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On rrr-Equitable Colorings of Trees and Forests

Alain Hertz
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Abstract

An r-equitable k-coloring c of a graph G = (V,E) is a partition of V into k stable sets V1(c), · · · , Vk(c)
such that | |Vi(c)| − |Vj(c)| | ≤ r for any i, j ∈ {1, · · · , k}. In [B.-L. Chen and K.-W. Lih, Equitable Col-
oring of Trees, Journal of Combinatorial Theory, Series B 61, 83–87 (1994)], the authors gave a complete
characterization of trees which are 1-equitably k-colorable. In this paper, we generalize this result and
give a complete characterization of trees which are r-equitably k-colorable for any given r ≥ 1. Further-
more we explain how to extend our result to forests.

Key Words: trees, forests, equitable coloring, maximum degree, independent sets.

Résumé

Une k-coloration r-équitable c d’un graphe G = (V,E) est une partition de V en k ensembles stables
V1(c), · · · , Vk(c) tel que | |Vi(c)| − |Vj(c)| | ≤ r pour tout i, j ∈ {1, · · · , k}. Dans [B.-L. Chen and K.-W.
Lih, Equitable Coloring of Trees, Journal of Combinatorial Theory, Series B 61, 83–87 (1994)], les auteurs
ont donné une caractérisation complète des arbres qui sont 1-équitablement k-colorables. Dans cet article,
nous généralisons ce résultat et donnons une caractérisation complète des arbres qui sont r-équitablement
k-colorables quel que soit r ≥ 1. De plus, nous montrons comment ce résultat peut être étendu aux forêts.

Acknowledgments: This paper was partially written while the first author was visiting LAMSADE at
the Université Paris-Dauphine and while the second author was visiting GERAD and École Polytechnique
de Montréal. The support of both institutions is gratefully acknowledged.
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1 Introduction

All graphs in this paper are finite, simple and loopless. Let G = (V,E) be a graph. We denote by |G| the
number of vertices in G. For a vertex v ∈ V , let N(v) denote the set of vertices in G that are adjacent to

v, i.e., the neighbors of v. N(v) is called the neighborhood of vertex v. We also define for every v ∈ V , the

closed neighborhood of v as N [v] = N(v)∪{v}. The degree of a vertex v, denoted by deg(v), is the number of
neighbors of v, i.e., deg(v) = |N(v)|. Δ(G) denotes the maximum degree of G, i.e., Δ(G) = max{deg(v)| v ∈
V }. For a set V ′ ⊆ V , we denote by G− V ′ the graph obtained from G by deleting all vertices in V ′ as well
as all edges incident to at least one vertex of V ′.

An independent set in a graph G = (V,E) is a set S ⊆ V of pairwise nonadjacent vertices. The maximum

size of an independent set in a graph G = (V,E) is called the independence number of G and denoted by
α(G). We define α∗(G) = min{α(G−N [v])| deg(v) = Δ(G)}. In other words, α∗(G) is the minimum size of

a maximum independent set in a graph G′ obtained from G by deleting the closed neighborhood of a vertex

of maximum degree in G. A bipartite graph G = (V,E) is a graph whose vertex set can be partitioned into

two independent sets X and Y . Such a graph will be referred to as G = (X,Y,E).

A k-coloring c of a graph G = (V,E) is a partition of V into k independent sets which we will denote by
V1(c), V2(c), · · · , Vk(c) and refer to as color classes. The cardinality of a largest color class with respect to

a coloring c will be denoted by Maxc. A graph G is r-equitably k-colorable, with r ≥ 1 and k ≥ 2, if there

exists a k-coloring c of G such that | |Vi(c)| − |Vj(c)| | ≤ r for any i, j ∈ {1, 2, · · · , k}. A graph which is

1-equitably k-colorable is simply said to be equitably k-colorable.

The notion of equitable colorability was introduced in [7]. Since then, it has been studied by many
authors (see for instance [2, 3, 5, 6, 8]). To the best of our knowledge, no results are known about r-equitable

colorability for r ≥ 2, although this seems to be a natural extension. Indeed, a k-colorable graph G does not

always admit an equitable k-coloring, but clearly there always exists an integer r ≥ 1 such that G admits an

r-equitable k-coloring.

In [3], the authors studied the case when r = 1 and G is a tree. They gave a complete characterization of
trees which are equitably k-colorable. Their result is split into two parts.

Theorem 1.1 ([3]) Let T = (X,Y,E) be a tree containing at least one edge and such that | |X | − |Y | | ≤ 1.

