
Les Cahiers du GERAD

CITATION ORIGINALE / ORIGINAL CITATION

GERAD HEC Montréal
3000, ch. de la Côte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

Les Cahiers du GERAD ISSN: 0711–2440

Optimization of Algorithms
with OPAL

C. Audet, K.-C. Dang,
D. Orban

G–2012–08

March 2012

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication
de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

Optimization of Algorithms with OPAL

Charles Audet
Kien-Cong Dang
Dominique Orban

GERAD & Department of Mathematics and Industrial Engineering
École Polytechnique de Montréal

Montréal (Québec) Canada, H3C 3A7

charles.audet@gerad.ca
kien.cong.dang@gerad.ca
dominique.orban@gerad.ca

March 2012

Les Cahiers du GERAD

G–2012–08

Copyright c© 2012 GERAD

Les Cahiers du GERAD G–2012–08 v

Abstract

Opal is a general-purpose system for modeling and solving algorithm optimization problems. Opal
takes an algorithm as input, and as output it suggests parameter values that maximize some user-defined
performance measure. In order to achieve this, the user provides a Python script describing how to
launch the target algorithm, and defining the performance measure. Opal then models this question as
a blackbox optimization problem which is then solved by a state-of-the-art direct search solver. Opal
handles a wide variety of parameter types, it can exploit multiple processors in parallel at different levels,
and can take advantage of a surrogate blackbox.

Key Words: optimization, parameter optimization, automatic tuning.

Acknowledgments: The research is partially supported by the first author NSERC Discovery Grant
239436-05, Afosr FA9550-09-1-0160, and ExxonMobil Upstream Research Company EM02562.
The research is partially supported by the third author NSERC Discovery Grant 299010-04.

Les Cahiers du GERAD G–2012–08 1

1 Introduction

Parameter tuning has widespread applications because it addresses a widespread problem: improving per-
formance. Evidently, this is by no means a new problem and it has been addressed in the past by way of
various procedures that we briefly review below. In this paper, we describe a flexible practical environment in
which to express parameter tuning problems and solve them using nondifferentiable optimization tools. Our
environment, named Opal1, is independent of the application area and runs on most platforms supporting
the Python language and possessing a C++ compiler. Opal is non-intrusive in the sense that it treats the
target application as a blackbox and does not require access to its source code or any knowledge about its
inner mechanisms. All that is needed is a means to request a run for a given set of parameters. At the heart
of Opal is a derivative-free optimization procedure to perform the hard work. Surprisingly, the literature
reveals that other so-called autotuning frameworks use heuristics, unsophisticated algorithms such as coor-
dinate search or the method of Nelder and Mead, or even random search to perform the optimization—see,
e.g., (Seymour et al., 2008; Whaley et al., 2001; Bilmes et al., 1998; Vuduc et al., 2005). By contrast, Opal
uses a solid optimization method supported by a strong convergence theory, yielding solutions that are local
minimizers in a meaningful sense.

Audet and Orban (2006) study the four standard parameters of a trust region algorithm (Gould et al.,
2005) for unconstrained nonlinear optimization. In particular, they study the question of minimizing the
overall cpu time required to solve 55 test problems of moderate size from the CUTEr (Gould et al., 2003)
collection. The question is reformulated as a blackbox optimization problem, with four variables representing
the four parameters, subject to bounds, and a strict linear inequality constraint. An implementation of the
mesh adaptive direct search (Mads) (Audet and Dennis, Jr., 2006) family of blackbox optimization methods
is used to solve the problem. In addition, a surrogate function obtained by solving a subset of the trust region
test problems is used to guide the Mads algorithm. The numerical experiments lead to a 25% computing
time reduction compared to the default parameters.

Audet et al. (2010a) extend the framework to make it more configurable, and use it to tune parameters of
the DFO algorithm (Conn et al., 2009) on collections of unconstrained and constrained test problems. They
introduce the first version of the Opal package. Finally, Audet et al. (2011) illustrate usage of parallelism
at various levels within the Opal framework and illustrate its impact on performance of the algorithm
optimization process.

The present paper presents extensions to the Opal framework, discusses its implementation and showcases
usage on a few example applications. A goal of the present work is also to illustrate how Opal interacts
with other tools that may be useful in parameter optimization applications. The rest of this paper is divided
as follows. §2 describes a blackbox formulation of parameter-optimization problems. §3 describes the Opal
package, and illustrates its usage on well-known parameter optimization problems.

We conclude and look ahead in §4.

2 Optimization of Algorithmic Parameters

In this section, we formalize the key aspects of the parameter-tuning problem in a way that enables us to treat
it as a blackbox optimization problem. We then explain how direct-search methods go about solving such
blackbox problems. The precise construction of the blackbox is detailed in §2.2. A description of direct-search
methods along with our method of choice are given in §2.3.

Throughout this paper we refer to the particular code or algorithm whose performance is to be optimized,
or tuned, as the target algorithm.

2.1 Algorithmic Parameters

This target algorithm typically depends on a number of parameters. The defining characteristic of algorithmic
parameters is that, in theory, the target algorithm will execute correctly when given valid input data regardless
of the value of the parameters so long as those values fall into a preset range guaranteeting theoretical

1OPtimization of ALgorithms

2 G–2012–08 Les Cahiers du GERAD

correctness or convergence. The performance may be affected by the precise parameter values but the
correctness of the output should not. In practice, the situation is often more subtle as certain valid parameter
values may cause the target algorithm to stall or to raise numerical exceptions when given certain input
data. For instance, a compiler still produces a valid executable regardless of the level of loop unrolling
that it is instructed to perform. The resulting executable typically takes more time to be produced when
more loop unrolling, or more sophisticated optimization, is requested. However, an implementation of the
Cholesky factorization may declare failure when it encounters a pivot smaller than a certain positive threshold.
Regardless of the value of this threshold, it may be possible to adjust the elements of a perfectly valid input
matrix so that by cancellation or other finite-precision effects, a small pivot is produced. Because such
behavior is possible, it becomes important to select sets of algorithmic parameters in a way that maximizes
the performance of the target algorithm, in a sense defined by the user. We may want, for example, to select
the appropriate preconditioner so as to minimize the number of iterations required by a Krylov method to
solve a large system of linear equations, or adjust the memory of a limited-memory quasi-Newton method so
as to minimize a combination of the cpu time and the computer memory used to solve a set of optimization
problems.

