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Abstract

We introduce a Laplacian for the distance matrix of a connected graph, called the distance Laplacian

and we study its spectrum. We show the equivalence between the distance Laplacian spectrum and the
distance spectrum for the class of transmission regular graphs. There is also an equivalence between the
Laplacian spectrum and the distance Laplacian spectrum of any connected graph of diameter 2. Sim-
ilarities between n, as a distance Laplacian eigenvalue, and the algebraic connectivity are established.
Finally, we investigate some particular distance Laplacian eigenvalues.

Key Words: Distance matrix, eigenvalues, Laplacian, spectral radius.

Résumé

On introduit un laplacien pour la matrice des distances d’un graphe connexe, appelé laplacien des

distances et on étudie son spectre. On montre l’équivalence entre le spectre du laplacien des distances
et le spectre de la matrice des distances pour la classe des graphes transmission-réguliers. On montre
également qu’il y a une équivalence entre le spectre du laplacien et le spectre du laplacien des distances
pour tout graphe connexe de diamètre 2. Des similitudes entre n, considéré comme une valeur propre
du laplacien des distances, et la connectivité algébrique sont établies. Enfin, on étudie certaines valeurs
propres du laplacien des distances.

Mots clés : Matrice des distances, valeurs propres, laplacien, rayon spectral.
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1 Introduction

We begin by recalling some definitions. In this paper, we consider only simple, undirected and finite graphs,
i.e, undirected graphs on a finite number of vertices without multiple edges or loops. A graph is (usually)

denoted by G = G(V,E), where V is its vertex set and E its edge set. The order of G is the number n = |V |

of its vertices and its size is the number m = |E| of its edges. The adjacency matrix of G is a 0–1 n×n–matrix

indexed by the vertices of G and defined by aij = 1 if and only if ij ∈ E. Denote by (λ1, λ2, . . . , λn) the

A–spectrum of G, i.e., the spectrum of the adjacency matrix A of G, and assume that the eigenvalues are
labeled such that λ1 ≥ λ2 ≥ · · · ≥ λn. The matrix L = Diag(Deg)− A, where Diag(Deg) is the diagonal

matrix whose diagonal entries are the degrees in G, is called the Laplacian of G. Denote by (µ1, µ2, . . . , µn)

the L–spectrum of G, i.e., the spectrum of the Laplacian of G, and assume that the eigenvalues are labeled

such that µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The matrix Q = Diag(Deg) + A is called the signless Laplacian of G.
Denote by (q1, q2, . . . , qn) the Q–spectrum of G, i.e., the spectrum of the signless Laplacian of G, and assume

that the eigenvalues are labeled such that q1 ≥ q2 ≥ · · · ≥ qn.

Given two vertices u and v in a connected graph G, d(u, v) = dG(u, v) denotes the distance (the length of a

shortest path) between u and v. The Wiener index W (G) of a connected graph G is defined to be the sum

of all distances in G, i.e.,

W (G) =
1

2

∑

u,v∈V

d(u, v).

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v to all other vertices in

G, i.e.,

Tr(v) =
∑

u∈V

d(u, v).

A connected graph G = (V,E) is said to be k–transmission regular if Tr(v) = k for every vertex v ∈ V .

As usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by Ka,n−a the complete bipartite graph

and by Kn the complete graph, each on n vertices. A kite Kin,ω is the graph obtained from a clique Kω and
a path Pn−ω by adding an edge between an endpoint of the path and a vertex from the clique.

The distance matrix D of a connected graphG is the matrix indexed by the vertices of G where Di,j = d(vi, vj)

and d(vi, vj) denotes the distance between the vertices vi and vj . Let ∂1 ≥ ∂2 ≥ · · · ≥ ∂n denote the spectrum

of D. It is called the distance spectrum of the graph G.

Similarly to the (adjacency) Laplacian, we define the distance Laplacian of a connected graph G to be the
matrix L = Diag(Tr) − D, where Diag(Tr) denotes the diagonal matrix of the vertex transmissions in G.