Then T is equitably k-colorable if and only if k ≥ 2.

Theorem 1.2 ([3]) Let T = (X,Y,E) be a tree such that | |X | − |Y | | > 1. Then T is equitably k-colorable

if and only if k ≥ max{3, � |T |+1
α∗(T )+2�}.

This result was then generalized to forests for k ≥ 3 in [2].

Theorem 1.3 ([2]) Suppose F is a forest and k ≥ 3 is an integer. Then F is equitably k-colorable if and

only if k ≥ � |F |+1
α∗(F )+2�.

In this paper, we consider trees and we give a complete characterization of those that are r-equitably

k-colorable for r ≥ 1 and k ≥ 2, thus generalizing the result of [3]. Furthermore we will explain how to

extend this result to forests, thus generalizing Theorem 1.3.

Our paper is organized as follows. In Section 2 we present some interesting properties of r-equitable

k-colorings in trees as well as some preliminary results that we will use to prove our main result which will
be given in Section 3. In Section 4, we explain how to extend it to forests.
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2 Preliminary results

We will start by presenting some properties concerning r-equitable k-colorings of trees with r ≥ 1 and k ≥ 2.

Consider a tree T and an integer r ≥ 1. Let c be an arbitrary r-equitable k-coloring of the vertex set of

T such that |V1(c)| ≥ |V2(c)| ≥ · · · ≥ |Vk(c)| with k ≥ 3. Then there may be vertices in T which are forced

to be colored with color k. Indeed, if for instance T is a star on (k − 1)r + k vertices, then the vertex v of
degree > 1 necessarily belongs to Vk(c) and actually Vk(c) = {v}. Furthermore, we have |Vi(c)| = r + 1 for

i ∈ {1, · · · , k − 1}. It turns out that this is no longer true for colors 1, 2 · · · , k − 1. In fact, we obtain the

following.

Lemma 2.1 Let T be a tree containing at least two vertices and let u be any vertex in T . Assume T is
r-equitably k-colorable for some integers k ≥ 3 and r ≥ 1, and let � be any integer in {1, · · · , k − 1}. Then

there exists an r-equitable k-coloring c of T such that |Vi(c)| ≥ |Vj(c)| for all 1 ≤ i < j ≤ k and u /∈ V�(c).

Proof. Suppose the Lemma is false. Let c be an r-equitable k-coloring of T with |Vi(c)| ≥ |Vj(c)| for all

1 ≤ i < j ≤ k. Among all such colorings we choose one such that for every j = 1, · · · , k, there exists no
r-equitable k-coloring c′ of T with |V1(c)| = |Vi(c

′)| i = 1, .., j − 1 and maxki=j+1{|Vi(c
′)|} < |Vj(c)|. In other

words, Maxc = |V1(c)| is minimum among all r-equitable k-colorings of T , |V2(c)| is mininum among all

r-equitable k-colorings c′ of T with Maxc′ = Maxc, and so on.

Let � ∈ {1, · · · , k − 1} be an integer for which the Lemma does not hold. We define x = 1, y = 2, z = 3

if � = 1 and x = � − 1, y = �, z = � + 1 if � > 1. Since we assume that the lemma is false, it follows that
u ∈ V�(c), which means that u ∈ Vx(c) if � = 1 and u ∈ Vy(c) if � > 1. Then |Vx(c)| > |Vy(c)|, otherwise
we could assign color x to all vertices in Vy(c) and color y to all vertices in Vx(c) to obtain an r-equitable

k-coloring c′ with u /∈ V�(c
′), a contradiction. Similarly, we must have |Vy(c)| > |Vz(c)| when l > 1 since

otherwise we could assign color y to all vertices in Vz(c) and color z to all vertices in Vy(c) and thus the
lemma would hold.

We define F as the subgraph of T induced by Vx(c) ∪ Vy(c) ∪ Vz(c). If F is disconnected, we add some

edges to make F become a tree T ′ such that no two adjacent vertices have the same color with respect to

c; otherwise we set T ′ = F . Let V (T ′) denote the vertex set of T ′. Moreover, for q = y or z, we denote

q = y + z − q. This implies that q = z if q = y and q = y if q = z. We start by proving the following two
claims.

Claim 1: There exists no r-equitable 3-coloring c′ of T ′ (using colors x, y, z) with c′(u) = c(u), |Vx(c
′)| =

|Vx(c)| − 1, |Vq(c
′)| = |Vq(c)|+ 1 and |Vq(c

′)| = |Vq(c)| for q = y or z.

