## The Injectivity Modules of a Tropical Map

E. Wagneur

G-2012-101
December 2012

Les textes publiés dans la série des rapports de recherche HEC n'engagent que la responsabilité de leurs auteurs. La publication de ces rapports de recherche bénéficie d'une subvention du Fonds de recherche du Québec - Nature et technologies.

# The Injectivity Modules of a Tropical Map 

Edouard Wagneur<br>GERAD<br>HEC Montréal<br>3000, chemin de la Côte-Sainte-Catherine Montréal (Québec) Canada, H3T 2A7<br>edouard.wagneur@gerad.ca

December 2012

Les Cahiers du GERAD
G-2012-101

## 1 Introduction

A tropical torsion module $M$ is an idempotent commutative semimodule over the idempotent commutative extended semiring $\underline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\}$. Endowed with the max operator (written $\vee$ ) as first composition law, and classical addition (written•, and which will usually be omitted when no confusion arises), with the (torsion) property that, for any two generators, $x, y$, there exist $\lambda_{x y}=\inf \{\xi \in \underline{\mathbb{R}} \mid x \leq \xi y\}$ and $\lambda_{y x}=\inf \{\xi \in \underline{\mathbb{R}} \mid y \leq$ $\xi x\}$. Moreover, the product $\tau(x, y)=\lambda_{x y} \cdot \lambda_{y x}$ in $\underline{\mathbb{R}}$ is an invariant of the isomorphy class of $M$, called the torsion $^{1}$ of $M$.

We write $\mathbf{0}$ and $\mathbf{1 l}$ for the neutral elements of $\vee$ and $\cdot$ respectively.
In [5], we show that any $m$ - dimensional tropical torsion module can be embedded in $\underline{\mathbb{R}}^{d}$, with $d \leq m(m-1)$, and that $m$-dimensional tropical torsion modules are classified by a $p$-parameter family, with $p \leq(m-$ 1) $[m(m-1)-1]$.

The aim of the paper is to revisit and extend some of these results by showing that - at least in the 3dimensional case - the two upper bounds are tight. More precisely, we show that for $m=3$, we can find tropical torsion modules which cannot be embedded in $\underline{\mathbb{R}}^{d}$ for $d<6$, and that all the $p=2 \cdot(2 \cdot 3-1)=$ 10 parameters required for the unambiguous specification of the 3 generators of $M$ are necessary for the characterization of $M$.

Also, the concept of injectivity set (or injectivity tropical module) briefly dealt with in [5] is further investigated. In particular, we show the conterintuitive result that, for a given tropical map $\varphi: M \rightarrow N$, the quotient $M_{\mid \varphi}$ defined by the equivalence $\sim$ given by $x \sim y \Longleftrightarrow \varphi(x)=\varphi(y)$ is not isomorphic to $\operatorname{Im} \varphi$.

The paper is organised as follows. In Section 2, we briefly recall some of the results of [5] which will be used in the paper. in Section 3, we state the main result of the paper, related to the injectivity modules of a tropical map. then these results are illustrated in Section 4, by way of two examples, where $m<n$ and $n<m$, respectively. The first one with a tropical map in $\operatorname{Hom}\left(\underline{\mathbb{R}}^{3}, \underline{\mathbb{R}}^{6}\right)$, the second with a map in $\operatorname{Hom}\left(\underline{\mathbb{R}}^{4}, \underline{\mathbb{R}}^{3}\right)$. In both cases, (some of) the injectivity modules are exhibited.

## 2 The main results of [5]

In this section we briefly recall the main results of [5] which will be used in this paper.

1. The canonical form of the torsion matrix:

$$
A=\left[\begin{array}{ccccc}
\mathbf{1} & \mathbb{l} & a_{13} & \cdots & a_{1 m}  \tag{1}\\
\mathbf{l} & a_{22} & a_{23} & \cdots & a_{2 m} \\
\cdots & \cdots & \cdots & \cdots & \\
\mathbb{1} & a_{n 2} & a_{n 3} & \cdots & a_{n m}
\end{array}\right]
$$

with $\mathbb{1}=a_{12} \leq a_{22} \leq \cdots \leq a_{n 2} a_{i j} \leq a_{i j+1}, i=1, \ldots, n, j=2, \ldots, m$, and $\tau\left(x_{j-1}, x_{j}\right) \leq$ $\tau\left(x_{j}, x_{j+1}\right) j=2, \ldots, m-1$, where $x_{j}$ stands for column $j$ of $A$.
This canonical form also defines the canonical basis of $M_{A}$.
2. $\forall j(1 \leq j \leq m-1), \exists i(1 \leq i \leq n)$ such that $a_{i j+1}=a_{i j}$ (hence $\left.\lambda_{j j+1}=11\right)$.