Let ∂L
1 ≥ ∂L

2 ≥ · · · ≥ ∂L
n denote the spectrum of L. We call it the distance Laplacian spectrum of the graph

G. To illustrate, we present in Figure 1 the Petersen graph [9] with its different spectra.

Figure 1: The Petersen graph and its different spectra.
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For a connected graph G, let PG
D (t) and PG

L (t) denote the distance and the distance Laplacian characteristic

polynomials respectively. For instance, the distance and the distance Laplacian spectra of the complete graph

Kn are respectively its adjacency and Laplacian spectra, i.e.,

PKn

D (t) = (t− n+ 1)(t+ 1)n−1;

PKn

L (t) = t(t− n)n−1.

The rest of the paper is organized as follows. In Section 2, we discuss similarities between the distance

Laplacian spectrum of a graph and its other spectra. We first prove equivalence between the distance

Laplacian spectrum and the distance spectrum among the class of transmission regular graphs. Then, we
prove a similar result between the distance Laplacian spectrum and the Laplacian spectrum among the family

of graphs of diameter 2. Thereafter, we show that the interlacing theorem does not apply for the distance

Laplacian spectrum. In Section 3, we show that the second smallest distance Laplacian eigenvalue ∂L
n−1 of

G is for G exactly what the second smallest Laplacian eigenvalue of G is for G, i.e., ∂L
n−1 of G can be seen

as the algebraic connectivity of G. Section 4 is devoted to the study of some particular eigenvalues. Among

other results, we show that 0 is the smallest distance Laplacian eigenvalue, with multiplicity 1. Finally, we

list some open conjectures in Section 5.

2 Similarities with other spectra

In [5, 6, 7], Cvetković and Simić studied the spectral graph theory based on the signless Laplacian matrix.
Among other results, they showed equivalence between the spectrum of the signless Laplacian and

• the adjacency spectrum for the class of (degree) regular graphs;

• the Laplacian spectrum for the class of (degree) regular graphs;

• the Laplacian spectrum for the class of bipartite graphs.

Along these lines, we studied similarities between the spectra of different distance matrices associated to

connected graphs. A first result is that there is equivalence between the spectrum of the distance matrix D

and the spectrum of the distance Laplacian L on the set of transmission regular graphs.

Theorem 2.1 If G is a k–transmission regular graph on n vertices with distance spectrum ∂1 ≥ ∂2 ≥ · · · ≥ ∂n
and distance Laplacian spectrum ∂L

1 ≥ ∂L
2 ≥ · · · ≥ ∂L

n , then ∂L
i = k − ∂n−i+1 for all i = 1, . . . , n.

Proof. The relationship between the characteristic polynomials is as follows.

PL(t) = det(L − tI) = det(Diag(Tr)−D − tI) = (−1)ndet(D − (k − t)I) = (−1)nPD(k − t).

Thus ∂ is an eigenvalue of D if and only if ∂L = k − ∂ is an eigenvalue of L. Ranking the eigenvalues in a

non increasing order completes the proof.

Using the above theorem, we can calculate the distance Laplacian characteristic polynomial of the cycle Cn

from its distance polynomial. First, the distance characteristic polynomial of Cn was given in [8], according

to the parity of n, as follows.

If n = 2p (i.e., even)

PCn

D (t) = tp−1 ·

(

t−
n2

4

)

·

p
∏

j=1

(

t+ csc2
(

π(2j − 1)

n

))

.

If n = 2p+ 1 (i.e., odd)

PCn

D (t) =

(

t−
n2 − 1

4

)

·

p
∏

j=1

(

t+
1

4
sec2

(

πj

n

))

·

p
∏

j=1

(

t+
1

4
csc2

(

π(2j − 1)

2n

))

.
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Since the cycle Cn is a k–transmission regular graph with k = n2/4 if n is even and k = (n2 − 1)/4 if n is

odd, we have

if n = 2p (i.e., even)

PCn

L (t) = t ·

(

t−
n2

4

)p−1

·

p
∏

j=1

(

t−
n2

4
− csc2

(

π(2j − 1)

n

))

;

if n = 2p+ 1 (i.e., odd)

PCn

L (t) = −t ·

p
∏

j=1

(

t−
n2 − 1

4
−

1

4
sec2

(

πj

n

))

·

p
∏

j=1

(

t−
n2 − 1

4
−

1

4
csc2

(

π(2j − 1)

2n

))

.

