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Abstract

The analytic center cutting plane method and its proximal variant are well known techniques for
solving convex programming problems. We propose two sequential convex programming variants based
on convexification techniques for nonconvex unconstrained problems. The performance of the algorithm
is compared with that of two other well known first-order algorithms, the steepest descent and nonlinear
conjugate gradient with Armijo line search on a set of 158 problem from the CUTEr test set.
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1 Introduction

The Analytic Center Cutting Plane Method (ACCPM) [20] for minimizing a convex function works by

maintaining and refining an outer approximation to the bounded epigraph of the objective. Given an outer

approximation, an approximate analytic center is computed. If this center does not determine a solution of the

original problem, it determines a new (linear) cut that yields an updated outer approximation. The sequence

of analytic centers converges to a (global) minimizer of the objective function [20]. Proximal ACCPM is a
variant of ACCPM introduced in [21] that adds a proximal term to the logarithmic barrier to avoid zigzagging.

On the other hand, when the objective function is not convex the epigraph of f is not convex therefore, the

definition of the analytic center is not clear and even if we had a clear description of the analytic center,

adding cuts using this center may cut off and eliminate the optimal solution.

In this paper, we introduce a generalization of proximal ACCPM for the solution of

minimize
x∈Rn

f(x), (1)

where f : R
n → R is smooth and possibly nonconvex, and present convergence results. Unconstrained

programs are important in their own right, and also arise as subproblems in methods for general constrained

optimization such as augmented lagrangian methods, and interior-point methods. We propose two sequential

convex programming approaches and show that the sequence of global minimizers of each of these convex

functions converges to a (local) minimizer of f under reasonable assumptions. The two strategies are based

on using the sequences of proximal functions

ϕk(x) := f(x) +
1

2
L‖x− xk‖

2 (2)

and of potential proximal functions

ψk(x) := − ln(f(xk)− f(x)) +
1

2
L̂‖x− xk‖

2 (3)

where L ≥ 0 and L̂ ≥ 0 are sufficiently large that ϕk and ψk are convex. We will see in Section 2 that L

can be any number larger than the Lipschitz constants of ∇f(x). The two convexifications are independent

of the procedure used to solve each subproblem. In both approaches, we can apply ACCPM. In Theorems 9

and 10, we show how to advantageously reuse cuts from previous iterations in the current iteration.

The performance of our algorithm is compared to that of two other well known algorithms, the steepest

descent and nonlinear conjugate gradient method with Armijo line search. These two algorithms are chosen

for the comparison because they are first order methods, like ACCPM. Our implementation builds upon that

of [32]. Our benchmarks compare two versions of our algorithm on 158 unconstrained problems from CUTEr

test set [14] using performance profiles [6].

The rest of this paper is organized as follows. After reviewing related work in the next subsection, we

discuss convexification of a nonconvex function in §2. A brief discussion of ACCPM for unconstrained convex

optimization is presented in §4. In §5 and §3.2, we study ACCPM for proximal and potential functions

respectively and present our convergence results. Approximating the constants L and L̂ is discussed in §6.
Numerical results are reported in §7. Finally, §8 discusses our approach and its generalization to other

problem classes.

1.1 Related work

The proximal point method was first introduced by Martinet [18] for solving variational problems. Starting

with Rockafellar [27, 28] it was extended to the problem of finding a zero of a maximal monotone operator and

to convex optimization. A number of researchers have used the proximal point method since the late 1970’s

to resolve some difficulties in standard optimization problems. For example, Rockafellar [28] uses it to ap-
proximate the solutions of nonlinear equations associated with monotone operators. It is used in [3, 8] to take

advantage of decomposition methods for convex minimization without assuming strong or strict convexity.
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Fukushima and Mine [10] consider the minimization of f(x) + g(x) where f is continuously differentiable on

an open set containing the domain of g, and g is a closed proper convex function. The k-th iteration consists

in minimizing the model ∇f(xk)
Tx + 1

2ck‖x − xk‖
2 + g(x) where ck > 0 is a parameter. This model can

be interpreted as the proximal method to the function g(x) +∇f(xk)
Tx. Kaplan and Tichatschke [15] apply

the proximal point method to nonsmooth and nonconvex problems. They show how proximal regularization

with appropriate regularization parameters ensures convexity of the auxiliary problems.

Friedlander and Orban [25] use a proximal-like method for convex quadratic programming in order to

handle free variables and rank-deficient constraint matrices in the framework of interior-point method.

Proximal ACCPM was studied in [24, 21] based on the bundle method [17], which can be loosely inter-
preted as Kelley’s cutting plane method [16] in which proximal terms are added to the objective function.

Bundle-type methods also enforce convergence of the centers to the optimal solution. The computation of

the Newton direction in Proximal-ACCPM can be made more efficient than in plain ACCPM [7].

1.2 Notation

For a function f : Rn → R, we use the notation Df for the domain of f , x∗ for a local minimizer of f , f∗ for
f(x∗), and ‖ · ‖ for the Euclidian norm throughout this paper. The set of all local minimizers of a nonconvex

function f is denoted arg min
x∈Rn

f(x).

2 Convexification

A continuous function f : Rn → R may not be convex but in some cases there exists a constant L such that

function ϕ(x) := f(x) + L‖x‖2 is convex. From the convexity of ϕ(x) one may get useful information about

f . Given y ∈ R
n, ϕy(x) := f(x) + 1

2L‖x− y‖2 is the proximal function of f at y. In the remainder of this

section, K denotes a fixed convex subset of Df .

Definition 1 We say that f is convexifiable on K if there exists L ≥ 0 such that ϕ(x) is convex on K. The

number L is a convexifier of f on K and ϕ is a convexification of f on K.