It is important to stress that our framework does not assume correctness of the target algorithm, or
even that it execute at all. Failures are handled in a very natural manner thanks to the nondifferentiable
optimization framework.

Algorithmic parameters come in different kinds, or types, and their kind influences how the search space
is explored. Perhaps the simplest and most common kind is the real parameter, representing a finite real
number which can assume any value in a given subset of R. Examples of such parameters include the step
acceptance threshold in a trust-region method (Gould et al., 2005; Audet and Orban, 2006), the initial value
of a penalty parameter, a particular entry in an input matrix, etc. Other parameters may be integer, i.e.,
assume one of a number of allowed values in Z. Such parameters include the number of levels of loop unrolling
in a compiler, the number of search directions in a taboo search, the blocking factor in a matrix decomposition
method for specialized architectures, and the number of points to retain in a geometry-based derivative-free
method for nonlinear optimization. Binary parameters typically represent on/off states and, for this reason,
do not fit in the integer category. Such parameters can be used to model whether a preconditioner should be
used or not in a numerical method for differential equations, whether steplengths longer than unity should
be attempted in a Newton-type method for nonlinear equations, and so on. Finally, other parameters may
be categorical, i.e., assume one of a number of discrete values on which no particular order is naturally
imposed. Examples of such parameters include on/off parameters, the type of model to be used during a step
computation in a trust-region method (e.g., a linear or a quadratic model), the preconditioner to be used in
an iterative linear system solve (e.g., a diagonal preconditioner or an SSOR preconditioner), the insulation
material (Kokkolaras et al., 2001) to be used in the construction of a heat shield (e.g., material A, B or C),
and so forth. Though binary parameters may be considered as special cases of categorical parameters, they
are typically modeled differently because of their simplicity. In particular, the only neighbor of a binary
parameter set at a particular value (say, on) is its complement (e.g., off). The situation may be substantially
more complicated for general categorical parameters.

2.2 A Blackbox to Evaluate the Performance of Given Parameters

Let us denote the vector of parameters of the target algorithm by p. The performance of the target algorithm
is typically measured on the basis of a number of specific metrics reported by the target algorithm after
it has been run on valid input data. Specific metrics pertain directly to the target algorithm and may
consist in the number of iterations required by a nonlinear equation solver, the bandwidth or throughput in a
networking application, the number of objective gradient evaluations in an optimization solver, and so forth.
Performance may also depend on external factors, such as the cpu time required for the run, the amount
of computer memory used or disk input/output performed, or the speedup compared to a benchmark in a
parallel computing setting. Specific metrics are typically observable when running the target algorithm or
when scanning a log, while external factors must be observed by the algorithm optimization tool. Both will
be referred to as atomic measures in what follows, and the notation µi(p) will often be used to denote one
of them. Performance however does not usually reduce to an atomic measure, but is normally expressed as
a function of atomic measures. We will call such a function a composite measure and denote it ψ(p) or ϕ(p).

Les Cahiers du GERAD G–2012–08 3

Composite measures can be as simple as the average or the largest of a set of atomic measures, or might be
more technical, e.g., the proportion of problems solved to within a prescribed tolerance. Most of the time,
atomic and composite measures may only be evaluated after running the target algorithm on the input data
and the parameter values of interest. It is important to stress at this point that they depend on the input
data. Technically, their notation should reflect this but we omit the explicit dependency in the notation for
clarity.

The parameter optimization problem is formulated as the optimization—by default, we use the mini-
mization formulation—of an objective function ψ(p) subject to constraints. The generic formulation of the
blackbox optimization problem is

minimize
p

ψ(p)

subject to p ∈ P
ϕ(p) ∈M.

(1)

The set P represents the domain of the parameters, as described in the target algorithm specifications.
Whether or not p ∈ P can be verified without launching the target algorithm. The set M constrains the
values of composite measures. Opal allows the user to use virtually any composite measure to define an
objective or a constraint.

A typical use of (1) to optimize algorithmic parameters consists in training the target algorithm on a list
of representative sets of input data, e.g., a list of representative test problems. The hope is then that, if the
representative set was well chosen, the target algorithm will also perform well on new input data. This need
not be the only use case for (1). In the optimization of the blocking factor for dense matrix multiplication,
the input matrix itself does not matter; only its size and the knowledge that it is dense.

2.3 Blackbox Optimization by Direct Search

Opal allows the user to select a solver tailored to the parameter optimization problem (1). Direct-search
solvers are a natural choice, as they treat an optimization problem as a blackbox, and aim to identify a local
minimizer, in a meaningful sense, even in the presence of nonsmoothness. Direct-search methods belong
to the more general class of derivative-free optimization methods (Conn et al., 2009). They are so named
because they work only with function values and do not compute, nor do they generally attempt to estimate,
derivatives. They are especially useful when the objective and/or constraints are expensive to evaluate, are
noisy, have limited precision or when derivatives are inaccurate.

In the Opal context, consider a situation where the user wishes to identify the parameters so as to allow
an algorithm to solve a collection of test problems to within an acceptable precision in the least amount of
time. The objective function in this case is the time required to solve the problems. To be mathematically
precise, this measure is not a function, since two runs with the exact same input parameters will most likely
differ slightly. The gradient does not exist, and its approximation may point in unreliable directions. For
our purposes, a blackbox is an enclosure of the target algorithm that, when supplied with a set of parameter
values p, returns with either a failure or with a score consisting of the values of ψ(p), ϕ(p) and all relevant
atomic measures µj(p).

