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Abstract

We study call routing policies commonly used in call centers with multiple call types and multiple
agent groups. We propose a new weight-based routing policy where each pair (call type, agent group)
is given a matching priority defined as an affine combination of the longest waiting time for that call
type and the longest idle time in that agent group. The coefficients in this combination are parameters
to be optimized. This type of policy is more flexible than traditional ones found in practice, and it
performs better in many situations. We consider objective functions that account for the service levels,
the abandonment ratios, and the fairness of occupancy across agent groups. We select the parameters
of all considered policies via simulation-based optimization heuristics. This only requires the availablity
of a simulation model of the call center, which can be much more detailed and realistic than the models
used elsewhere in the literature to study the optimality of certain types of routing rules. We offer a first
numerical study of realistic routing rules that takes into account the complexity of real-life call centers.

Key Words: multi-skill call centers; contact centers; call routing policies; simulation; stochastic opti-
mization.

Résumé

Nous étudions des politiques de routage des appels couramment utilisées dans les centres d’appels re-
cevant plusieurs types d’appels et disposant de plusieurs groupes d’agents ayant des habiletés différentes.
Nous proposons une nouvelle politique de routage à l’aide de poids où la priorité d’assignation pour chaque
paire (type d’appel, groupe d’agents) est calculée à partir d’une combinaison affine du plus long temps
d’attente de ce type d’appel et du plus long temps d’inactivité de ce groupe d’agents. Les cœfficients de
cette combinaison sont des paramètres à optimiser. Ce type de politique est plus souple que ceux utilisés
traditionnellement dans la pratique, et il offre une meilleure performance dans plusieurs situations. Nous
considérons des fonctions objectif basées sur les mesures des niveaux de service, des taux d’abandons et
de l’équité des charges de travail entre les groupes d’agents. Pour toutes les politiques considérées, les
paramètres de routage sont choisis à l’aide d’algorithmes d’optimisations heuristiques basés sur la simu-
lation. Cette approche ne requiert que la disponibilité d’un modèle de simulation d’un centre d’appels,
qui peut être beaucoup plus détaillé et réaliste que les modèles considérés dans la littérature sur l’étude
d’optimalité de certaines politiques de routage. Nous présentons une première étude numérique sur des
règles de routages réalistes qui tient compte de la complexité réelle des centres d’appels.

Acknowledgments: This research has been supported by grants from NSERC-Canada and Bell
Canada, and a Canada Research Chair to the third author. We are grateful to Naoufel Thabet at
Bell Canada for helpful discussions.
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1 Introduction

Call centers have a significant economic importance in today’s world, as explained in Gans et al. (2003) and
Akşin et al. (2007), for example. Managers face complex optimization problems where the goal is to meet
various constraints on quality of service (QoS) at the least possible cost, or optimize a given performance
measure for a given budget. Most of these costs are actually the salaries of the people who answer the calls.

In this paper, we are considering an inbound multi-skill call center, where arriving calls initiated by the
customers are categorized by the type of service that they require, called the call type. Call centers with
several dozen call types are not uncommon. Agents, or customer sale representatives, are trained to answer
and serve these calls. They are partitioned into agent groups, where all the agents in each group can answer
the same subset of call types, called their skill set. It is not economical and sometimes even impossible to
train all agents to have all skills; in practice most agents will have only a few skills.

Managing a multi-skill call center means, among other things, to decide how many agents of each skill set
should be assigned to work in each time period (the staffing problem), establish admissible work schedules
for agents with the right skill sets to cover those staffing requirements (the scheduling problem), and select
rules (routing policies) to match the calls to agents with the right skills. A routing choice arises each time a
new call arrives and there are idle agents able to serve it: “Which agent should serve this call?” A decision
also has to be taken when an agent becomes free and there are calls waiting to be served: “Which waiting call
should this agent serve next?” Ideally, the skill sets, staffing, scheduling, and routing should all be optimized
simultaneously, but for large real-life call centers, this leads to excessively difficult optimization problems. In
practice, much effort is often put into the staffing and scheduling of agents, while the skill sets and routing
policy are often selected ad hoc rather than being systematically optimized. However, the routing policy
usually plays an important role in the performance of a multi-skill call center.

In this paper, we study routing policies and their optimization for fixed staffing levels. We also propose
a new routing policy based on weights, call waiting times, and agent idle times. This policy often provides
better performance than conventional routing policies.

The most rudimentary routing rule is to assign the longest waiting call to the longest idle agent that has
the right skill to serve it. This is a combination of the well-known first-come first-served (FCFS) and longest

idle server first (LISF) rules. With the emergence of multi-skill call centers, more complex routing policies
have been designed. A popular strategy is to assign different routing priorities between agents and calls. An
agent will serve a call of higher priority even if some calls of lower priorities have waited longer. Sometimes,
when other policies do not give satisfactory performance, the skill sets of certain agents are restricted by
hand for a certain time interval. We will show in our examples that better performance can be achieved by
allowing more flexibility by using the policies we introduce in this paper.

Optimization of the routing policy is a control problem that can be solved in principle with dynamic
programming (DP). This has been done in the literature for call centers with a small number of call types,
and under simplifying assumptions in the model such as Poisson arrivals and exponential service times (Koole
and Pot 2005, Koole et al. 2009). These call centers are generally modeled as continuous-time Markov chains.
But for real-life multi-skill call centers, the number of states in the DP model is usually much too large (it
grows exponentially with the number of call types) for an optimal solution to be practically computable.
Furthermore, certain types of performance measures are hard to approximate using DP. For example, if the
performance depends on all waiting times, then the system state in the DP formulation must keep track of
all those waiting times. Finally, it would be difficult to implement the optimal control policies in the routers
of real-life call centers, because they usually turn out to be much too complex.

For large call centers, routing algorithms that are asymptotically optimal in a heavy-traffic regime, when
agent occupancies converge to 100%, have been proposed and studied by various authors. The asymptotic
optimality is proven under simplifying assumptions, for example, that the service time distribution depends
only on the agent and not on the call type, or that the call center has a single call type, and for a given
(fixed) staffing. Consequently, the asymptotically optimal policy often has a simple form that ignores certain
features of the real system. For example, see van Mieghem (1995, 2003), Mandelbaum and Stolyar (2004),
Atar (2005), Gurvich and Whitt (2010, 2009), Milner and Olsen (2008), Armony and Ward (2010b,a). Other
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studies propose frameworks that simultaneously optimize the routing and the scheduling or staffing of a call
center. Examples are Wallace and Whitt (2005), Sisselman and Whitt (2007), Harrison and Zeevi (2004) and
Bassamboo et al. (2006). They all use heavy traffic limits to derive their results or to design heuristics.

In contrast to the studies described above, which are all based on approximations, we only assume
the availability of a detailed simulation model of the call center and we use simulation-based optimization
heuristics that allow more diversified objective functions than the approximations. Simulation is the only way
to study richer objectives and controls that depend on the waiting and agent availability times in realistic
systems. We consider several types of routing policies, for which we optimize the parameters for a given
staffing and selected objective functions, and we compare their performance. In addition to certain routing
rules found in practice, we propose routing policies that uses additive and multiplicative weights on the
waiting time of a call and the idle time of an agent to compute a “reward” for each (call, agent) pair, and use
this to determine the routing assignments. These routing policies are more flexible than the traditional ones
found in practice. They also provide better performances in many cases. Their numbers of parameters are
relatively small, so they are much easier to implement in a real router than optimal control policies obtained
from dynamic programming. The parameters are optimized by simulation-based algorithms or heuristics.
The call center model itself can incorporate arbitrary probability distributions and stochastic process, so
there are much less limitations on the model than with analytical approaches. What we present here is
the first study of realistic routing rules that takes into account the complexity of real-life call centers. The
optimization problem we consider is formulated in terms of penalty functions only, rather than imposing hard
constraints on long-term expectations. Penalties can be imposed as functions of standard measures such as
abandonment ratios, service level, and average waiting times. They can also account for other important
considerations such as agent occupancy and fairness between different agent groups, for example. We find
that our weight-based routing policies are competitive with all other routing policies considered and often
provide better performance.

The remainder is organized as follows. In Section 2, we define our model and the performance measures
that we look at. In Section 3, we define the routing rules that we consider, we introduce our new weight-
based routing policy, and we discuss the choice of weights. In Section A, we summarize the two optimization
methods that we have used to optimize routing rule parameters. One is a stochastic gradient method and
the other is a modified genetic algorithm. We also describe how we have optimized the parameters for each
type of routing policy. In Section 5, we report our numerical experiments that compare policies, first in small
two-call-type systems such as V, X, and M models, then on a larger model with 8 call types and 10 agent
groups, and finally for a small example where the arrival rate is stochastic. A conclusion follows in Section 6.
In the online supplement, we provide more details on our optimization methods and on the solutions obtained
for some of the examples. An additional online appendix, available from the web site of the third author,
gives the complete solutions to all examples and some (empirical) illustrations of the convergence of our
optimization methods.

2 The model

2.1 A multi-skill center

We consider a model of a multi-skill call center where arriving calls are categorized in K types, named 1
to K. These calls are served by agents that are divided into G groups. Group g ∈ {1, . . . , G} is staffed
with yg agents and each of them has the skill set Sg ⊆ {1, . . . ,K}, of cardinality hg = |Sg|, which gives the
subset of call types that this agent can serve. An agent with very few skills (like one or two) is often called
a specialist and an agent with many skills is a generalist. We assume that all agents in the same group are
homogeneous. We define Ik = {g : k ∈ Sg}, the set of agent groups that can serve call type k. We do not
assume any particular arrival process, service time distribution or patience time distribution in our model,
we only need to be able to simulate them. If a call cannot be served immediately on arrival, it is put at
the back of a waiting queue associated with this call type. We assume that each customer requires only one
type of service and exits the system either at the completion of service or when his waiting time exceeds its
(random) patience time. The work is non-preemptive: once an agent starts serving a call, there can be no
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interruption until service completion. The assignment between a call and an agent is decided by the router,
according to a routing policy such as those described in Section 3. When we optimize, all model parameters
are fixed, except for the routing policy.

2.2 Performance Measures

The objective functions considered in this paper are defined in terms of the three performance measures de-
fined below, namely the service level, abandonment ratio, and agent occupancy. These performance measures
can be measured per time period, per call type, per agent group, or in aggregated form (for example, globally
for all call types). In some cases, there could be variations in the definition; we give the definition used
in our experiments. Other performance measures can also be considered; for example the average waiting
time, the average excess waiting time above a given threshold, the delay ratio (fraction of calls that have to
wait), and the matching rates between selected pairs (call type, agent group) (Sisselman and Whitt 2007).
The optimization methods for the routing rules remain the same when the objective function involves those
performance measures. In practice, the goal (and the choice of performance measure) can vary greatly across
call centers. Henceforth, π denotes a routing policy and E the mathematical expectation operator.