Zlobec [35] studies and characterizes convexifiable functions in term of the mid-point acceleration function

of f , defined as

Ψ(x, y) :=
8

‖x− y‖2

(

f(x) + f(y)

2
− f

(

x+ y

2

))

, ∀x, y ∈ K, x 6= y. (4)

The following result is due to Zlobec [35].

Theorem 1 (Characterization of Convexifiable Functions) The function f is convexifiable on K with

convexifier L if and only if Ψ is bounded below on K by −L, i.e., Ψ(x, y) ≥ −L for all x, y ∈ K, x 6= y.

An important class of convexifiable functions is the class of Lipschitz continuously differentiable functions.

Definition 2 A function f : Rn → R is Lipschitz continuously differentiable on a set D ⊂ R
n if there exists

a constant L > 0 such that for any x, y ∈ D,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (5)

The constant L is called a Lipschitz constant for f .

It is clear that a Lipschitz constant is not unique. If L is a Lipschitz constant, L′ ≥ L is also a Lipschitz

constant.

Zlobec [34] shows that for Lipschitz continuously differentiable functions with Lipschitz constant L, the

mid-point acceleration function (4) is bounded above by L. We state this result in the following theorem.
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Theorem 2 If f : Rn → R is Lipschitz continuously differentiable on a convex set K with constant L then

|Ψ(x, y)| ≤ L.

Using Theorems 1 and 2, we have the following result.

Corollary 1 Let f : Rn → R be a Lipschitz continuously differentiable function on the compact convex set

K with constant L. Then L is a convexifier of f on K.

If f : Rn → R is twice continuously differentiable then it is possible to write the mid-point acceleration

function Ψ in term of the Hessian matrix of f .

Theorem 3 Let f : Rn → R be twice continuously differentiable on K. Then for any x, y ∈ K, x 6= y, there

exist ξ and η on the line segment [x, y] and line segment [y, x+y2 ], respectively, such that

Ψ(x, y) =
(y − x)T

‖y − x‖

(

2∇2f(ξ)−∇2f(η)
) y − x

‖y − x‖
. (6)

Proof. Since

Ψ(x, y) =
8

‖x− y‖2

(

f(x) + f(y)

2
− f

(

x+ y

2

))

=
4

‖x− y‖2

(

f(x) + f(y)− 2f

(

x+ y

2

))

,

(7)

using Taylor’s Theorem we can find ξ on the line segment between x and y such that

f(x) = f(y) +∇f(y)T (x− y) +
1

2
(x− y)T∇2f(ξ)(x− y)

and we can find η on the line segment y and x+y
2 such that

f

(

x+ y

2

)

= f(y) +∇f(y)T
(

x+ y

2
− y

)

+
1

2

(

x+ y

2
− y

)T

∇2f(η)

(

x+ y

2
− y

)

= f(y) +
1

2
∇f(y)T (x− y) +

1

8
(x− y)T∇2f(η)(x− y).

Substituting these two values in (7) we get (6).

Note that if f(x) = 1
2x

TBx is a quadratic form then

Ψ(x, y) =
(x− y)TB(x− y)

‖x− y‖2
. (8)

The right-hand side of (8) is the Rayleigh quotient. In this case the negative of the smallest eigenvalue of

matrix B, if this eigenvalue is negative, is a convexifier of f . We can conclude that the mid-point acceleration

function (6) is a generalization of Rayleigh quotient.

We note that if

lim
y→x

y − x

‖y − x‖
= z,

we have from (6) that
lim
y→x

Ψ(x, y) = zT∇2f(x)z,

which states that the limiting behavior of the mid-point acceleration function is the curvature of f at x in
the direction of z.

If f : Rn → R is twice continuously differentiable and its Hessian matrix is uniformly bounded, Theorem 3

guarantees that f is convexifiable. We state this fact in the following corollary.
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Corollary 2 Let f : Rn → R be twice continuously differentiable and suppose there exists M > 0 such that

‖∇2f(x)‖ ≤M for all x ∈ K. Then L = 3M is a convexifier of f on K.

Proof. Using Theorem 3 with the fact that for x 6= y

∥

∥

∥

∥

y − x

‖y − x‖

∥

∥

∥

∥

= 1,

we obtain
∣

∣Ψ(x, y)
∣

∣ ≤ 3M,

that is −3M is a lower bound of Ψ(x, y) and Theorem 1 completes the proof.

The following lemma states that if L is a convexifier of f on K then for any y ∈ K function ϕy(x) =

f(x) + 1
2L‖x− y‖2 is also convex on K. We use this fact frequently in our study of ACCPM for nonconvex

objective functions.

Lemma 1 f : Rn → R is convexifiable on K with convexifier L if and only if ϕy(x) = f(x) + 1
2L‖x− y‖2 is

convex on K for any given y ∈ R
n.

Proof. Suppose f is convexifiable on K with convexifier L and fix y ∈ R
n. Since L is a convexifier of f we

have ϕ
0
(x) = ϕ(x) = f(x) + 1

2Lx
Tx is convex and

ϕy(x) = f(x) +
1

2
L(x− y)T (x− y)

= f(x) +
1

2
L(xTx− 2xT y + yT y)

= ϕ(x) −
1

2
L(2xT y − yT y),

the right hand side is the sum of a convex function and an affine function. Therefore, ϕy(x) is a convex

function. Now, suppose ϕy(x) is convex on K. Since

ϕ(x) = ϕy(x) +
1

2
L(2xT y − yT y)

is a convex function of x for any y ∈ R
n by definition L is a convexifier of f on K.