The optimization method that we are interested in iteratively calls the blackbox with different inputs. In
the present context, the direct-search solver proposes a trial parameter p. The first step is to verify whether
p ∈ P. In the negative, control is returned to the direct-search solver, the trial parameter p is discarded, and
the cost of launching the target algorithm is avoided. If all runs result in such a failure, either the set P is
too restrictive or an initial feasible set of parameters should be supplied by the user. Otherwise, a feasible
parameter p ∈ P is eventually generated. The blackbox computes the composite measures ψ(p) and ϕ(p).
This is typically a time-consuming process that requires running the target algorithm on all supplied input
data. Consider for instance a case where the blackbox is an optimization solver and the input data consists
in the entirety of the CUTEr collection—over 1000 problems for a typical total run time of several days. The
composite measures are then returned to the direct search solver.

Direct-search solvers differ from one another in the way they construct the next trial parameters. One of
the simplest methods is the coordinate search, which simply consists in creating 2n trial parameters (where

4 G–2012–08 Les Cahiers du GERAD

n is the dimension of the vector p) in hopes of improving the current best known parameter, say pbest. These
2n tentative parameters are

{pbest ±∆ei | i = 1, 2, . . . , n}

where ei is the i-th coordinate vector and ∆ > 0 is a given step size, also called a mesh size. Each of these
2n trial parameters is supplied in turn to the blackbox for evaluation. If one of them is feasible for (1) and
produces an objective function value ψ(p) < ψ(pbest), then pbest is reset to p and the process is reiterated
from the new best incumbent. Otherwise, the step size ∆ is shrunk and the process is reiterated from pbest.
Fermi and Metropolis (1952) used this algorithm on one of the first digital computers.

This simple coordinate search algorithm was generalized by Torczon (1997) in a broader framework of
pattern-search methods, which also include the methods of Box (1957) and Hooke and Jeeves (1961). Pattern-
search methods introduce more flexibility in the construction of the trial parameters and in the variation
of the step size. Convergence analysis of pattern-search methods was conducted by Torczon (1997) for
unconstrained C2 functions, and the analysis was upgraded to nonsmooth functions by Audet and Dennis,
Jr. (2003) using the Clarke (1983) generalized calculus.

Pattern-search methods were subsequently further generalized by Audet and Dennis, Jr. (2006) and
Audet and Dennis, Jr. (2009) to handle general constraints in a way that is both satisfactory in theory and
in practice. The resulting method is called the Mesh-Adaptive Direct-Search algorithm (Mads). It can be
used to solve problems such as (1) even if the initial parameter p does not satisfy the constraints ϕ(p) ∈M.

Like the coordinate search, Mads is an iterative algorithm generating a sequence {pk}∞k=0 of trial param-
eters. At each iteration, attempts are made to improve the current best parameter pk. However, instead of
generating tentative parameters along the coordinate directions, the Mads algorithm use a mesh structure,
consisting of a discretization of the space. The union of all normalized directions generated by Mads is not
limited to the coordinate directions, but instead grows dense in the unit sphere.

The convergence analysis considers the iterations that are unsuccessful in improving pk. At these itera-
tions, pk satisfies some discretized optimality conditions relative to the current mesh. Any accumulation point
p̂ of the sequence of unsuccessful parameters pk for which the mesh gets infinitely fine satisfies optimality
conditions that are tied to the local smoothness of the objective and constraints near p̂. The convergence
analysis relies on the Clarke (1983) nonsmooth calculus. Some of the main convergence results are

• p̂ is the limit of mesh local optimizers on meshes that get infinitely fine;
• if the objective function ψ is Lipschitz near p̂, then the Clarke generalized directional derivative satisfies
f◦(p̂; d) ≥ 0 for any direction d hypertangent to the feasible region at p̂;

• if the objective function ψ is strictly differentiable near p̂, then ∇ψ(p̂) = 0 in the unconstrained case,
and p̂ is a contingent KKT stationary point, provided that the domain is regular.

The detailed hierarchical presentation of the convergence analysis given by Audet and Dennis, Jr. (2006)
was augmented by Abramson and Audet (2006) to the second-order and by Vicente and Custódio (2010)
for discontinuous functions. One of these additional results shows that unlike gradient-based methods for
unconstrained C2 optimization (such as Newton’s method), Mads cannot stagnate at a strict local maximizer
or at a saddle point. This is somewhat counterintuitive that a method that does not compute nor require
derivatives has stronger convergence properties than a method exploiting first and second derivatives for C2

functions.

It is however interesting in our opinion to use a solver capable of guaranteeing—admittedly at some cost—
that a local minimizer will be identified when the problem is sufficiently smooth, and not only a stationary
point. Consider for example the objective ψ(p) depicted in Fig. 1, which represents the performance in
MFlops of a specific implementation of the matrix-matrix multiply kernel for high-performance linear algebra.
The implementation used here is from the ATLAS library (Whaley et al., 2001). The function ψ was sampled
over a two-dimensional domain for two types of architecture; an Intel Core2 Duo and an Intel Xeon processor.
The two parameters are, in this case, integers. One represents the loop unrolling level in the three nested
loops necessary to perform the multiply. The other is the blocking factor and controls the block size when
the multiply is computed blockwise rather than elementwise. Though the graph of ψ is a cloud of points
rather than a surface in this case, it is quite apparent that the performance is not an entirely erratic function
of the parameters, even though it appears to be affected by noise, but has a certain regularity. In this sense,

Les Cahiers du GERAD G–2012–08 5

Figure 1: Performance in MFlops of a particular implementation of the matrix-matrix multiply as a function
of the loop unrolling factor and the blocking factor.

the Mads framework provides a family of methods that have the potential to identify meaningful minimizers
rather that just stationary points.