The first performance measure we consider is a popular one named the service level (SL). It is defined
as the fraction of calls that are answered within a given time threshold τ called the acceptable waiting time

(AWT). That is, the SL over a given time period, under policy π, is

S(π, τ) =
E[X(π, τ)]

E[N −B(π, τ)]
, (1)

where X(π, τ) is the number of served calls that have waited no more than than τ , N is the total number of
calls that arrived at the center during the period, and B(π, τ) is the number of calls that abandoned after
waiting at most τ . We used the SL definition (1) in our numerical experiments, but there are other possible
definitions, based on different ways of accounting for the abandonments. When these measures are for a
given call type k, we add a k subscript in the notation; for example τk and Sk(π, τk) denote the AWT and
the SL for call type k.

The second performance measure we consider is the abandonment ratio, defined in our simulator as

A(π) =
E[Z(π)]

E[N ]
, (2)

where Z(π) is the number of calls that abandoned during the period considered. Again, we add a subscript
k when the measure concerns a given call type k.

The third measure is the occupancy ratio of agent groups. It will be used to measure fairness between
agent groups. We define the occupancy ratio of group g as

Og(π) =
1

ygT
E

[

∫ T

0

Gg(π, t)dt

]

, (3)

where T is the time horizon and Gg(π, t) is the number of busy agents in group g at time t.

In practice, the constraints on performance measures are often imposed on averages over a medium to
long time horizon, say from one day to one month. For long time horizons, performance measures based
on expectations as above make sense. For shorter time horizons, such as one day or less, the (random)
realization of the performance over the given horizon can be highly variable, due to the high uncertainty
in arrival rates, agent absenteeism, etc. In that context, it may be more appropriate to consider objective
functions that account for the robustness of solutions to important variations of arrival volumes, for example
the probability that a given performance target is achieved over the day (Liao et al. 2010, Gurvich et al.
2010), instead of long-term expectations as above. At the end of the paper, we report on a preliminary
experiment where the routing policy is optimized but then fixed, in a setting where the Poisson arrival rate
is multiplied by a random factor of mean 1 for the entire day. We find that our weight-based policy does
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better than the others in that situation. The routing parameters could also be reoptimized adaptively during
the day to account for new information. We plan to study this in the future, together with more extensive
experiments.

2.3 Objective Functions

In the optimization problems considered here, instead of imposing hard constraints on certain performance
measures as is often done in the literature (Atlason et al. 2004, Avramidis et al. 2010, Cez̧ik and L’Ecuyer
2008), we use penalty costs defined in terms of the performance measures. The objective is then to find
routing-rule parameters that minimize the total cost (penalty). Given that only noisy estimates of the
performance measures are available (via simulation), using penalties appears more appropriate and sensible
than imposing hard constraints.

The penalty costs used in our examples are (truncated) polynomial functions of the performance measures
introduced above. We express them as functions of the routing policy π, which contains all decision variables
in the optimization problems studied in this paper. They are defined as follows.

1. The penalty cost for violating the SL targets is

FS(π) =

K
∑

k=1

ak max(tk − Sk(π, τk), 0)
eS,k , (4)

where for each call type k, τk is the AWT, Sk is the SL, tk is the corresponding target, eS,k ≥ 0 is
the polynomial degree, and ak is the penalty weight. In practice, missing the SL target by a small
percentage is often deemed acceptable, while missing it by a large percentage is highly unacceptable.
This can motivate the choice of exponents eS,k larger than 1. Moreover, fairness between call types can
also be an important criteria; for example, it is usually preferable to have two call types at p% below
their SL targets than to have one call type right on target and the other call type 2p% below its target.
By taking large values of eS,k, one can penalize this form of unfairness between SL violations across call
types. The weights ak may be selected to take into account the volumes of the different call types (for
example, ak could be proportional to the fraction of calls that are of type k) and they may also reflect
other considerations (for example, certain call types deemed more important than others can have a
larger ak, or a larger tk, or both). We could also include the aggregate SL target.

2. The penalty for abandonments is

FA(π) =

K
∑

k=1

bk max(Ak(π)− uk, 0)
eA,k , (5)

where Ak is the abandonment ratio, uk is the abandonment threshold, eA,k ≥ 0 is the polynomial
degree, and bk is the penalty weight, for call type k. As in the SL penalty function, more important
call types may be given larger weights bk, or smaller abandonment thresholds uk, for example.

3. The penalty for unfairness between agent group occupancies is

FO(π) =

G
∑

g=1

cg
∣

∣Og(π) − Ō
∣

∣

eO,g
, (6)

where for each agent group g, Og is the occupancy ratio, Ō = (1/G)
∑G

g=1 Og(π) is the average of
group occupancies, eO,g is the polynomial degree, and cg is the penalty weight. We could also weight
the groups by the number of agents in each group, to obtain an average per agent, but we did not do
that in our experiments. Instead of penalizing the unfairness as we do here, there could also be a target
occupancy ratio for each agent group, which would replace Ō in the formula. This type of unfairness
penalty function could also be considered for the performance measures of call types.

Our overall objective function is simply the sum of the penalty functions in (4), (5), (6):

FSAO(π) = FS(π) + FA(π) + FO(π), (7)
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Note that the weights ak, bk, and cg can be selected to give more or less importance to any of the three
terms in (7). In particular, any of these terms can be removed by taking these weights equal to 0. For the
special case where cg = 0 for each g (so FO(π) is removed), which we use in our experiments, we will denote
the objective function (7) by FSA(π). It is interesting to note that in the case where FSAO(π) = FS(π) (the
weights bk and cg are all 0), there is no incentive to serve calls whose waiting time has already exceeded the
AWT τk, and one could easily argue that an optimal routing policy would never serve those calls (if this
decision is allowed). This shows that if a call center is subject exclusively to SL constraints of this type, then
the FCFS order is definitely not optimal.

We emphasize that the simulation-based stochastic optimization methods used in this paper are indepen-
dent of the choice of objective function. That is, (7) can easily be replaced by a more general penalty function.
This function is taken as a black box function by the optimization methods, in the sense that we only assume
the possibility of performing (noisy) function evaluations (via simulation) for any policy π that we might
want to consider. We also assume the absence of hard performance constraints in the problem formulation.
A major advantage of this black-box scheme is that the methods usually require minimal modifications when
changing the objective function.

3 Routing Rules

We describe in this section the various routing policies considered in this paper. Most of them are based
on routing rules commonly found in industry. We also introduce a new type of policy in which each pair
(idle agent, waiting call) is given an index of priority based on a weighted affine combination of the agent’s
idle time and the call’s waiting time, where the weights depend on the agent group and call type. All the
routing policies considered satisfy two basic fairness rules: (1) for any given call type, the calls are always
served in FCFS order, and (2) for agents of the same group, the idle agent that finished his last service first is
always the next agent to work (LISF). It is however acceptable for a call to be served before a call of another
type that has waited longer, and for an agent who has been idle for a shorter time than another one to be
assigned his next call earlier if they are in different groups. We now describe the routing policies. Their short
acronyms given in the headers will be used when we present our numerical results later.

3.1 Global FCFS (G)

The simplest routing policy is when all call types have equal priorities. This policy can be implemented via
a single FCFS queue, where an idle agent would scan the queue from the head and pick the first call that it
can serve. When a call arrives, it will choose the idle agent that finished his last service first (LISF) among
those that can serve it, independently of the group.

3.2 Priorities Lists (P)

This policy is also called overflow routing and is available in many major routing equipments, such as those
produced by Cisco and Avaya. The call-to-agent and agent-to-call assignments are decided by priority lists,
as follows. When an agent becomes idle and searches for the next waiting call to serve, a group-to-type list for
its agent group determines the order in which the queues of the different call types are examined. Similarly,
when a new call arrives and searches for an idle agent to answer it, a type-to-group priority list for that call
type determines the order in which the agent groups are searched.

The group-to-type priority list for group g with skill set Sg can be written as Lg = (L
(1)
g , . . . ,L

(mg)
g ),

where mg ≤ hg = |Sg| is the number of priority levels, and L
(1)
g , . . . ,L

(mg)
g form a partition of Sg. Each

subset L
(i)
g contains the call types having the same priority. These call types are served in FCFS order by

agents of the group g. When an agent of group g becomes idle, he first scans the waiting queues of all call
types in L

(1)
g , and serves the call whose waiting time is the largest. If all these queues are empty, he continues

with the call types in L
(2)
g , and so on.
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Similarly, the type-to-group priority list for call type k can be written as Gk = (G
(1)
k , . . . ,G

(ℓk)
k ), where

G
(1)
k , . . . ,G

(ℓk)
k form a partition of Ik = {g : k ∈ Sg}. An arriving call will first look for an idle agent whose

group is in G
(1)
k , and pick one using LISF order. If none is idle, he tries the groups in G

(2)
k , and so on.

For the special case where all priorities are equal (all the lists have a single subset), we recover the global
FCFS policy. A common situation in practice is when an agent group is given a primary skill and secondary
skills. An agent from this group will first try to serve a call corresponding to his primary skill before serving
any call corresponding to one of its secondary skills.

3.3 Priorities with Delays (PD)

One refinement of policies with priority lists consists in adding delay conditions based on the waiting time,
as follows. For each pair of group g and call type k ∈ Sg, we select a time delay dk,g ≥ 0. An agent of group
g can answer a call of type k only when this call has waited at least dk,g. This implies that if dk,g > 0,
then an agent of group g can never answer a call of type k immediately on arrival. Adding those time delays
increases the flexibility and can improve the performance over policy P.

The main motivation for using such a delay can be to increase the match rate between the agents and
the call types from their primary skill. In practice, the time delay is usually set below the AWT τk, so the
call still has good service if answered when the delay expires. But the idle agent may also find and answer a
call with smaller delay (that better matches his skills) in the meantime. There are also situations where it
can be optimal (depending on the objective function) to set a time delay higher than the AWT. This will be
illustrated in our numerical examples.

3.4 Priorities with Idle Agent Threshold (PT)

We have observed that in real-life call centers, managers sometimes restrict temporarily, in ad hoc fashion,
the skill set of an agent group when the number of idle agents in that group becomes too low. They do this to
favor more important call types, or to prevent the shortage of some skills, for example. This idea is captured
by the following modification of the policy with priority lists, which uses priorities with idle agent thresholds.
For this policy, in addition to the priority lists, there is a threshold mk,g on the number of idle agents for
each pair of group g and call type k ∈ Sg. The new condition is that an idle agent of group g can answer a
call of type k only if the number of idle agents in this group is above mk,g. Because of the non-preemptive
assumption, this condition has no effect on the agents that are already serving calls: A working agent of
group g will not stop serving a call of type k even if the number of idle agents in group g becomes smaller
or equal to mk,g. Unlike the time delay which is a continuous parameter, the idle agent threshold here is an
integer, so there is much less room for fine tuning its value (which is also typically small). But it can give
good performance in some settings.

