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Abstract

This paper presents a framework to determine optimal maintenance planning of a fleet of complex
and independent systems. They are made up of several major components which operate in different en-
vironment conditions, and are built with different technologies. This framework uses proportional hazard
model (PHM) to characterise the failure rates of components and the effects of the environment conditions
and the load levels. A nonlinear programme is developed to minimise the fleet maintenance cost under
age replacement policy of its components and a set of organisational and technical constraints. Lindo API
and NOMAD are used to solve the nonlinear model. The framework is applied to set a preliminary plan
to overhaul a fleet of 90 hydroelectric generators in 6 power plants over 50 years. Sensitivity and perfor-
mance indexes are built to interpret optimisation results in two settings: normal and 50% increase in load.

Key Words: Maintenance planning, Stochastic Models, Optimization, Nonlinear programming.
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1 Introduction

During the end of the last century, several hydroelectric infrastructure investments have been made to provide

clean electric power to millions of users across the word, specifically in North America and Asia. These

facilities have begun to show serious signs of aging and their maintenance costs to increase significantly over

time due to a growing number of hydroelectric generators arriving at the end of their useful life. Maintenance

managers apprehend then to face a number of overhauls exceeding what can be handled each year. In addition,

increased needs in clean power energy are expected to speed up wear that can lead to early overhaul of many

units at the same time.

Figure 1: Schematic view of a hydroelectric generator unit

These hydroelectric generator units (HGUs) are complex systems and their main components are func-

tioning in different environmental conditions and are of different technologies (Figure 1). Wear and tear are

taking place but for different reasons. While the alternator is subject to heat and electric stress, the turbine

is subject to cavitations and corrosion. But still: it takes on average many decades for a newly installed HGU

to undergo an overhaul. For such highly reliable machinery, planning replacements many years in advance

is not an easy task due to the lack of complete failure observations. Also, standard maintenance policies are

difficult to implement regarding the size of the fleet. For example, suppose that alternators are maintained

according to the well known age replacement policy where an alternator is immediately replaced at failure or

at a fixed age (Barlow et al., 1996). As one power plant could contain as many as 38 HGUs installed roughly

the same year, a shortage in maintenance resources can rapidly arise and one cannot apply this standard age

replacement policy. The difficulty is worsened when considering that a fleet could contain many hundreds

of units and that maintenance managers have to deal with an array of constraints when planning overhauls

operations say in a ten years window. In this context, a mathematical programming framework appears to

be a suitable tool to tackle this problem.

In this paper we consider the replacement scheduling problem of a fleet of HGUs where each unit’s major

component is replaced, for sake of simplicity, according to an age replacement policy. Replacement activities

involve cost of new component and labour. Due to the logistics involved to overhaul an entire unit, all the

major components are replaced/overhauled to “as good as new state” at the same time. So the age threshold

for a unit is applied to all major components.

After a literature review of recent work on maintenance scheduling of hydroelectric generators, we begin

by decomposing and sorting an HGU’s components to highlight the most influential parts in Section 3.

Replacement and failure data gathered from maintenance history and utilization profiles computed from

production history are then used to derive a failure rate model for the main components. Using the age
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replacement policy for each component, an average cost function is then derived for the whole unit. These

replacement policies at a unit level, constitute the basis for the calculation of an average, overall cost function

for the overhauls scheduling problem for the fleet. This problem is considered as nonlinear.

In Section 4 the objective function minimizing the fleet average total maintenance cost per unit of time

over an infinite time span is established and the technical and economic constraints are formulated. Important

constraints such as the number of specialised crews, number of cranes in a plant, maximum capacity outage

for maintenance and annual budget are considered.

