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Abstract

We introduce a signless Laplacian for the distance matrix of a connected graph, called the distance

signless Laplacian. We study the distance signless Laplacian spectrum of a connected graph. We show
the equivalence between the distance signless Laplacian, distance Laplacian and the distance spectra for
the class of transmission regular graphs. We also establish a relationship between the smallest eigenvalue
of the distance signless Laplacian of a connected graph G and the existence of a bipartite component in
the complement G.

Key Words: Distance matrix, eigenvalues, Laplacian, signless Laplacian, spectral radius.

Résumé

On introduit un laplacien sans signe pour la matrice des distances d’un graphe connexe, appelé lapla-

cien sans signe des distances et on étudie son spectre. On montre l’équivalence entre le spectre du
laplacien sans signe des distances et le spectre de la matrice des distances pour la classe des graphes
transmission-réguliers. On établit également une relation entre la plus petite valeur propre du laplacien
sans signe des distances et l’existence d’une composante bipartie dans le complémentaire G.

Mots clés : Matrice des distances, valeurs propres, laplacien, laplacien sans signe, rayon spectral.
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1 Introduction

We begin by recalling some definitions. In this paper, we consider only simple and finite graphs, i.e, graphs
on a finite number of vertices without multiple edges or loops. A graph is (usually) denoted by G = G(V,E),

where V is its vertex set and E its edge set. The order of G is the number n = |V | of its vertices and its

size is the number m = |E| of its edges. The adjacency matrix A of G is a 0–1 n × n–matrix indexed by

the vertices of G and defined by aij = 1 if and only if ij ∈ E. Denote by (λ1, λ2, . . . , λn) the A–spectrum

of G, i.e., the spectrum of the adjacency matrix of G, and assume that the eigenvalues are labeled such
that λ1 ≥ λ2 ≥ · · · ≥ λn. The matrix L = Diag(Deg) − A, where Diag(Deg) is the diagonal matrix

whose diagonal entries are the degrees in G, is called the Laplacian of G. Denote by (µ1, µ2, . . . , µn) the

L–spectrum of G, i.e., the spectrum of the Laplacian of G, and assume that the eigenvalues are labeled such

that µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The matrix Q = Diag(Deg) + A is called the signless Laplacian of G. Denote
by (q1, q2, . . . , qn) the Q–spectrum of G, i.e., the spectrum of signless Laplacian of G, and assume that the

eigenvalues are labeled such that q1 ≥ q2 ≥ · · · ≥ qn.

Given two vertices u and v in a connected graph G, d(u, v) = dG(u, v) denotes the distance (the length of a

shortest path) between u and v. The Wiener index W (G) of a connected graph G is defined to be the sum

of all distances in G, i.e.,

W (G) =
1

2

∑

u,v∈V

d(u, v).

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v to all other vertices in

G, i.e.,

Tr(v) =
∑

u∈V

d(u, v).

A connected graph G = (V,E) is said to be k–transmission regular if Tr(v) = k for every vertex v ∈ V .

As usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by Ka,n−a the complete bipartite graph

and by Kn the complete graph, each on n vertices. A kite Kin,ω is the graph obtained from a clique Kω and
a path Pn−ω by adding an edge between and endpoint of the path and a vertex from the clique.

The distance matrix D of a connected graphG is the matrix indexed by the vertices of G where Di,j = d(vi, vj)

and d(vi, vj) denotes the distance between the vertices vi and vj . Let ∂1 ≥ ∂2 ≥ · · · ≥ ∂n denote the spectrum

of D. It is called the distance spectrum of the graph G.

Similarly to the (adjacency) Laplacian, we defined in [3] the distance Laplacian of a connected graph G as
the matrix DL = Diag(Tr) − D, where Diag(Tr) denotes the diagonal matrix of the vertex transmissions

in G. Let ∂L
1 ≥ ∂L

2 ≥ · · · ≥ ∂L
n denote the spectrum of DL. We call it the distance Laplacian spectrum

of the graph G. Along this line, we define the distance signless Laplacian of a connected graph G to be

DQ = Diag(Tr) +D. Let ∂Q
1 ≥ ∂Q

2 ≥ · · · ≥ ∂Q
n denote the spectrum of DQ. We call it the distance signless

Laplacian spectrum of the graph G. In Figure 1, we give a graph with its different spectra.