3.5 Priorities with Delays and Idle Agent Threshold (PDT)

By combining the PD and PT policies, we obtain a further generalization where we have priority lists, time
delays, and idle agent thresholds. In principle, because of its increased flexibility, this type of policy can
always provide equal or better performance than all the policies discussed previously. But the larger number
of parameters also increases the difficulty of the optimization. Choosing the priority lists is a combinatorial
problem, the delay parameters are continuous variables, and the idle agent thresholds are integer variables.
Optimizing all of these together can be very difficult.

3.6 Weight-based Routing (WR)

We now introduce our routing policy based on weights, which are defined as parameterized functions of call
waiting times and agent idle times. Each pair of group g and call type k ∈ Sg is given a weight ck,g ∈ R,
which can be interpreted as an index of priority, defined in this paper by the following affine function:

ck,g = qk,g + ak,gwk + bk,gvg, (8)
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where wk is the waiting time of the oldest call of type k waiting in queue, vg is the current longest idle time of
an agent of group g, and qk,g, ak,g, bk,g ∈ R are real-valued parameters. When there are either no idle agents

in group g or no call of type k waiting in queue, we put ck,g = −∞. There is a total of 3
∑G

g=1 yg parameters
to specify for this routing policy. This formulation assumes implicitly that all calls enter the waiting queue,
and exit the queue with zero waiting time when they are served immediately.

In our implementation of the weight-based routing policy, the weights ck,g are updated periodically at
relatively high frequency, for example every second in a large and busy call center, and perhaps at a lower
frequency in a small call center. If we restrict the parameters qk,g, ak,g and bk,g to be non-negative, then the
router can update the ck,g only on the events of a call arrival or a completion of service by an agent. When
all ck,g < 0, the router does nothing (no call is assigned to an agent). If there is at least one ck,g ≥ 0, then
the router selects a call type k∗ and a group g∗ for which ck∗,g∗ = maxk,g{ck,g}, and it assigns the call of
type k∗ with the longest waiting time to the longest idle agent of group g∗.

Of course, the affine form of the weights in (8) is only one possibility. We could consider more gen-
eral polynomials or other types of functions. In particular, one may think of replacing ak,gwk in (8) by
ak,gwkI[wk < τk] − Ak,gI[wk ≥ τk] where Ak,g is another real-valued constant. In the situation where the
objective function includes only the SL penalty FS in (4), one may consider to take ak,g > 0 and a large
Ak,g > 0, so that a call whose waiting time has already passed their AWT τk are given a very low priority.
When the weights are forced to have the affine form in (8), this can be somewhat approximated (very crudely)
by taking ak,g < 0, so calls are given lower priority when they have already waited too long. Setting qk,g > 0
and ak,g < 0 means that a call has higher priority when it arrives and its priority is reduced as it waits
in the queue, unless an agent has been idle long enough and bk,g > |ak,g|. In our experiments, we found
several cases where the optimal choice of ak,g was indeed negative. This often occurs when call type k is
a secondary skill for agent group g. On the other hand, a manager might impose a priori that ak,g ≥ 0,
for better fairness. Alternatively, this can be taken care of by further penalizing long waiting times in the
objective function. Solutions with bk,g < 0 do not seem justified and were returned extremely rarely by our
optimization algorithms. We could have imposed bk,g ≥ 0 as a constraint, but did not do it. In our modified
genetic algorithm, however, we disallowed all solutions for which ak,g < 0 and bk,g < 0 for any pair (k, g).
Note that if all parameters qk,g, ak,g, bk,g are negative for a given pair (k, g), group g will never serve a call
type k.

One could also define weights ck,g that depend on the state of the call center in different ways; for example,
they may depend on the number of idle agents in group g, on the SL of call type k, or the occupancy ratio
of agents in group g so far during the day, etc. However, for more complex definitions of the weights, the
implementation becomes more complex and the optimization process may become much more difficult.

To better understand the relationship between the WR policy and the more traditional priority lists, and
convince ourselves that the WR policy is more general and flexible than the G and P policies, we can examine
how these policies can be approximated arbitrary closely by WR policies. The global FCFS routing can be
approximated by setting qk,g = 0, ak,g = 1, and bk,g = ǫ > 0, for all pairs (k, g), where ǫ is arbitrarily small.

If we have a policy P that uses only the type-to-group priorities, or only the group-to-type priorities, or
if the priority lists are symmetric (the primary call type of a group and the primary group of a call type are
the same pair, which is often the case in practice), then it suffices either to set the qk,g ≥ 0 according to the
priorities with ak,g = 1, or to set ak,g > 0 accordingly to the priorities with qk,g = 0, with bk,g = ǫ in both
cases.

If the priority lists are not symmetric, then we can use qk,g to reproduce the type-to-group priorities and
ak,g for the group-to-type priorities, and bk,g = ǫ. The parameters qk,g must be set by small increments while
ak,g must be set by large increments. When a call arrives, its waiting time is 0, so ak,g has no influence in the
selection of the group. But when an idle agent chooses a call in the queue, qk,g must be negligible compared
to ak,g. The same setting applies to approximate the policy PD with time delays. One can use the qk,g for
the type-to-group priorities and for the delays, since both cannot be applicable simultaneously. If a call is
delayed by a group, then the type-to-group priority for that group is meaningless and vice versa. Similarly,
one can set the ak,g according to the group-to-type priorities and the delays.
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Typically, the group-to-type priorities dominate when the call center is overloaded (most calls have to
wait) and the type-to-group priorities dominate when the call center is underloaded (most calls do not wait).
In these cases, one may still obtain a good approximation by converting only the group-to-type priorities in
the high-traffic situation and the type-to-group priorities in the low-traffic case.

If we take qk,g, ak,g, bk,g = 0 for all k and g, then the routing decisions are random.

Since it is more flexible, we can expect the WR policy to perform at least as well as the common routing
policies G, P and PD.

4 Routing Optimization

We now discuss how we have optimized the parameters of the routing policies in our experiments. This
optimization process is difficult because of the following reasons: the complexity of the routing mechanisms,
the stochastic nature of the model (only noisy observations of the performance can be obtained for any choice
of parameters, via simulation), the mixture of combinatorial, integer-valued, and real-values parameters, the
dimension of the parameter space, and the possibly large number of local minima of the objective function.
No efficient and foolproof optimization algorithm is available to optimize the routing policies with the black

box -type objective functions considered here. Therefore, we have to rely on heuristics.

We have adapted and implemented different heuristic algorithms based on known metaheuristic ideas.
Because of the difficulty of the optimization problems, we tried more than one algorithm for some of the
routing policies. In the remainder of this section, we outline two types of methods that we have retained
as the best performers in our experiments. The first one is a stochastic gradient descent method that can
be used for continuous parameters. The second one is a modified genetic algorithm applied to a probability
distribution over the space of solutions, which we have used for both discrete and continuous parameters.
The detailed descriptions of those methods can be found in the online supplement. Finally, we give the
optimization approach that we have selected for each type of routing policy. It generally depends on the size
of the problem. Our work here offers the first numerical study of optimization heuristics for realistic routing
policies in multi-skill call centers.

4.1 Stochastic Gradient Descent (SGD)

For the minimization of continuous variables, we implemented well-known descent methods based on a
stochastic gradient obtained by simulation (Fu 1994, L’Ecuyer et al. 1994, Fu 2006). At each step, the
gradient at the current point is estimated by a stochastic finite difference, using a finite-difference step size
that decreases with the iteration number.

Suppose we are optimizing simultaneously d continuous parameters of a policy, ei denotes the d-dimen-
sional unit vector, and f is the objective function to minimize. The d parameters are the decision variables
in the optimization problem. If the current solution is x ∈ R

d and the step size is δ > 0, the ith component
of the gradient g(x) at the current solution can be approximated by the central finite difference

g(x)i =
f(x+ δ · ei)− f(x− δ · ei)

2δ
,

for i = 1, . . . , d. The values of f at these two points are unknown, but f can be replaced by an estimate
f̂ obtained by simulation from the black box. We always use common random numbers (CRNs) (Asmussen
and Glynn 2007, L’Ecuyer and Buist 2006) across all solutions x ∈ R

d and across all iterations, for these
evaluations. That is, for all simulations over the same time horizon, we had exactly the same call arrivals at
the same times, the same service times (if served), and the same patience times for each call. Other random
streams, such as for tie-breaking by the router, were also identical, for all simulations. This means that in
the algorithm, the function f is replaced by a single sample function f̂ which is optimized. Note that we
could also have used CRNs for each gradient estimation, and different random numbers for the different SGD
iterations, as in Buist et al. (2008), but we did not do that. Since we want to compare different routing
policies in the numerical section, we also use CRNs across policies.
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Note that here, we use the same step size δ for all coordinates. This is not a problem if we rescale the
parameters (the coordinates of x) so that they are on a similar scale (otherwise the algorithm may perform
poorly). In our experiments, we have applied scaling factors to some of the parameters. These factors were
found manually, in an ad hoc fashion.

Once a gradient estimator has been computed, at each step of the SGD method, the moving distance
opposite to the gradient is determined by a line search such as the golden section search. This requires
additional simulations.

When the current solution appears to have (approximately) converged, we reset the step size δ to a large
value and restart the SGD algorithm from the current solution. This restart process is repeated a given
number of times or until we observe no significant improvement on the cost of the best solution found for
several consecutive restarts. The goal of this restart process is to explore a larger number of local minima.
If f was unimodal, there would be no need to do this.

We also implemented a quasi-Newton (QN) method, which uses a second-order derivative approximation
(Fletcher 1987, Kao et al. 1997). Instead of directly using the gradient as the search direction, the gradient is
used to approximate the inverse of the Hessian matrix using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
formula. The golden section search is again used for the line search. The QN method does not always perform
better than the gradient descent method because it is more sensible to the noise of the simulations and the
structure of the problem. In our examples, we try both methods and retain the best solution found. The
SGD and QN methods are used to optimize the weights of the WR policy and the time delays of the policies
PD and PDT. The weights are unbounded, whereas the delays must remain non-negative.

