA-SG-p) settings in increasing order.

So far all the comparisons made were based on the average deviation from the best ever solutions which

refer to the average quality of the solutions derived from each method. Yet, another important indicator of

a good VNS setting is the number of times it obtains the best solutions. As the result we prepared Table 3

which represents the number of best solution obtained over all the 80 data instances, for all the 72 different

combinations.

From Tables 2 and 3 three important observations can be highlighted:

• The current iteration strategy and first contribution local search (FC-FirstI) leads to significantly higher

number of best solutions obtained and the lowest average deviation compared to other VNS frameworks.

• The highest score among the settings belongs to the (RA-SG-0.75p) which refers to the Random start,

Semi-Greedy shake, and 0.75p maximum shake size.

• The three best methods averaged over all the four VNS frameworks are (GD-SG-0.75p) , (RA-SG-p)

and (GD-SG-p).

3.2 Post-hoc analysis

The above mentioned (GD-SG-0.75p), (RA-SG-p) and (GD-SG-p) methods under the current iteration

strategy and first contribution local search (FC-FirstI) VNS framework are the most promising methods
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Table 2: Average deviation for all combinations and frameworks

FC-FirstI FC-BestI FB-FirstI FB-BestI Average
RA-GS-0.75p 1.32 1.1 2.55 4.72 2.42
RA-GS-p 1.57 1.31 2.56 4.95 2.6
RA-SG-0.75p 0.13 0.36 0.85 1.13 0.62
RA-SG-p 0.13 0.41 0.77 0.99 0.57
RA-RS-0.75p 10.75 13.73 8.49 11.26 11.06
RA-RS-p 10.85 13.75 8.65 11.61 11.21
GA-GS-0.75p 1.32 1.03 1.99 2.89 1.81
GA-GS-p 1.63 1.3 2.04 2.89 1.96
GA-SG-0.75p 0.13 0.42 1.23 1.24 0.76
GA-SG-p 0.12 0.44 0.98 1.11 0.66
GA-RS-0.75p 2.93 3 2.53 2.69 2.79
GA-RS-p 2.95 3 2.5 2.73 2.79
GD-GS-0.75p 1.13 0.96 0.93 1.45 1.12
GD-GS-p 1.22 1.02 0.93 1.45 1.15
GD-SG-0.75p 0.1 0.27 0.55 0.6 0.38
GD-SG-p 0.12 0.26 0.48 0.51 0.34
GD-RS-0.75p 1.67 1.74 1.21 1.39 1.5
GD-RS-p 1.71 1.74 1.28 1.4 1.53

Average 2.21 2.55 2.25 3.06

Table 3: Number of best solutions obtained for all combinations and frameworks

FC-FirstI FC-BestI FB-FirstI FB-BestI Average
RA-GS-0.75p 3 4 0 0 7
RA-GS-p 0 3 1 0 4
RA-SG-0.75p 24 7 0 1 32
RA-SG-p 28 5 1 1 35
RA-RS-0.75p 1 0 1 0 2
RA-RS-p 0 0 0 0 0
GA-GS-0.75p 4 4 1 0 9
GA-GS-p 2 2 1 0 5
GA-SG-0.75p 21 6 1 1 29
GA-SG-p 23 5 1 1 30
GA-RS-0.75p 1 0 0 0 1
GA-RS-p 0 0 0 0 0
GD-GS-0.75p 2 5 2 1 10
GD-GS-p 2 4 1 1 8
GD-SG-0.75p 27 11 2 2 42
GD-SG-p 20 10 2 2 34
GD-RS-0.75p 1 0 1 0 2
GD-RS-p 0 0 0 0 0

Sum 159 66 15 10

based on both the average deviation and also number of best solutions obtained criteria. As mentioned

before we did not allow longer running times and the heuristics were run only once. As the result here two

questions seem interesting: 1) Do multiple runs of the heuristics lead to new improved solutions? and 2) Do

longer running times improve the quality of the solutions substantially? In real life applications the answer to

these questions become more important when computational resources are of great concern for the decision

makers or if faster solutions with relatively higher qualities are preferred rather than taking chances in hope

of new best solutions.

It should be noted that all the three above-mentioned heuristics use the Semi-Greedy shake (SG) method,

yet two of them start from a Greedy deletion (GD) initialization and the other one from a Random start

(RA) initial solution. Here we would like to answer the above two questions taking the initialization and

shaking methods into account, and as already discussed the maximum shake size is a parameter that could

be further improved empirically which is not of our interest in this work.