Section 5 solves the above nonlinear program using two optimisation libraries: NOMAD, (Le Digabel,

2011) an implementation of the mesh adaptive direct search algorithm, for derirative-free blackbox opti-

mization (Audet and Dennis, 2006, 2009) and Lindo API, (LINDO, 2009) which employs successive linear

programming and generalized gradient reduction methods. Several tests are made using NOMAD and/or

Lindo API methods to seek the best plan when normal loads are expected and when a 50% increase in load

occurs. A case study consisting of 90 HGUs with 3 major components in each unit under an age replacement

policy for each component over a 50 years planning horizon is presented. Conclusions and further research

alternatives are presented in Section 6.

2 Literature review

Researchers have been studying this kind of problems since the 1960s. They saw similarities with constrained

optimization problems and resolution techniques such as linear and dynamic programming have been applied

for small thermal production networks. Objectives of existing approaches were levelling reserves (Christiaanse

and Palmer, 1972; Garver, 1966; Chen and Toyoda, 1990) or minimizing loss of load probability LOLP during

a given year.

The mixed integer linear programming generalizes linear programming by imposing some or all variables

are restricted to be integers. The linear nature of the objective function and constraints, allows the develop-

ment of methods that exploit this structure. However, the fact that some variables are integers, leads to a

combinatorial complexity which greatly reduces the size of the problems that can be resolved. Approaches

for this class of problems include the implicit enumeration, cutting methods and relaxations techniques

(Nemhauser and Wolsey, 1988).

Dopazo and Merrill (1975) have proposed a 0-1 linear integer program for the generator maintenance

planning, guaranteeing an optimal solution if it existed. This formulation was dealing with the problems of

small size.

In the same period, Zurn and Quintana (1975) showed that dynamic programming with successive ap-

proximations, addresses better the size inherent difficulty.

The network interconnection constraints are considered (Marwali and Shahidehpour, 1998) to take account

of limitations due to transmission lines. An integrated maintenance plan is formulated and solved by Benders

decomposition. The approach is deterministic in (Marwali and Shahidehpour, 1998) and stochastic (Marwali

and Shahidehpour, 1999). Stochastic programming is a modeling framework of optimization problems that

involve uncertain variables, characterized by probability laws. It attempts to find a feasible solution for almost

all of the variables considered while maximizing the expectancy of a certain decision function of random

variables. More generally, such models are formulated, solved analytically or numerically, and analyzed to

provide useful information for decision making.

The problem of maintenance planning is complex as it deals with not only optimizing an objective function

but has also to cope with several types of constraints. A non comprehensive overview is outlined in (Mukerji

et al., 1991; Gallestey et al., 2002; Chen et al., 2011).
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3 Production profiles and failure analysis

3.1 Production data

Production data of several HGUs from 3 plants located over different river basins has been analysed. These

recent HGUs are loaded with electronic devices and sensors which allow huge amounts of data to be gathered

for different technical and operational parameters. Production data is provided in the form of the hourly

power output over 6 years period. We noted that a typical cycle begins by a unit being placed at a fairly

low power output for about an hour (as a warm-up stage), and then the unit is brought to the power output

required for the desired period. At the end of a cycle, the decrease in power is also similar (transient stages

obviously). Over one year period, production profile fluctuates here between 100 and 120 MW. Cumulative

production at each power level is also plotted and shows that there is no production 30% of the time (Figure 2).

Figure 2: Typical production profile in plant C3

All HGUs do not seem to share the same amount of load. Plots of average load profiles show that plant C3

is more in demand than the other two. Also, simple linear regressions allow us to model with good accuracy

a “standard” load to uses as a predictor for failure rate behaviour.

3.2 Failure data

Forced outages data for a sample of 90 HGUs was analyzed and compared to similar historical data described

in (Anon, 2003). Although complete failures are observed, they exist only for the oldest plants. Maintenance

actions are also reported for 119 components. It appears that only 23 of them participate in 80% of the total

unavailability. The largest cumulative maintenance hours (Figure 3) relate to the generator, the turbine, and

excitation system. We consider then an HGU as a three components system with an alternator, a turbine

and an excitation system denoted respectively by ALT, TURB, and EXS.