Figure 1: The Petersen graph and its different spectra.
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For a connected graph G, let PG
D (t), PG

L (t) and PG
Q (t) denote the distance, the distance Laplacian and the

distance signless Laplacian characteristic polynomials respectively. With the help of the software Maple

and using different properties of determinants and eigenvalues, we established the characteristic polynomials
PG
D (t), PG

L (t) and PG
Q (t) for some particular graphs. We next list them.

The complete graph

The distance, the distance Laplacian and the distance signless Laplacian spectra of the complete graph Kn

are respectively its adjacency, Laplacian and signless Laplacian spectra, i.e.,

PKn

D (t) = (t− n+ 1)(t+ 1)n−1;

PKn

L (t) = t(t− n)n−1;

PKn

Q (t) = (t− 2n+ 2)(t− n+ 2)n−1.

The complement of an edge

The distance, the distance Laplacian and the distance signless Laplacian spectra of the complement of an

edge Kn − e are respectively

PKn−e
D (t) =

(

t− n− 1 +
√

(n− 1)2 + 8

2

)(

t− n− 1−
√

(n− 1)2 + 8

2

)

(t+ 2)(t+ 1)n−3;

PKn−e
L (t) = t(t− n− 2)(t− n)n−2;

PKn−e
Q (t) =

(

t− 3n− 2 +
√
n2 − 4n+ 20

2

)(

t− 3n− 2−
√
n2 − 4n+ 20

2

)

(t− n+ 2)n−2.

The star

The distance, distance Laplacian and the distance signless Laplacian characteristic polynomials of the star

Sn are respectively

PSn

D (t) =
(

t− n+ 2−
√

n2 − 3n+ 3
)(

t− n+ 2 +
√

n2 − 3n+ 3
)

(t+ 2)n−2;

PSn

L (t) = t(t− n)(t− 2n+ 1)n−2;

PSn

Q (t) =

(

t− 5n− 8 +
√
9n2 − 32n+ 32

2

)(

t− 5n− 8−
√
9n2 − 32n+ 32

2

)

(t− 2n+ 5)n−2.

The complete bipartite graph

The distance, distance Laplacian and the distance signless Laplacian characteristic polynomials of the com-

plete bipartite graph Ka,b are respectively

P
Ka,b

D (t) =
(

t− n+ 2−
√

a2 − ab+ b2
)(

t− n+ 2 +
√

a2 − ab+ b2
)

(t+ 2)n−2;

P
Ka,b

L (t) = t(t− n)(t− (2n− a))b−1(t− (2n− b))a−1;

P
Ka,b

Q (t) =

(

t− 5n− 8 +
√

9(a− b)2 + 4ab

2

)(

t− 5n− 8−
√

9(a− b)2 + 4ab

2

)

(t− 2n+ b+ 4)a−1 (t− 2n+ a+ 4)b−1 .
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The graph S+
n

The distance, distance Laplacian and the distance signless Laplacian characteristic polynomials of the graph

S+
n are respectively

P
S+
n

D (t) =
(

t3 − (2n− 7)t2 − (7n− 17)t− (3n− 5)
)

(t+ 1)(t+ 2)n−4;

P
S+
n

L (t) = t(t− n)(t− 2n+ 3)(t− 2n+ 1)n−3;

P
S+
n

Q (t) =
(

t3 − (7n− 15)t2 +
(

14n2 − 36n+ 72
)

t−
(

8n3 − 52n2 + 108n− 68
))

(t− 2n+ 5)n−3.

The rest of the paper is organized as follows. In Section 2, we discuss general properties of the distance

signless Laplacian spectrum. We first prove equivalence between the distance Laplacian spectrum and the

distance spectrum among the class of transmission regular graphs. Thereafter, we show that the interlacing
theorem does not apply for the distance Laplacian spectrum. We prove that the distance signless Laplacian

eigenvalues do not decrease by the deletion of an edge. In Section 3, we prove a series of bounds on the

eigenvalues of DQ, specially the largest and the smallest of them. We also establish a relationship between

the smallest eigenvalue of DQ of a connected graph G and the existence of a bipartite component in the
complement G. Finally, we list some open conjectures in Section 4.