The first question addresses the robustness of the heuristics. We expect that the methods with the greedy

starts to be more robust than the random start methods due to their more intensified approach, whereas for

the random start method we expect higher chances of new improved solutions in repeated runs. In order to
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verify this idea the three (GD-SG-0.75p), (RA-SG-p) and (GD-SG-p) heuristics are run under the current

iteration strategy and first contribution local search (FC-FirstI) VNS framework, 30 times with the same

two hours of running time, only for the MDG-c group as it’s the largest dataset. Surprisingly the (GD-SG-

0.75p) and (GD-SG-p) methods obtain the same results as before for all the 30 runs, whereas the (RA-SG-p)

heuristic results in different solutions in different runs. What’s more interesting is that the random start

method leads to several new improvements. Based on the results obtained on the MDG-c largest dataset

we conclude that more chances of improved solutions can be expected only by multiple runs of the random

start heuristic. As the result for the other datasets only the (RA-SG-p) heuristic is used for the multiple run

experiment and the greedy start ones are no longer tested.

The best results over the 30 runs of the (RA-SG-p) heuristic is presented for each dataset in the fifth

column (Multiple runs) of Table 4. Comparison of the fourth and the fifth columns of Table 4 reveals that

the multiple (30) runs experiment has led to 10, 15 and 6 new improvements for the MDG-a, MDG-b and

MDG-c datasets respectively. The reported values are the best among 30 runs, yet in order to have a better

idea of the overall quality of all the 30 solutions, the coefficient of variation (CV) is presented for each dataset

within parentheses in the fifth column:

CV =
standard deviation

mean
× 100

As it is seen for all the 80 instances this value is very small, much less than 1%, which shows that our

random methods are also very robust.

Table 4: Best solutions for all the datasets

n p All methods Multiple runs Long run
SOM-b-1 100 10 62 62 (0) 62
SOM-b-2 100 20 111 111 (0) 111
SOM-b-3 100 30 151 151 (0) 151
SOM-b-4 100 40 195 194 (0) 194
SOM-b-5 200 20 117 117 (0) 117
SOM-b-6 200 40 212 212 (0) 212
SOM-b-7 200 60 298 298 (0) 298
SOM-b-8 200 80 386 386 (0.13) 386
SOM-b-9 300 30 170 170 (0.29) 169
SOM-b-10 300 60 309 309 (0.11) 308
SOM-b-11 300 90 440 440 (0.09) 440
SOM-b-12 300 120 572 572 (0) 572
SOM-b-13 400 40 222 222 (0) 222
SOM-b-14 400 80 405 405 (0) 405
SOM-b-15 400 120 580 579 (0.07) 579
SOM-b-16 400 160 752 752 (0) 752
SOM-b-17 500 50 272 272 (0.19) 272
SOM-b-18 500 100 503 503 (0.09) 503
SOM-b-19 500 150 726 724 (0.04) 724
SOM-b-20 500 200 937 937 (0.05) 937

Average 371 370.8 370.7
MDG-a-21 2000 200 1100 1101 (0.1) 1099
MDG-a-22 2000 200 1101 1101 (0.11) 1101
MDG-a-23 2000 200 1102 1102 (0.13) 1102
MDG-a-24 2000 200 1100 1099 (0.08) 1101
MDG-a-25 2000 200 1100 1101 (0.15) 1099
MDG-a-26 2000 200 1103 1101 (0.07) 1099
MDG-a-27 2000 200 1103 1104 (0.29) 1105
MDG-a-28 2000 200 1101 1101 (0.12) 1101
MDG-a-29 2000 200 1100 1101 (0.12) 1101
MDG-a-30 2000 200 1101 1101 (0.1) 1101
MDG-a-31 2000 200 1100 1102 (0.14) 1098
MDG-a-32 2000 200 1101 1099 (0.05) 1099
MDG-a-33 2000 200 1101 1101 (0.11) 1099
MDG-a-34 2000 200 1102 1100 (0.09) 1101
MDG-a-35 2000 200 1101 1102 (0.13) 1100
MDG-a-36 2000 200 1101 1103 (0.12) 1101
MDG-a-37 2000 200 1101 1102 (0.12) 1100
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Table 4: Best solutions for all the datasets (continued)

n p All methods Multiple runs Long run
MDG-a-38 2000 200 1104 1104 (0.11) 1104
MDG-a-39 2000 200 1100 1101 (0.12) 1101
MDG-a-40 2000 200 1102 1103 (0.09) 1102