Kaplan Meier estimates are used to plot failure rates with censored data for each of the three components.

Plots showed clear increasing failure rate for all of them (Figure 4a, b). There is also a variation across plants

(Figure 5). Considering this, the proportional hazard model template (PHM) of (Cox and Oakes, 1984)

appears to be a good candidate for modeling failure rates.

3.3 Failure rate model

The PHM binds failure rate of a component i of HGU j in an environment that is described by ZZZij to a

reference state ZZZ0
ij by:

λij (t,ZZZij) = ψ (ZZZij)λ
0
ij (t) , (1)
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Figure 3: Pareto chart of maintenance hours per component

Figure 4: a) Observed, b) distance weighted LS failure rates for components

Figure 5: Fitted failure rates for ALTs across plants

where ψ
(
ZZZ0
ij

)
= 1. This is a widely used approach for modeling a single component system in engineering.

The most usual case is where the failure rate is the product of a base failure rate function λ0
ij (t) and an

exponential function designed to express a “relative risk” generated by elements of the vector of covariates
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ZZZij , weighted by coefficients βkij so that ψ (ZZZij) = exp
(∑r

k=1 β
k
ijz

k
ij

)
. Thus, equation (1) becomes:

λij (t, Zij) = e
∑r
k=1 β

k
ijz

k
ijλ0

ij (t) . (2)

Using (1), the reliability function takes the following particular form:

fij (t, Zij)

F ij (t, Zij)
= Ψ (Zij)

f0
ij (t)

F
0

ij (t)
=⇒ dF ij (t, Zij)

F ij (t, Zij) dt
= Ψ (Zij)

dF
0

ij (t)

F
0

ij (t) dt

=⇒ ln
(
F ij (t, Zij)

)
= ψ (Zij) ln

(
F

0

ij (t)
)

Finally:

F ij (t, Zij) = F
0

ij(t)
ψ(Zij). (3)

When ψ (ZZZij) > 1, component’s reliability will diminish over time compared to the reference state. The

model speeds up time as the case where severe usage accelerates ageing.

The main feature of this model is the proportionality between two similar components running in two

states ZZZ1
ij ,ZZZ

2
ij . Indeed, the rate:

λij
(
t, Z1

ij

)
λij
(
t, Z2

ij

) =
Ψ
(
Z1
ij

)
λ0
ij (t)

Ψ
(
Z2
ij

)
λ0
ij (t)

=
Ψ
(
Z1
ij

)
Ψ
(
Z2
ij

) , (4)

is constant. Statistical analysis of failure data, coupled with production data, showed that failures depend

heavily on load z1 and the number starts and stops z2. For the sake of simplicity, we only consider the load

z = z1 as a predictor of failure rates and that the base risk is constant so that:

λ0
ij (t) = ϑ, (5)

and that components failure rates take the form:

λij {t, Zij} = ϑeβ
1
ijz · eβ

2
ijzt. (6)

Parameters are then estimated by comparing the failure rates obtained by a least squares estimation of the

observed failure rates.

3.4 Failure rate and production scenarios

We also use the features of model (6) as a tool to forecast wear increase regarding the load: the same com-

ponent operating today in ZZZ1
ij environment will have a new forecasted failure rate ZZZ2

ij in a new environment

of the form:

λij
(
t, Z2

ij

)
=

Ψ
(
Z2
ij

)
Ψ
(
Z1
ij

)λij (t, Z1
ij

)
. (7)

Given a future production profile, we have here a simple and direct model to estimate the corresponding

forecasted failure rate. According to (7), if the rate ψ
(
ZZZ2
ij

)
/ψ
(
ZZZ1
ij

)
is positive, failure rates are “accelerated”

with a certain coefficient in power plant j. As the variability in the failure rate of model (6) is only explained

by load, we use failure rate settings of Figure 6 to generate a production scenario.