Indeed, if such a coloring c′ exists, then the assumption on c implies |Vq(c
′)| = |Vx(c)| > |Vx(c

′)|. Now we

assign color x to all vertices in Vq(c
′), color q to all vertices in Vx(c

′) and color c′′(v) = c(v) to all vertices in

T − (Vx(c
′) ∪ Vq(c

′)) to obtain an r-equitable k-coloring c′′ of T . We distinguish two cases:

• If l = 1, we have |V1(c
′′)| > maxki=2{|Vi(c

′′)|} and u /∈ V1(c
′′).

• If l > 1, we have q = y since otherwise |Vz(c
′)| = |Vz(c)| + 1 = |Vx(c)| which contradicts |Vx(c)| >

|Vy(c)| > |Vz(c)|. Then |V1(c
′′)| ≥ · · · ≥ |V�−1(c

′′)| > |V�(c
′′)| ≥ |V�+1(c

′′)| ≥ · · · ≥ |Vk(c
′′)| and

u ∈ V�−1(c
′′).

Thus in both cases, c′′ is an r-equitable k-coloring of T such that u 	∈ Vl(c
′′), a contradiction. This proves

Claim 1.

Claim 2: No leaf of T ′, except possibly u, is in Vx(c).

Indeed, assume T ′ has a leaf v 	= u in Vx(c) and let w be its unique neighbor in T ′. We can change the

color of v from x to c(w) to obtain an r-equitable 3-coloring c′ of T ′ with c′(u) = c(u), |Vx(c
′)| = |Vx(c)| − 1,

|Vc(w)(c
′)| = |Vc(w)(c)|+ 1 and |Vc(w)(c

′)| = |Vc(w)(c)|, contradicting Claim 1. This proves Claim 2.
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Let �T be the oriented rooted tree obtained from T ′ by orienting the edges from root u to the leaves. Let

us partition the vertices in Vx(c) into subsets U1, · · · , Up such that Uq (q = 1, · · · , p) contains all vertices in
Vx(c) having no successor in Vx(c) −

⋃q−1
j=1 Uj. For a vertex v ∈ U1, let L(v) denote the set of leaves in �T

having v as predecessor.

If |L(v)| = 1 for some v ∈ U1, then let P = v → s1 → · · · → sa denote the path from v to the leaf sa
in L(v). If v = u (and hence � = 1 since u ∈ Vx(c)) then T ′ is a chain with only one vertex in Vx(c), which
means that Vy(c) = Vz(c) = ∅ since |Vx(c)| > |Vy(c)| ≥ |Vz(c)|. Thus T ′ has only one vertex, namely u,

and since u ∈ V1(c) this implies that T has only one vertex, a contradiction. Hence v 	= u. Let w be the

predecessor of v in �T :

• if c(w) = c(s1), we change the color of v to c(w) to obtain an r-equitable 3-coloring c′ of T ′ with
c′(u) = c(u), |Vx(c

′)| = |Vx(c)| − 1, |Vc(w)(c
′)| = |Vc(w)(c)|+1 and |Vc(w)(c

′)| = |Vc(w)(c)|, contradicting
Claim 1;

• if c(w) 	= c(s1), we assign color c(s1) to v, color c(sj+1) to sj (j = 1, ..., a− 1), and color x to sa; we

obtain an r-equitable 3-coloring c′ of T ′ with |Vi(c
′)| = |Vi(c)| (i = x, y, z), c′(u) = c(u) and a leaf

sa ∈ Vx(c
′). But this contradicts Claim 2.

We therefore conclude that |L(v)| ≥ 2 for all v ∈ U1. By denoting W1 =
⋃

v∈U1
L(v), we get |W1| ≥ 2|U1|.

For each set Uq, with q > 1, we will now construct a set Wq containing vertices in Vy(c) ∪ Vz(c) that are

successors of vertices in Uq but not successors of vertices in Uq−1. So let v be any vertex in Uq (q > 1). If v

has at least 2 immediate successors in �T , we add two of them to Wq. If v has a unique immediate successor

in �T , then let P = v → s1 → · · · → sa → v′ denote a path from v to a vertex v′ ∈ Uq−1. If a > 1, we add s1
and s2 to Wq. If a = 1 and s1 has an immediate successor w /∈ Vx(c), then we add s1 and w to Wq. Assume

now that a = 1 and all the immediate successors of s1 are in Vx(c). We will prove that such a case is not

possible.