[^0]3. The $\lambda_{i j}$ (from which we readily get the $\tau_{j}$ ) are given by the matrix
\[

\Lambda_{A}=A^{t} \cdot A^{-}=\left[$$
\begin{array}{cccccc}
\mathbf{l} & \mathbf{1 l} & \lambda_{13} & \cdots & \lambda_{1 m-1} & \lambda_{1 m}  \tag{2}\\
\tau_{12} & \mathbf{1 l} & \mathbf{1} & \cdots & \lambda_{2 m-1} & \lambda_{2 m} \\
\lambda_{31} & \tau_{23} & \mathbf{1 l} & \mathbf{1 l} & \cdots & \lambda_{3 m} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \mathbb{l} & \mathbb{l} \\
\lambda_{m 1} & \lambda_{m 2} & \cdots & \lambda_{m m-2} & \tau_{m-1 m} & 1 l
\end{array}
$$\right]
\]

where $A^{t}$, and $A^{-}$stand for the transpose of $A$ and for the matrix with entries the inverses of those of A.
4. The Whitney embedding theorme and the classification of tropical modules have been recalled in Section 1 above.

## 3 The injectivity modules of a tropical map

In this section, we investigate some properties of $\mathrm{INJ}_{A}$ for a tropical torsion matrix (TTM) $A$. Let $M, N$ be two tropical modules of dimension $m, n$ respectively, $\varphi \in \operatorname{Hom}(M, N)$, and $\pi$ the canonical projection $\left.M \rightarrow M\right|_{\sim}$, defined by the equivalence relation $x \sim y \Longleftrightarrow \varphi(x)=\varphi(y)$. Clearly $\varphi$ is injective on the set $\{\xi \in M \mid \forall \lambda \in M, \lambda \neq \xi \Rightarrow \varphi(\lambda) \neq \varphi(\xi)\}$ is the injectivity set of $\varphi$.

Let $A$ be a square tropical torsion matrix. In [5], we defined $\mathrm{INJ}_{A}=\left\{\xi \in \mathbb{R}^{n} \mid \exists \sigma \in \mathcal{S}_{n}\right.$ such that $\left.\forall k, \bigvee_{j=1, j \neq k}^{n} a_{\sigma(k) j} \xi_{j} \leq a_{\sigma(k) k} \xi_{k}\right\}$, and proved the following statement.

Proposition 1 For any square tropical torsion matrix $A \in \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of maximal column rank, there is a unique permutation $\sigma \in \mathcal{S}_{n}$ such that

$$
\begin{equation*}
\left\{\xi \in \mathbb{R}^{n} \text { s. } t . \text { for } k=1, \ldots, n, \bigvee_{j=1, j \neq k}^{n} a_{\sigma(k) j} \xi_{j} \leq a_{\sigma(k) k} \xi_{k}\right\} \tag{3}
\end{equation*}
$$

It is easy to see that the injectivity set of $A$ satisfying 3 is a tropical module.
Clearly, for any $n \times n$ permutation matrix $P \mathrm{INJ}_{P A}=\mathrm{INJ}_{A}$, and, by Proposition 1 , there exists a unique permutation matrix $P$ such that, for $B=P A,(3)$ is equivalent to

$$
\begin{equation*}
\mathrm{INJ}_{A}=\left\{\xi \in \mathbb{R}^{n} s . t . \text { for } k=1, \ldots, n, \bigvee_{j=1, j \neq k}^{n} b_{k j} \xi_{j} \leq b_{k k} \xi_{k}\right\} \tag{4}
\end{equation*}
$$

Let $\tilde{A}=\left(\operatorname{diag}\left(b_{i i}^{-1}\right)\right) B$.
As a straightforward application of a weel-known result (cf [2] for instance), we have the following statement.
Proposition $2 \mathrm{INJ}_{A}$ is generated by the columns of $\tilde{A}^{*}$.
Theorem 1 Let $A$ be a TTM $m \times n$, then there are at $\operatorname{most}\binom{\max \{m, n\}}{\min \{m, n\}}$ tropical modules where $A$ is injective. Each of these injectivity modules is generated by the Kleene star of some square matrix derived from $A$.