The second equivalence established is between L–theory and L–theory on the set of graphs of diameter 2.

Theorem 2.2 Let G be a connected graph on n vertices with diameter D = 2. Let λL
1 ≥ λL

2 ≥ · · ·λL
n−1 >

λL
n = 0 be the Laplacian spectrum of G. Then the distance Laplacian spectrum of G is 2n−λL

n−1 ≥ 2n−λL
n−2 ≥

· · · 2n − λL
1 > ∂L

n = 0. Moreover, for every i ∈ {1, 2, . . . , n− 1} the eigenspaces corresponding to λL
i and to

2n− λL
n−i are the same.

Proof. Concerning the zero eigenvalue, the result is trivial.

For a connected graph of diameter 2, the transmission of each vertex v ∈ V is

Tr(v) = d(v) + 2(n− 1− d(v)) = 2n− d(v) − 2,

where d(v) denotes the degree of v in G.

Also, the distance matrix is

D = 2J − 2I −A,

where J is the all ones matrix. Thus the distance Laplacian matrix can be written as

L = Diag(Tr)−D = (2n− 2)I −Diag(Deg)− 2J + 2I +A = 2nI − 2J − L.

Consider any eigenvalue λL
i of the Laplacian L with 1 ≤ i ≤ n − 1, i.e., a non zero Laplacian eigenvalue of

G, and let Ui denote a Laplacian eigenvector for λL
i . Since L is symmetric and the all ones column vector e

is an eigenvector for λL
n = 0, we have eT · Ui = 0 and therefore, J · Ui = 0. Thus

L · Ui = 2nUi − L · Ui = (2n− λL
i )Ui,

which means that 2n − λL
i is an eigenvalue of L and Ui is a corresponding eigenvector. This completes the

proof.

The famous interlacing theorem (see e.g. [4, p. 9]) does not apply in the case of the distance Laplacian

spectrum of a graph. Indeed, consider the path Pn obtained from the cycle Cn by the deletion of an edge.
The distance Laplacian spectra of Pn and Cn do not interlace for n ≥ 5. For instance the distance Laplacian

spectrum of P6 is approximately (21.3929, 15, 12.8532, 11, 9.7539, 0) while the distance Laplacian spectrum

of C6 is (13, 13, 10, 9, 9, 0). The corresponding property for the distance Laplacian spectrum is that each

eigenvalue ∂i does not decrease if an edge is deleted from the graph. To prove this fact, we need the following
lemma.

Lemma 2.3 (Courant–Weyl inequalities, [4]) For a real symmetric matrix M of order n, let λ1(M) ≥
λ2(M) ≥ · · · ≥ λn(M) denote its eigenvalues. If A and B are real symmetric matrices of order n and if

C = A+B, then for every i = 1, . . . , n, we have

λi(A) + λ1(B) ≥ λi(C) ≥ λi(A) + λn(B).
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Theorem 2.4 Let G be a connected graph on n vertices and m ≥ n edges. Consider the connected graph

G′ obtained from G by the deletion of an edge. Denote by
(

∂L
1 , ∂

L
2 , . . . ∂

L
n

)

and
(

∂̃L
1 , ∂̃

L
2 , . . . ∂̃

L
n

)

the distance

Laplacian spectra of G and G′ respectively. Then ∂̃L
i ≥ ∂L

i for all i = 1, . . . n.

Proof. We write the distance Laplacian matrix of G′ as L′ = L+M , where M expresses the changes in L

due to the deletion of an edge from G. It is easy to see that M is diagonally dominant with positive diagonal

entries. Thus M is a positive semi-definite matrix. Also, it is easy to see that 0 is an eigenvalue of M . Now,

the result follows immediately from Lemma 2.3.

An immediate consequence of the spectra domination resulting from the deletion of an edge is that the

distance Laplacian of any connected graph dominates that of the complete graph of the same order.