2 General properties

In [7, 8, 9], Cvetković and Simić studied the spectral graph theory based on the signless Laplacian matrix.

Among other results, they showed equivalence between the spectrum of the signless Laplacian and

• the adjacency spectrum for the class of (degree) regular graphs;

• the Laplacian spectrum for the class of (degree) regular graphs;

• the Laplacian spectrum for the class of bipartite graphs.

In [3], we showed equivalence between the distance Laplacian spectrum and

• the distance spectrum among the class of transmission regular graphs;

• the Laplacian spectrum among the class of graphs with diameter two.

Along these lines, we studied similarities between the distance signless Laplacian spectrum on the one hand

and the spectra of different matrices associated to connected graphs on the other hand. The first result is

that there is equivalence between the spectrum of the distance matrix D and that of the distance signless
Laplacian DQ over the set of transmission regular graphs.

Theorem 2.1 If G is a k–transmission regular graph on n vertices with distance spectrum ∂1 ≥ ∂2 ≥ · · · ≥ ∂n
and distance signless Laplacian spectrum ∂Q

1 ≥ ∂Q
2 ≥ · · · ≥ ∂Q

n , then ∂Q
i = k + ∂i for all i = 1, . . . , n.

Proof. The relationship between the characteristic polynomials is as follows.

PQ(t) = det(DQ − tI) = det(Diag(Tr) +D − tI) = det(kI +D − tI) = det(D − (t− k)I) = PD(t− k).

Thus ∂ is an eigenvalue of D if and only if ∂Q = k + ∂ is an eigenvalue of DQ.

Using the above theorem, one can calculate the distance signless Laplacian characteristic polynomial of a
transmission regular graph from its distance characteristic polynomial. For instance, we can do so for the

cycle on n vertices.

Corollary 2.2 The distance signless Laplacian characteristic polynomial of the cycle Cn is as follows.
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If n = 2k (i.e., even)

PCn

Q (t) =

(

t− n2

4

)k−1

·
(

t− n2

2

)

·
k
∏

j=1

(

t− n2

4
+ csc2

(

π(2j − 1)

n

))

.

If n = 2k + 1 (i.e., odd)

PCn

Q (t) =

(

t− n2 − 1

2

)

·
k
∏

j=1

(

t− n2 − 1

4
+

1

4
sec2

(

πj

n

))

·
k
∏

j=1

(

t− n2 − 1

4
+

1

4
csc2

(

π(2j − 1)

2n

))

.

Proof. The distance characteristic polynomial of Cn was given in [11], according to the parity of n, as

follows.

If n = 2p (i.e., even)

PCn

D (t) = tp−1 ·
(

t− n2

4

)

·
p
∏

j=1

(

t+ csc2
(

π(2j − 1)

n

))

.

If n = 2p+ 1 (i.e., odd)

PCn

D (t) =

(

t− n2 − 1

4

)

·
p
∏

j=1

(

t+
1

4
sec2

(

πj

n

))

·
p
∏

j=1

(

t+
1

4
csc2

(

π(2j − 1)

2n

))

.

The cycle Cn is a k–transmission regular graph with k = n2/4 if n is even and k = (n2 − 1)/4 if n is odd.

Applying Theorem 2.1, we get the result.

The famous interlacing theorem (see e.g. [5, p. 9]) does not apply in the case of the distance signless
Laplacian spectrum of a graph. Indeed, consider the path Pn obtained from the cycle Cn by the deletion of

an edge. The distance signless Laplacian spectra of Pn and Cn do not interlace for n ≥ 5. For instance the

distance signless Laplacian spectrum of P6 is approximately (25.0838, 12.1755, 11.1743, 8.6727, 7.7418, 5.5118)

while the distance signless Laplacian spectrum of C6 is (18, 9, 9, 8, 5, 5). The corresponding property for the
distance signless Laplacian spectrum is that each eigenvalue ∂Q

i does not decrease if an edge is deleted from

the graph. To prove this fact, we need the following lemma.

Lemma 2.3 (Courant–Weyl inequalities, [5]) For a real symmetric matrix M of order n, let λ1(M) ≥
λ2(M) ≥ · · · ≥ λn(M) denote its eigenvalues. If N1 and N2 are two real symmetric matrices of order n and
if N = N1 +N2, then for every i = 1, . . . , n, we have

λi(N1) + λ1(N2) ≥ λi(N) ≥ λi(N1) + λn(N2).