4.2 A Modified Genetic Algorithm (MGA)

Classic genetic algorithms (Goldberg 1989) typically use crossover and mutation operators to generate new
populations of solutions. Their performance in applications depends very much on how these operators are
defined, and this is highly problem-dependent. For this study, we ended up using a form of genetic algorithm
that operates on a parameterized probability distribution Φ = Φ(θ) over the set of solutions, by changing
the parameter vector θ rather than by making direct changes to a population of solutions, at each iteration.
It can be seen as a simplified version of the estimation of distribution algorithms (EDA) (Mühlenbein and
Paaß 1996, Larrañaga et al. 1999) and of the cross-entropy (CE) method for optimization (Rubinstein and
Kroese 2004, de Boer et al. 2005).

This modified genetic algorithm (MGA) starts with an initial parameter vector θ = θ
(0) for the distri-

bution, generates a population of P admissible solutions from this distribution, estimates the costs of these
P solutions by simulation, and keeps the P̂ ≤ P solutions having the smallest estimated costs. This is
the elite population. Then a new parameter vector θ̃ is estimated by maximum likelihood from the elite
population, and the parameter θ is reset to a convex combination of its previous value and the new θ̃. This
smoothing helps convergence of the algorithm. Then, a new population of P solutions is generated from the
corresponding distribution Φ(θ), and so on. The idea is that by re-estimating the parameter vector from
the elite sample at each iteration, the density (or mass) of the distribution should concentrate progressively
around an optimal solution. We stop when the trace (or the maximum element) of the covariance matrix
of the current probability distribution is small enough, or if we have reached a given maximum number of
iterations. The algorithm returns the best solution found, x∗, and its estimated value f∗.

In our implementation, to simplify the algorithm, for d routing decision parameters to optimize, the
distribution Φ(θ) was assumed to be a product of d univariate distributions, one for each decision parameter.
Each of these univariate distributions can have one or more parameters (coordinates of θ), so θ has dimension
larger or equal to d. We could of course use a more general multivariate distribution, but this would increase
the number of parameters (to take the dependence into account) and would make things more complicated.

The initial parameter value θ(0) was selected so that the initial density would be (hopefully) large enough
around the (unknown) optimal value. Roughly, the initial distribution has relatively large variance, and the
variance generally decreases with the iterations.
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In the online supplement, we describe different ways of improving the MGA and how we have adapted
this algorithm to optimize the routing policies presented in this paper.

4.3 Routing policy optimization

We now summarize the different optimization methods used for each routing policy.

1. Priority lists (P). For call centers with very few call types and agent groups, it is possible to do an
exhaustive search by evaluating all the possible combinations of priority rules for call types and agent
groups, and this is what we do. However, as the number of call types and agent groups increases,
we quickly have a huge combinatorial problem. For example, for each group g, there are hg! possible
permutations, and for each permutation there are 2hg−1 ways of selecting “equal” or “higher than”
between successive elements. The number of solutions is the product of all these numbers of possibilities,
over all groups g and call types k. When this number is too large for an exhaustive search, we use the
MGA.

2. Priorities with delays (PD). When the number of solutions for the priority rules is small, these
rules can be optimized by an exhaustive search, and the delays optimized by the SGD. Typically, the
priority rules have more influence on the performance measures than the delays. Delays can be useful
to balance call types with very good and bad SLs. The delays are bounded to non-negative values and
we do not impose upper limits. We start by optimizing the priority rules, then we follow up with the
delay optimization, which is generally simple enough to require only a single run of the SGD.

For larger call centers, we use the MGA to optimize both the priority rules and delays simultaneously.
We can also implement an iterative method to optimize them individually or together. A two-step
approach is to optimize the priority rules with the MGA, and then optimize the delays with the SGD.
We did this for the large example in Section 5.5, because the solution space is too large for the MGA
to optimize efficiently both the priorities and delays at the same time.

3. Priorities with idle agent thresholds (PT). The thresholds on the number of idle agents generally
have a significant impact on the performance, because removing (or idling) one agent can make a
substantial difference. For the special case of the V-model, we perform an exhaustive search for the
priority rules and for each priority rule we perform a golden section search to determine each threshold.
In the other cases, we use the MGA to optimize both the priority rules and the thresholds simultaneously.

4. Priorities with delays and idle agent thresholds (PDT). For the special case where the center
has only one group with a maximum of two skills, we use the same method as for the PT policy to
optimize the priority rules and the thresholds. Then, we optimize the delays with the SGD. This two-
step method generally gives good results. In the other cases, we use the MGA, but it does not perform
well if we try to optimize all the parameters (priorities, delays, and thresholds) simultaneously. Instead,
we optimize subsets of parameters iteratively with the MGA. We always start the first iteration with
the priority rules, since they tend to have a bigger impact on the performance measures. Then, for a
fixed number of iterations, we optimize subsets chosen randomly from: (1) priorities, (2) priorities and
delays, (3) priorities and thresholds, and (4) delays. A tabu list is used to store the subsets that give
no improvement and these subsets cannot be chosen while they are in the list. This algorithm is very
time-consuming, because of the multiple executions of the MGA.

5. Weight-based routing (WR). We use either the SGD and QN methods or the MGA. The gradient
methods sometimes find better solutions than the MGA, and sometimes it is the opposite. What we
have done is to execute the three types of algorithms and take the best solution.

5 Numerical Experiments

5.1 Models, Objective Functions, and Experimental Setting

We report our numerical experiments to compare the routing policies, first for a series of simple canonical
models with two call types and 1 to 3 agent groups, then for a larger model with 8 call types and 10 agent
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groups. The simple models with two call types are illustrated in Figure 1; they are known as the V, X, and
M models in the literature (Gans et al. 2003).

Type 1 Type 2

Gr.1

Type 1 Type 2

Gr.1 Gr.2

Type 1 Type 2

Gr.1 Gr.3 Gr.2

Figure 1: The V-model, X-model and M-model. Each model has 2 call types and 1 to 3 agent groups. The
arrows between the call types and the agent groups define the skill sets.

For all the examples considered, for each call type k, we assume a stationary Poisson arrival process of
rate λk, exponential service times with mean 1/µk (independent of the agent group), exponential patience
times with mean 1/νk, and all these random variables are independent. In the canonical examples, we use
the same average service times µ−1

1 = µ−1
2 = 0.1 hour and average patience times ν−1

1 = ν−1
2 = 0.1 hour for

call types 1 and 2. All the rates are given per hour. The time horizon is taken to be 1000 hours (so the
system is almost in steady-state). The AWT for all call types is 20 seconds. We assume no preemption of
service and no work sharing, so that each non-abandoning call is served without interruption by exactly one
agent. The number of agents and the sizes of the agent groups are fixed a priori. Although our examples use
highly simplified models (for simplicity), our methodology would apply in the same way for more complicated
arrival and abandonment processes, more general service time distributions, etc.

We consider the following objective functions:

F 1
S (π) =

K
∑

k=1

max(tk − Sk(π, 20), 0)
2, (9)

F 2
S (π) = max(t1 − S1(π, 20), 0)

2 + 3 max(t2 − S2(π, 20), 0)
2, (10)

F 3
S (π) = 3 max(t1 − S1(π, 20), 0)

2 +max(t2 − S2(π, 20), 0)
2, (11)

FSA(π) =

K
∑

k=1

max(tk − Sk(π, 20), 0)
2 +

K
∑

k=1

Ak(π)
2, (12)

FSO(π) =

K
∑

k=1

max(tk − Sk(π, 20), 0)
2 + 10

G
∑

g=1

∣

∣Og(π)− Ō
∣

∣

2
. (13)

The functions F 2
S (π) and F 3

S (π) are used only for some of the two-call-type examples. We could easily add
penalties for the aggregate performance over all call types in these objective functions, although we did not
do it. Our penalty costs are not proportional to the call volumes per call type or the number of agents per
group. We could make them proportional by setting ak = λk, bk = λk, and cg = yg. One drawback of doing
this is that call types with very small volumes may have virtually no influence on the total cost. A reasonable
compromise could be to make those penalties partially proportional to the call volumes.

As mentioned earlier, the objective function is replaced by an estimate f̂ , which we optimize via the
algorithms described earlier. This sample function f̂ is defined as the sample objective function obtained
by simulating 20 independent replications of 1000 hours for the canonical examples, and 10 independent
replications for the larger example. That is, we perform those simulations at each point x where we need to
evaluate the objective function, using CRNs across those points. To focus on the comparison between routing
policies and reduce the simulation noise in this comparison, we also use CRNs across all policies. That is,
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we generate the same history of calls, with the same times of arrival, service durations and patience times,
across all x and all policies. For each objective function considered and each type of policy, we apply the
optimization methods described in Section A and report the best result found. The reported best solution
and its value f∗ are always in terms of this f̂ , so f∗ represents the minimal value of f̂ that we found.
All SLs, abandonment ratios, and agent occupancies are reported in percentage unit. The simulations are
precise enough to give 95% confidence interval widths of less than 1% for the SL and less than 0.3% for the
abandonment ratios and the agent occupancies, at any given x.

The examples have been constructed so that it would be difficult to obtain a perfect score of 0 for the
objective function. The optimization times vary from a few minutes to several hours. We do not report
these timings in detail, because our goal in this paper is not to compare the efficiency and speed of the
optimization algorithms, but rather to compare policies when their parameters are optimized, in terms of
the objective functions. Because the SGD and MGA converge slowly, it happens frequently that the second
half of the execution improves the solution by less than 1%, so the algorithms can easily be stopped earlier.
A discussion and empirical illustrations on the convergence of the algorithms are presented in the additional
online appendix available on the third author’s web site. All simulations were performed using the Java
library ContactCenters (Buist and L’Ecuyer 2005). Except for the routing policy P for the canonical models
and the policy PT for the V model, there is no guarantee that the returned solutions are optimal.

For the canonical models, we show the best results found for each choice of objective function. For these
solutions, we report ∆Sk = Sk(π, τk)− tk, the SL target violation for each call type k, the abandonment ratio
Ak for each call type k when the objective function is FSA, the occupancy Og of each agent group g when the
objective function is FSO, and the estimated cost f∗ for the best solution found. The smallest f∗ for each
example is put in boldface in the tables. A lower bound on the cost is 0, attained only if all SL targets are
satisfied, if there are also no abandonments in the case of FSA, and if all agent occupancies are equal in the
case of FSO.

The actual solutions for the selected examples of the V, X and M models with the objective function F 1
S

are included in the online supplement. The complete solutions for all the examples are available in the extra
online appendix on the third author’s web site.

5.2 Experiments with the V-model

We start with the simplest multi-skill call center model, the V-model, for which there are 2 call types and a
single agent group; see Figure 1. We consider three parameter sets for this model:

1. Arrival rates λ1 = λ2 = 50, SL targets t1 = t2 = 80% and 12 agents. This is the symmetric case.

2. Arrival rates λ1 = λ2 = 50, SL targets t1 = 70%, t2 = 90%, and 12 agents. Calls of type 2 have a
higher SL target.

3. Arrival rates λ1 = 100, λ2 = 10, SL targets t1 = 70%, t2 = 90%, and 13 agents. Here, the low-volume
call type has a higher SL target.