In this one, accumulated load is increased by 50% (z2 = 1.5z1). For example, alternator from plant C2

has an estimated failure rate of the form:

λ21

{
t, Z1

21

}
= 6.1723 10−7e4.811 10−6t,

and thus, the failure rate with scenario 2 writes:

λ21

{
t, Z2

21

}
= e1.5 · λ21

{
t, Z1

21

}
= 6.1723 10−7e7.2165 10−6t.
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Figure 6: Alternators failure rates with 50% increase in load

4 Fleet maintenance planning

We consider that a fleet of n HGUs are observed over a long period of time and only complete failures

are recorded. These failures require a replacement, i.e. the replacement of all major components. All

other failures and maintenance without replacements are neglected. Preventively, all major components are

replaced according to a periodic age replacement policy (ARP). We seek to find the optimal set of replacement

periods of each unit as to minimize the total average maintenance cost per unit of time of the fleet.

We define the fleet periodic replacement policy by a vector τ of n replacement periodicities taking place

as the following: a unit in the fleet is replaced preventively at each k× τj , k = 1, 2, 3 . . . units of time or when

a major failure of one of its components occurs. Major failures for a component are described by known

probability functions with c.d.f Fij (·). A cost cpij is incurred for each component preventive replacement and

a cost cfij > cpij is incurred at its failure.

Assuming that a unit will be indefinitely and preventively replaced, at each τj units of time or at failure,

and using a renewal reward argument (Ross, 2000), the average total maintenance cost per unit of time Ji (τj)

for component i of unit j on an infinite time span is the ratio of expected cost in a replacement cycle by the
expected length of a cycle. The average cost in one cycle is given by:

Ci (τj) = cfijFij (τj) + cpijF ij (τj) . (8)

The average length of a replacement cycle is given by:

li (τj) =

∫ τj

0

udFij (u) + τj

∫ ∞
τj

dFij (u) =

∫ τj

0

F ij (u) du. (9)

One HGU’s average maintenance cost per unit of time on an infinite time horizon is then:

Ji (τj) =
Ci (τj)

li (τj)
. (10)

In a non constrained problem, the minimum replacement cost for a major component is reached for an optimal

replacement duration τ∞ij solution of the equation (Barlow et al., 1996):

dJi (τj)

dτj
= 0⇔ λij (τj)

∫ τj

0

F ij (u) du− Fij (τj) =
cpij

cfij + cpij
, (11)

where λ(·) is the failure rate (Figure 7).
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Figure 7: Optimum replacement periods for major components and HGU

Now if we consider that each HGU has I components then the total average maintenance cost per unit

time on an infinite time span for unit j is given by:

J (τj) =

I∑
i=1

Ji (τj) =

I∑
i=1

cfijF (τj) + cpijF (τj)∫ τj
0
F ij (u) du

. (12)

HGU optimal preventive replacement period τ∗j , provided that it exists in [0,∞[, is the solution of

min
τj

J (τj) . (13)

Figure 7 shows simulated average total costs per unit of time curves using observed failures rates for each

major component and for HGU.

4.1 Maintenance planning objective

The replacement scheduler must decide when and how many units to withdraw from production in a given

period of time. Generally, decisions of withdrawals are provided in yearly plans and must contribute to

optimize a function on a predefined time horizon. Also, the scheduler must cope with a fleet that can contain

hundred of units and an array of constraints.

We consider the fleet of n units and a planning horizon divided into t intervals. At first glance, the size

of the problem is n× t variables. Each HGU has I components. Given the non linearity of the total average

maintenance cost per unit time (12), non linear programming (NLP) framework is used here to model the

scheduling problem.

The general form of an NLP is: 
mins.t J (τ)

gm (τ) ≤ 0,m = 1, 2, . . .

hl (τ) = 0, l = 1, 2, . . .