3 Proximal point method on the convexified and potential func-

tions

Throughout this paper we assume, unless otherwise stated, that f : Rn → R is a Lipschitz continuously

differentiable function with convexifier L and K ⊂ R
n is a convex and compact set that contains the set

{ x ∈ Df | f(x) ≤ f(x0) }.

Our problem is to find a local minimum of the following problem

min
x∈Rn

f(x). (9)

3.1 Proximal point method on the convexified function

By Lemma 1 for any sequence {xk}, the following proximal functions are convex

ϕk(x) = f(x) +
1

2
L‖x− xk‖

2 k = 0, 1, 2, · · · . (10)
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Now, we can state our algorithm as Algorithm 3.1. We show that the sequence {xk} generated by our

algorithm converges to a local minimizer of the problem (9). In step 3 of the algorithm, we use ACCPM to

find the global minimizer of the convexified function.

Algorithm 3.1 A Nonconvex ACCPM Algorithm

1. Select ε > 0, x0 ∈ K, and an estimate of L. Set k = 0.

2. If ‖∇f(xk)‖ ≤ ε stop.

3. Set xk+1 as the global minimizer of ϕk(x) = f(x) + 1
2L‖x− xk‖

2.

4. Increment k and go to 2.

If {xk} generated by Algorithm 3.1 then we have the following simple properties:

ϕk(xk) = f(xk), (11a)

∇ϕk(xk) = ∇f(xk), (11b)

∇ϕk(xk+1) = 0, (11c)

ϕk(xk+1) ≤ ϕk(x) ∀x ∈ Dϕk , (11d)

ϕk(xk+1) < ϕk(xk) if xk is not a stationary point of f. (11e)

The proofs are obvious but we briefly sketch the proof of (11e). If we had equality in (11e), then xk
would also be a minimizer of ϕk(x). Therefore, ∇ϕk(xk) = 0 and by (11b) we get ∇f(xk) = 0 which is a

contradiction.

The following lemmas state some more properties of the sequences {xk} and {f(xk)}.

Lemma 2 Suppose {xk} is generated by the Algorithm 3.1 with x0 ∈ K. The sequence {xk} is a finite

sequence if and only if there exits an index k0 such that ∇f(xk) = 0 for all k ≥ k0.

Proof. Suppose that the sequence {xk} is a finite sequence then there exist an index k0 such that xk = xk0
for all k ≥ k0. In this case, xk+1 must be a stationary point of f because xk+1 is the minimizer of ϕk(x) and

xk+1 = xk we get from (11d) and (10)

0 = ∇ϕk(xk+1) = ∇f(xk+1) + L(xk+1 − xk)

= ∇f(xk+1) (12)

= ∇f(xk).

Now, suppose ∇f(xk) = 0 for all k ≥ k0. Replacing k by k0 in equation (12) and the fact that L 6= 0 we

get, xk0 = xk0+1. The same reasoning Shows that xk0+n = xk0+n+1. Therefore, by induction on n we have

xk0+n = xk0 for all integer n ≥ 1.

Lemma 3 Suppose {xk} is generated by the Algorithm 3.1 with x0 ∈ K and for all k, ∇f(xk) 6= 0, then the

sequence {xk} is an infinite sequence for which {f(xk)} converges (to some f̄) and

‖xk+1 − xk‖ → 0 as k → ∞.

Proof. Using (11e), we have

f(xk+1) ≤ f(xk+1) +
1

2
L‖xk+1 − xk‖

2 = ϕk(xk+1) < ϕk(xk) = f(xk). (13)

We conclude that f(xk) is a decreasing sequence and since f is bounded on the compact set K the sequence

{f(xk)} must converge to some f̄ . From (13) it is clear that ‖xk+1 − xk‖ → 0 as k → ∞.

Lemma 4 states that the direction (xk+1 − xk) is a descent direction for f at xk for all k.
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Lemma 4 Suppose {xk} is generated by the Algorithm 3.1 and for all k, ∇f(xk) 6= 0, then (xk+1 − xk) is a

descent direction for f at xk.

Proof. By convexity of ϕk(x) we have

ϕk(xk+1) ≥ ϕk(xk) +∇ϕk(xk)
T (xk+1 − xk).

Since xk+1 is the minimizer of ϕk(x), using (11e) we get

∇ϕk(xk)
T (xk+1 − xk) ≤ ϕk(xk+1)− ϕk(xk) < 0. (14)

Using (11b) we have ∇ϕk(xk) = ∇f(xk), substituting this equality in (14) the desired result is obtained.

Lemma 5 states that the sequence {xk} has a convergent subsequence converging to a local minimizer of
f.

Lemma 5 If {xk} is generated by Algorithm 3.1 with x0 ∈ K, then limk→∞ ∇f(xk) = 0 and it has a limit

point x̂ for which ∇f(x̂) = 0.

Proof. Since xk+1 is the minimizer of ϕk(x) we must have ∇ϕk(xk+1) = 0. By definition of ϕk(x) we get

∇f(xk+1) + L(xk+1 − xk) = 0

consequently
∥

∥∇f(xk+1)
∥

∥ = L‖xk+1 − xk‖.

Lemma 3 gives the first result. By (13), {xk} ⊂ K, so it must be bounded and hence, have a limit point x̂,
using continuity of gradient the second result is obtained.

Remark 1 For any c such that f∗ < c ≤ f(x0) where x0 ∈ K , define

Lc = { x ∈ Df | f(x) ≤ c },

it is easy to see that

Lc ⊂
⋃

i∈I

Ωci , (15)

where Ωci (i ∈ I) is a convex set and I is a finite index set. The reason is that Lc ⊂ Lf(x0) ⊂ K is a compact

set and therefore it can be covered by finitely many convex balls.

The following theorem shows under which conditions xk converges to a local minimizer of f .