3 The OPAL Package

We propose the Opal package as an implementation of the framework detailed in the previous sections.

3.1 The Python Environment

Computational tasks in need of parameter tuning come in infinite variety on widely different platforms and
in vastly different environments and languages. It seems à priori arduous to design a parameter-tuning
environment that is both sufficiently portable and sufficiently flexible to accomodate this diversity. It should
also be understood that not all users are computer programmers, and therefore any general tool seeking to
meet the above flexibility requirements must be as easy to use as possible without sacrificing expandability
and advanced usage. In our opinion, the latter constraints rule out all low-level programming languages.
There remains a handful of options that are portable, flexible, expandable and user friendly. Among those,
our option of choice is the Python programming language (www.python.org) for the following reasons:

• Python is a rock-solid open-source scripting language. Python has been in constant developement
since about 1990 and has evolved through its thriving user community to become a standard. Because
it is open source, it may be freely shared and distributed for both commercial and non-commercial
purposes. Since it is a scripting language, running Python programs does not involve a compiler. It is
accompanied nevertheless by a sophisticated debugger.

• Python is available on almost any imaginable platform. Besides covering the three major families,
UNIX, OSX and Windows, Python programs are entirely portable to many other platforms, such as
OS/2, Amiga, Java VM, including portable devices.

• Python interoperates well with many other languages. A standard C/C++ API combines with auto-
matic interface-generation tools to make interfacing Python and C/C++ programs a breeze. Interfacing
Fortran presents no particular difficulty save perhaps for some more recent Fortran 95 features.

• Users can write Python programs much in the same way as shell scripts, batch scripts or Apple scripts,
or elect to use the full power of object-oriented programming. Object orientation is by no means a
requirement so that users can get started fast and efficiently. For more elaborate purposes, object-
oriented programming quickly becomes more convenient, but it is also very natural.

http://www.python.org

6 G–2012–08 Les Cahiers du GERAD

• A wide range of numerical and scientific extensions is available for Python. Among them are Numpy
(www.scipy.org/numpy), an extension providing the array type and vector operations, Scipy
(www.scipy.org), a general-purpose library of scientific extensions akin to Matlab toolboxes, and SAGE
(www.sagemath.org), a symbolic computation package akin to Mathematica, to name only a few, as
well as state-of-the art plotting packages such as Matplotlib (matplotlib.sf.net).

• Aside from scientific capabilities, Python is a full-fledged programming language with an extensive
standard library that is able to satisfy the most demanding needs, including cryptography, networking,
data compression, database access and a lot more.

• The Python syntax is human readable. A user ignorant of the Python syntax is usually able to
understand most of what a Python program does simply by reading it.

• It is possible to get up and running on Python programming in one day, thanks to well-designed tutorials
and a profusion of documentation and ressources.

• Python comes with “batteries included” on many platforms. For instance, the Enthought Python Distri-
bution (www.enthought.com) and Python(x,y) (code.google.com/p/pythonxy) come with numerous
extensions pre-installed. It should be noted that they also come with licensing terms to abide by.

• A fast-paced and fast-increasing body of work has been and is being developed in Python. The best
resouces to get a glimpse of the expanse of Python-based research and projects is the Python Package
Index webiste pypi.python.org/pypi.

We urge the reader to visit www.python.org to learn more and get started with Python programming.

3.2 Interacting with Opal

One of the goals of Opal is to provide users with a set of programmatic tools to aid in the modeling of
algorithmic parameter optimization problems. A complete model of a problem of the form (1) consists in

1. declaring the blackbox and its main features; this includes declaring the parameters p, their type, their
domain P, a command that may be used to run the target algorithm with given parameters, and
registering those parameters with the blackbox ;

2. stating the precise form of the parameter optimization problem (1) by defining the objective and
constraints as functions of atomic and composite measures ;

3. providing an executable that may be run by the direct-search solver and whose task is to read the
parameter set proposed by the solver, pass them to the blackbox, and retrieve all relevant atomic
measures.

Other ingredients may be included into the complete model. We provide a general description of the modeling
task in this section and leave additions for later sections. For illustration, we use an intentionally simplistic
problem consisting in finding the optimal stepsize in a forward finite-difference approximation to the derivative
of the sine function at x = π/4. The only parameter is the stepsize p = h. The objective function is
ψ(h) = |(sin(π/4 + h)− sin(π/4))/h− cos′(π/4)|. It is well known that in the absence of noise, the optimal
value for h is approximately a constant multiple of

√
εM where εM is the machine epsilon. Although intuitively,

only small values of h are of interest, the domain P could be described as (0,+∞). Note that P is open in this
case and although optimization over non-closed sets is not well defined, the barrier mechanism in the direct
solver ensures that values of h that lie outside of P are rejected. The declaration of the blackbox and its
parameter is illustrated in Listing 1, which represents the contents of the declaration file. In Listing 1, a new
algorithm is declared on line 5, an executable command to be run by Opal every time a set of parameters
must be assessed is given on line 6, the parameter h is declared and registered with the algorithm on lines
8–10 and the sole measure of interest is declared and registered with the algorithm on lines 12–13. We believe
that Listing 1 should be quite readable, even without prior knowledge of the Python language.