τ ∈ Θ

(14)

where J, g1, g2, . . . , h1, h2, . . . are functions defined on Rn, Θ a subset of Rn and τ a vector of n elements. In

this problem, the objective is to minimize J (τ) while fulfilling inequality constraints expressed by gm and

equality constraints hl. A vector τ ∈ Θ satisfying all constraints is said to be a feasible solution and the

set all feasible solutions is the feasible region Θ with Θ ⊂ Θ. The optimal solution of the problem τ∗ is the

vector such asJ (τ∗) ≤ J (τ) ,∀τ ∈ Θ.

For the formulation of the NLP planning problem, we consider the previous fleet replacement strategy

where ARP is applied to all major components in a unit. If we consider other maintenance policies, the
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formulation of the planning problem is similar. Recall that under this policy, component i of unit j is

replaced when it ages to τij = τj , or when a major failure occurs.

Remember that, HGU’s total average maintenance cost per unit of time on an infinite time horizon is given

by (12). Under (14) framework, elements of vector τ (its dimension equals the number of units to schedule)

are the optimal replacements periods for each unit in the fleet under a set of constraints. The objective

function is the fleet total average maintenance cost per unit of time computed as the sum of individual unit

total average maintenance cost per unit of time:

J (τ) =

n∑
j=1

J (τj) =

n∑
j=1

I∑
i=1

Ji (τj). (15)

The problem (14) is then written as:
mins.t

∑n
j=1

∑I
i=1

cfijF (τj)+c
p
ijF (τj)∫ τj

0 F ij(u)du

gm (τ) ≤ 0, m = 1, 2, . . .

hl (τ) = 0, l = 1, 2, . . .

τ ∈ Θ

(16)

This NLP problem has a special structure because the objective function is called “separable”. This

facilitates the calculation of the objective function, especially considering its non linear parts. In this case,

each portion of the objective function depends only on one variable. If the computation of the objective

function is time consuming when iterating through the feasible domain, only the portion of the objective

related to the values of the variables that have changed is computed again.

4.2 Maintenance planning constraints

Constraints in overhauls planning appear at various levels of fleet operations. We use the indicator variable

xjt to specify status of unit j at time interval t as follow:

xjt =

{
0 unit j is in overhaul state at period t

1 otherwise.
(17)

4.2.1 Overhaul start

Specifies for each unit, the period sj to begin execution of maintenance operations:

xjt ∈ {0, 1} , sj ≤ t ≤ lj + dj . (18)

4.2.2 Overhaul duration and continuity

Specifies that the unit is continuously in a shutdown state for the duration of maintenance:

xjt = 0, sj ≤ t ≤ sj + dj . (19)

4.2.3 Amortization period

For each category of components, a depreciation period ρij is defined. Significant penalties are incurred if

the withdrawal is made before this period. We limit the withdrawals beyond this period.

xjt = 1, sj ≤ ρij ,∀i. (20)
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4.2.4 Maintenance crews and resources

Overhauling units requires the availability of a multidisciplinary team and resources. In addition this con-

straint requires that a team is assigned to one unit at the same time. Therefore, let’s assume that a unit j

requires quantity rjk of resource k for maintenance. Availability of resource k at time interval t is βkt:∑
j

(1− xjt)rjk ≤ βkt,∀k. (21)

4.2.5 Bulk units

A critical number of units must be available at all times to restart network if a full network shutdown occurs.

Withdrawal of a set Φ of units cannot be planned at the same time.∑
j∈Φ

(1− xjt) ≤ 1,∀t. (22)

4.2.6 Maximum capacity outage

No more than a fixed amount of power wy can be shutdown per year y. If wjt is power output of unit j at

time interval t then: ∑
j

(1− xjt)wjt ≤ wy,∀t ∈ y. (23)

4.2.7 Smoothing maintenance disbursements

This is a constraint stipulating that annual disbursements are of the same order of magnitude. Generally,

companies allocate a fixed amount by each year to cope with maintenance operations. This corresponds to

a disbursement of by amount per unit of time. It is then necessary to adjust the objective by subtracting a

constant:

min J (τ) − by. (24)