Corollary 2.5 If G is a connected graph on n ≥ 2 vertices, then ∂i(G) ≥ ∂i(Kn) = n, for all 1 ≤ i ≤ n− 1,
and ∂n(G) = ∂n(Kn) = 0.

3 Similarities with the algebraic connectivity

The study of the second smallest distance Laplacian eigenvalue ∂L
n−1 of G led to the observation that

∂L
n−1(G) = n if and only if G is disconnected. In fact, the second smallest distance Laplacian eigenvalue ∂L

n−1

of G is for G exactly what the second smallest Laplacian eigenvalue of G is for G, i.e., ∂L
n−1 of G can be seen

as the algebraic connectivity of G.

Theorem 3.1 Let G be a connected graph on n vertices. Then ∂L
n−1 = n if and only if G is disconnected.

Furthermore, the multiplicity of n as an eigenvalue of L is one less than the number of components of G.

Proof. First, from Corollary 2.5, for any connected graph G,

∂L
n−1 ≥ ∂L

n−1(Kn) = n.

If G is disconnected, then the diameter of G is 2 and thus by Theorem 2.2, ∂L
n−1 = n.

If G is connected, since adding edges does not increase the eigenvalues of L (according to Theorem 2.4),

it suffices to prove that ∂L
n−1 6= n when G is a tree. Assume that G is a tree of diameter D. Since G is

connected D ≥ 3. If D ≥ 4, then the diameter of G is D = 2 and by Theorem 2.2 n is not a distance
Laplacian eigenvalue of G as the algebraic connectivity of G is not 0. Now, assume that D = 3. All the

vertices, but two denoted u and v, are pending in G. Under these conditions, dG(u, v) = 3 and {u, v} is the

only pair of vertices at distance 3. Let d(u) = k and d(v) = l (note that k+ l = n− 2) and label the vertices

of G v1, v2, . . . , vn such that v1, . . . vk are the neighbors of u, vk+1, . . . vk+l are the neighbors of v, u = vn−1

and v = vn. Using that labeling we can write the value of the characteristic polynomial of L at n as follows.

PL(n) =

[

M N
NT R

]

,

where M is the (n− 2)× (n− 2)–matrix all diagonal entries of which are equal to 0 and non diagonal entries

are all equal to 1, N is the (n − 2) × 2–matrix, such that the k first entries of its first column are equal to
1 and the l following entries are equal to 2, the k first entries of its second column are equal to 2 and the l

following entries are equal to 1, and finally

R =

[

−l− 1 3
3 −k − 1

]

.

The determinant of M is det(M) = (−1)(n−1) · (n− 3), and the inverse of M is (n− 3)−1 ·M ′, where M ′ is

the (n− 2)× (n− 2)–matrix, the diagonal entries of which are all equal to 4−n and all non diagonal entries

are equal to 1. Now, using the properties of the determinants (see for example [4, Lemma 2.2.])
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PL(n) = det(M) · det(R−NTM−1N)

= (−1)(n−1) · (n− 3) · det

([

−l − 1 3
3 −k − 1

]

−
1

n− 3
·

[

4l − k(l − 1) kl + 2(k + l)
kl + 2(k + l) 4k − l(k − 1)

])

= (−1)(n−1) · 2(n− 3) 6= 0.

Thus n is not an eigenvalue of L. Note that we used the MAPLE software to evaluate the determinant.

From the above lines, if n is an eigenvalue of L, the diameter of G is necessarily D = 2. Thus the rela-

tion between the multiplicity of n as an eigenvalue of L and the number of components of G follows from

Theorem 2.2.

As immediate consequences of the above theorem, we have the following corollaries.

Corollary 3.2 Let G be a connected graph on n vertices. Then ∂L
1 (G) ≥ n with equality if and only if G is

the complete graph Kn.

Proof. If ∂L
1 (Kn) = n, then n is an eigenvalue of L of multiplicity n − 1. Thus G has n components that

are necessarily isolated vertices and therefore G is the complete graph.