Table 1 shows the results for the objective function F 1
S , which penalizes only the SL target violation,

equally for the two call types. We see that the more flexible policies give lower-cost solutions in general, and
that this lower cost often comes with higher abandonment rates, which are not penalized here. In particular,
WR is the best performer in all three cases. The PDT routing also performs better than the individual
policies P, PD, and PT. The policy G (a single global queue, which involves no optimization) performs the
worst, although it is not so bad in the symmetric case 1, where merging the two call types in a single queue
is reasonable because of the symmetry.

In the solutions (given in the online supplement), for policies P and PD, call type 2 always has priority
over call type 1. However, for PD, in case 1, there is a delay of 6 seconds for call type 2. This reduces the
penalty cost compared with policy P by balancing the SLs. In cases 2 and 3, the PD policy sets a delay of
19.9 seconds for call type 1, and ∆S1 is still well above 0. This shows the limitation of the PD policy. Note
that a delay larger than the AWT of 20 seconds would imply a SL of 0% for call type 1. For PT, in cases 2
and 3, calls of type 1 have priority, but are answered only when there is more than one idle agent. For PDT
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Table 1: Results for the V-model examples under the objective function F 1
S . For case 1, WR* refers to WR

optimized manually.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -3.4 -3.5 5.3 5.3 24 6.6 -13.5 5.3 5.3 182 6.0 -14.0 5.3 5.3 195
P -4.0 0.9 7.2 3.4 16 6.0 -9.1 7.2 3.4 82 5.9 -5.3 5.6 2.4 28
PD -3.2 -1.2 6.9 4.8 12 2.7 -7.1 11.4 3.1 51 4.4 -2.4 9.5 1.9 6
PT 1.0 -4.0 3.4 7.3 16 -4.5 -0.3 11.6 1.9 20 -4.0 8.4 8.6 0.2 16
PDT -1.1 -3.2 4.8 7.0 11 -2.8 -2.3 10.8 4.4 13 4.4 -2.5 9.5 1.9 6
WR -0.9 -0.9 5.5 5.8 2 -0.9 -1.6 16.7 2.1 3 3.6 0.1 7.7 1.5 0

WR* 0.3 0.3 7.1 7.1 0 - -

Table 2: Results for the V-model examples under the objective function F 2
S .

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -3.4 -3.5 5.3 5.3 49 6.6 -13.5 5.3 5.3 547 6.0 -14.0 5.3 5.3 585
P -4.0 0.9 7.2 3.4 16 6.0 -9.1 7.2 3.4 247 5.9 -5.3 5.6 2.4 84
PD -3.5 -0.5 7.0 4.4 13 2.7 -7.1 11.4 3.0 152 4.4 -2.5 9.5 1.9 18
PT -4.0 0.9 7.2 3.4 16 -4.5 -0.4 11.5 1.9 21 -4.0 8.4 8.6 0.2 16
PDT -3.5 -0.5 7.0 4.4 13 -3.9 -1.0 11.3 2.9 18 -3.4 7.0 8.4 5.6 12
WR -1.1 -0.4 6.0 6.7 2 -1.7 -1.3 17.6 2.0 8 3.6 0.4 8.1 1.5 0

WR* 0.3 0.3 7.1 7.1 0 - -

in case 2, both call types have the same priority, but there is a delay of about 10 seconds for calls of type 2,
and calls of type 1 are answered only when there is more than one idle agent. For WR, it is interesting to
observe that the two coefficients ak,1 in case 1, and a1,1 in the other two cases, take large negative values.
This may look strange at first sight, but this is due to choice of objective function, which only accounts for
the fraction of calls answered within 20 seconds, together will the linear form of the weights. It turns out
that to optimize this objective, it is better to give very low priority to calls that have already waited more
than 20 seconds, and this is what explains the negative coefficients ak,1; a newly available agent will prefer
to serve a call type for which the longest waiting call has waited less. This suggests that using the SL alone
in the objective function is questionable.

There is no guarantee that our heuristic optimization methods always find the optimal solution. As an
illustration, for case 1, by optimizing manually the parameters of the WR policy (denoted by WR* in the
table) we found the solution q1,1 = q2,1 = 1, a1,1 = a2,1 = −180, and b1,1 = b2,1 = 627, which gives a perfect
score of 0, although there are more abandonments. For comparison, the solution WR found by the algorithm
has a score of 2 and is q1,1 = 10, q2,1 = 10, a1,1 = −114, a2,1 = −128, b1,1 = 220, b2,1 = 62. Cases 2 and 3
are more complex and we did not optimize them manually.

Table 2 gives the results for the objective function F 2
S , which gives a higher penalty for missing the SL

target of call type 2. The comparison between the routing policies is similar to what we have seen for F 1
S .

Again, the WR policy gives the best results in all three cases. As expected, the SL violations ∆S2 are larger
or equal in Table 2 than the corresponding ones in Table 1, because call type 2 has a higher SL penalty
factor. The SL of call type 1 is also lower or equal. Policy P is too inflexible to improve the SL for call type
2. For cases 2 and 3, the policy PD could not improve the SL of call type 2 either, because the delay on call
type 1 was already set to its maximum value of 20 seconds with F 1

S . For WR*, we still obtain f∗ = 0 with
the same parameters as in Table 1 (the coefficients in the objective function have changed, but the penalty
is still zero).

Table 3 gives the results for the objective function FSA, where the abandonments account for a significant
fraction of the penalties, in addition to the SL target violations. Again, in all cases, the best policy is WR
and the worst is G. The solutions for the policies PD, PT, and PDT use no delay and no idle agent threshold,
because this would increase the overall cost by increasing the number of abandonments. For case 1, policy G
is almost as good as the other ones, except for WR. By manually optimizing WR (shown as WR*) for case 1,
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Table 3: Results for the V-model examples under the objective function FSA. WR* is obtained by manual
optimization.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -3.4 -3.5 5.3 5.3 81 6.6 -13.5 5.3 5.3 239 6.0 -14.0 5.3 5.3 251
P -4.0 0.9 7.2 3.4 80 6.0 -9.1 7.2 3.4 146 5.9 -5.3 5.6 2.4 65
PD -3.9 0.6 7.2 3.6 80 6.0 -9.1 7.2 3.4 146 5.9 -5.3 5.6 2.4 65
PT -4.0 0.9 7.2 3.4 80 6.0 -9.1 7.2 3.4 146 5.9 -5.3 5.6 2.4 65
PDT -3.9 0.6 7.2 3.6 80 6.0 -9.1 7.2 3.4 146 5.9 -5.3 5.6 2.4 65
WR -1.4 -1.2 4.5 6.2 62 1.3 -5.7 9.2 2.8 125 3.2 -1.8 6.5 1.8 49

WR* -1.0 -1.1 5.3 5.3 59 - -

Table 4: Results for the X-model examples under the objective function F 1
S . WR* is obtained by manual

optimization.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -5.8 -5.8 4.9 4.9 67 4.2 -15.8 4.9 4.9 249 -0.9 -20.8 4.9 4.9 435
P -4.1 -4.0 4.9 4.9 33 2.8 -6.7 7.3 2.5 44 -1.2 -6.2 5.3 1.7 40
PD -1.9 -5.4 4.3 6.7 33 -0.8 -4.6 10.7 2.2 22 -2.4 -3.9 8.1 1.3 21
PT -4.1 -4.1 4.9 4.9 33 -2.0 -2.2 8.9 1.8 9 -1.2 -6.2 5.3 1.7 40
PDT -1.7 -5.4 4.5 6.7 32 -2.0 -2.2 8.9 1.8 9 -2.5 -4.0 8.3 1.3 22
WR -1.0 -0.7 5.4 5.5 1 -0.2 -0.2 12.7 1.6 0 -2.2 -1.6 7.3 1.0 7

WR* 0.1 0.2 6.6 6.6 0 - -

we found the solution qk,1 = qk,2 = 1, ak,1 = ak,2 = −10, and bk,1 = bk,2 = 500, for which f∗ = 59, a slight
improvement over what was found by the automatic algorithms SGD and MGA.

5.3 Experiments with the X-model

The X-model has 2 call types and 2 agent groups that can serve both call types, so S1 = S2 = {1, 2}, as
shown in Figure 1. In practice, each group usually has a primary skill and a secondary skill. We test three
sets of parameters:

1. Arrival rates λ1 = λ2 = 100, SL targets t1 = t2 = 80%, and y1 = y2 = 11 agents. This is the symmetric
example.

2. Arrival rates λ1 = λ2 = 100, SL targets t1 = 70%, t2 = 90%, and y1 = y2 = 11 agents. Call type 2
requires a higher SL.

3. Arrival rates λ1 = 180, λ2 = 20, SL targets t1 = 75%, t2 = 95%, and y1 = 16, y2 = 11 agents. Call
type 2 is more important but has a lower volume of calls.

Table 4 gives the results for the objective function F 1
S . The WR policy gives the best results in all cases.

For case 1, the solution for P gives opposite group-to-type priorities to the two agent groups, and the PT
solution is exactly the same. This improves the SL by 1.8% compared with policy G, while the abandonment
ratios remain identical. The type-to-group priorities have a negligible impact in this example. This suggests
that we can potentially improve the SLs with policy P by dividing a call type into artifical sub-call types, or
dividing an agent group into subgroups, or even giving to each agent its own routing parameters. This could
make sense because the routing policy is more flexible (but has more parameters) when there are more agent
groups. For policies PD and PDT in case 1, both agent groups give priority to call type 1, but with a delay
between 2 and 13 seconds. This can be seen as a strategy to first serve the calls that have waited less than
the AWT. This is similar to the solutions for policies PD and PDT for case 1 in the V-model. Reserving idle
agents (PT and PDT) is useful in case 2, but not in cases 1 and 3. The WR policy has positive parameters
qk,g and bk,g, but mostly negative ak,g’s, so higher priority is often given to calls that have waited less. By
optimizing manually the parameters of the WR policy, we found the solution qk,g = 1, ak,g = −180, and
bk,g = 700, for g = 1, 2, for which f∗ = 0, although there are more abandonments (see the WR* entry).
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Table 5: Results for the X-model examples under the objective function F 3
S .