4.3 Optimization algorithms

Evaluation of the objective function (16) has a strong nonlinear part consisting of integrals which are nu-

merically computed. It is a numerical code that also evaluates certain constraints. This is an ideal context

to the so-called direct search algorithms which uses only functions evaluations to find the best solution. We

use the NOMAD library (Le Digabel, 2011) that implements various search algorithms such as MADS (Mesh

Adaptive Direct Search algorithm) (Audet and Dennis, 2006, 2009) and whose source code is public. The

library also handles biobjective optimisation (Audet et al., 2008). The MADS algorithm is supported by

a rigorous hierarchical convergence analysis based on the degree of smoothness and non-smoothness of the

objective and constraint functions.

We also use the commercial library LINDO API v5.0 (LINDO, 2009) which offers a multitude of solvers.

Moreover, it provides an interface to various programming environments. The standard nonlinear solver of

the LINDO API employs successive linear programming (SLP) and generalized gradients reduction (GRG)

method. Nonlinear Solver returns a local optimum solution for the problem under consideration. If the local

optimal cannot be reached, a feasible solution is reported if it has been found. If a feasible solution cannot

be found, or the problem is not bounded or numeric problems have been encountered, a message is returned

to the user. The LINDO API can make automatically linear a number of nonlinear constraints by adding

other constraints and integer variables, so that the transformed linear model is mathematically equivalent to

the nonlinear original one.

For constraints processing, a n × t matrix initially filled with 1 is built. At each time interval t in the

planning horizon where a unit is under overhaul, the corresponding cell is filled with 0. The first time interval

where overhaul will take place is obtained using the date of first commissioning and periodicity τj . Then

subsequent overhaul intervals are filled using overhaul duration. Checking for constraints is then straight

forward. Constraints satisfaction is done column-wise (−1 is returned whenever a constraint is met).
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5 Application

The planning framework presented here is applied to set a preliminary overhaul plan for a fleet of 90 hydro-

electric generators in 6 power plants over the next 50 years time period. In this particular network including

more than 300 units, maintenance manager need to prepare for the arrival of a great number of units to the

end of their useful life. They also need to know what to expect if there is a shift in load in particular. For

this, sensitivity and performance indexes are built to interpret optimisation results under two settings: a

first one where load is “standard” as it follows the pattern of past few years and a second one where a 50%

increase in load is expected.

In this section a series of 3 problems is solved to plan withdrawals using different contexts. The mainte-

nance policy for all components is the ARP policy. Failure rates used are estimated from failure data history.

Because failure rates are increasing, probability density and reliability functions are computed using these

failure rates through a Gompertz-Makeham law (Meeker and Escobar, 1998). Each generated plan has also

the following metrics (Table 1): 2 average reliability indices are defined on the 50 years planning horizon:

an average unit reliability index (AURI) at the time of withdrawal, and the average fleet reliability index

(AFRI) defined as the average of reliabilities of all remaining functioning units in the fleet at the time of the

successive withdrawals epochs.

To our knowledge no off-the-shelf computer program has the flexibility to achieve the intended planning

goals according to modeling involved. We built a computing environment using an SQL database server and

a series of dedicated libraries designed to do the job. The machine used is an Intelr Quad CoreTM Q93000

workstation at 2.50 GHz, 8 GB of RAM running Microsoftr Windows VistaTM Enterprise edition.

5.1 Assumptions

We need the following additional assumptions to go ahead with optimisation:

(1) Withdrawal of a unit means the replacement of all its components;

(2) Withdrawals history data shows the existence of different installation dates for components for certain

units. The date of commissioning of a unit is taken as the oldest component installation date;

(3) As components have different amortization periods, the largest period is met here (50 years = 50 ∗
8760 hours = 438 000 hours);

(4) Lack of precise maintenance costs records led us to use approximate replacement costs for components:

ALT: 15 M$, TURB: 10 M$, EXS: 0.25 M$. We made also the assumption that replacement cost is an
average between the preventive and corrective replacement cost. We suppose that failure replacement

cost is twice the cost of preventive one for ALTs and 1.5 times for TURBs and EXSs. Therefore,

preventive and failure replacement costs for ALTs, TURBs, and EXSs are respectively (10, 20), (8, 12),

(0.2, 0.3) M$;

(5) Same maintenance policy is applied to all components of a unit.