• If v 	= u, then v has a predecessor w in �T . We must have c(w) = c(s1), otherwise we could assign

color c(s1) to v to obtain an r-equitable 3-coloring c′ of T ′ with c′(u) = c(u), |Vx(c
′)| = |Vx(c)| − 1,

|Vc(s1)
(c′)| = |Vc(s1)

(c)|+ 1 and |Vc(s1)(c
′)| = |Vc(s1)(c)|, contradicting Claim 1. But now we can assign

color c(s1) to v and assign color c(s1) to s1 to obtain an r-equitable 3-coloring c′ of T ′ with c′(u) = c(u),

|Vx(c
′)| = |Vx(c)| − 1, |Vc(s1)

(c′)| = |Vc(s1)
(c)|+ 1 and |Vc(s1)(c

′)| = |Vc(s1)(c)|, contradicting Claim 1.

• If v = u, then � = 1 since u ∈ Vx(c). By assigning color c(s1) to u and color c(s1) to s1, we obtain an
r-equitable 3-coloring c′ of T ′ with |Vx(c

′)| = |Vx(c)| − 1, |Vc(s1)
(c′)| = |Vc(s1)

(c)|+ 1 and |Vc(s1)(c
′)| =

|Vc(s1)(c)|. It follows from the assumptions on c that |Vc(s1)
(c′)| = |Vx(c)| > |Vc(s1)(c)| = |Vc(s1)(c

′)|.
Thus the lemma would hold, a contradiction.

In summary, we have |Wq| ≥ 2|Uq|. Since all sets Wq are disjoint, we have

|Vy(c)|+ |Vz(c)| ≥
p∑

q=1

|Wq| ≥
p∑

q=1

2|Uq| = 2|Vx(c)|.

Hence |Vy(c)| or |Vz(c)| is larger than or equal to |Vx(c)|, a contradiction.

Lemma 2.1 allows us to show the following.

Lemma 2.2 Let T1 and T2 be two trees, each one containing at least two vertices. Assume that Ti is r-
equitably k-colorable for i = 1, 2 and k ≥ 2, r ≥ 1. Then the tree T obtained by adding an arbitrary edge

between T1 and T2 is r-equitably k-colorable.

Proof. Consider an r-equitable k-coloring c of T1 and an r-equitable k-coloring c′ of T2 such that |Vi(c)| ≥
|Vj(c)| and |Vi(c

′)| ≥ |Vj(c
′)| for all 1 ≤ i < j ≤ k. Let u be a vertex in T1 and v a vertex in T2, and let

T be the tree obtained by adding an edge between u and v. According to Lemma 2.1, we may assume that

v /∈ V1(c
′). Hence v ∈ Vk−�+1(c

′) for some � ∈ {1, · · · , k − 1} and it follows from Lemma 2.1 that we may
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assume that u /∈ V�(c). We can therefore construct a k-coloring c′′ of T such that Vi(c
′′) = Vi(c)∪Vk−i+1(c

′),
i = 1, · · · , k. For i > j, we have

• |Vi(c
′′)| − |Vj(c

′′)|=|Vi(c)|+ |Vk−i+1(c
′)| − (|Vj(c)|+ |Vk−j+1(c

′)|) ≥ |Vi(c)| − |Vj(c)| ≥ −r;

• |Vi(c
′′)| − |Vj(c

′′)|=|Vi(c)|+ |Vk−i+1(c
′)| − (|Vj(c)|+ |Vk−j+1(c

′)|) ≤ |Vk−i+1(c
′)| − |Vk−j+1(c

′)| ≤ r;

This proves that the considered k-coloring c′′ of T is r-equitable.

Lemma 2.3 If T is an r-equitably k-colorable tree for some k ≥ 2 and r ≥ 1, then the tree obtained by

adding a pending edge to T is (r + 1)-equitably k-colorable.

Proof. Consider an r-equitable k-coloring c of T and let T ′ be the tree obtained by adding a new vertex u and

making it adjacent to some vertex v of T . Without loss of generality, we may assume that |V1(c)| ≥ |V2(c)| ≥
· · · ≥ |Vk(c)|. We extend c to a coloring c′ of T ′ by assigning any color j 	= c(v) to u with j ∈ {1, · · · , k}. If
|Vj(c)| = |V1(c)| in T , then c′ is (r + 1)-equitable, otherwise c′ is r-equitable.

Let us now present some results which we will need to prove our main result. We start with a special

case in which we can get an r-equitable k-coloring from an r-equitable (k − 1)-coloring.

Lemma 2.4 Let c be an r-equitable (k− 1)-coloring of a tree T for r ≥ 1 and k ≥ 3. If Maxc ≤ 2r+2 then
T is r-equitably k-colorable.