For maximum portability, information about parameter values and measure values are exchanged between
the blackbox and the direct solver by way of files. Each time the direct solver requests a run with given
parameters, the executable command specified on line 6 of Listing 1 will be run with three arguments: the
name of a file containing the candidate parameter values, the name of a problem that acts as input to the
blackbox and the name of an output file to which measure values should be written. The second argument
is useful when each blackbox evaluation consists in running the target algorithm over a collection of sets of

http://www.scipy.org/numpy
http://www.scipy.org
http://www.sagemath.org
http://matplotlib.sf.net
http://www.enthought.com
http://code.google.com/p/pythonxy
http://pypi.python.org/pypi
http://www.python.org

Les Cahiers du GERAD G–2012–08 7

1 from opal.core.algorithm import Algorithm
2 from opal.core.parameter import Parameter
3 from opal.core.measure import Measure
4
5 FD = Algorithm(name=’FD’, description=’Forward Finite Differences ’)
6 FD.set_executable_command(’python fd_run.py’)
7
8 h = Parameter(kind=’real’, default =0.5, bound=(0, None),
9 name=’h’, description=’Step size’)

10 FD.add_param(h)
11
12 error = Measure(kind=’real’, name=’ERROR ’, description=’Error in derivative ’)
13 FD.add_measure(error)

Listing 1: fd_declaration.py: Declaration of the forward-difference algorithm

1 from opal.core.io import *
2 from fd import fd # Target algorithm.
3 from math import pi, sin , cos
4
5 def run(param_file , problem):
6 "Run FD with given parameters."
7 params = read_params_from_file(param_file)
8 h = params[’h’]
9 return {’ERROR’: abs(cos(pi/4) - fd(sin ,pi/4,h))}

10
11 if __name__ == ’__main__ ’:
12 import sys
13 param_file = sys.argv [1]
14 problem = sys.argv [2]
15 output_file = sys.argv [3]
16
17 # Solve , gather measures and write to file.
18 measures = run(param_file , problem)
19 write_measures_to_file(output_file , measures)

Listing 2: fd_run.py: Calling the blackbox

input data, such as a test problem collection. In the present case, there is no such problem collection and
the second argument should be ignored. The role of the run file is to read the parameter values proposed by
the solver, pass them to the blackbox, retrieve the relevant measures and write them to file. An example run
file for the finite-differences example appears in Listing 2.

The run file must be executable from the command line, i.e., it should contain a __main__ section.
Parameters are read from file using an input function supplied with Opal. The parameters appear in a
dictionary of name-value pairs indexed by parameter names, as specified in the declaration file. The run()
function returns measures—here, a single measure representing ψ(h)—as a dictionary. Again the keys of
the latter must match measures registered with the blackbox in the declarations file. Finally, measures are
written to file using a supplied output function. It is worth stressing that typically, only lines 6–9 change
across run files. The rest stays the same, with a few variations in the import section (lines 2 and 3).

There remains to describe how the problem (1) itself is modeled. Opal separates the optimization problem
into two components: the model structure and the model data. The structure represents the abstract problem
(1) independently of what the target algorithm is, what input data collection is used at each evaluation of the
blackbox, if any, and other instance-dependent features to be covered in later sections. It specifies the form
of the objective function and of the constraints. The data instantiates the model by providing the target
algorithm, the input data collection, if any, and various other elements. This separation allows the solution
of closely-related problems with minimal change, e.g., changing the input data set, removing a constraint,
and so forth. The optimize file for our example can be found in Listing 3. The most important part of
Listing 3 is lines 10–12, where the actual problem is defined. In the next section, the flexibility offered by
this description of a parameter optimization problem allows us to define surrogate models using the same
concise syntax.

8 G–2012–08 Les Cahiers du GERAD

1 from fd_declaration import FD
2 from opal import ModelStructure , ModelData , Model
3 from opal.Solvers import NOMADSolver
4
5 # Return the error measure.
6 def get_error(parameters , measures):
7 return sum(measures["ERROR"])
8
9 # Define parameter optimization problem.

10 data = ModelData(FD)
11 struct = ModelStructure(objective=get_error) # Unconstrained
12 model = Model(modelData=data , modelStructure=struct)
13
14 # Create solver instance.
15 NOMAD = NOMADSolver ()
16 NOMAD.solve(blackbox=model)

Listing 3: fd_optimize.py: Statement of the problem and solution

3.3 Surrogate Optimization Problems

An important feature of the Opal framework is the use of surrogate problems to guide the optimization
process. Surrogates were introduced by Booker et al. (1999), and are used by the solver as substitutes for the
optimization problem. A fundamental property of surrogate problems is that their objective and constraints
need to be less expensive to evaluate than the objective and constraints of (1). They need to share some
similarities with (1), in the sense that they should indicate promising search regions, but do not need to be
an approximation.

In the parameter optimization context, a static surrogate might consist in solving a small subset of test
problems instead of solving the entire collection. In that case, if the objective consists in minimizing the
overall cpu time, then the surrogate value will not even be close to being an approximation of the time to
solve all problems. Section 3.6 suggests a strategy to construct a representative subset of test problems by
using clustering tools from data analysis. Another type of surrogate can be obtained by relaxing the stopping
criteria of the target algorithm. For example, one might terminate a gradient-based descent algorithm as
soon as the gradient norm drops below 10−2 instead of 10−6. Another example would be to use a coarse
discretization in a Runge-Kutta method.

Dynamic surrogates can also be used by direct search methods. These surrogates are dynamically updated
as the optimization is performed, so that they model more accurately the functions that they represent. In
the Mads framework, local quadratic surrogates are proposed by Conn and Le Digabel (2011) and global
treed Gaussian process surrogates by Gramacy and Le Digabel (2011).

In Opal, surrogates are typically used in two ways. Firstly, Opal can use a surrogate problem as if it
were the true optimization problem, and optimize it with the blackbox solver. The resulting locally optimal
parameter set can be supplied as starting point for (1). Secondly, both the surrogate and true optimization
problems can be supplied to the blackbox solver, and the mechanisms in the solver decide which problem is
solved. Surrogates are then used by the solver to order tentative parameters, to perform local descents and
to identify promising candidates.