Theorem 4 Let f : Rn → R be a differentiable and convexifiable function with convexifier L on R
n. Suppose

for some x0 ∈ K define c = f(x0) , c̄, and d > 0 that c̄ ∈ [f∗, c) and some finite index set J,

‖∇f(x)‖ > d ∀x ∈
⋃

i∈I∩J

(

Ωci \ Ω
c̄
i

)

(16)

and that f is convex on Ωc̄j (j ∈ J). Then {xk} generated by Algorithm 3.1 converges to a local minimizer of
(9).

Proof. Suppose that x0 ∈ Ωcj \Ω
c̄
j and Algorithm 3.1 generates an infinite sequence {xk}. That is ∇f(xk) 6= 0

for all k. Since I∩J is a finite index set, we must have an index i ∈ I∩J and an infinite subsequence {xk}k∈K

such that xk ∈ Ωci for all k ∈ K. Now, we show that the sequence {xk}k∈K finally reaches to the region

Ωc̄i . Suppose by contradiction that for all k ∈ K we have xk ∈ Ωci \ Ωc̄i . By definition of xk+1, we have

∇ϕk(xk+1) = 0 or equivalently ∇f(xk+1) + L(xk+1 − xk) = 0. Using assumption (16) we get

‖xk+1 − xk‖ >
d

L
∀k ∈ K.

This is a contradiction with Lemma 3. Therefor, our sequence finally reaches to the region Ωc̄i . Using Lemma

5 and the fact that f is a convex function on convex set Ωc̄i the proof of the theorem is completed.
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c

c

( )f x

Figure 1: Representation of the set ∪i∈I∩J(Ω
c
i \ Ω

c̄
i)

The convergence of the proximal point method to a global minimizer of nonconvex and nondifferentiable

objective functions is introduced in [15].

Example 1 Consider the following function

f(x1, x2) = x21 + x22 + 4x21x
2
2.

This function is not convex because ∇2f(−1, 1) is not positive semi definite. Since (0, 0) is a stationary point

and ∇2f(x) is positive definite on B(0, 12 ) = {x ∈ R
2 | ‖x‖ < 1

2}, we conclude that (0, 0) is a strict local
minimum of f. It is easy to see that ‖∇f(x)‖ > 1 for any x outside ball B(0, 12 ). Therefore, c = f(1, 0) = 1

and c̄ = 1
2 satisfy the condition of Theorem 4.

The following theorem shows that all nonconstant Lipschitz continuously differentiable function satisfy

the conditions of Theorem 4.

Theorem 5 If f : Rn → R be a nonconstant Lipschitz continuously differentiable function with Lipschitz

constant L then the assumptions of the Theorem 4 hold.

Proof. Suppose that the conditions of the Theorem 4 don’t hold. That is, for any c, c̄, d > 0, and f∗

that c ∈ [f∗, c̄) there exists x̂ ∈ Ωci \ Ωc̄i such that ‖∇f(x̂)‖ ≤ d. Fix c, c̄, and f∗ we can find a sequence
{x̂k} ⊂ Ωci \Ω

c̄
i such that ‖∇f(x̂k)‖ ≤ 1

k
. Since Ωci \Ω

c̄
i is a bounded set and f is continuously differentiable,

without loss of generality we can assume {x̂k} converges to x̄ ∈ (Ωci \ Ω
c̄
i ) and ∇f(x̄) = 0.

Now, consider x and y for which f(x) < f(y) and let c = f(x) and c̄ = f(y) then by using the above

discussion, there exists an x̄ such that f(x) ≤ f(x̄) ≤ f(y) and ∇f(x̄) = 0. Therefore, we can find a sequence

{x̄k} such that f(x̄k) → f(x) and ∇f(x̄k) = 0 for k = 1, 2, · · · . We now, prove that f must be a constant
function or equivalently ∇f(x) = 0. let define a sequence of constant functions as follow

gk, g : R
n → R by gk(u) = f(x̄k) k = 1, 2, · · · and g(u) = f(x)

It is obvious that gk(u) → g(u) as k → ∞ and ∇gk(u) = 0 for all k = 1, 2, · · · . Since

sup
u∈R

n

‖∇gk(u)‖ = 0

we conclude that ∇gk → 0 uniformly. Therefore, by Theorem 7.17 [29] we must have limk→∞ ∇gk(u) =

∇g(u). That is ∇f(x) = 0, this is contradict that f is not a constant function.

When f is convex, the proximal point method that satisfies conditions (17) converges to the local (global)

minimizer of f [28]. In our case, according to Theorem 4 the sequence {xk} finally reaches to the convex

region Ωc̄i and f is convex on this region. Therefore, to use the convergence result of [28] we need conditions

(17), although in the proof of Theorem 6 we just need this fact that εk → 0.
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Theorem 6 Suppose the assumptions of Theorem 4 hold and {x̃k} be a sequence such that

‖x̃k+1 − xk+1‖ ≤ εk ,

∞
∑

k=0

εk <∞, (17)

with εk > 0. If we define ϕ̃k(x) = f(x) + 1
2L‖x− x̃k‖

2, then x̃k → x∗ and ∇ϕ̃k(x̃k+1) → 0 as k → ∞.

Proof. By Theorem 4 we have xk+1 → x∗ and using conditions (17), we get εk → 0 and consequently

x̃k+1 → x∗. We also have
‖∇ϕ̃k(x̃k+1)‖ = ‖∇f(x̃k+1) + L(x̃k+1 − x̃k)‖

≤ ‖∇f(x̃k+1)‖+ L‖x̃k+1 − x̃k‖.
(18)

Since x̃k+1 → x∗ and ∇f(x) is continuous, the right side of (18) must converge to zero.