In addition, only these constraints are taken into account:

(1) Bound constraints: duration and continuity of each withdrawal in weeks equal to 38. Depreciation

periods in years : [ALT, TURB, EXS] ≥ [50, 50, 30];

(2) Nonlinear constraints: withdrawn capacity ≤ 700 MW per year; Bulk units: withdrawal of maximum

of 2 units among (C2, C4, C5) in the same interval; Human resources: crews ≤ 3; Number of simulta-

neous withdrawals in each plant limited by lifting capabilities ≤ 2; Annual maintenance disbursements

≤ 250 M$.

5.2 Optimisation starting point

A starting plan to search for an optimal solution (Figure 8a) is based on replacement periods according to

depreciation periods. It is the longest period (50 years) in this case. As expected, this plan is not feasible.
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At least two constraints are violated: number of maintenance crews available at each epoch and lifting

capabilities in each plant.

5.3 Problem I

This first resolution is aimed at minimizing the total average maintenance cost per unit of time for a fleet

of 90 HGUs with a standard production (scenario 1). The resolution is first attempted with the NOMAD

Solver. After two attempts with successive increases in the number of function evaluations (104, 3.53 min)

then (5105, 9.23 min), no feasible solution is found. The optimization is then restarted with Lindo API v5.0

Solver. The resolution ends with status 5 describing a feasible yet not optimal solution (status 1 for optimal

and 8 for locally optimal).

Although starting solution is not feasible, optimization has produced a feasible solution. The generated

plan shows that unit’s average reliability during its withdrawals is 3.20% and that the rest of the units still in

operation are at 35.71%. These indices indicate that units are removed at the limit of the complete failure.

Their production potential is used at maximum.

This feasible solution is then taken as starting point for the NOMAD algorithm. An additional gain is

obtained on the objective function (Table 1, Figure 8b). It is improved by 143 $/h for a total average cost

per unit time of 7566 $/h. This gain is however obtained at the cost of 50000 function evaluations in 33

minutes (Figure 9).

Table 1: Features of starting and withdrawals plan for problem I

Target Start PbI PbI
Lindo NOMAD

Objective JJJ(τ)(k$/h) Min 7.712 7.709 7.566
Constraints Overhaul duration (weeks) = 38 −1 −1 −1

Amortization period (years) ≥ [50, 50, 30] −1 −1 −1
Maintenance crews ≤ 3 19 −1 −1
Number of cranes in plant ≤ 2 1 −1 −1
Bulk units 1 −1 −1
Max. capacity outage (MW) ≤ 700 1001 −1 −1
Annual disbursements (M$) ≤ 250 67.56 67.53 66.28

Indexes AURI (%) 50 years – 26.60 3.20 9.82
AFRI (%) 50 years – 66.79 35.71 57.52
Average age at withdrawal (yrs) – 50 81 66
Resolution time – – 3.92 33.00

Figure 9 show that NOMAD made most gains on early 20000 evaluations. Subsequently, it appears

to stagnate and the algorithm doesn’t make more major improvements. If resolution time is a factor to

be considered for a greater number of units, it would be necessary to find a compromise between function

evaluations and objective improvements.

The plan has the following additional features:

(1) A total of 38 additional units appear in the 50-year plan. Withdrawals are better spread along the time

horizon;

(2) The units are not used to full potential. The average reliability of units at their withdrawal is greater

and reaches 9.82%;

(3) Average reliability of units remaining in operation is also greater at 57.52%.

This plan is the best withdrawal plan on 50 years with scenario I so far.