Theorem 2.4 Let G be a connected graph on n vertices and m ≥ n edges. Consider G′ the connected

graph obtained from G by the deletion of an edge. Denote
(

∂Q
1 , ∂Q

2 , . . . ∂Q
n

)

and
(

∂̃Q
1 , ∂̃Q

2 , . . . ∂̃Q
n

)

the distance

signless Laplacian spectra of G and G′ respectively. Then ∂̃Q
i ≥ ∂Q

i for all i = 1, . . . n.

Proof. We write the distance signless Laplacian matrix of G′ as D′Q = DQ + M , where M expresses the
changes in DQ due to the deletion of an edge from G. It is easy to see that M is diagonally dominant with

positive (diagonal) entries. Thus M is a positive semi-definite matrix.

Some regularities in graphs are useful in calculating certain eigenvalues of the matrices related to these graphs.

It is the case, for instance, for the largest eigenvalue of the adjacency matrix or the signless Laplacian whenever

the graph is degree regular. The same is true for the largest eigenvalue of the distance Laplacian, and of the

distance signless Laplacian, whenever the graph is transmission regular. Sometimes, a local regularity in a

graph suffices to determine some eigenvalue. We prove below that it is possible to know a distance signless
Laplacian eigenvalue of a graph if it contains a clique or an independent set whose vertices share the same

transmission.
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Theorem 2.5 Let G be a connected graph on n vertices. If S = {v1, v2, . . . vp} is an independent set of G

such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then τ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and

τ − 2 is an eigenvalue of DQ with multiplicity at least p− 1.

Proof. Since the vertices in S share the same neighborhood, any vertex in V − S is at the same distance

from all vertices in S. Each vertex of independent set S is at distance 2 from any other vertex in S. Thus

all vertices in S have the same transmission, say τ .

To show that τ − 2 is a distance Laplacian eigenvalue with multiplicity p− 1, it suffices to observe that the
matrix (τ − 2)In −DQ contains p identical rows (columns).

Theorem 2.6 Let G be a connected graph on n vertices. If K = {v1, v2, . . . vp} is a clique of G such that

N(vi) −K = N(vj) −K for all i, j ∈ {1, 2, . . . , p}, then τ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and

τ − 1 is an eigenvalue of DQ with multiplicity at least p− 1.

The proof of this theorem is similar to that of the previous one.

Note that results similar to Theorem 2.5 and Theorem 2.6 are proved in [3] for the distance Laplacian

spectrum.

3 Bounds on the eigenvalues

In this section, we prove some bounds on the eigenvalues of the distance signless Laplacian of a connected
graph. We first give bounds proved using the property of the spectra domination resulting from the deletion

of an edge stated in Theorem 2.4.

Proposition 3.1 If G is a connected graph on n ≥ 3 vertices, then ∂Q
i (G) ≥ ∂Q

i (Kn) = n − 2, for all

2 ≤ i ≤ n. Moreover, ∂Q
2 (G) = ∂Q

2 (Kn) = n− 2 if and only if G is the complete graph Kn.

Proof. The inequalities ∂Q
i (G) ≥ ∂Q

i (Kn), for all 2 ≤ i ≤ n follow from Theorem 2.4. To see that ∂Q
2 (G) =

∂Q
2 (Kn) = n − 2 if and only if G is the complete graph Kn, it suffices to observe that if G 6∼= Kn, then

∂Q
2 (G) ≥ ∂Q

2 (Kn − e) > n− 2.

The next proposition gives a sharp upper bound on the index of DQ in terms of the Wiener index and the

order of the graph.

Proposition 3.2 Let G be a connected graph on n ≥ 2 vertices with Wiener index W , then ∂Q
1 (G) ≤

2W − (n− 1)(n− 2) with equality if and only if G is the complete graph Kn.

Proof. From spectral theory, we have

∂Q
1 (G) + ∂Q

2 (G) + · · ·+ ∂Q
n (G) = Tr1 + Tr2 + · · ·+ Trn = 2W.

Then

∂Q
1 (G) = 2W − ∂Q

2 (G)− · · · − ∂Q
n (G).