If G is not complete,
n−1
∑

i=1

∂L
i = 2W > n(n− 1),

where W denotes the Wiener index (the sum of all distances) in G. Thus ∂L
1 > n, and this completes the

proof.

Corollary 3.3 If G is bipartite and n is among its distance Laplacian eigenvalues, then G is complete

bipartite. Therefore, the star Sn is the only tree for which n is a distance Laplacian eigenvalue.

Proof. The only bipartite graphs with disconnected complement are the complete bipartite graphs.

Corollary 3.4 If ∆ = n − 1, then n is an eigenvalue of L with multiplicity n − 1 if G is complete and at

least n∆ if G is not complete, where n∆ denotes the number of vertices of maximum degree in G.

Proof. It suffices to note that each dominating vertex (a vertex of degree n − 1) of G corresponds to an

isolated vertex, and thus to a component, of its complement G.

4 Some particular eigenvalues

In this section, we study some particular distance Laplacian eigenvalues. First, as for the Laplacian, 0 is also

an eigenvalue of the distance Laplacian. Before proving this fact, recall the following well-known result from

matrix theory.

Lemma 4.1 (Gershgorin Theorem, [10]) Let M = (mij) be a complex n × n–matrix and denote by

λ1, λ2, . . . λp its distinct eigenvalues. Then

{λ1, λ2, . . . λp} ⊂

n
⋃

i=1







z : |z −mii| ≤
∑

j 6=i

|mij |







.

Theorem 4.2 For any connected graph G, we have ∂L
n = 0 with multiplicity 1.
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Proof. If e = [1, 1, . . . , 1]t is the all ones n–vector, then Le = 0. Thus ∂ = 0 is an eigenvalue of L. Since L

is positive semi-definite, then ∂L
n = 0.

To prove that the multiplicity of ∂L
n = 0 is 1, it suffices to prove that the rank of L is n − 1. Consider the

matrix M obtained from L by the deletion of, say, the last row and the last column. Then M is strictly

diagonally dominant. Using Lemma 4.1, 0 is not an eigenvalue of M . Thus det(M) 6= 0 and therefore the

rank of L is n− 1.

Some regularities in graphs are useful in calculating certain eigenvalues of the matrices related to these graphs.

It is the case, for instance, for the largest eigenvalue of the adjacency matrix or the signless Laplacian whenever

the graph is degree regular. The same is true for the largest eigenvalue of the distance Laplacian whenever

the graph is transmission regular. Sometimes, a local regularity in a graph suffices to know some eigenvalue.
We prove below that it is possible to know a distance Laplacian eigenvalue of a graph if it contains a clique

or an independent set whose vertices share the same neighborhood.

Theorem 4.3 Let G be a connected graph on n vertices. If S = {v1, v2, . . . vp} is an independent set of G

such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then ∂ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and

∂ + 2 is an eigenvalue of L with multiplicity at least p− 1.

Proof. Since the vertices in S share the same neighborhood, any vertex in V − S is at the same distance

from all vertices in S. Any vertex of S is at distance 2 from any other vertex in S. Thus all vertices in S
have the same transmission, say ∂.

To show that ∂ + 2 is a distance Laplacian eigenvalue with multiplicity p− 1, it suffices to observe that the

matrix (∂ + 2)In − L contains p identical rows (columns).

Corollary 4.4

(a) The distance Laplacian characteristic polynomial of the star Sn is

PSn

L (t) = t · (t− n) · (t− 2n+ 1)n−2.

(b) The distance Laplacian characteristic polynomial of the complete bipartite graph Ka,b is

P
Ka,b

L (t) = t · (t− n) · (t− (2a+ b))a−1 · (t− (2b+ a))b−1.

(c) Let SKn,α denote the complete split graph, i.e., the complement of the disjoint union of a clique Kα

and n− α isolated vertices. Then

P
SKn,α

L (t) = t · (t− n)n−α · (t− n− α)α−1.

Proof.