Proof. Let c be an r-equitable (k − 1)-coloring of a tree T . We distinguish four cases.

• Maxc ≤ r. Then c is an r-equitable k-coloring of T .

• r+ 1 ≤ Maxc ≤ 2r. We assign color k to r vertices of a color class containing Maxc vertices to get an

r-equitable k-coloring of T .

• Maxc = 2r + 1. If there is a unique color class C containing Maxc vertices, then we assign color

k to r vertices of C to get an r-equitable k-coloring of T . Otherwise, let C1 and C2 be two color
classes containing each Maxc vertices. If there exists a vertex u in C1 that is adjacent to at most

r + 1 vertices in C2, then we assign color k to u and to r vertices of C2 that are nonadjacent to

u to obtain an r-equitable k-coloring of T . Otherwise, if such a vertex does not exist, there are at

least (2r + 1)(r + 2) = 2r2 + 5r + 2 = (2r2 + r + 1) + 4r + 1 > 4r + 1 edges linking C1 to C2. But

|C1|+ |C2| = 4r + 2, thus T would not be a tree, a contradiction.

• Maxc = 2r + 2. If there is a unique color class C containing Maxc vertices, then we assign color k to

r+ 1 vertices of C to get an r-equitable k-coloring of T . Otherwise, let C1 and C2 be two color classes

containing each Maxc vertices. If there exist two vertices u,w in C1 such that |(N(u)∪N(w)) ∩C2| ≤
r + 2, then we assign color k to u,w and to r vertices of C2 that are nonadjacent to u and w to
obtain an r-equitable k-coloring of T . Otherwise, if such two vertices do not exist, there are at least
2r+2
2 (r+ 3) = r2 + 4r+ 3 > 4r+ 3 edges linking C1 to C2. But |C1|+ |C2| = 4r+ 4, thus T would not

be a tree, a contradiction.

We will now give a sufficient condition, involving the maximum degree, for a tree to be r-equitably k-

colorable for k ≥ 3 and r ≥ 1. First we consider the case k = 3. In [1], the authors gave the following

sufficient condition for a tree to be equitably 3-colorable. We will use this result in our proof.

Theorem 2.1 ([1]) A tree T is equitably 3-colorable if |T | ≥ 3Δ(T )− 8 or if |T | = 3Δ(T )− 10.

Lemma 2.5 Let T be a tree with Δ(T ) ≤  |T |+3
3 �+  r−1

2 �, where r ≥ 1. Then T is r-equitably 3-colorable.
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Proof. We will prove the result by induction on r. For r = 1, the result immediately follows from Theorem

2.1. Suppose that r > 1 and that the result holds up to r − 1. Consider a tree T with maximum degree

Δ(T ) ≤  |T |+3
3 �+  r−1

2 �. We will show that T is r-equitably 3-colorable.

First suppose that r is even or/and Δ(T ) <  |T |+3
3 � +  r−1

2 �. Then Δ(T ) ≤  |T |+3
3 � +  r−2

2 �, and by
induction it follows that T is (r − 1)-equitably 3-colorable. Hence T is also r-equitably 3-colorable.

We can therefore assume that r is odd and Δ(T ) =  |T |+3
3 � + r−1

2 . Notice that this necessarily implies

r ≥ 3 and Δ(T ) ≥ 2. Let s = 3 − (|T | mod 3) and consider a tree T ′ obtained from T by adding a chain

on s vertices and linking it to a leaf of T . More precisely, we add s vertices x1, · · · , xs, we make x1 adjacent

to some leaf v of T and we add the edges xixi+1 for i = 1, · · · , s− 1. Since  |T ′|+3
3 � =  |T |+3

3 �+ 1, we have

Δ(T ′) = Δ(T ) =  |T ′|+3
3 �+ r−3

2 . Hence, by induction hypothesis, there exists an (r− 2)-equitable 3-coloring

c of T ′. Since 1 ≤ s ≤ 3 and since at most 2 vertices among x1, · · · , xs have the same color, the restriction

of c to T is an r-equitable 3-coloring.

Using Lemma 2.5, we may know prove the general case k ≥ 3.

Theorem 2.2 Let T be a tree with Δ(T ) ≤  |T |+3
3 �+  r−1

2 �, where r ≥ 1. Then T is r-equitably k-colorable

for all k ≥ 3.