We conclude using Proposition 3.1.

Note that the gape between ∂Q
1 (G) and 2W − (n− 1)(n− 2) may be arbitrarily large when the graph is note

dense. To illustrate, the gape for an even cycle on n vertices is exactly n2(n− 2)/4.

To prove the next theorem, we need the following well-known result from matrix theory.
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Lemma 3.3 (Gershgorin Theorem, [13]) Let M = (mij) be a complex n × n–matrix and denote by

λ1, λ2, . . . λp its distinct eigenvalues. Then

{λ1, λ2, . . . λp} ⊂
n
⋃

i=1







z : |z −mii| ≤
∑

j 6=i

|mij |







.

We now give sharp bounds on ∂Q
1 in terms of minimum, average and maximum transmissions.

Theorem 3.4 Let G be a connected graph with minimum, average and maximum transmissions Trmin, Tr

and Trmax respectively. Then
2Trmin ≤ 2Tr ≤ ∂Q

1 (G) ≤ 2Trmax

with equalities if and only if G is a transmission regular graph.

Proof. Using the Rayleigh’s quotient, we have

∂Q
1 (G) = max

X 6=0
R(X) = max

X 6=0

XtDQX

XtX
.

If we take X = 1I, the all 1’s vector, we get R(1I) = 2Tr and then ∂Q
1 (G) ≥ 2Tr ≥ 2Trmin.

The upper bound follows immediately from Lemma 3.3.

It is easy to see that equalities hold if and only if Trmin = Tr = Trmax and 1I is an eigenvector belonging to

the largest eigenvalue ∂Q
1 (G).

Combining the above theorem and Proposition 3.1, we easily get the following corollary.

Corollary 3.5 If G is a connected graph on n ≥ 2 vertices, then ∂Q
1 (G) ≥ ∂Q

1 (Kn) = 2n− 2 with equality if

and only if G is the complete graph Kn.

Proposition 3.6 Let G = (V,E) be a connected graph on n ≥ 2 vertices and k an integer such that 1 ≤ k ≤
n. Denote by Pk(V ) the family of subsets of V with cardinality k. Then

∂1(G) ≥ max
S∈Pk(V )







1

k

∑

u∈S

Tr(u) +
1

k

∑

u,v∈S

d(u, v)







and ∂n(G) ≤ min
S∈Pk(V )







1

k

∑

u∈S

Tr(u) +
1

k

∑

u,v∈S

d(u, v)







.

Proof. Using Rayleigh’s quotient, we have

∂Q
1 (G) = max

X 6=0
R(X) = max

X 6=0

XtDQX

XtX
and ∂Q

n (G) = min
X 6=0

R(X) = max
X 6=0

XtDQX

XtX
.

Thus, to be done, it suffices to take X = [x1, x2, . . . xn]
t with xi = 1 if ui ∈ S and 0 otherwise.

We next establish some interconnections, as inequalities, between the distance signless Laplacian spectrum

of a connected graph G and the signless Laplacian spectrum of its complement G.

Theorem 3.7 Let G be a connected graph on n ≥ 3 vertices with diameter D. Let ∂Q
1 ≥ ∂Q

2 ≥ · · · ≥ ∂Q
n and

q1 ≥ q2 ≥ · · · ≥ qn be the distance signless Laplacian of G and the signless Laplacian of the complement G

of G.
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(1) If D = 2, then

n− 2 + qi ≤ ∂Q
i ≤ 2n− 2 + qi for every 1 ≤ i ≤ n; (1)

n− 2 + qn ≤ ∂Q
i ≤ n− 2 + q1 for every 1 ≤ i ≤ n− 1; (2)

2n− 2 + qn ≤ ∂Q
1 ≤ 2n− 2 + q1. (3)

(2) If D ≥ 3, then

∂Q
i ≥ n− 2 + qi for every 1 ≤ i ≤ n. (4)

Proof.