Average 1101.2 1101.45 1100.7
MDG-b-21 2000 200 109187.6 109300.15 (0.09) 109187.6
MDG-b-22 2000 200 108941.82 109021.67 (0.05) 108925.07
MDG-b-23 2000 200 109017.82 109437.88 (0.09) 109075.22
MDG-b-24 2000 200 108989.58 108990.9 (0.06) 109131.75
MDG-b-25 2000 200 109191.14 109188.59 (0.09) 109023.6
MDG-b-26 2000 200 109077.85 109190.19 (0.07) 109131.75
MDG-b-27 2000 200 109116.41 109135.82 (0.06) 109154.95
MDG-b-28 2000 200 108951.47 109063.15 (0.07) 109015.79
MDG-b-29 2000 200 109173.85 109137.43 (0.06) 109185.2
MDG-b-30 2000 200 109218.05 109172.89 (0.07) 109059.48
MDG-b-31 2000 200 109061.67 109111.08 (0.07) 109028.62
MDG-b-32 2000 200 109121.63 109034.18 (0.06) 109237.88
MDG-b-33 2000 200 109131.86 109246.83 (0.08) 109116.12
MDG-b-34 2000 200 109055.53 109088.63 (0.06) 109044.15
MDG-b-35 2000 200 109198.53 109169.59 (0.06) 109078.56
MDG-b-36 2000 200 109146.42 109263.37 (0.08) 109211.59
MDG-b-37 2000 200 109190.1 109269.27 (0.1) 109166.56
MDG-b-38 2000 200 109201.61 109203.94 (0.07) 109061.18
MDG-b-39 2000 200 109133.48 109151.91 (0.07) 109161.22
MDG-b-40 2000 200 109069.51 109225.36 (0.06) 109273.17

Average 109108.8 109170.14 109113.47
MDG-c-1 3000 300 161227 161046 (0.05) 161227
MDG-c-2 3000 300 161065 160957 (0.06) 161014
MDG-c-3 3000 300 160868 160943 (0.05) 160949
MDG-c-4 3000 300 161092 161466 (0.14) 160982
MDG-c-5 3000 300 160883 160950 (0.08) 160883
MDG-c-6 3000 400 211407 211378 (0.05) 211530
MDG-c-7 3000 400 211344 211467 (0.05) 211612
MDG-c-8 3000 400 211391 211391 (0.06) 211475
MDG-c-9 3000 400 211308 211474 (0.06) 211278
MDG-c-10 3000 400 211359 211533 (0.07) 211365
MDG-c-11 3000 500 261292 261243 (0.05) 261486
MDG-c-12 3000 500 261242 261232 (0.06) 261412
MDG-c-13 3000 500 261393 261288 (0.03) 261481
MDG-c-14 3000 500 261563 261326 (0.04) 261450
MDG-c-15 3000 500 261599 261337 (0.04) 261748
MDG-c-16 3000 600 311381 311042 (0.1) 311678
MDG-c-17 3000 600 311283 311031 (0.12) 311256
MDG-c-18 3000 600 311264 310895 (0.09) 311152
MDG-c-19 3000 600 311310 310972 (0.16) 311613
MDG-c-20 3000 600 311384 311023 (0.12) 311350

Average 236282.75 236199.7 236347.05

The second question addresses longer running times for the heuristics in hope of higher quality solutions.

Here we take the same approach and run the preliminary experiments on the MDG-c largest dataset first.

The above-mentioned three heuristics are run only once but this time with 10 hours of running time. If we

compare the average of the solutions over the 20 instances of the MDG-c dataset, the long run (GD-SG-p)

heuristic makes a 0.9% improvement compared to its short run version. This improvement is 0.5% and 0.3%

for the (GD-SG-0.75p) and (RA-SG-p) methods respectively. Of course the calculation of the difference

between the short run and long run of the greedy start heuristics makes more sense since they are more

robust, and it is harder to do so for the random start versions as they could lead to a different solution

right from the start regardless of their running time. Yet, for the rest of the three datasets we choose the

(GD-SG-p) heuristic for the long run experiment as it is more likely to lead to higher quality solutions. The

results of the long run of the (GD-SG-p) are presented in the last column (Long run) of Table 4 for each

dataset. Comparison of the third and the fifth columns of Table 4 reveals that the long run experiment has

led to 4, 10 and 11 new improvements for the MDG-a, MDG-b and MDG-c datasets respectively. It should

be noted that for some data instances in Table 4, the best value obtained in the third column is higher than
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the best solution in the fourth and the fifth columns. The reason is that the values reported in the third

column corresponds to the best values under one run of all the 72 previously discussed combinations for two

hours of running time, whereas the fourth column reports the best values after 30 runs of only the (RA-SG-p)

heuristic for two hours of running time each, and the fifth column represents the values of one run of only

the (GD-SG-p) heuristic for 10 hours of running time.