3.2 Proximal point method on the potential function

In this section, we extend the results of the previous section to the potential function of the epigraph of f(x),
that is we consider the function

ψk(x) = − ln(f(xk)− f(x)) +
1

2
L̂k‖x− xk‖

2 (19)

where L̂k is large enough so that ψk(x) is strictly convex. The gradient and the Hessian of the function

ψk(x) are as follows:

∇ψk(x) =
∇f(x)

f(xk)− f(x)
+ L̂k(x− xk)

and

∇2ψk(x) =
∇2f(x)

f(xk)− f(x)
+

∇f(x)∇f(x)T

[f(xk)− f(x)]2
+ L̂kI. (20)

From (20), it is not difficult to see that if L̂k satisfies the following inequality

L̂k ≥ − min
x∈R

n
min
i
λi

(

∇2f(x)

f(xk)− f(x)
+

∇f(x)∇f(x)T

[f(xk)− f(x)]
2

)

then ψk(x) is convex. The merit of using potential proximal approach is that log barrier − ln(f(xk)− f(x))

in ψk(x) prevents xk+1 from being too close to the current minimizer xk. Like the proximal approach, the

term L̂k‖x− xk‖
2 also prevents choosing new point far from current xk.

We will show that under some conditions the following procedure generates a sequence converging to a

local minimizer of the unconstrained optimization problem (9).

Our procedure starts with x0 ∈ K and iterate as follows:

xk+1 ∈ argmin
x∈Dψk

ψk(x), (21)

where Dψk = {x ∈ R
n | f(x) < f(xk)}. The minimizer xk+1 is the global minimizer because ψk is strictly

convex. We assume also that the level set

Ω0 = { x ∈ R
n | f(x) ≤ f(x0) } ⊂ K.

If we define Ωk = {x ∈ R
n | f(x) ≤ f(xk) }, then it is easy to see that for any k = 0, 1, . . . the inclusion

Ω0 ⊇ Ω1 ⊇ . . . holds.

Replacing ϕk(x) by ψk(x) we can design an algorithm analogous to Algorithm 3.1 base on the proximal

potential function (19).
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Since xk+1 ∈ Dψk = intΩk, we must have f(xk+1) < f(xk). If f is bounded from below we conclude that

the sequence {f(xk)} converges to some limit point f̄ . Since xk ∈ Ωk ⊂ Ω0 and Ω0 is bounded, {xk+1−xk} is

a bounded sequence. Therefore, it has a convergent subsequence. Without loss of generality we can assume
that {xk+1 − xk} is a convergent sequence. Therefore, we have just proved the following lemma which is

analogous to Lemma 3.

Lemma 6 If f : Rn → R is Lipschitz continuously differentiable and bounded from below, then there exist

f̄ ∈ R and x̂ ∈ R
n such that

f(xk) → f̄ and ‖xk+1 − xk‖ → x̂ as k → ∞.

The following lemma shows that the result of Lemma 4 also holds for our potential function.

Lemma 7 Let {xk} be generated by the Algorithm 3.1, then {xk+1 − xk} is a sequence of descent directions

of f at xk+1 for all k = 0, 1, 2, · · · .

Proof. Since xk+1 ∈ argminψk(x), we must have ∇ψk(xk+1) = 0. That is

∇f(xk+1)

f(xk)− f(xk+1)
+ L̂(xk+1 − xk) = 0,

multiplying both side by the vector xk+1 − xk we have

∇f(xk+1)
T (xk+1 − xk)

f(xk)− f(xk+1)
= −L̂‖xk+1 − xk‖

2 ≤ 0.

Since f(xk+1) < f(xk) and xk+1 6= xk we get

∇f(xk+1)
T (xk − xk+1) > 0,

which is the desired result.

The following lemma shows that the sequence {xk} has a convergent subsequence converging to a sta-

tionary point of f.

Lemma 8 If {xk} is generated by the Algorithm 3.1, then limk→∞ ∇f(xk) = 0 and it has a limit point x̂ for

which ∇f(x̂) = 0.

Proof. Since ∇ψk(xk+1) = 0 we have

∇f(xk+1)

f(xk)− f(xk+1)
+ L̂(xk+1 − xk) = 0

or equivalently

∇f(xk+1) = L̂(xk − xk+1)
[

f(xk)− f(xk+1)
]

. (22)

Since the right hand side of the (22) tends to zero as k → +∞ the first part of the proof is obtained. By

continuity of ∇f(x) and the fact that K is compact and {xk} ⊂ K the existence of x̂ is obvious.

Keeping Remark 1 in mind the following theorem shows sufficient conditions for the sequence {xk},

generated by the Algorithm 3.1, to converge to a local minimizer of f.

Theorem 7 Let f : Rn → R be a differentiable function. Suppose for some c, c̄, and d > 0 that c̄ ∈ [f∗, c)

and some finite index set J,

‖∇f(x)‖ > d ∀x ∈
⋃

i∈I∩J

(

Ωci \ Ω
c̄
i

)

(23)

and that f is convex on Ωc̄j (j ∈ J). Then the sequence {xk} generated by the Algorithm 3.1 converges to a

local minimizer of (9).
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Proof. The proof basically is the same of the proof of Theorem 4. Suppose that x0 ∈ Ωcj \ Ωc̄j and our

algorithm generates an infinite sequence {xk}. That is ∇f(xk) 6= 0 for all k. Since I ∩ J is a finite index set,

we must have an index i ∈ I ∩ J and an infinite subsequence {xk}k∈K such that xk ∈ Ωci for all k ∈ K. Now,
we show that the sequence {xk}k∈K finally reaches to the region Ωc̄i . Suppose by contradiction that for all

k ∈ K we have xk ∈ Ωci \Ω
c̄
i . By definition of xk+1, we have ∇ψk(xk+1) = 0 or equivalently

∇f(xk+1)

f(xk)− f(xk+1)
+ L̂(xk+1 − xk) = 0,

from this we get

‖xk+1 − xk‖ =
‖∇f(xk+1)‖

L̂
(

f(xk)− f(xk+1)
)

>
d

L̂
(

f(xk)− f(xk+1)
) .