Proof. The proof is by induction on k. The basis of our induction is Lemma 2.5 which asserts that T is

r-equitably 3-colorable if Δ(T ) ≤  |T |+3
3 �+  r−1

2 �. Now suppose that T is r-equitably (k − 1)-colorable for

any k ≥ 4 whenever Δ(T ) ≤  |T |+3
3 � +  r−1

2 �. It remains to show that T is r-equitably k-colorable. Let

q =  |T |−(r−1)(k−1)
k � and let p = |T | − (r − 1)(k − 1) − kq, which implies that 0 ≤ p ≤ k − 1. Furthermore,

let c be an r-equitable (k − 1)-coloring of T .

By Lemma 2.4, we may assume that Maxc ≥ 2r + 3. This implies that q ≥ 3. Indeed, if q ≤ 2 then

|T | ≤ 3k + (r − 1)(k − 1) − 1 = rk + 2k − r. But then necessarily Maxc ≤ 2r + 2, otherwise |T | ≥
(2r + 3) + (k − 2)(r + 3) = rk + 3k − 3 = rk + 2k − r + (k − 3 + r) > |T |, a contradiction. Thus q ≥ 3.

Furthermore, if q = 3, then |T | ≤ 4k+(r−1)(k−1)−1 = rk+3k−r. Then we haveMaxc = 2r+3, otherwise
|T | ≥ (2r+4)+(k−2)(r+4) = rk+4k−4 = rk+3k−r+(k−4+r) > |T |, a contradiction. Finally, we have

r ≤ 3 whenever q = 3, otherwise |T | ≥ (2r + 3) + (k − 2)(r + 3) = rk + 3k − 3 = rk + 3k − r + (r − 3) > |T |,
a contradiction. If q = 3 and r = 3, then the above computation shows that c has exactly one color class C

with 2r+ 3 vertices and k− 2 color classes with r + 3 vertices. Hence we can assign color k to r+ 1 vertices
of C to obtain an r-equitable k-coloring of T .

In summary, we may assume now that either q ≥ 4 or q = 3 and r ≤ 2. Note that since T is (k − 1)-

colorable, α(T ) ≥ � |T |
k−1� = � qk+p

k−1 �+ r − 1 ≥ q + r − 1 ≥ q +  3(r−1)
4 �. Now let M be the set of vertices with

degree strictly larger than  |T |−q−� 3(r−1)
4 �+3

3 �. Since k ≥ 4 we have

(r − 1)(k − 1) ≥ 3(r − 1) ≥ 43(r − 1)

4
�.

We therefore have

4(q + 3(r − 1)

4
�) = 4 |T | − (r − 1)(k − 1)

k
�+ 43(r − 1)

4
�

≤ |T | − (r − 1)(k − 1) + 43(r − 1)

4
�

≤ |T |.

Hence

|T | − 4q ≥ 43(r − 1)

4
�
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and

|T | − (q +  3(r−1)
4 �) + 3

3
≥ 4(q +  3(r−1)

4 �)− (q +  3(r−1)
4 �) + 3

3

= q + 3(r − 1)

4
�+ 1.

This means that every vertex of M is adjacent to more than q +  3(r−1)
4 � vertices. We also note that M

contains at most 3 vertices. Indeed, if M contains 4 vertices, then it follows from the above inequalities that

the number of edges in T is at least

4
|T | − q −  3(r−1)

4 �+ 3

3
− 3 = |T |+ 1 +

|T | − 4q − 4 3(r−1)
4 �

3
≥ |T |+ 1.

which is a contradiction.

Let us now distinguish several cases.

(i) If M is empty, then let S be any independent set containing q +  3(r−1)
4 � vertices (S exists since

α(T ) ≥ q +  3(r−1)
4 �).

(ii) If M = {v1}, then let S be any independent set consisting of q +  3(r−1)
4 � vertices adjacent to v1.

(iii) If M = {v1 v2}, then let S be any independent set consisting of v2 and q+ 3(r−1)
4 �−1 vertices adjacent

to v1 but nonadjacent to v2.

(iv) If M = {v1, v2, v3}, then we may suppose that v2 is not adjacent to v3. Then let S be any independent

set consisting of v2, v3 and q+ 3(r−1)
4 �−2 vertices adjacent to v1 but nonadjacent to v2 and nonadjacent

to v3.

We notice that in each of the above cases, all the vertices in T − S, except possibly v1, are adjacent to at

most  |T |−q−� 3(r−1)
4 �+3

3 � vertices. In cases (ii), (iii) and (iv), the degree of v1 in T − S is at most

Δ(T )− (q + 3(r − 1)

4
� − 2) ≤ |T |+ 3

3
+ r − 1

2
� − q − 3(r − 1)

4
�+ 2

=
|T | − q −  3(r−1)

4 �+ 3

3
+

6− 2q

3
+ r − 1

2
� − 2

3
3(r − 1)

4
�.