(a) The star Sn contains an independent set S of n− 1 vertices with a common neighborhood. Each vertex

of S has a transmission of 2n − 1. Thus by Theorem 4.3, 2n − 1 is a diatance Laplacian eigenvalue

with multiplicity at least n − 2. The complement of Sn contains exactly two components. Then, by

Theorem 3.1, n is a simple eigenvalue of LSn . Finally, using Theorem 4.2, we get the characteristic
polynomial of LSn .

(b) The complete bipartite graph Ka,b contains two independent sets S1 and S2 with |S1| = a and |S2| = b.

The vertices of S1 (resp. S2) share the same neighborhood S2 (resp. S1). The transmission of each

vertex of S1 (resp. S2) is 2a+ b − 2 (resp. 2b + a − 2). Thus, by Theorem 4.3, 2a+ b and 2b + a are
eigenvalues of LKa,b with multiplicities at least a − 1 and b − 1 respectively. In addition, n and 0 are

eigenvalues of LKa,b , by Theorem 3.1 and Theorem 4.2, respectively.

(c) The independent set of SKn,α contains α vertices sharing the same neighborhood and the same trans-

mission n + α − 2. Then, n + α is an L–eigenvalue with multiplicity at least α − 1. In addition, the
complement of SKn,α contains n − α + 1 components. Thus n is an L–eigenvalue with multiplicity

n− α.
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Theorem 4.5 Let G be a connected graph on n vertices. If K = {v1, v2, . . . vp} is a clique of G such that

N(vi) −K = N(vj) −K for all i, j ∈ {1, 2, . . . , p}, then ∂ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and

∂ + 1 is an eigenvalue of L with multiplicity at least p− 1.

The proof of this theorem is similar to that of the previous one.

Corollary 4.6

(a) The distance Laplacian characteristic polynomial of the graph S+
n , obtained from the star Sn by adding

an edge, is

P
S+
n

L (t) = t · (t− n) · (t− 2n+ 3) · (t− 2n+ 1)n−3.

(b) The distance Laplacian characteristic polynomial of the pineapple PAn,p, obtained from a clique Kn−p

by attaching p > 0 pending edges to a vertex from the clique, is

P
PAn,p

L (t) = t · (t− n) · (t− n− p)n−p−2 · (t− 2n+ 1)p.

Proof. (a) is a particular case of (b), with p = n− 3. Thus, it sufices to prove (b).

It is trivial that 0 is an eigenvalue of LPAn,p . Since the complement of PAn,p contains two components, n is
a simple eigenvalue of LPAn,p . PAn,p contains an independent set of p (pending) vertices sharing the same

neighborhood and the same transmission 2n − 3. Thus, by Theorem 4.3, 2n − 1 is an L–eigenvalue with

multiplicity at least p − 1. PAn,p contains a clique on n − p − 1 vertices sharing the same neighborhood

(composed of the dominating vertex) and the same transmission n + p − 1. By Theorem 4.5, n + p is an
L–eigenvalue with multiplicity at least n−p−2. Now, exaclty n−1 L–eigenvalues are known. The remaining

eigenvalue is equal to the difference between the sum of all transmissions and the sum of the n − 1 known

eigenvalues. It is easy to evaluate the remaining eigenvalue, which in fact equals 2n− 1.

Theorem 4.7 If G is a connected graph on n ≥ 2 vertices then m(∂L
1 ) ≤ n − 1 with equality if and only if

G is the complete graph Kn.

Proof. The inequality results immediately from Theorem 4.2. If the graph is complete, it is easy to see that

equality holds. Now, let G be a connected graph such that m(∂L
1 ) = n−1. Assume, without loss of generality

that the vertices of G are labeled such that Trmax = Tr(v1) ≥ Tr(v2) ≥ · · · ≥ Tr(vn) = Trmin. Since L
admits only two distinct eigenvalues, 0 and ∂L

1 , and e = [1, 1, . . . , 1]t is an eigenvector that belongs to 0, any

vector X = [x1, x2, . . . xn]
t, with x1 = 1, xi = −1 and xj = 0 for j 6= 1 and j 6= i, is an eigenvector that

belongs to ∂L
1 . Using the characteristic relation L ·X = ∂1X , we get Trmax + d(v1, vi) = ∂1 for every vertex

vi including the neighbors of v1, i.e., all the vertices, but v1, are neighbors of v1. Therefore, Trmax = n− 1

which is true if and only if G is the complete graph.