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -5.8 -5.8 4.9 4.9 135 4.2 -15.8 4.9 4.9 249 -0.9 -20.8 4.9 4.9 437
P 3.3 -7.2 2.5 7.3 52 2.8 -6.7 7.3 2.5 44 -1.2 -6.2 5.3 1.7 43
PD -0.7 -5.7 4.1 6.8 34 -0.5 -4.7 10.5 2.2 23 -1.8 -4.5 6.5 1.4 30
PT 3.3 -7.2 2.5 7.3 52 -2.0 -2.2 8.9 1.8 17 -1.2 -6.2 5.3 1.7 43
PDT -0.5 -5.8 3.8 6.9 34 -1.5 -3.1 8.7 2.4 16 -1.9 -4.5 6.6 1.4 31
WR -0.3 -3.8 4.9 5.0 15 -0.1 -1.1 11.4 1.7 1 -1.7 -2.8 6.7 1.2 17

Table 6: Results for the X-model examples under the objective function FSA.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -5.8 -5.8 4.9 4.9 115 4.2 -15.8 4.9 4.9 297 -0.9 -20.8 4.9 4.9 484
P -4.1 -4.0 4.9 4.9 81 2.8 -6.7 7.3 2.5 104 -1.2 -6.2 5.3 1.7 71
PD -4.1 -4.0 4.9 4.9 81 1.1 -5.6 8.1 2.3 101 -1.7 -4.8 6.0 1.5 64
PT -4.1 -4.0 4.9 4.9 81 -2.0 -2.2 8.9 1.8 91 -1.2 -6.2 5.3 1.7 71
PDT -4.1 -4.0 4.9 4.9 81 -1.9 -2.4 8.8 1.9 91 -1.7 -4.7 6.1 1.5 64
WR -1.5 -1.4 4.8 5.0 52 0.3 -3.9 8.4 2.1 90 -1.5 -3.3 6.1 1.2 51

Table 7: Results for the X-model examples under the objective function FSO.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 O1 O2 f∗ ∆S1 ∆S2 O1 O2 f∗ ∆S1 ∆S2 O1 O2 f∗

G -5.8 -5.8 86 86 67 4.2 -15.8 86 86 249 -0.9 -20.8 86 86 435
P -4.1 -4.0 86 86 33 2.8 -6.7 86 86 44 -1.2 -6.2 86 86 40
PD -4.1 -4.0 86 86 33 -0.6 -4.7 85 85 23 -1.2 -6.2 86 86 40
PT -4.1 -4.0 86 86 33 -2.6 -2.0 85 87 21 -1.2 -6.2 86 86 40
PDT -4.1 -4.0 86 86 33 -2.3 -3.1 86 85 18 -1.2 -6.2 86 86 40
WR -4.2 -1.7 86 86 20 -0.5 -1.2 84 84 2 -2.1 -2.0 85 85 8

Table 5 shows the results with the objective function F 3
S , where the penalty for the SL violation for call

type 1 is higher. As expected, the SL for call type 1 has increased and the SL of call type 2 has decreased
for most policies. The comparison between the routing policies is similar to Table 4, with the WR policy
providing the best results.

Table 6 presents the results with the objective function FSA, which penalizes both the SL violation and
the abandonments. Overall, the high abandonment ratios have been reduced, but there is no significant
change on the low abandonment ratios. As in Table 4, the WR policy has the best performance in all cases.
A good solution for the objective function F 1

S is not necessarily good for FSA. For example, the WR policy
has a near optimal solution for F 1

S in case 2, but it gives a high abandonment ratio of 12.7% for call type 1,
and this solution has a cost of 163 with FSA, which is higher than for all other policies except for G.

Table 7 shows the results with the objective function FSO, where the unfairness in agent occupancies is
penalized. Occupancy fairness seems easy to satisfy in the X-model, because all the agents are generalists.
The policies P, PD, PT and PDT give the same results in cases 1 and 3.

5.4 Experiments with the M-model

The M-model has 2 call types and 3 agent groups, where agents in groups 1 and 2 are specialists, and those
in group 3 are generalists, as shown in Figure 1. This can be seen as a V-model with 2 additional groups of
specialists. We test three sets of parameters:

1. Arrival rates λ1 = λ2 = 100, SL targets t1 = t2 = 80%, y1 = y2 = 10, and y3 = 3 agents. This is the
symmetric case.

2. Arrival rates λ1 = 25, λ2 = 100, SL targets t1 = t2 = 80%, y1 = 2, y2 = 10, and y3 = 3 agents.
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Table 8: Results for the M-model examples under the objective function F 1
S .

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -5.3 -5.3 5.4 5.4 56 -12.4 -2.1 9.5 4.8 159 -0.3 -10.3 5.4 5.4 107
P -5.6 -3.2 5.8 4.9 41 -3.2 -5.3 6.6 5.6 38 -2.9 -7.3 6.3 4.7 62
PD -3.6 -5.0 5.3 6.0 38 -3.8 -3.4 6.7 5.7 26 -1.6 -7.1 6.4 4.6 52
PT -5.6 -3.2 5.8 4.9 41 -3.2 -5.3 6.6 5.6 38 -2.9 -7.3 6.3 4.7 62
PDT -3.7 -4.9 5.3 5.9 38 -3.9 -3.4 6.7 5.6 27 -1.6 -7.0 6.6 4.6 52
WR -4.1 -3.9 5.6 5.6 32 -2.9 -3.7 7.3 6.3 22 -3.1 -5.8 7.6 4.4 43

Table 9: Results for the M-model examples under the objective function FSA.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗ ∆S1 ∆S2 A1 A2 f∗

G -5.3 -5.3 5.4 5.4 116 -12.4 -2.1 9.5 4.8 273 -0.3 -10.3 5.4 5.4 166
P -5.6 -3.2 5.8 4.9 98 -3.2 -5.3 6.6 5.6 113 -2.9 -7.3 6.3 4.7 123
PD -5.0 -3.7 5.7 5.1 97 -2.7 -4.5 6.4 5.8 103 -1.4 -7.2 6.3 4.7 115
PT -5.6 -3.2 5.8 4.9 98 -3.2 -5.3 6.6 5.6 113 -2.9 -7.3 6.3 4.7 123
PDT -3.8 -4.9 5.1 5.7 97 -3.8 -3.4 6.7 5.7 103 -1.5 -7.1 6.4 4.6 114

WR -4.1 -4.2 5.3 5.4 92 -2.7 -4.1 6.4 6.0 101 -1.9 -6.7 6.7 4.6 114

Table 10: Results for the M-model examples under the objective function FSO.

Routing Case 1 Case 2 Case 3
policy ∆S1 ∆S2 O1 O2 O3 f∗ ∆S1 ∆S2 O1 O2 O3 f∗ ∆S1 ∆S2 O1 O2 O3 f∗

G -5.3 -5.3 81 81 89 416 -12.4 -2.1 68 79 84 1386 -0.3 -10.3 81 81 89 466
P -4.6 -5.6 80 83 86 231 -15.0 -0.6 72 78 83 805 -0.6 -9.6 83 80 86 275
PD -7.2 -3.8 83 79 85 218 -17.8 -0.2 73 78 82 717 -3.7 -8.1 82 79 84 211
PT -4.6 -5.6 80 83 86 231 -14.5 -10.3 73 77 77 467 -7.8 -5.9 82 82 78 223
PDT -3.6 -7.7 79 82 85 217 -1.7 -10.3 70 78 73 425 -7.9 -6.6 80 82 78 203
WR -4.3 -4.4 82 82 82 39 -9.0 -7.4 72 73 73 145 -2.2 -7.1 82 82 82 58

3. Arrival rates λ1 = λ2 = 100, SL targets t1 = 75%, t2 = 85%, y1 = y2 = 10, and y3 = 3 agents. Call
type 2 requires a higher SL.

Table 8 gives the results for the objective function F 1
S . The WR policy has the lowest penalty costs in

all cases. The solutions (given in the online supplement) show that it is useless to reserve idle agents in any
of the 3 cases, so the policies PT and PDT do not perform better than P and PD, respectively. For case 1,
policy P has a lower cost than the policy G, with the generalists giving higher priority to call type 2, because
the gain in the SL of call type 2 is greater than the loss in the SL of call type 1. The PD policy improves over
P by adding delays of 18.2 and 19.6 seconds to call types 1 and 2, respectively, for the generalist group. For
the WR policy, the specialists serve their respective call types in FCFS order, but the generalists are used
more aggressively to increase the SLs by favoring the queue that has waited the least, unless the agent’s idle
time is high. We have qk,3 > 0, bk,3 > 0, and ak,3 < 0 in all 3 cases.

Table 9 gives the results for the objective function FSA. The relative differences in cost are much smaller
when abandonment penalties are added to the SL penalties. The WR policy wins in case 1, because it better
balances the penalties. For cases 2 and 3, PD and PDT perform almost as well as WR.

Table 10 presents the results for the objective function FSO. The WR policy provides the best results by
far, for all cases. It is the only policy that gives very good occupancy fairness.

5.5 Experiments with a larger model

We now consider a larger example, with 8 call types and 10 agent groups. The arrival rates are (λ1, . . . , λ8) =
(250, 200, 100, 80, 50, 20, 15, 10), the service rates are (µ1, . . . , µ8) = (10, 6, 6, 10, 6, 6, 8, 10), and the patience
rates are (ν1, . . . , ν8) = (10, 8, 10, 12, 6, 10, 12, 10). The staffing vector is (y1, . . . , y8) = (21, 12, 14, 8, 16, 5, 3, 7,
8, 9). The skill sets are S1 = {1, 4}, S2 = {2, 5}, S3 = {3, 4, 7}, S4 = {4, 6, 8}, S5 = {2, 5}, S6 = {6, 7, 8},
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Table 11: Results for the large example under the objective functions F 1
S .

Routing ∆S S A A f∗

policy max med min agg max med min agg
G 16.8 -0.2 -17.1 73 5.3 3.0 0.5 4.4 638
P 16.0 3.1 -11.7 75 5.9 2.0 0.6 4.3 267
PD 16.2 1.7 -13.2 74 6.6 4.1 0.7 4.9 380
PD* 15.4 -0.4 -10.9 75 5.5 3.3 0.8 4.3 219
PT 9.9 -0.6 -22.5 72 8.2 4.3 1.5 5.1 684
PDT 17.5 3.8 -11.6 75 5.8 1.9 0.4 4.3 271
WR -0.5 -1.8 -5.0 77 11.9 6.5 4.1 5.1 58

Table 12: Results for the large example under the objective functions FSA.

Routing ∆S S A A f∗

policy max med min agg max med min agg
G 16.8 2.0 -17.1 73 5.4 3.0 0.5 4.4 745
P 16.0 3.3 -11.5 75 5.6 2.0 0.7 4.4 350
PD 16.2 1.7 -13.2 74 6.6 4.1 0.7 4.9 538
PD* 14.1 2.3 -10.8 75 5.5 2.5 1.1 4.4 303
PT 9.8 0.0 -22.1 72 8.1 4.3 1.9 5.1 831
PDT 15.9 3.7 -10.8 75 5.4 1.9 0.6 4.4 361
WR 12.4 -1.0 -8.9 76 5.0 4.0 1.4 4.4 233

S7 = {1, 3, 7}, S8 = {2, 4, 8}, S9 = {1, 3, 4, 8}, and S10 = {2, 7, 8}. The SL targets are tk = 80% with an
AWT of 20 seconds for all call types.