Now, if k → ∞ we must have ‖xk+1 − xk‖ → +∞. This is a contradiction with Lemma 6. Therefore, {xk}

finally reaches to the convex region Ωc̄i . To finish the proof of the theorem, it is enough to note that f is a
convex function on the convex set Ωc̄i and use Lemma 8.

The following theorem is the same as Theorem 5 and we omit its proof.

Theorem 8 If f : Rn → R be a nonconstant Lipschitz continuously differentiable function with Lipschitz

constant L, then the assumptions of Theorem 7 hold.

4 Background on ACCPM

ACCPM is widely used in many areas of optimization both in theory and applications including, integer

programming [9], variational inequalities [5, 4], semidefinite programming [26], conic optimization [2], and

stochastic programming [1]. ACCPM is an efficient method to compute a center of a polyhedron so called
analytic center. In this section, we see how analytic center can be used in order to find a minimizer of a

convex function.

For any convex function ϕ : Rn → R and any x, y ∈ R
n, we have

ϕ(x) ≥ ϕ(y) +∇ϕ(y)T (x − y). (24)

Therefore, if ∇ϕ(y)T (x−y) > 0, then ϕ(x) > ϕ(y) and x cannot be a minimizer of ϕ(·) over Rn. We conclude

that for any y ∈ R
n, the inequality

∇ϕ(y)T (x− y) ≤ 0

is satisfied by any minimizer of ϕ. This inequality is called a valid cut or an optimality cut at query point y.

In this section, we briefly review how these optimality cuts can be used to find the optimal solution of the

unconstrained minimizer of the convex function.

Let the optimality cuts ∇ϕ(yq)T (x − yq) ≤ 0 (q = 1, 2, · · ·m) be generated and

θ̄ = min
q
ϕ(yq).

The optimization problems minx ϕ(x) and

min
x,t

t

ϕ(x) ≤ t

are equivalent and the optimal solution of the second problem is contained in the following set called local-
ization set

Lθ̄ = {(x, t) ∈ R
n+1 | ∇ϕ(yq)T (x− yq) ≤ 0, q = 1, 2, · · ·m, t ≤ θ̄}. (25)
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We note that since ϕ is convex, Lθ̄ is an outer approximation of the epigraph of ϕ bounded by t ≤ θ̄.

Therefore, the localization set is a bounded polyhedron.

The basic steps of the cutting plane method can be stated as follows:

1. select a new query point (ym+1, tm+1) in the localization set,

2. add the optimality cut corresponding to ym+1 to the localization set,

3. test for termination by measuring ‖∇ϕ(ym+1)‖.

There are several ways to choose the new query point in the localization set. For example, the center of
gravity of the defined as

Cg(Lθ̄) =

∫

Lθ̄
zdz

∫

Lθ̄
dz

and center of max-volume ellipsoid inscribing the localization set [33]. In ACCPM, the new query point is

chosen as the analytic center of the bounded polyhedron Lθ̄. The localization set (25) in matrix form can be

written as AT y ≤ c, where

A =
[

∇ϕ(y1) ∇ϕ(y2) · · · ∇ϕ(ym) en
]

∈ R
n×(m+1),

y = (x, t)T , en = (0, 0, · · · , 0, 1)T ∈ R
n, ci = ∇ϕ(yi)Txi, i = 1, 2, · · · ,m and cm+1 = θ̄.

The analytic center of the bounded polyhedron AT y ≤ c exists and is unique if there exists a y such that

AT y < c [13]. This center is defined as the unique solution of the following optimization problem

min
y,s

−
m
∑

i=1

log si subject to AT y + s = c. (26)

Using the KKT conditions we get the system

−S−1e+ λ = 0,

Aλ = 0,

AT y + s = c,

s > 0,

where S = diag(s1, s2, · · · , sm). Part of the challenge of computing the analytic center is that we are not
given an initial point s = c − AT y > 0. Goffin and Mokhtarian [12] suggested to use an infeasible Newton

method. The infeasible Newton method can be started from any y and s > 0. For instance, we can start

with any y and choose s as

si =

{

ci − aTi y, if ci − aTi y > 0;

1, otherwise,
i = 1, 2, · · · ,m.

The Newton step at a point (y, s, λ) is defined by the system of linear equations





0 0 A

0 S−2 I

AT I 0









∆y
∆s
∆λ



 = −





Aλ

−S−1e+ λ

AT y + s− c



 ,

where S−2 = diag(s−2
i ) is the Hessian of the Lagrangian of the problem (26). When A has full row rank,

the coefficient matrix is nonsingular and the Newton step is obtained by solving this system and using the

expressions
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∆y = −(AS−2AT )−1(AS−1e−AS−2rp), (27a)

∆s = −AT∆y − rp, (27b)

∆λ = −S−2∆s− S−1e− λ (27c)

where rp = AT y + s− c. We can compute ∆y from (27a) by finding the Cholesky factorization of AS−2AT

and performs backward and forward substitution. Other alternatives are possible. We could equivalently

compute ∆y by solving the linear least-squares problem

∆y ∈ argminz
∥

∥S−1AT z − S−1rp + Sg
∥

∥

2
,

and then compute ∆s and ∆λ form (27b) and (27c). For the convergence results of infeasible Newton method

and the algorithm, we refer to [12].