Theorem 4.8 If G is a tree on n ≥ 3 vertices, then ∂L
1 ≥ 2n− 1 with equality if and only if G is the star

Sn.

Proof. It is easy to see that if G is the star Sn with n ≥ 3 equality holds. If the tree G is not a star, then
its diameter is at least 3. For n = 3, there is only one tree S3. For n = 4, there are two trees, P4 and S4, and

equality holds only for S4. Assume that n ≥ 5. Let the vertex set {v1, v2, . . . vn} of G be labeled such that

v1v2v3v4 is a path. For i ≥ 5, vi is adjacent to v1 or to v2 and d(vi, v4) ≥ 3, or vi is adjacent v3 or to v4 and

d(vi, v1) ≥ 3, or vi is not adjacent to any of the four vertices and d(vi, v1) ≥ 3 and d(vi, v4) ≥ 3. Thus there
are at least n− 3 distances greater than or equal to 3. Then we have

n−1
∑

i=1

∂L
i = 2W ≥ 2

(

(n− 1) + 2

(

n(n− 1)

2
− (n− 1)− (n− 3)

)

+ 3(n− 3)

)

= 2n(n− 1)− 4.
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Using Theorem 4.7, we get m(∂L
1 ) < n− 1 and therefore

∂L
1 >

2W

n− 1
≥ 2n−

4

n− 1
≥ 2n− 1

for all n ≥ 5. This completes the proof.

5 Some conjectures

In this section, we list a series of conjectures about some particular distance Laplacian eigenvalues of a
connected graph. These conjectures, as well as some of the results proved in this paper, were obtained using

the AutoGraphiX system [1, 2, 3] devoted to conjecture–making in graph theory.

First, we conjecture about bounding the largest distance Laplacian eigenvalue.

Conjecture 5.1 For any connected graph G on n ≥ 4 vertices,

• ∂L
1 (G) ≤ ∂L

1 (Pn) with equality if and only if G is the path Pn;

• if G is unicyclic, then ∂L
1 (G) ≤ ∂L

1 (Kin,3) with equality if and only if G is the kite Kin,3;

• if G is unicyclic and n ≥ 6, then ∂L
1 (G) ≥ ∂L

1 (S
+
n ) with equality if and only if G is the graph S+

n ,

obtained from the star Sn by adding an edge.

The next conjecture is about the multiplicity of the largest distance Laplacian eigenvalue. If true, this
conjecture implies that any connected graph has at least two different distance Laplacian eigenvalues, and

the complete graph Kn is the only graph with exactly two.

Conjecture 5.2 If G is a connected graph on n ≥ 2 vertices and G 6∼= Kn, then m(∂L
1 (G)) ≤ n − 2 with

equality if and only if G is the star Sn and if n = 2p for the complete bipartite graph Kp,p.

Finally, we give conjectures about the second largest distance Laplacian eigenvalue of a connected graph:
lower and upper bounds among all connected graphs; a lower bound among all trees; and lower and upper

bounds among unicyclic graphs.

Conjecture 5.3 For any connected graph G on n ≥ 4 vertices,

• ∂L
2 (G) ≥ n with equality if and only if G is the complete graph Kn or Kn minus an edge;

• if n 6= 7, then ∂L
2 (G) ≤ ∂L

2 (Pn) with equality if and only if G is the path Pn;

• if G is a tree and n ≥ 5, then ∂L
2 (G) ≥ 2n− 1 with equality if and only if G is the star Sn;

• if G is unicyclic and n ≥ 10, then ∂L
2 (G) ≤ ∂L

2 (Kin,3) with equality if and only if G is the kite Kin,3;

• if G is unicyclic and n ≥ 6, then ∂L
2 (G) ≥ ∂L

2 (S
+
n ) with equality if and only if G is the graph S+

n

obtained from the star Sn by adding an edge.
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