Proposition 3 The tropical modules $\operatorname{Im} A$ and $\operatorname{INJ}_{A}$ are not isomorphic in general.
Proposition 4 If $A$ is a rectangular $n \times m$ matrix with $m \neq n$, then $\mathrm{INJ}_{A}$ is a union of tropical modules, which is not a tropical module in general.

Definition. We say the the union of modules $\mathrm{INJ}_{A}=\bigcup_{i=1}^{k} M_{i}$ is isomorphic to the union of modules $\mathrm{INJ}_{B}=\bigcup_{i=1}^{k} N_{i}$. if, for every tropical module $M_{i} \in \mathrm{INJ}_{A}$, there is a tropical module $N_{i} \in \mathrm{INJ}_{B}$, which is isomorphic to $M_{i}, i=1, \ldots, k$.

Remark. The statement in Proposition 3 differ from that in Propostion 4, since $\mathrm{INJ}_{A}$ is a TTM in Proposition 3.

## 4 Examples

The first two examples illustrate the statement in Theorem 1. In addition, our first example shows that the bound given in [5] for the Whitney embedding is tight, i.e. there exists a 3-dimensional tropical module which cannot be embedded in $\mathbb{R}^{d}$ for $d<6=m(m-1)=6$. Alsp, as a complement to the classification theorem of the same reference, this example will be used to show that all the $p=(m-1)[m(m-1)-1]$ parameters are needed for the classification of $M_{A}$.

Our third example shows that we can find $n$-dimensional tropical modules with $m \leq n$ generators with equal torsion coefficients.

## Example 1

Let $A=\left[\begin{array}{ccc}\mathbb{1} & \mathbf{l} & 5 \\ \mathbf{l} & 1 & 4 \\ \mathbf{l} & 2 & 14 \\ \mathbf{l} & a & a \\ \mathbf{l} & 8 & 15 \\ \mathbf{l} & 9 & 11\end{array}\right]$, with $5<a<8$. We have
$\Gamma_{A}=\left[\begin{array}{cccccc}\mathbf{l} & \mathbf{l} & \mathbf{l} & \mathbf{l l} & \mathbf{l} & \mathbf{l} \\ \mathbf{l} & 1 & 2 & a & 8 & 9 \\ 5 & 4 & 14 & a & 15 & 11\end{array}\right]\left[\begin{array}{ccc}\mathbf{l} & \mathbf{1} & 5^{-1} \\ \mathbf{l} & 1^{-1} & 4^{-1} \\ \mathbf{l} & 2^{-1} & 14^{-1} \\ \mathbf{l} & a^{-1} & a^{-1} \\ \mathbf{l} & 8^{-1} & 15^{-1} \\ \mathbf{l} & 9^{-1} & 11^{-1}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{l} & \mathbf{l l} & 4^{-1} \\ 9 & \mathbf{l} & \mathbf{l} \\ 15 & 12 & \mathbf{l}\end{array}\right]$, with
$\lambda_{12}=1 \mathbf{1}, \lambda_{21}=9, \lambda_{13}=4^{-1}, \lambda_{31}=15, \quad \lambda_{23}=11$, and $\lambda_{32}=12$, given by rows $1,6,2,5,4$, and 3 , respectively.

We have $\tau_{12}=\lambda_{12} \cdot \lambda_{21}=9<\tau_{13}=\lambda_{13} \cdot \lambda_{31}=11<\tau_{23}=\lambda_{23} \cdot \lambda_{32}=12$.
It follows that all six rows of $A$ are required for the torsion of $M_{A}$. Hence, it $A$ cannot be embedded into $\underline{\mathbb{R}}^{d}$ for $d<6$. Note that the $\tau_{i j}$ are independent of $a$.