• If q = 3, then we have already seen that we may assume that r ≤ 2, which means that  r−1
2 � −

2
3 3(r−1)

4 � = 0. Hence the degree of v1 in T − S is then at most
|T |−q−� 3(r−1)

4 �+3

3 .

• If q ≥ 4, then since  r−1
2 � − 2

3 3(r−1)
4 � ≤ 1

3 , we conclude that the degree of v1 in T − S is at most
|T |−q−� 3(r−1)

4 �+3

3 + 7−2q
3 <

|T |−q−� 3(r−1)
4 �+3

3 .

Thus all vertices in T − S have degree at most
|T |−q−� 3(r−1)

4 �+3

3 .

Observe that T−S may be a forest. Let T1, · · · , Td be the connected components of T−S. For every Ti that

is not a single vertex, let xi and yi denote two distinct leaves in Ti. For every Ti consisting of a single vertex
u, let xi = yi = u . If Δ(T −S) ≤ 1 then T −S can easily be equitably (k− 1)-colored. Otherwise, we link xi

with yi+1 (i = 1, · · · , d− 1) to get a tree T ∗ such that Δ(T ∗) = Δ(T − S) ≤  |T |−q−� 3(r−1)
4 �+3

3 � =  |T∗|+3
3 �.

Since Δ(T ∗) ≤  |T∗|+3
3 �+  1−1

2 �, it follows from our induction hypothesis that T ∗, and hence also T − S, is

equitably (k−1)-colorable. The color classes of an equitable (k−1)-coloring of T −S contain  |T |−q−� 3(r−1)
4 �

k−1 �
or � |T |−q−� 3(r−1)

4 �
k−1 � vertices. Observe that

|T | − q −  3(r−1)
4 �

k − 1
= q + r − 1−  3(r−1)

4 �
k − 1

+
p

k − 1
= q + 3(r − 1)

4
�+ r − 1− k

k − 1
3(r − 1)

4
�+ p

k − 1
.
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Hence,
|T |−q−� 3(r−1)

4 �
k−1 ≤ |S|+r. Furthermore, since k ≥ 4 we have r−1 ≥ k

k−1
3(r−1)

4 , thus
|T |−q−� 3(r−1)

4 �
k−1 ≥

|S|. This means that the independent set S together with the equitable (k − 1)-coloring of T − S induce an

r-equitable k-coloring of T .

We give now the following two Lemmas, the first of which is just an easy observation.

Lemma 2.6 Let G = (X,Y,E) be a connected bipartite graph and let r ≥ 1 be an integer. Then G is

r-equitably 2-colorable if and only if | |X | − |Y | | ≤ r.

Lemma 2.7 If a graph G = (V,E) is r-equitably k-colorable for r ≥ 1 and k ≥ 2, then k ≥ � |G|+r
α∗(G)+r+1�.

Proof. Consider an r-equitable k-coloring of G and let v = argminv∈V {α(G − N [v])| deg(v) = Δ(G)}.
Without loss of generality, we may assume that vertex v has color 1. Clearly, the total number of vertices

in G having color 1 is at most α∗(G) + 1. Since we have an r-equitable k-coloring, it follows that any color
other than color 1 occurs at most α∗(G) + r + 1 times. Thus |G| ≤ α∗(G) + 1 + (k − 1)(α∗(G) + r + 1). It

follows that |G| ≤ k(α∗(G) + r + 1)− r and hence k ≥ � |G|+r
α∗(G)+r+1�.

Finally the following result was shown in [3].

Theorem 2.3 ([3]) Let G = (X,Y,E) be a bipartite graph. If G has p connected components and p ≥ |G|
k

for some positive integer k, then G is equitably k-colorable.

3 rrr-equitably kkk-colorable trees

In this section, we will give a complete characterization of trees which are r-equitably k-colorable for r ≥ 1

and k ≥ 2. Let T = (X,Y,E) be a tree and let r ≥ 1 be an integer. Similar to [3], our main result will consist

of two parts: (a) | |X | − |Y | | ≤ r; (b) | |X | − |Y | | > r. We will first deal with the case | |X | − |Y | | ≤ r.

In the proof of Theorem 1.1 in [3], the authors show that if k ≥ 2, then there exists an equitable k-coloring
c with color classes V1(c), · · · , Vk(c) such that at most one of these color classes contains vertices from both X

and Y , and all other color classes are contained either in X or in Y . Using this fact, we obtain the following.