A more specific description of the usage of surrogate functions within a parameter optimization context
is given by Audet and Orban (2006). In essence, when problems are defined by training the target algorithm
on a list of sets of input data, such as test problems, a surrogate can be constructed by supplying a set of
simpler test problems. An example of how Opal facilitates the construction of such surrogates is given in
Listing 4 in the context of the trust-region algorithm examined by Audet and Orban (2006) and Audet et al.
(2011). This example also illustrates how to specify constraints. The syntax of line 19 indicates that there is
a single constraint whose body is given by the function get_error() with no lower bound and a zero upper
bound. If several constraints were present, they should be specified as a list of such triples.

In Listing 4 we define two measures; ψ is represented by the function sum_heval() which computes the
toal number of Hessian evaluations and the constraint function ϕ is represented by the function get_error()
which returns the number of failures. The parameter optimization problem, defined in lines 18–20 consists
in minimizing ψ(p) subject to ϕ(p) ≥ 0, which simply expresses the fact that we require all problems to be

Les Cahiers du GERAD G–2012–08 9

1 from trunk_declaration import trunk # Target algorithm.
2 from opal import ModelStructure , ModelData , Model
3 from opal.Solvers import NOMADSolver
4 from opal.TestProblemCollections import CUTEr # The CUTEr test set.
5
6 def sum_heval(parameters , measures):
7 "Return total number of Hessian evaluation across test set."
8 return sum(measures["HEVAL"])
9

10 def get_error(parameters ,measures):
11 "Return number of nonzero error codes (failures)."
12 return len(filter(None , measures[’ECODE ’]))
13
14 cuter_unc = [p for p in CUTEr if p.ncon == 0] # Unconstrained problems.
15 smaller = [p for p in problems if p.nvar <= 100] # Smaller problems.
16
17 # Define (constrained) parameter optimization problem.
18 data = ModelData(algorithm=trunk , problems=cuter_unc)
19 struct = ModelStructure(objective=sum_heval , constraints =[(None ,get_error ,0)])
20 model = Model(modelData=data , modelStructure=struct)
21
22 # Define a surrogate (unconstrained).
23 surr_data = ModelData(algorithm=trunk , problems=smaller)
24 surr_struct = ModelStructure(objective=sum_heval)
25 surr_model = Model(modelData=surr_data , modelStructure=surr_struct)
26
27 NOMAD = NOMADSolver ()
28 NOMAD.solve(blackbox=model , surrogate=surr_model)

Listing 4: Definition of a surrogate model.

1 sort_type = Parameter(kind=’categorical ’, default=’quick ’,
2 neighbors ={’insertion ’: [’quick’],
3 ’quick’: [’insertion ’, ’radix’, ’merge’],
4 ’radix’: [’quick ’, ’merge’],
5 ’merge’: [’quick ’, ’radix’]})

Listing 5: Example use of categorical variables in Opal

processed without error. A surrogate model is defined to guide the optimization in lines 23–25. It consists
in minimizing the same ψ(p) with the difference that the input problem list is different. For the original
problem, the input problem list consists in all unconstrained problems from the CUTEr collection—see line
14. The surrogate model uses a list of smaller problems and can be expected to run much faster—see line
15. In line 19, the syntax for specifying constraints is to provide a list of triples. Each triple gives a lower
bound, a composite measure and an upper bound. In this example, a single constraint is specified.

3.4 Categorical Variables

Several blackbox optimization solvers can handle continuous, integer and binary variables, but fewer have
the capacity to handle categorical ones. Orban (2011) uses categorical variables to represent a loop order
parameter and compiler options in a standard matrix multiply.

Ansel et al. (2009) discuss strategies to select the best sorting algorithm based on the input size. They
state that insertion sort is adapted to small input sizes, quicksort to medium sizes, and either radix or merge
sort is suitable for large inputs. With Opal, a categorical parameter may be used to select which sorting
algorithm to use. Listing 5 gives the Opal declaration of a categorical parameter representing the choice of
a sort strategy. Note however that the ultimate goal of Ansel et al. (2009) is different in that they exploit
the fact that most sort strategies are recursive by nature. They are interested in determining the fastest
sort strategy as a function of the input size so as to be able to determine on the fly, given a certain input
size, what type of sort is best. To achieve this, their parameters are the sort type to be used at any given
recursive level. Thus if the variable sort_type ever takes the value quick, it gives rise to two new categorical
variables in the problem, each determining the type of sort to call on each half of the array passed as input
to quicksort. This is an example where the dimension of the problem is not known beforehand.

10 G–2012–08 Les Cahiers du GERAD

Mads easily handles integer variables by exploiting their inherent ordering. This is done by making sure
that the step size parameter ∆ mentioned in § 2.3 is integer. Furthermore, a natural stopping criteria triggers
when an iteration fails to improve pbest with a unit step size.

Categorical variables cannot be handled as easily as integer ones. They do not posses any ordering
properties, and they need to be accompanied by a neighborhood structure, such as the one illustrated in
Listing 5. Each iteration of the Mads algorithm constructs two sets of tentative trial parameters. One set
retains the same categorical values as those of pbest and modifies only the continuous and integer variables
using the same technique as without categorical variables. The other set is constructed using the user-
provided set of categorical neighbors. A precise description of how this is accomplished for the pattern search
algorithm is presented by Abramson et al. (2007), and the method is illustrated by Kokkolaras et al. (2001)
on an optimization problem where the neighborhood structure is such that changes in some of the categorical
variablesgalters the number of optimization variables of the problem.

3.5 Parallelism at Different Levels

Opal can exploit architectures with several processors or several cores at different levels. Audet et al. (2011)
compare three ways of using parallelism within Opal. The first strategy consists in the blackbox solver
evaluating the quality of trial parameters in parallel, the second strategy exploits the structure of (1) and
consists in launching the target algorithm to solve test problems concurrently, and the third simultaneously
applies both strategies. The blackbox solver is parallelized by way of MPI and can be set to be synchronous or
asynchronous. When parallelizing the blackbox itself, Opal supports MPI, SMP, LSF and SunGrid Engine.