Tables 11 and 12 show the results for the objective functions F 1
S and FSA. The SL gaps ∆Sk and the

abandonment ratios Ak are summarized by their maximum, median and minimum values. The tables also
include the aggregate SL (S agg) and the aggregate abandonment ratios (A agg) over all call types. The WR
policy is the best performer by far, and it gives more balanced SLs and abandonment ratios between the call
types than the other policies. As was the case in smaller models, the SL improvement with the WR policy
and F 1

S comes at the expense of more abandonments. Using the WR solution obtained for F 1
S would cost

499 with the objective function FSA, which would be even worse than the P policy. The WR policy has the
highest aggregate SL for both objective functions F 1

S and FSA, even though it has the worst median values
for the ∆Sk. The reason is that the aggregate SL is weighted by the number of arrivals of each call type and
the other policies have a high ∆Sk mostly on the low volume call types.

It is very difficult to optimize simultaneously the priorities, delays, and idle agent thresholds; this explains
the higher costs for policies PD, PT, and PDT than for policy P. Applying the MGA effectively to simulta-
neously optimize all the parameters for those policies requires a very large population size in this example,
and this is too time consuming. A better approach in this case, for PD and PDT, is to first optimize the
priorities with the MGA (that is, start with the best policy P), then optimize the delays with the SGD. This
is policy PD* in the tables.

5.6 Poisson-gamma arrival process

For our last example, we consider a case where the arrival process is doubly stochastic. Calls of type i arrive
according to a Poisson process with constant rate Λi = βiλi over the current day, where βi is a random
factor which can be interpreted as the “busyness” level for the day. As in Avramidis et al. (2004), we model
βi as a gamma random variable with mean 1 and variance 1/(λiθi), whose shape and scale parameters are
both equal to λiθi. We use the parameter θi to control the variance of the arrival rate in our experiments.
In this example, we use θi = θ for all call types and the arrival rate has mean E[Λi] = λi and variance
Var[Λi] = λi/θ. We assume independent arrivals across call types.

We evaluate the robustness of the policies to the uncertainty of the arrival rate for a small illustrative
example considered earlier, namely the X-model in case 1, with objective function F 1

S . For each type of
routing policy, we took the solution corresponding to the result in Table 4 and used it in a simulation of 1000
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independent “days” of 20 hours each, with a random busyness factor βi for each day, and we estimated the
expected value of the objective function. We repeated this for several values of θ ranging from 0.1 to 10. The
estimated performance, as a function of θ, is given in Figure 2 for three policies, namely WR (which turns
out to be the best by far), PDT (which is the second best), and G (which is the worst performer). In the
figure, the horizontal lines (labeled WR*, PDT*, and G*) represent the performance when the arrival rate
is deterministic. They correspond to the case where θ → ∞ (or Var[βi] = 0). We see that for all policies,
the expected cost increases when Var[βi] increases, and the cost with the WR policy always remains lower
than that of the other policies. We observed a similar type of behavior for other examples as well. This
suggests that with the frequently-used approach that optimizes the parameters under the assumptions of a
Poisson process with deterministic rate, when the arrival process is in fact doubly stochastic, we typically
underestimate the cost.
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Figure 2: In the X-model, case 1, with objective function F 1
S , we replace the Poisson arrival process by a

Poisson-gamma process and we compare the expected cost for policies G, PDT and WR. The cost axis is in
logarithmic scale.

6 Conclusion

We have proposed a routing policy based on weights, expressed as linear functions of the call waiting times
and agent idle times. To optimize the parameters of this policy and of other parameterized routing policies,
we have adapted two simulation-based optimization methods as heuristics, a SGD and a MGA, in a setting
where performance constraints are incorporated into the objective function via penalty costs. These methods
evaluate the objective function as a black box that returns noisy values. Important advantages of our
simulation-based optimization approach over other analytical-based or numerical methods (for example,
fluid networks and dynamic programming) are that it permits one to optimize practical call center problems
without relying on asymptotic-type approximations, to easily change the objective function, and use basically
any performance measure implementable in a simulator (such as the SL, abandonment rate, the AWT, agent
occupancy, etc.). We compared the performance of our policy to routing policies commonly used in practice,
on various examples. The flexibility of using weights instead of fixed priority rules or thresholds was often
reflected in the solutions. Our WR policy gave far better results than other policies commonly used in
practice.

Possibilities for further research include improving the WR policy by considering weights that are nonlinear
functions of the waiting and idle times, and that may depend on the state of the queues. Another possibility,
very relevant to practice, is extending the study into the robustness of routing policies. Our preliminary
experiments with random arrival rates suggest that the WR policy is more robust than the other commonly-
used routing policies. We plan to do further research on this topic, including the possibility of dynamically
changing the parameters of the routing policy when the arrival rates depart significantly from the forecasts.
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APPENDIX

In this appendix, we give additional descriptions of the implementation of the optimization algorithms
presented in the paper. Then, we give the solutions that we obtained for each routing policy for the V, X
and M models with objective function F 1

S .

A Routing Optimization

A.1 Stochastic Gradient Descent (SGD)

We present the SGD framework in Algorithm 1. The inputs are the initial solution x(0), the initial step
size δ0, the maximum number of iterations maxIt, and the number of restarts maxRestart. Each variable
is allowed to be bounded to a given interval. A variable is truncated to the nearest bound when the next
iteration attempts to send it outside of its interval. The parameters ǫ1, ǫ2, ǫ3 are used to define a stopping
criterion in the inside loop of the algorithm.

Input: x(0), δ0, maxIt, maxRestart

Output: the best solution found, x∗

for m = 1 to maxRestart do
for k = 1 to maxIt do

δ ← δ0/k

g(k−1) ← a finite-difference gradient estimate at x(k−1), with step size δ

λ̄ ← argmin
λ≥0

f̂(x(k−1) − λg(k−1)), computed by a golden section search

x(k) ← x(k−1) − λ̄g(k−1)

if f̂(x(k)) < f̂(x∗) then

x∗←x(k)

end

if

(∣

∣

∣

∣

x
(k)
i

−x
(k−1)
i

x
(k−1)
i

∣

∣

∣

∣

< ǫ1for all i and |g| < ǫ2 and d < ǫ3

)

then

k ← maxIt + 1 // exit the loop

end

end

x(0)←x∗ // prepare for restart

end

Algorithm 1: The SGD algorithm used in this paper.

We now describe our implementation of the quasi-Newton (QN) method. We use the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula to approximate the inverse of the Hessian matrix. Let x(k) be the solution
at iteration k, g(k) the gradient at x(k), Z(k) the inverse of the Hessian matrix, α(k) = x(k) − x(k−1) and
γ(k) = g(k) − g(k−1). The BFGS formula is

Z(k) = Z(k−1) +

(

1 +
(γ(k))TZ(k−1)γ(k)

(α(k))Tγ(k)

)

α(k)(α(k))T

(α(k))Tγ(k)
−

α(k)(γ(k))TZ(k−1) + Z(k−1)γ(k)(α(k))T

(α(k))Tγ(k)
.

The search direction is s(k) = −Z(k−1)g(k−1). In our implementation, g(k) is actually a noisy estimate of the
gradient rather than its exact value, as in the previous algorithm. The golden section search is again used
for the line search.

Algorithm 2 presents the modifications to Algorithm 1 to implement the QNmethod. For the initialization,
we assume that x(−1) and g(−1) are zero vectors, and Z(−1) = I, the identity matrix.
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for k = 1 to maxIt do
. . .

g(k−1) ← finite-difference gradient estimate at x(k−1), with step δ

Z(k−1) ← update of the inverse Hessian, based on the BFGS formula

s(k) ← −Z(k−1)g(k−1) // the new search direction

λ̄ ← argmin
λ≥0

f̂(x(k−1) + λs(k)), computed by a golden section search

x(k) ← x(k−1) + λ̄s(k)

. . .

end

Algorithm 2: Quasi-Newton method, showing the changes to Algorithm 1.

A.2 A Modified Genetic Algorithm (MGA)

In Algorithm 3, we present the framework of the MGA described in the paper. The parameter maxIt deter-
mines the maximum number of iterations, γ is used for the smoothing of the parameters of the distributions
and the other parameters are described in the main text.

Input: maxIt, P , P̂ , γ, ǫ, θ(0)

Output: the best solution found, x∗, and its estimated cost f∗

θ ← θ
(0)

for i = 1 to maxIt do
for p = 1 to P do

generate a solution x(p) from the distribution Φ(θ)

f (p) ← f̂(x(p)), estimated by simulation

end

sort and relabel x(1), . . . ,x(P ) by order of estimated cost f (1), . . . , f (P )

if f (1) < f∗ then
x∗←x(1) and f∗←f (1)

end

compute estimator θ̃ (e.g., by max. likelihood) from the set of elite solutions x(1), . . . ,x(P̂ )

θ ← γθ̃ + (1− γ)θ
if Φ(θ) has small enough generalized variance, say < ǫ, then

stop
end

end

Algorithm 3: A modified genetic algorithm.

The choice of population sizes P and P̂ can have a significant impact on the convergence speed and the
quality of the final solution. When P is large and P̂ is small, the MGA generally converges faster to a local
minimum, whereas if P̂ is large, convergence is slower but often yields better solutions. For our experiments,
we made preliminary tests to select good values.

Various heuristics can be used to further improve the performance of the MGA. For example, the simu-
lation time can be reduced by rejecting early (without doing all the planned simulation runs) the solutions
whose estimated cost already appears too high after a few runs. In our implementation, we used the fol-
lowing simple procedure. We started by simulating the P solutions with a small number of runs, say r0,
then we simulated the M = min{2P̂ , P} solutions with the smallest empirical cost for another r1 runs, and
we finally selected the P̂ (empirically) best solutions among those M to form the elite population. More
sophisticated ranking and selection procedures (Goldsman et al. 2002, Benson et al. 2006) could have been
used at this stage, but here the probability of correct selection does not need to be high, so these procedures
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are not necessarily useful. Another idea that we used is to give more weight to the best solutions in the elite
population when computing the maximum likelihood estimator. This often speeds up the convergence to a
local minimum, and can be useful especially when the computing budget is limited.