## The tropical modules $\mathrm{INJ}_{A}$

We compute the tropical modules $M_{i j k}=\mathrm{INJ}_{A_{i j k}}$ for $i=1, j=2, k=3$, and for $i=1, j=2, k=4$, where $A_{i j k}$ is he map given by the square submatrix of $A$ determined by rows $i, j, k$.
We have : $A_{123}=\left[\begin{array}{ccc}\mathbf{l} & 1 \mathbf{l} & 5 \\ 1 \mathbf{l} & 1 & 4 \\ \mathbf{l} & 2 & 14\end{array}\right]$, then, since $\sigma=I$, i.e. $P=I$, we have $\tilde{A}_{123}=\left[\begin{array}{ccc}1 \mathbf{l} & 1 \mathbf{l} & 5 \\ 1^{-1} & 1 l & 3 \\ 14^{-1} & 12^{-1} & 1 \mathbf{l l}\end{array}\right]$, and $\tilde{A}_{123}^{*}=\tilde{A}_{123}^{2}=\left[\begin{array}{ccc}11 & 11 & 5 \\ 1^{-1} & 11 & 4 \\ 13^{-1} & 12^{-1} & 11\end{array}\right]$.

Hence $M_{123}$ is generated by $\left[\begin{array}{c}\mathbf{1} \\ 1^{-1} \\ 13^{-1}\end{array}\right],\left[\begin{array}{c}\mathbf{1} \\ \mathbf{1 l} \\ 12^{-1}\end{array}\right]$, and $\left[\begin{array}{l}5 \\ 4 \\ \mathbf{1 l}\end{array}\right]$.
$A_{124}=\left[\begin{array}{lll}\mathbf{1} & \mathbf{1} & 5 \\ \mathbf{1 1} & 1 & 4 \\ \mathbf{1 l} & a & a\end{array}\right]$, with $P=\left[\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1 1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1 l} & \mathbf{0}\end{array}\right]$ thus
$\tilde{A}_{124}=\operatorname{diag}\left(\mathbb{1 1} a^{-1} 5^{-1}\right) P A_{124}=\left[\begin{array}{ccc}11 & 1 & 4 \\ a^{-1} & 11 & 11 \\ 5^{-1} & 5^{-1} & 11\end{array}\right]$, and we get

$$
\tilde{A}_{124}^{*}=\tilde{A}_{124}^{2}=\left[\begin{array}{ccc}
11 & 1 & 4 \\
5^{-1} & 11 & 11 \\
5^{-1} & 4^{-1} & 11
\end{array}\right]
$$

$M_{124}=\left\{\xi \mid 1 \xi_{2} \leq \xi_{1} \leq a \xi_{2}, 4 \xi_{3} \leq \xi_{1} \leq 5 \xi_{3}, \xi_{2} \leq 5 \xi_{3} \leq 5 \xi_{2}\right\}$, its generators are given by the columns of $\tilde{A}_{124}^{*}=\left[\begin{array}{ccc}1 \mathbf{l} & 1 & 4 \\ 5^{-1} & 11 & 11 \\ 5^{-1} & 4^{-1} & 11\end{array}\right]$.
We have : $\Gamma_{A_{124}}=\left[\begin{array}{lll}\mathbf{1} & \mathbf{1 l} & \mathbf{1} \\ \mathbf{1 l} & 1 & a \\ 5 & 4 & a\end{array}\right]\left[\begin{array}{ccc}\mathbf{1} & \mathbf{1 l} & 5^{-1} \\ \mathbf{1} & 1^{-1} & 4^{-1} \\ \mathbf{l} & a^{-1} & a^{-1}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{l} & \mathbf{1 l} & 4^{-1} \\ a & \mathbf{1 l} & \mathbf{1 l} \\ a & 5 & \mathbf{1 l}\end{array}\right]$, with the torsion coefficients given by $4^{-1} a, 5, a$, respectively, and

$$
\Gamma_{A_{124}^{*}}=\left[\begin{array}{ccc}
\mathbf{l l} & 5^{-1} & 5^{-1} \\
1 & \mathbf{l} & 4^{-1} \\
4 & \mathbf{l l} & \mathbf{l}
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{l} & 1^{-1} & 4^{-1} \\
5 & \mathbf{l} & \mathbf{l} \\
5 & 4 & \mathbf{l l}
\end{array}\right]=\left[\begin{array}{ccc}
1 l & 1^{-1} & 4^{-1} \\
5 & 11 & 1 \mathbf{l} \\
5 & 4 & 1 \mathbf{l}
\end{array}\right]
$$

with the $\tau(i, j)=1,4,4$, respectively.
Thus $\operatorname{Im} A_{124}$ is not isomorphic to $\mathrm{INJ}_{A_{124}}$.
On the other hand it is easy to see that:

$$
A_{124} \tilde{A}_{124}^{*}=\operatorname{diag}(511 a) P \tilde{A}_{124}^{*}, \text { i.e. }
$$