(1) In a connected graph with diameter 2, we have Tr(v) = d(v) + 2(n − d(v) − 1) = 2n− 2 − d(v), and
therefore Diag(Tr) = (2n− 2)I −Diag(Deg). On another side, the distance between two vertices is 1

if they are neighbors and 2 otherwise. Thus the distance matrix can be written as D = A+ 2A, where

A and A denote the adjacency matrices of G and its complement G respectively. Now, if we denote by

Q and Deg the signless Laplacian matrix and the degree vector of G, the distance signless Laplacian
of G can be written as

DQ = D +Diag(Tr)

= A+ 2A+ (2n− 2)I −Diag(Deg)

= A+A+ (n− 1)I +
(

(n− 1)I −Diag(Deg) +A
)

= J + (n− 2)I +Diag
(

Deg
)

+A

= J + (n− 2)I +Q,

where J is the all ones n × n matrix, whose eigenvalues are 0 with multiplicity n − 1 and n with

multiplicity 1.

Applying Lemma 2.3 with N1 = (n − 2)I + Q and N2 = J , we get (1), and with N1 = J and
N2 = (n− 2)I +Q, we get (2) and (3).

(2) Consider the n×nmatrixM = (m,j) defined bymi,j = max{0, di,j−2} for 1 ≤ i, j ≤ n, whereD = (di,j)

denotes the distance matrix of G. For a vertex i in G, we write its transmission as Tri = di+2di+Tr′i,

where di denotes the degree of i in G. Using this notation, we have

DQ = Diag(Tr) +D
= Diag(Deg) +Diag(Deg) +Diag(Tr′) +A+ 2A+M

=
(

A+A+Diag(Deg) +Diag
(

Deg
))

+
(

A+Diag
(

Deg
))

+ (Diag(Tr′) +M)

= Q(Kn) +Q+M ′,

where M ′ = Diag(Tr′) + M . It is easy to see that M ′ a diagonally dominant matrix, and then, its
least eigenvalue is not negative. Now, applying twice Lemma 2.3 (with N1 = Q(Kn) and N2 = Q+M ′

and then with N1 = Q and N2 = M ′), we get ∂Q
i ≥ n− 2 + qi, for 1 ≤ i ≤ n.

As a corollary of the above theorem, we establish a relationship between the fact that n − 2 is a distance

signless Laplacian eigenvalue of a connected graph G and the existence of a bipartite component or an isolated

vertex in the complement G.

Corollary 3.8 Let G be a connected graph on n vertices. If ∂Q = n − 2 is a distance signless Laplacian

eigenvalue with multiplicity µ, then the complement G of G contains at least µ components, each of which is

bipartite or an isolated vertex.

Proof. From (1) of Theorem 3.7, if n − 2 is a distance signless Laplacian eigenvalue, then 0 is a signless

Laplacian eigenvalue at least as many times as n − 2 for DQ. To complete the proof, we use the fact (see

[6, 10]) that 0 is a Q–eigenvalue of a graph G if and only if G contains a bipartite component or an isolated
vertex, and in this case, the multiplicity of 0 is at most equal to the number of bipartite components plus

the number of isolated vertices.
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Note that there exist graphs with bipartite complements with ∂n > n−2. For instance, if G is the complement

of the path on 7 vertices, i.e. G = P 7, we have ∂Q
7 (G) ≃ 5.042816 > 5 while G = P7 is bipartite. Another

example is illustrated on Figure 2.

Figure 2: A graph G (left) on 5 vertices with ∂Q
5 ≃ 3.050286 > 3 and a bipartite complement (right).

Corollary 3.9 Let G be a connected graph on n vertices with diameter D. If D ≥ 4, then ∂Q
n > n− 2.

Proof. Since D ≥ 4, G is connected and contains at least a triangle (a cycle on 3 vertices). Thus G is not
bipartite, and therefore qi ≥ qn > 0. The results follows from (2) of Theorem 3.7.

Another consequence of Theorem 3.7 is that, for a given order n ≥ 3, the bipartite graphs with ∂Q
n = n− 2

are entirely characterized.

Corollary 3.10 Let G be a bipartite graph on n ≥ 3 vertices, then ∂Q
n (G) = n − 2 if and only if G is the

path P4 or the complete bipartite graph Kn−2,2.

Proof. If G is the star Sn with n ≥ 3, then ∂Q
n (G) > n− 2 except for S3 = K1,2.

If n = 4, the only bipartite graphs are S4, P4 and K2,2, for which ∂Q
n (Sn) > 2 and ∂Q

n (Pn) = ∂Q
n (K2,2) = 2.