5 ACCPM for proximal and potential function

The following theorem shows how optimality cuts at iteration k are related to the optimality cuts that were
previously generated.

Theorem 9 Let yq, (q = 1, 2, · · · ,m) be query points at iteration k − 1 to generate the optimality cuts

∇ϕk(y
q)T (x− yq) ≤ 0 q = 1, 2, · · · ,m. (28)

Then in the k-th iteration of the Algorithm 3.1 all of the following cuts are valid

[∇ϕk−1(y
q) + L(xk−1 − xk)]

T
(x− yq) ≤ 0 q = 1, 2, · · · ,m .

Proof. At iteration k, we need to solve problem

min
x∈Rn

ϕk(x). (29)

From (24), all cuts (28) are valid. Using the definition of ϕk(x) we get

∇ϕk(y
q)T (x− yq) = [∇f(yq) + L(yq − xk)]

T
(x− yq)

= [∇f(yq) + L(yq − xk−1) + L(xk−1 − xk)]
T (x− yq)

= [∇ϕk−1(y
q) + L(xk−1 − xk)]

T
(x− yq).

Therefore, the following cuts are valid

[∇ϕk−1(y
q) + L(xk−1 − xk)]

T
(x− yq) ≤ 0 (q = 1, 2, · · · ,m).

and the proof is complete.

The following theorem is analogous of Theorem 9 for the potential function.

Theorem 10 Let yq, (q = 1, 2, · · · ,m) be query points at iteration k − 1 to generate the optimality cuts

∇ψk−1(y
q)T (x − yq) ≤ 0 (q = 1, 2, · · · ,m).

Then the following cuts are valid at iteration k

[

∇ψk−1(y
q) + L̂(β − 1)(yq − xk−1) + L̂β(xk−1 − xk)

]T
(x − yq) ≤ 0 (30)

for all q = 1, 2, · · · ,m for which f(yq) < f(xk), and where we define

β =
f(xk)− f(yq)

f(xk−1)− f(yq)
.
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Proof. Let Q = { q = 1, 2, · · · ,m | f(yq) < f(xk) }. Since ψk(x) is convex, the following cuts are valid at

the k-th iteration

∇ψk(y
q)T (x − yq) ≤ 0 (q ∈ Q).

Using the definition of ψk, we get, for all q ∈ Q,

∇ψk(y
q)T (x− yq) =

[

∇f(yq)

f(xk)− f(yq)
+ L̂(yq − xk)

]T

(x− yq) ≤ 0. (31)

Since β > 0 for q ∈ Q, multiplying inequality (31) by β we get the following valid cuts

[

∇f(yq)

f(xk−1)− f(yq)
+ L̂β(yq − xk)

]T

(x− yq) ≤ 0 (q ∈ Q).

These inequalities are equivalent to

[

∇f(yq)

f(xk−1)− f(yq)
± L̂(yq − xk−1) + L̂β(yq ± xk−1 − xk)

]T

(x− x) ≤ 0 (q ∈ Q).

After some simple algebraic manipulations, we can see that these cuts are exactly the same as (30).

6 Calculation of Lipschitz constant

Finding the Lipschitz constant of a function is itself a global optimization problem. In fact, if f : Rn → R is

a Lipschitz function with Lipschitz constant L. Then

L = max
t∈R

d∈R
n

∣

∣

∣

∣

d

dt
f(x+ td)

∣

∣

∣

∣

.

Existing methods dealing with the Lipschitz constant estimation problem in the literature fall into two

categories. First, the analytical form of the objective function and its derivatives are known explicitly.

Second, this analytic form is unknown and only the function value can be evaluated. These two categories

are known as white box and black box functions, respectively. For the white box problem, Shubert [30] gives

a univariate example of Lipschitz constant estimation using the upper bound of the derivative. Mladineo [19]

discusses the two dimensional case and choses the upper bound of
√

(∂f
∂x

)2 + (∂f
∂y

)2 as the estimate.

On the other hand, for the black box problem, one has to find an upper bound on the magnitude of

the gradient of the function using only function evaluations. Strongin [31] proposes a method for univariate

functions. After k evaluations, the ordered evaluation points x1 < x2 < ... < xk and corresponding function

values f(x1), f(x2), · · · , f(xk) are available and an under-estimation of the Lipschitz constant is given by

L̂ = max |f(xi)−f(xi−1)|
xi−xi−1

. Strongin’s estimate is then obtained by multiplying L̂ by a factor ρ > 1. There

is no guarantee, however, that the estimate ρL̂ is greater than or equal to the true Lipschitz constant. A

stochastic method for estimating the Lipschitz constant a univariable function is presented in [11] based on

the cumulative distribution function of the random variable |f(X)−f(Y )|
|X−Y | .

Nesterov and Polyak [22, 23] use the Lipschitz constant of the objective Hessian to establish a better

global complexity bound than that achieved by the steepest descent method in unconstrained optimization.
Rather than regular second-order approximation of the objective function, they use the following model to

be minimized at iteration k. This model is again a second-order approximation of the objective function, but

in degree three. More specifically they use

f(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)∇

2f(xk)(x − xk) +
L

6
‖(x− xk)‖

3. (32)

they term their approach cubic regularization of Newton method.
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We use the mid-point acceleration function (4) to estimate Lipschitz constant L in our implementation.