5.4 Problem II

The issue considered here is to illustrate the effect on withdrawal planning with a 50% load increase (sce-

nario 2). We use the best plan of problem I as the resolution starting point to show the changes that occur
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Figure 8: Diagrams of a) starting and b) best withdrawals plan for problem I

Figure 9: Problem I objective improvement using NOMAD solver

on a plan that has already been implemented for example. Successively, the NOMAD solver and LINDO

API v5.0 are launched with no luck for NOMAD after 10000 evaluations. Lindo get a feasible plan in 17 min

(Table 2).

This plan has the following features:
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Table 2: Features of withdrawals plan for problem II

Target PbII PbII
Lindo NOMAD

Objective JJJ(τ)(k$/h) Min 9.799 9.562
Constraints Overhaul duration (weeks) = 38 −1 −1

Amortization period (years) ≥ [50, 50, 30] −1 −1
Maintenance crews ≤ 3 −1 −1
Number of cranes in plant ≤ 2 −1 −1
Bulk units −1 −1
Max. capacity outage (MW) ≤ 700 −1 −1
Annual disbursements (M$) ≤ 250 85.84 83.76

Indexes AURI (%) 50 years – 0.97 10.58
AFRI (%) 50 years – 31.69 52.35
Average age at withdrawal (yrs) – 71 55
Resolution time – 6.17 28.40

Similarly, the same workaround is used to improve the objective by NOMAD. An additional gain is also

found on the objective function (it is enhanced by 237 $/h). The average total cost per unit of time is

9.562 k$/h. The plan has also the following additional features:

(1) All 90 units in the fleet appear in the 50-year plan. Withdrawals are still better distributed on the

horizon;

(2) HGUs are not at end of life. AURI is greater at 10.58%;

(3) AFRI is also increased at 52.35%.

By comparing plans generated for problems I and II, Table 3 shows that withdrawals events are premature

by an average of ten years when doubling the load. Although the AURI remains stable, AFRI for the

remaining operating units is lower by 5.17%. To maintain the same AFRI as for scenario 1, one needs to

relax a constraint (by augmenting crews for example).

Table 3: Comparison of features of withdrawals plans for problems I and II

Scenario 1 Scenario 2 Variation
Objective JJJ(τ)(k$/h) 7.566 9.562 1.995
Indexes AURI (%) 50 years 9.82 10.58 0.76

AFRI (%) 50 years 57.52 52.35 −5.17
Average age at withdrawal (yrs) 66 55 −11
Resolution time NOMAD (min) 33.00 28.40 −4.6

6 Conclusions

In this paper, nonlinear mathematical programming methodology was applied to prepare the preliminary

maintenance planning of a fleet of hydro generators units. It provides hydroelectric plants managers with a

support tool to forecast their assets withdrawals based on production data and maintenance policies years

ahead. The mathematical program was designed to assess an objective function according to the choice of a

maintenance policy for each component in a unit, and under various types of constraints including techno-

logical, economic and human resources restrictions. Moreover, it was shown how to use proportional hazard

model to predict accelerating degradation when load was considered to be the most influential parameter

in failure rate variation. The impact of usage on withdrawal plan is then introduced through the objective

function. A simulated increase of 50% in load has shown a shift in withdrawal plan. They happen 10 years

earlier on average in the application settings.

To describe the “performance” of a plan, a set of reliability based indexes have been introduced to compare

resulting plans. One can use them to explore ways to improve the performance of a plan by changing the

state of a constraint. One can then seek a better index for reliability of remaining operating units by adding

more maintenance resources for example.
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Although this methodology has been applied to planning withdrawals of a sample of 90 units on a 50 year

time horizon, it is quite clear that the proposed developments and results clearly demonstrate the feasibility

of such a program for more hydroelectric power units. The information system developed specifically to

resolve this scheduling problem is limited only by the ability of nonlinear solvers. Then, as more data is

gathered on remaining units, the size of the fleet will be augmented to encompass all units in future work.

Also, more general maintenance policies, and costs structure will be introduced and tested.
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