If n ≥ 5 and G 6∼= Sn, then the bipartition of the vertex set of G defines two independent sets V1 and V2, each

of which induces a clique in G. By Theorem 3.7, G contains at least a bipartite component. To be done,
it suffices to note that G contains a bipartite component if and only if G is a complete bipartite graph and

min{|V1|, |V2|} = 2.

4 Some conjectures

In this section, we list a series of conjectures about some particular distance Laplacian eigenvalues of a

connected graph. These conjectures, as well as some of the results proved in this paper, were obtained using

the AutoGraphiX system [1, 2, 4] devoted to conjecture–making in graph theory.

First, we conjecture about an upper bound on the largest distance Laplacian eigenvalue over the class of all

connected graphs with a given order n.

Conjecture 4.1 Let G be connected graph on n vertices. Then

∂Q
1 (G) ≤ ∂Q

1 (Pn)

with equality if and only if G is the path Pn.

Since a path is a tree, the above conjecture can be stated also for the set of trees. A general lower bound on
∂Q
1 is given in Corollary 3.5, if we assume that the graph is a tree, the bound is no more valid since Kn is

not a tree for n ≥ 3. We next conjecture a lower bound on ∂Q
1 over the set of trees.
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Conjecture 4.2 Let T be a tree on n vertices. Then

∂T
1 (G) ≥ ∂Q

1 (Sn) =
5n− 8 +

√
9n2 − 32n+ 32

2

with equality if and only if T is the star Sn.

For the class of unicyclic graphs, we conjecture a lower and an upper bound as well as a characterization of

the extremal graphs for each bound.

Conjecture 4.3 Let G be a connected unicyclic graph on n ≥ 6 vertices. Then

∂Q
1 (S+

n ) ≤ ∂Q
1 (G) ≤ ∂Q

1 (Kin,3)

with equality for the lower (resp. upper) bound if and only if G is the graph S+
n (resp. the long kite Kin,3).

Before stating the next conjecture, we need to define the Soltés graph [14]. Let u be an isolated vertex or one

endpoint of a path. Let us join u with at least one vertex of a clique. The graph so obtained is the Soltés
graph PKn,m, also called the path-complete graph, where n is its order and m its size. There is exactly one

PKn,m for given n and m such that 1 ≤ n−1 ≤ m ≤ n(n−1)/2. The kite Kin,ω, defined in the introduction,

is a particular path-complete graph with m = ω(ω − 1)/2 + n− ω.

For given n and m such that 1 ≤ n− 1 ≤ m ≤ n(n− 1)/2, PKn,m maximizes (non uniquely) the diameter

D [12] and (uniquely) the average distance l [14].

Conjecture 4.4 Let n and m be integers such that 2 ≤ n−1 ≤ m. The path-complete (Soltés) graph PKn,m

maximizes ∂Q
1 (G) over all connected graphs with order n and size m.

The next three conjectures are about the second largest distance signless Laplacian eigenvalue. First, we

conjecture an upper bound on ∂Q
2 , as well as a characterization of the corresponding extremal graphs, over

all the connected graphs on n vertices.

Conjecture 4.5 Let G be connected graph on n vertices. Then

∂Q
2 (G) ≤ ∂Q

2 (Pn)

with equality if and only if G is the path Pn.

We proved in Proposition 3.1 that, among the class of connected graphs on n vertices, ∂Q
2 is minimum for

the complete graph Kn. If we consider only the class of trees, the minimum of ∂Q
2 seems to be reached for

the star Sn.

Conjecture 4.6 Let T be a tree on n ≥ 4 vertices. Then

∂Q
2 (T ) ≥ ∂Q

2 (Sn) = 2n− 5.

with equality if and only if T is the star Sn.

For the class of unicyclic graphs, we conjecture a lower and an upper bound as well as a characterization of

the extremal graphs for each bound.

Conjecture 4.7 Let G be a connected unicyclic graph on n ≥ 5 vertices. Then

2n− 5 = ∂Q
2 (S+

n ) ≤ ∂Q
1 (G) ≤ ∂Q

1 (Kin,3)

with equality for the lower (resp. upper) bound if and only if G is the graph S+
n (resp. the long kite Kin,3).
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