3.3 Comparison with exact methods

This is the first application of any heuristic method on large p-dispersion-sum problem instances. In order

to verify the quality of the solutions obtained by our heuristics we use the CPLEX 12.4 for exact solutions.

Yet, even the smallest instances seem impossible for exact methods to solve in a reasonable time. As the

result we provided CPLEX with the best solution we ever obtained from our heuristics in Section 3 as an

initial solution and also calculated an upper bound in order to facilitate the problem resolution.

The upper bound is calculated as follows: for each of the n vertices their distances to all other vertices

is sorted in decreasing order, then the sum of the distances to their furthest (p − 1) vertices is calculated.

As the result for each vertex there is a value that represents its distance to its most distant (p− 1) vertices.

Now if these values are sorted in increasing order, it is assured that the optimal solution can never exceed

the value in the pth rank in this sorted list.

After having provided the initial solution and the upper bound for CPLEX, we ran it only on the smallest

SOM-b dataset and let it run as long as CPLEX is capable up to a maximum of two weeks running time. In

the fourth column of Table 5 the best solution ever obtained from all heuristics are given as lower bound, in

the fifth column the above-mentioned upper bound is given for each instance, in the sixth column the best

bound by CPLEX is presented and finally in the last column the best obtained Gap is given. As it is seen

even after having provided a lower and upper bound and such a long running time, CPLEX is never capable

of improving our solution. This confirms the quality of our solutions obtained and the complexity of such

problems for exact methods.

Table 5: Comparison with exact methods

n p Lower bound Upper bound Best bound Gap
SOM-b-1 100 10 62 81 81 (7sec) optimal
SOM-b-2 100 20 111 164 111 (3hr) optimal
SOM-b-3 100 30 151 234 151 (52.16hr) optimal
SOM-b-4 100 40 195 293 195 (12.87hr) optimal
SOM-b-5 200 20 117 171 122 (336hr) 4.27%
SOM-b-6 200 40 212 335 235 (336hr) 10.85%
SOM-b-7 200 60 298 475 331 (336hr) 11.07%
SOM-b-8 200 80 386 596 423 (336hr) 9.58%
SOM-b-9 300 30 170 261 195 (336hr) 14.7%
SOM-b-10 300 60 309 506 365 (336hr) 18.12%
SOM-b-11 300 90 440 716 516 (336hr) 17.27%
SOM-b-12 300 120 572 898 657 (336hr) 14.86%
SOM-b-13 400 40 222 351 263 (336hr) 18.46%
SOM-b-14 400 80 405 677 493 (336hr) 21.72%
SOM-b-15 400 120 580 958 698 (336hr) 20.34%
SOM-b-16 400 160 752 1195 882 (336hr) 17.28%
SOM-b-17 500 50 272 441 334 (336hr) 22.79%
SOM-b-18 500 100 503 847 625 (336hr) 24.25%
SOM-b-19 500 150 726 1199 892 (336hr) 22.87%
SOM-b-20 500 200 937 1497 1115 (336hr) 19.00%

4 Conclusions and future work

In this work we presented a general VNS framework for the p-dispersion-sum problem, which to the best of our

knowledge is the first application of any heuristic for this variation of dispersion problems. We then presented

a detailed experimental setting which captured a vast number of possibilities within the VNS framework. In
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the results and analysis section we addressed the tradeoffs between the greedy intensification modules versus

the more random diversification techniques embedded in VNS. We believe that the more intensified modules

lead to overall higher quality solutions, whereas the more diversified modules increase the chances of obtaining

new improvements only if several repetitions of the heuristics are allowed. The greedy approaches are more

robust and their repeated runs do not seem a promising approach, on the contrary we can expect further

improvements by allowing longer running times for such heuristics.

One of the most interesting advantages of the Variable Neighborhood Search metaheuristic is its flexibility

and how it allows the decision maker to define and adapt the framework to its own problem specifications.

The choice of the best setting is always a matter of time and available computational resources, and also the

fact that if one is interested in a heuristic that provides more robust and higher quality solutions on average,

or a method that gives the opportunity of obtaining new improved solutions over repeated runs.

We were specifically interested in studying the behavior of main VNS components and tried to avoid tuning

of its parameters. Of course it is plausible to expect new improvements in the best solutions obtained in this

work by further tuning the maximum shake size parameter which could serve as an idea to be investigated

in the future VNS-based or other suitable heuristic methods for dispersion problems.

References

[1] Aringhieri, R., Cordone, R. Comparing local search metaheuristics for the maximum diversity problem. The
Journal of the Operational Research Society 2011;62(2):266–280.
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