## $M_{124}$ is equal to its image under $A_{124}$.

This example also illustrates the fact that the domain of a tropical map $\varphi: M \rightarrow N$ splits into two parts:

- $\mathrm{INJ}_{\varphi}$, every point of which is an equivalence class of " $\sim$ ".
- $M \backslash \operatorname{INJ}_{\varphi}$ where the equivalence classes contain more than one point of $M$.

Moreover:, as easily seen from the torsion coefficients between generators, the Mijk are neither isomorphic to $\operatorname{Im} A$, nor isomorphic to oneanother in general.

Our next example, which first appeared in [4] has been shortly examined in [5] . it is revisited here for an illustration of the case $m>n$ in Theorem 1.

## Example 2

Let $x_{i}=\left[\begin{array}{c}1 \mathbf{l} \\ i \\ i^{2}\end{array}\right], i=1,2, \ldots, m$, with $i=i^{2}=1 \mathbf{l}$ for $i=0$, and $A=\left[x_{1}\left|x_{2}\right| \cdots\left|x_{m}\right|\right]$. The tropical submodule $M_{A}$ of $\mathbb{R}^{3}$ can be made infinite dimen sional by letting $m \rightarrow \infty$.

It is not difficult to see that $A$ is injective on $\underset{0 \leq i<j<k}{\bigcup} M_{i j k}$, where

$$
M_{i j k}=\left\{\xi \mid \bigvee_{\ell \geq 1, \ell \neq i} \xi_{\ell} \leq \xi_{i}, \bigvee_{\ell \geq 1, \ell \neq j} \ell \xi_{\ell} \leq j \xi_{j}, \bigvee_{\ell \geq 1, \ell \neq k} \ell^{2} \xi_{\ell} \leq k^{2} \xi_{k}\right\}
$$

For instance, with $m=4$, we have:
$M_{124}=\left\{\xi \in \mathbb{R}^{4} \mid \xi_{i} \leq \xi_{1}, i=2,3,4, \xi_{1} \vee 2 \xi_{3} \vee 3 \xi_{4} \leq 1 \xi_{2}, \xi_{1} \vee 2 \xi_{2} \vee 4 \xi_{3} \leq 6 \xi_{4}\right\}$
$M_{134}=\left\{\xi \in \mathbb{R}^{4} \mid \xi_{i} \leq \xi_{1}, i=2,3,4, \xi_{1} \vee 1 \xi_{2} \vee 3 \xi_{4} \leq 2 \xi_{3} \xi_{1} \vee 2 \xi_{2} \vee 4 \xi_{3} \leq 6 \xi_{4}\right\}$
$M_{234}=\left\{\xi \in \mathbb{R}^{4} \mid \xi_{1} \vee \xi_{3} \vee \xi_{4} \leq \xi_{2}, \xi_{1} \vee 1 \xi_{2} \vee 3 \xi_{4} \leq 2 \xi_{3}, \xi_{1} \vee 2 \xi_{2} \vee 4 \xi_{3} \leq 6 \xi_{4}\right\}$.
The method described in Theorem 1.is illustrated as follows for the generators of the $M_{i j k}$, where the $i$ (resp. $j, k]$ stands for the rank of the column which dominates row 1 (resp. 2, 3) of $A \xi$.
For $M_{123}$, define $\underline{A}_{123}=\left[\begin{array}{cccc}\mathbf{1 l} & \mathbf{l} & \mathbf{l} & \mathbf{1 l} \\ \mathbf{1 l} & 1 & 2 & 3 \\ \mathbf{1 l} & 1^{2} & 2^{2} & 3^{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1 l}\end{array}\right]$.
Then from $\underline{A}_{123} \xi=\left[\begin{array}{c}\xi_{1} \\ 1 \xi_{2} \\ 2^{2} \xi_{3} \\ \xi_{4}\end{array}\right]$, we get $\underline{\tilde{A}}_{123}=\left[\begin{array}{cccc}1 l & \mathbf{l l} & \mathbf{l l} & \mathbf{l l} \\ 1^{-1} & 1 \mathbf{l} & 1 & 2 \\ 2^{-2} & 2^{-1} & \mathbf{l l} & 2 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{l l}\end{array}\right]$, and

$$
\underline{\tilde{A}}_{123}^{3}=\left[\begin{array}{cccc}
\mathbf{l l} & \mathbf{1 l} & 1 & 3 \\
1^{-1} & \mathbf{l} & 1 & 3 \\
3^{-1} & 2^{-1} & \mathbf{1 l} & 2 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1 l}
\end{array}\right]=\underline{\tilde{A}}_{123}^{*}
$$