3.6 Combining Opal with Clustering Tools

In this section, we briefly illustrate how Opal may be combined with external tools to produce effective
surrogate models. Dang (2012) considers the optimization of six real parameters from IPOPT, a nonlinear
constrained optimization solver described by Wächter and Biegler (2006). The objective to be minimized
is the total number of objective and constraint evaluations, as well as evaluations of their derivatives. The
only constraint requires that all the test problems be solved successfully. The testbed L contains a total of
730 test problems from the CUTEr collection (Gould et al. (2003)). The objective function value with the
default parameters p0 is ψL(p0) = 207, 866. The overall computing time required for solving this blackbox
optimization problem is 27h55m, and produces a set of parameters p̂ with an objective function value of
ψL(p̂) = 198, 615. Paralellism is used by allowing up to 10 concurring function evaluations on multiple
processors.

Dang uses clustering to generate a surrogate model with significantly less test problems than the actual
blackbox problem. More specifically, he performs a clustering analysis on the cells of a self-organizing map
based on the work of Kohonen (1998); Kohonen and Somervuo (2002) and Pantazi et al. (2002). The self-
organizing map partitions the testbed into clusters sharing similar values of the objective and constraints. A
representative problem from each cluster is identified by the clustering scheme, resulting in a subset L1 of 41
test problems from L. Opal is then launched on the minimization of ψL1(p) subject to the same no-failure
constraint. This surrogate problem is far easier to solve, as it requires only 4h17m and produces a solution
p1 which is close to p̂.

3.7 The Blackbox Optimization Solver

The default blackbox solver used by Opal is the Nomad software (Le Digabel, 2011). It is a robust code,
implementing the Mads algorithm for nonsmooth constrained optimization of Audet and Dennis, Jr. (2006),
which is supported by a rigorous nonsmooth convergence analysis. Nomad can be used in conjunction with a
surrogate optimization problem. Among others, quadratic model surrogates can be generated automatically
(Conn and Le Digabel, 2011).

Nomad handles all the variable types enumerated in §2.1, and in addition allows subsets of variables to
be free, fixed or periodic. It also allows the possibility of grouping subsets of variables. In the Opal context,
consider for example an algorithm that has two embedded loops, and a subset of parameters that relates to

Les Cahiers du GERAD G–2012–08 11

the inner loop, while another subset relates to the outer loop. It might be useful to declare these subsets as
two groups of variables as it would allow Nomad to conduct its exploration in smaller parameter subspaces.

Nomad is designed to handle relaxable constraints by a progressive barrier or by a filter, and non-relaxable
constraints by the extreme barrier, which means that the objective function ψ is replaced with

ψ̂(p) :=

{
ψ(p) if p is feasible,
+∞ otherwise.

It is also robust to hidden constraints, i.e., constraints that reveal themselves by making the simulation fail.
A discussion of these types of constraints and approaches to handle them are described by Audet et al.
(2010b), together with applications to engineering blackbox problems.

4 Discussion

In designing the Opal framework, our goal is to provide users with a modeling environment that is intuitive
and easy to use while at the same time relying on a state-of-the-art blackbox optimization solver. It is difficult
to say whether the performance of an algorithm depends continuously on its (real) parameters or not. Since
parameters may also often be discrete, a nonsmooth optimization solver seems to be the best choice.

Algorithmic parameter optimization applications are in endless supply and there is often much to gain
when there are no obvious dominant parameter values. The choice of the Python language maximizes
flexibility and portability. Users are able to combine Opal with other tools, whether implemented in Python
or not, to generate surrogate models or run simulations. Opal also makes it transparent to take advantage of
parallelism at various levels. It has been used in several types of applications, including code generation for
high-performance linear algebra kernels to the optimization of the performance of optimization solvers. It is
however not limited to computational science—any code depending on at least one parameter could benefit
from optimization.

Opal is non intrusive, which could make it a good candidate for legacy code that should not be recompiled
or for closed-source proprietary applications.

Much remains to be done in the way of improvements. Among other aspects, we mention the identification
of robust parameter values—values that would remain nearly optimal if slightly perturbed—and the automatic
identification of the most influential parameters of a given target algorithm.

References
M. A. Abramson, C. Audet, and J. E. Dennis, Jr. Filter pattern search algorithms for mixed variable constrained
optimization problems. Pacific Journal of Optimization, 3(3):477–500, 2007.
M.A. Abramson and C. Audet. Convergence of mesh adaptive direct search to second-order stationary points. SIAM
Journal on Optimization, 17(2):606–619, 2006. DOI: 10.1137/050638382.
J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe. Petabricks: A lan-
guage and compiler for algorithmic choice. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, Dublin, Ireland, Jun 2009.
C. Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches. SIAM Journal on Optimization, 13(3):
889–903, 2003. DOI: 10.1137/S1052623400378742.
C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal
on Optimization, 17(1):188–217, 2006. DOI: 10.1137/040603371.
C. Audet and J. E. Dennis, Jr. A progressive barrier for derivative-free nonlinear programming. SIAM Journal on
Optimization, 20(4):445–472, 2009. DOI: 10.1137/070692662.
C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free optimization. SIAM Journal
on Optimization, 17(3):642–664, 2006. DOI: 10.1137/040620886.
C. Audet, C.-K. Dang, and D. Orban. Algorithmic parameter optimization of the DFO method with the OPAL
framework. In J. Cavazos K. Naono, K. Teranishi and R. Suda, editors, Software Automatic Tuning: From Concepts
to State-of-the-Art Results, pages 255–274. Springer, New-York, NY, 2010a.

http://dx.doi.org/10.1137/050638382
http://dx.doi.org/10.1137/S1052623400378742
http://dx.doi.org/10.1137/040603371
http://dx.doi.org/10.1137/070692662
http://dx.doi.org/10.1137/040620886