Since ACCPM is applied to ϕk(x) or ψk(x) to compute xk+1, this algorithm generates a sequence of analytic

centers converging to xk+1. Let this sequence be {xkn}
∞
n=0, that is xkn → xk+1 as n→ ∞. Using acceleration

function (4) and {xkn}
∞
n=0 the following estimation L is obtained:

L = max |Ψ(xkn, xkm)| xkn 6= xkm. (33)

According to Lemma 1, it is enough to calculate L after x1 is calculated. When xk is close to a local minimum

of f , L can be set to (or close to) zero because of the convexity of f around a local minimum. Since by

Lemma 3 (xk+1 − xk) → 0, we can use ‖xk+1 − xk‖ and update the estimated Lipschitz constant L using

‖xk+1 − xk‖

1 + ‖xk+1 − xk‖
L. (34)

We can also use ‖∇f(xk)‖ and update L using

‖∇f(xk)‖

1 + ‖∇f(xk)‖
L. (35)

In both (34) and (35), when we are close to a local minimizer the numerators are close to zero and we reduce

the effect of L. In our implementation, we update L using (34).

7 Numerical results

In the implementation of our algorithm, we use the implementation of proximal ACCPM given in [32]. We
use MATLAB to code and run our algorithm on a Intel Core dual CPU processor T 8300 @ 2.4 GHZ, with

3 GB of RAM. We tested our algorithm on problems from the CUTEr collection [14]. In our sequential

convex programming approach, we need to find a global minimizer of a convex function at each iteration

as a subproblem. We don’t find the exact minimizer of the subproblem at each iteration, an approximate

solution of the minimizer is calculated instead. We run our algorithm on 158 test problems of this set
with two versions of our proposed algorithm, ACCPM AdapTol and ACCPM FixTol. More specifically, in

ACCPM AdapTol we use an adaptive tolerance and depends on the iteration count k indirectly. When

ACCPM AdapTol satisfies the following tolerance will stop and return xk+1 as the global minimizer of the

subproblem at iteration k ..

AdapTol = min
(

10−4,
√

‖∇ϕ(xk)‖
)

‖∇ϕ(xk)‖

= min
(

10−4,
√

‖∇f(xk)‖
)

‖∇f(xk)‖. (36)

In ACCPM FixTol algorithm, the tolerance is kept fixed for all iterations to 10−4. The stopping criteria for
termination of the algorithms in both cases is set to

StopTol = 10−6 + 10−4‖∇ϕ(xk)‖

= 10−6 + 10−4‖∇f(xk))‖, (37)

where the second equalities in (36) and (37) are valid due to (11b). The two versions of our algorithm are

compared with two well known algorithms, steepest descent and nonlinear conjugate gradient method with
Armijo line search.

Each iteration of the proximal ACCPM is expensive. On the other hand, each iteration of the steepest

descent and conjugate gradient method are cheap. Therefore, one iteration of ACCPM cannot be compared

directly with one iteration of conjugate gradient or steepest descent. In order to compensate for this, we let

the steepest descent and conjugate gradients algorithm iterations reach to 1000 and we run our algorithm
just in 100 iterations and then compare the performance.
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Figure 2: 100 iterations of ACCPM vs. 1000 iterations of steepest descent and conjugate gradient algorithms

The interpretation of the Figure 2 is interesting. It indicates that for any real number τ ≥ 1, algorithm

ACCPM AdapTol and ACCPM FixTol solve more problems within a factor of τ of the best algorithm. More

specifically, if τ = 1 or τ = 10 Figure ref1001000 shows that ACCPM FixTol acts as the best solver on
approximately 60% of the problems and for 98% of the problems, the number of iteration that this solver

needs is not more than 10 times of the number of iteration of the best solver.

8 Conclusion

The main contribution of this work is to introduce a generalization of proximal ACCPM for nonconvex

objective function and accompanying convergent results. We propose two sequences of convex functions and
show that the global minimizers of these sequences converge to a local minimizer of the original unconstrained

nonconvex objective function f under reasonable assumptions.

The results of the Theorems 9 and 10 provide guidelines for how to reuse old cuts instead of restarting the

optimization from scratch. In a sophisticated implementation of the proposed scheme which is in progress,

we want to add this capability to current implementation of ACCPM.

In this work, we study ACCPM for the proximal function (10) and potential function (19). An extension
of these functions could be the following function

ψ̂k(x) = − ln

(

f(xk)− f(x) −
1

2
α‖x− xk‖

2

)

+
1

2
β‖x− xk‖

2. (38)
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This function is a combination of ϕ and ψ. When α is chosen such that f(xk)− f(x)+ 1
2α‖x−xk‖

2 becomes

convex then β can be any nonnegative number. Otherwise, we need to chose large β in (38) in order to ψ̂k(x)
becomes convex. In (38), two parameter α and β control the convexity of ψ̂k(x). β could be chosen small

when α is large. The Hessian of ψ̂k(x) is

∇2ψ̂k(x) =
∇2f(x) + αI

f(xk)− f(x)− 1
2α‖x− xk‖2

+
∇f(x)∇f(x)

T

(

f(xk)− f(x)− 1
2α‖x− xk‖2

)2

+
α∇f(x)(x − xk)

T

(

f(xk)− f(x)− 1
2α‖x− xk‖2

)2 +
α(x− xk)∇f(x)

T

(

f(xk)− f(x)− 1
2α‖x− xk‖2

)2

+
α2(x − xk)(x− xk)

T

(

f(xk)− f(x)− 1
2α‖x− xk‖2

)2 + βI.

From ∇2ψ̂k(x) we understand that it is possible to make ψ̂k(x) convex by controlling β and α. We also

note that in the third term of Hessian the rank one matrix ∇f(x)(x−xk)
T has the eigenvalue ∇f(x)

T
(x−xk)

with corresponding eigenvector ∇f(x). Particularly, if we set α = 0 and β = L̂ in (38) then ψ̂k(x) is exactly

ψk(x). Therefore, our study of potential function (19) is an special case of (38).
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