Clearly: $\left[\begin{array}{c}\mathbf{1} \\ 1^{-1} \\ 3^{-1} \\ \mathbf{0}\end{array}\right],\left[\begin{array}{c}\mathbf{1} \\ \mathbf{1} \\ 2^{-1} \\ \mathbf{0}\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ \mathbf{1} \\ \mathbf{0}\end{array}\right]$, and $\left[\begin{array}{l}3 \\ 3 \\ 2 \\ \mathbf{1}\end{array}\right]$ generate $\mathrm{INJ}_{A_{123}}$.
For a straightforward verification, let

$$
u=x_{1}\left[\begin{array}{c}
1 l \\
1^{-1} \\
3^{-1} \\
\mathbf{0}
\end{array}\right] \vee x_{2}\left[\begin{array}{c}
\mathbf{l} \\
\mathbf{1 l} \\
2^{-1} \\
\mathbf{0}
\end{array}\right] \vee x_{3}\left[\begin{array}{c}
1 \\
1 \\
\mathbf{l} \\
\mathbf{0}
\end{array}\right] \vee x_{4}\left[\begin{array}{c}
3 \\
3 \\
2 \\
\mathbf{l}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \vee x_{2} \vee 1 x_{3} \vee 3 x_{4} \\
1^{-1} x_{1} \vee x_{2} \vee 1 x_{3} \vee 3 x_{4} \\
3^{-1} x_{1} \vee 2^{-1} x_{2} \vee x_{3} \vee 2 x_{4} \\
x_{4}
\end{array}\right]
$$

We leave it to the reader to check that

$$
\left[\begin{array}{cccc}
\mathbf{l} & \mathbf{l} & \mathbf{l} & \mathbf{l} \\
\mathbf{l} & 1 & 2 & 3 \\
\mathbf{l} & 1^{2} & 2^{2} & 3^{2}
\end{array}\right] u=\left[\begin{array}{c}
u_{1} \\
1 u_{2} \\
2^{2} u_{3}
\end{array}\right] \text {, i.e. } u \in M_{123} .
$$

## Example 3

This last example shows that we can ffind $n-1$ torsion elements in $\underline{\mathbb{R}}^{n}$ exhibiting two by two the same torsion.


For $n=2$, the injectivity module of $A$ has been investigated in [5]. The general case is illustrated by the
case $n=6$. Let $P$ be the permutation matrix $\left[\begin{array}{cccccc}\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1 l} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1 l} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1 l} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right]$.

Since $\tilde{A} \geq I$, and $\tilde{A}^{2}=\tilde{A}$, then $\tilde{A}^{*}=\tilde{A}$, and its columns generate $I N J_{A}$.

## References

[1] D. Hilbert, Neue Begründungen der Bolyai-Lobatchevskyschen Geometrie, Mathematiche Annalen, 57, (1903), 137-150.
[2] L. Libeault, Sur l'utilisation des dioïdes pour la commande des systèmes à événements discrets, Thèse, Université de Nantes, 1996.
[3] E, Wagneur, Towards a Geometric Theory for DEDS. Session invitée. ECC 91. Grenoble, 3-5 juillet 1991.
[4] E. Wagneur, Torsion matrices in the max-algebra, WODES, Edimburgh, August 1996.
[5] E. Wagneur, The Whitney embedding theorem for tropical torsion modules. Classification of tropical modules. Linear Algebra and its Applications, 435, (2011), 1786-1795.


[^0]:    ${ }^{1}$ Torsion in tropical modules has been introduced in [3]. $\tau(x, y)$ is equal to $\exp (\delta(x, y))$, where $\delta(x, y)$ is the Hilbert pseudometric, invented by Hilbert in [1].