12 G–2012–08 Les Cahiers du GERAD

C. Audet, J. E. Dennis, Jr., and S. Le Digabel. Globalization strategies for mesh adaptive direct search. Computational
Optimization and Applications, 46(2):193–215, June 2010b. DOI: 10.1007/s10589-009-9266-1.
C. Audet, C.-K. Dang, and D. Orban. Efficient use of parallelism in algorithmic parameter optimization applications.
Optimization Letters, pages 1–13, 2011. DOI: s11590-011-0428-6. Online First.
J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel. The PHiPAC v1.0 matrix-multiply distribution. Technical Report
TR-98-35, International Computer Science Institute, CS Division, University of California, Berkeley CA, 1998.
A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset. A rigorous framework
for optimization of expensive functions by surrogates. Structural Optimization, 17(1):1–13, February 1999.
G. E. P. Box. Evolutionary operation: A method for increasing industrial productivity. Appl. Statist., 6:81–101, 1957.
F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, New York, 1983. Reissued in 1990 by SIAM Publications,
Philadelphia, as Vol. 5 in the series Classics in Applied Mathematics.
A. R. Conn and S. Le Digabel. Use of quadratic models with mesh adaptive direct search for constrained black box
optimization. Technical Report G-2011-11, Les cahiers du GERAD, 2011. To appear in Optimization Methods and
Software.
A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS/SIAM Book Series
on Optimization. SIAM, Philadelphia, 2009. ISBN 978-0-898716-68-9.
C.-K. Dang. Optimization of Algorithms with the OPAL Framework. Ph.D. Thesis, École Polytechnique de Montréal,
Montréal, Québec, Canada, 2012.
E. Fermi and N. Metropolis. Numerical solution of a minimum problem. Los Alamos Unclassified Report LA–1492,
Los Alamos National Laboratory, Los Alamos, USA, 1952.
N. I. M. Gould, D. Orban, and Ph.L. Toint. CUTEr (and SifDec): a Constrained and Unconstrained Testing Environ-
ment, revisited. ACM Transactions on Mathematical Software, 29(4):373–394, 2003. DOI: 10.1145/962437.962439.
N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Sensitivity of trust-region algorithms on their parameters.
4OR, 3(3):227–241, 2005.
R. B. Gramacy and S. Le Digabel. The mesh adaptive direct search algorithm with treed gaussian process surrogates.
Technical Report G-2011-37, Les cahiers du GERAD, 2011.
R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems. Journal of the Association
for Computing Machinery, 8(2):212–229, 1961. DOI: 10.1145/321062.321069.
T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6, November 1998. ISSN 09252312.
DOI: 10.1016/S0925-2312(98)00030-7.
T. Kohonen and P. Somervuo. How to make large self-organizing maps for nonvectorial data. Neural Networks,
15(8-9):945–952, 2002. DOI: 10.1016/S0893-6080(02)00069-2.
M. Kokkolaras, C. Audet, and J. E. Dennis, Jr. Mixed variable optimization of the number and composition of heat
intercepts in a thermal insulation system. Optimization and Engineering, 2(1):5–29, 2001.
S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Transactions on
Mathematical Software, 37(4):44:1–44:15, 2011. DOI: 10.1145/1916461.1916468.
D. Orban. Templating and automatic code generation for performance with python. Technical Report G-2011-30, Les
cahiers du GERAD, 2011.
S. Pantazi, Y. Kagolovsky, and J. R. Moehr. Cluster analysis of wisconsin breast cancer dataset using self-organizing
maps. Stud Health Technol Inform, 90:431–436, 2002. ISSN 0926-9630.
K. Seymour, H. You, and J. J. Dongarra. A comparison of search heuristics for empirical code optimization. In
Proceedings of the 2008 IEEE International Conference on Cluster Computing, Third international Workshop on
Automatic Performance Tuning (iWAPT 2008), pages 421–429, Tsukuba International Congress Center, EPOCHAL
TSUKUBA, Japan, 2008.
V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7(1):1–25, 1997.
DOI: 10.1137/S1052623493250780.
L.N. Vicente and A.L. Custódio. Analysis of direct searches for discontinuous functions. To appear in Mathematical
Programming, 2010. DOI: 10.1007/s10107-010-0429-8.
R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 2005, Journal of Physics: Conference Series, San Francisco, CA, USA, June 2005. Institute of
Physics Publishing.
A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Math. Program., 106(1):25–57, 2006.
R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and the ATLAS project.
Parallel Computing, 27(1–2):3–35, 2001.

http://dx.doi.org/10.1007/s10589-009-9266-1
http://dx.doi.org/s11590-011-0428-6
http://dx.doi.org/10.1145/962437.962439
http://dx.doi.org/10.1145/321062.321069
http://dx.doi.org/10.1016/S0925-2312(98)00030-7
http://dx.doi.org/10.1016/S0893-6080(02)00069-2
http://dx.doi.org/10.1145/1916461.1916468
http://dx.doi.org/10.1137/S1052623493250780
http://dx.doi.org/10.1007/s10107-010-0429-8

	G1208-enCours
	G1208
	Introduction
	Optimization of Algorithmic Parameters
	Algorithmic Parameters
	A Blackbox to Evaluate the Performance of Given Parameters
	Blackbox Optimization by Direct Search

	The OPAL Package
	The Python Environment
	Interacting with Opal
	Surrogate Optimization Problems
	Categorical Variables
	Parallelism at Different Levels
	Combining Opal with Clustering Tools
	The Blackbox Optimization Solver

	Discussion

	Citation complète: Audet, C., Dang, K.-C., Orban D., Optimization of algorithms with OPAL Mathematical Programming Computation, 6(3), 233-254, 2014.Doi: 10.1007/s12532-014-0067-x
	Numéro de Cahier et mois de publication: G-2012-08March 2012