In our implementation, for the weight parameters in the WR policy, we used the normal distribution.
These parameters can then take any real value, and the maximum likelihood estimator is easy to compute.
For each of those weight parameters, there are two coordinates in θ: the mean and the variance of the normal
distribution. Any solution for which ak,g < 0 and bk,g < 0 for any pair (k, g) is rejected immediately, and a
new one is generated. At each iteration of the MGA, random solutions are generated from Φ(θ) until there
are P admissible solutions. This procedure is particularly useful at the beginning of the algorithm, where
many bad candidate solutions are rejected.

We also use the normal distribution to generate the delays for the policies PD and PDT, and the idle
agent thresholds for the policies PT and PDT. The negative values are replaced by 0, and the thresholds are
rounded to the nearest integer.

Optimizing the priority lists with the MGA is more complicated, because it is a combinatorial problem.
Here, we assume that the skill sets Sg and their cardinalities are fixed, and we only decide on the priorities.
To generate a solution, we generate the type-to-group and the group-to-type priority lists independently. We
describe how to generate the preference list Lg of group g, with skill set Sg. The type-to-group priority list
Gk of a call type k is generated in a similar way. Note that even in very large call centers, although there
may be many priority lists, these lists are usually small.

If hg = 1, then the preference list is trivial and there is nothing to do, so we now assume that hg > 1.
The distribution used to generate the list Lg has parameters mg,k > 0 for k ∈ Sg and qg,n ∈ [0.05, 0.95] for
n = 1, . . . , hg − 1. We initialize mg,k = 1 for all k and qg,n = 0.5 for all n. The priority list is generated in
two independent steps:

1. We generate a permutation P = (p1, p2, . . . , phg
) such that pi ∈ Sg, for all i and pi 6= pj for i 6= j. To

do this, we generate a random variate zg,k uniformly distributed over the interval [0,mg,k], for each
k ∈ Sg, and the permutation is obtained by sorting these zg,k’s in increasing order. Note that the hg!
permutations do not have all equal probabilities. Call types k with a smaller mg,k have more chance
to appear earlier in the list and to have higher priorities.

2. Given the permutation, we now have to decide on the subsets L
(·)
g of call types having equal priorities

in this list. That is, we must decide between “equal” and “higher than” for the priority relationship
between any two successive positions in the permutation P . There are hg−1 relationships to determine,
and the nth one is chosen to be “equal” with probability qg,n, for n = 1, . . . , hg − 1. We bound qg,n
away from 0 and 1 to allow for a minimum of diversification. Call types pn and pn+1 have the same
priority if qg,n = 1, otherwise call type pn has higher priority.

The distribution parameters mg,k and qg,n are updated at each iteration as follows. For mg,k, we simply
take the average rank of call type k in the priority lists of group g over the P̂ elite solutions. Call types with
equal priorities have the same rank. Those with the highest priority have rank 1, those with the next priority
have rank 2, and so on. To update qg,n, we compute the proportion of call types at position n having the
same priority as the call types at position n+ 1 in the P̂ elite solutions. For the stopping criterion based on
the variance of Φ(θ), we only look at the variance of the ranks used to update mg,k, from the elite sample,
for each g and k.

B Solutions to the numerical examples

We report the actual solutions for the V, X and M models with the objective function F 1
S from the numerical

section, to give an idea of how the policy parameters look like. The complete solutions for all the examples
are available on the third author’s web site, in “publications”. The delays for the policies PD and PDT are
given in seconds. For the WR policy, the call waiting times wk and agent idle times vg are measured in
hours. To save space, we do not report the trivial cases where the type-to-group and group-to-type priority
lists have a single group or a single call type. We also do not report the delay when dk,g = 0, nor the idle
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Table 13: Solutions for the V-model examples under the objective function F 1
S .

Case Routing solutions
P: L1 = ({2}, {1}).
PD: L1 = ({2}, {1}), d2,1 = 5.9.

1 PT: L1 = ({1}, {2}),No threshold.
PDT: L1 = ({1}, {2}), d1,1 = 5.8,No threshold.
WR: q1,1 = 10, q2,1 = 10, a1,1 = −114, a2,1 = −128, b1,1 = 220, b2,1 = 62.
WR*: q1,1 = q2,1 = 1, a1,1 = a2,1 = −180, b1,1 = b2,1 = 627.
P: L1 = ({2}, {1}).
PD: L1 = ({2}, {1}), d1,1 = 19.9.

2 PT: L1 = ({1}, {2}), m1,1 = 1.
PDT: L1 = ({1, 2}), d2,1 = 10.4,m1,1 = 1.
WR: q1,1 = −0.09, q2,1 = 13, a1,1 = −81, a2,1 = 125, b1,1 = 189, b2,1 = 105.
P: L1 = ({2}, {1}).
PD: L1 = ({2}, {1}), d1,1 = 19.9.

3 PT: L1 = ({1}, {2}), m1,1 = 1.
PDT: L1 = ({2}, {1}), d1,1 = 19.9,No threshold.
WR: q1,1 = −0.013, q2,1 = 1.0, a1,1 = −493, a2,1 = 10, b1,1 = 1710, b2,1 = 10.

Table 14: Solutions for the X-model examples under the objective function F 1
S .

Case Routing solutions
P: G1 = G2 = ({1, 2}),L1 = ({2}, {1}),L2 = ({1}, {2}).
PD: G1 = ({1, 2}),G2 = ({2}, {1}),L1 = L2 = ({1}, {2}), d1,1 = 13, d1,2 = 2.1, d2,1 = 0.2.
PT: G1 = G2 = ({1}, {2}),L1 = ({2}, {1}),L2 = ({1}, {2}),No threshold.

1 PDT: G1 = G2 = ({1, 2}),L1 = L2 = ({1}, {2}), d1,1 = 7.8, d1,2 = 9.3,No threshold.
WR: q1,1 = 5.0, q1,2 = 16, q2,1 = 4.1, q2,2 = 17, a1,1 = −209, a1,2 = −68, a2,1 = −122, a2,2 = −120, b1,1 =
125, b1,2 = 334, b2,1 = 137, b2,2 = 113.
WR*: q1,1 = q1,2 = q2,1 = q2,2 = 1, a1,1 = a1,2 = a2,1 = a2,2 = −180, b1,1 = b1,2 = b2,1 = b2,2 = −700.
P: G1 = G2 = ({1}, {2}),L1 = L2 = ({2}, {1}).
PD: G1 = G2 = ({1}, {2}),L1 = L2 = ({2}, {1}), d1,1 = 16, d1,2 = 19.9.

2 PT: G1 = G2 = ({1}, {2}),L1 = ({1}, {2}),L2 = ({2}, {1}), m1,1 = 1.
PDT: G1 = G2 = ({1}, {2}),L1 = ({1, 2}),L2 = ({2}, {1}),No delay,m1,1 = 1.
WR: q1,1 = 0.34, q1,2 = 1.0, q2,1 = 16, q2,2 = 14, a1,1 = −59, a1,2 = −149, a2,1 = 115, a2,2 = 74, b1,1 = 266, b1,2 =
201, b2,1 = 11, b2,2 = 230.
P: G1 = ({1, 2}), G2 = ({2}, {1}),L1 = ({2}, {1}),L2 = ({2}, {1}).
PD: G1 = ({1, 2}),G2 = ({2}, {1}),L1 = L2 = ({2}, {1}), d1,1 = 19.9, d1,2 = 1.
PT: G1 = G2 = ({1}, {2}),L1 = L2 = ({2}, {1}),No threshold.

3 PDT: G1 = ({1, 2}), G2 = ({1}, {2}),L1 = L2 = ({2}, {1}), d1,1 = 15, d1,2 = 19.7, d2,2 = 0.01,No threshold.
WR: q1,1 = 0.071, q1,2 = 0.47, q2,1 = 0.33, q2,2 = 1.1, a1,1 = −9.0, a1,2 = −77, a2,1 = −9.1, a2,2 = 11, b1,1 =
42, b1,2 = 73, b2,1 = 10, b2,2 = 7.2.

Table 15: Solutions for the M-model examples under the objective function F 1
S .

Case Routing solutions
P: G1 = ({1}, {3}),G2 = ({2}, {3}),L3 = ({2}, {1}).
PD: G1 = ({1, 3}),G2 = ({2}, {3}),L3 = ({1}, {2}), d1,3 = 18.2, d2,3 = 19.6.

1 PT: G1 = ({1}, {3}), G2 = ({2}, {3}),L3 = ({2}, {1}),No threshold.
PDT: G1 = ({1, 3}), G2 = ({3}, {2}),L3 = ({1}, {2}), d1,3 = 18.2, d2,3 = 17.2,No threshold.
WR: q1,1 = 13, q1,3 = 1.3, q2,2 = 12, q2,3 = 1.6, a1,1 = 1475, a1,3 = −49, a2,2 = 1465, a2,3 = −62, b1,1 =
2007, b1,3 = 60, b2,2 = 2008, b2,3 = 69.
P: G1 = ({3}, {1}),G2 = ({2}, {3}),L3 = ({1}, {2}).
PD: G1 = ({1, 3}),G2 = ({2, 3}),L3 = ({1}, {2}), d1,3 = 0.2, d2,3 = 19.9.

2 PT: G1 = ({3}, {1}), G2 = ({2}, {3}),L3 = ({1}, {2}),No threshold.
PDT: G1 = ({1, 3}), G2 = ({2, 3}),L3 = ({1}, {2}), d1,3 = 0.3, d2,3 = 19.5,No threshold.
WR: q1,1 = 16, q1,3 = 1.1, q2,2 = 23, q2,3 = 1, a1,1 = 91, a1,3 = −30, a2,2 = 46, a2,3 = −129, b1,1 = 130, b1,3 =
60, b2,2 = 491, b2,3 = 75.
P: G1 = ({1}, {3}),G2 = ({2, 3}),L3 = ({2}, {1}).
PD: G1 = ({1}, {3}), G2 = ({2, 3}),L3 = ({2}, {1}), d1,3 = 19.9, d2,3 = 0.01.

3 PT: G1 = ({1}, {3}), G2 = ({2, 3}),L3 = ({2}, {1}),No threshold.
PDT: G1 = ({1}, {3}),G2 = ({2, 3}),L3 = ({2}, {1}), d1,1 = 2, d1,3 = 19.9,No threshold.
WR: q1,1 = 12, q1,3 = 0.5, q2,2 = 15, q2,3 = 2.6, a1,1 = 1461, a1,3 = −80, a2,2 = 1743, a2,3 = −29, b1,1 =
2127, b1,3 = 25, b2,2 = 2359, b2,3 = 144.
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agent threshold when mk,g = 0. We mention “No delay” if all dk,g = 0 and “No threshold” if all mk,g = 0.
The parameters qk,g, ak,g and bk,g for the WR policy are not reported when their values are 0. Refer to the
descriptions of the routing policies for the definitions of the parameters.
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