Theorem 3.1 Let T = (X,Y,E) be a tree containing at least one edge and such that | |X |− |Y | | ≤ r, where

r ≥ 1. Then T is r-equitably k-colorable if and only if k ≥ 2.

Proof. Suppose that n1 = |X | ≤ |Y | = n2. Notice that if n2 − 1 ≤ n1 ≤ n2, the result immediately follows

from Theorem 1.1. Thus we may assume now that n1 < n2 − 1.

Clearly, if T is r-equitably k-colorable, then k ≥ 2. Let us show now the converse. The result trivially

holds for k = 2 (we simply set V1(c) = X and V2(c) = Y and hence c is an r-equitable 2-coloring). Thus, we
may assume that k ≥ 3.

If n1 ≤ r, it follows that n2 ≤ 2r. Then we obtain an r-equitable k-coloring c by setting V1(c) = X and

by assigning color 2 to min{r, n2} vertices in Y and color 3 to the remaining vertices in Y . Hence, we may

assume that n1 > r.

Now delete n2 − n1 − 1 vertices from Y . Notice that n2 − n1 − 1 ≤ r − 1 since n2 − n1 ≤ r. Let

F = (X,Y ′, E) be the remaining graph. Clearly | |X | − |Y ′| | = 1 since |Y ′| = n1 + 1. If necessary, we
add some arbitrary edges between X and Y ′ in order to make F become a tree. It follows from Theorem

1.1, that F admits an equitable k-coloring. Moreover, it follows from the above that there exists such an

equitable k-coloring c with the property that at most one of its color classes contains vertices from both X

and Y ′. Notice that in this case, there must be a color class Vi(c) of c, for some i ∈ {1, · · · , k}, which is
contained in Y ′. Indeed if no such color class exists, this implies that Y ′ ⊂ Vj(c) for some j ∈ {1, · · · , k} and



8 G–2011–40 Les Cahiers du GERAD

|Vj(c)| ≥ n1 + 2. But then c would not be equitable, since any remaining color class Vj′ (c), j
′ 	= j, would

contain at most |F | − n1 − 2 = n1 − 1 vertices. Now we obtain an r-equitable k-coloring c′ of T by copying

the coloring c and by adding the deleted vertices to Vi(c).

Let us now consider the case | |X | − |Y | | > r ≥ 1.

Theorem 3.2 Let T = (X,Y,E) be a tree such that | |X | − |Y | | > r ≥ 1. Then T is r-equitably k-colorable

if and only if k ≥ max{3, � |T |+r
α∗(T )+r+1�}.

Proof. By Lemmas 2.6 and 2.7, T is r-equitably k-colorable only if k ≥ max{3, � |T |+r
α∗(T )+r+1�}. Therefore

the condition is necessary. We now prove the sufficiency. By Theorem 2.2, we may assume that Δ(T ) >

 |T |+3
3 �+  r−1

2 �.
Let v be any vertex of degree Δ(T ) and let k be any integer at least equal to max{3, � |T |+r

α∗(T )+r+1�}. Also,
let q =  |T |−(r−1)(k−1)

k � and p = |T | − (r − 1)(k − 1)− kq, which implies that 0 ≤ p ≤ k − 1.

Since k ≥ |T |+r
α∗(T )+r+1 , it follows that α

∗(T ) + 1 ≥ |T |−r(k−1)
k . Since α∗(T ) + 1 is an integer, it follows that

α∗(T ) + 1 ≥ � |T |−r(k−1)
k � =  |T |−(r−1)(k−1)

k � = q. Hence, there exists an independent set S in T containing

q vertices and such that v ∈ S. Moreover, since  |T |+3
3 � ≥ |T |

3 and  r−1
2 � + 1 ≥ r

3 , we necessarily have

Δ(T ) ≥  |T |+3
3 � +  r−1

2 � + 1 ≥ |T |+r
3 . Since p ≤ k − 1, we have |T | − kq = p + (r − 1)(k − 1) ≤ r(k − 1).

Hence, k(|T | − q) = |T | − kq + (k − 1)|T | ≤ (k − 1)(|T | + r). Thus, the number of connected components

in T − S is larger or equal to |T |+r
3 ≥ |T |+r

k ≥ |T |−q
k−1 . It follows from Theorem 2.3 that T − S is equitably

(k−1)-colorable. Each color class of the equitable (k−1)-coloring of T −S contains either  |T |−q
k−1 � or � |T |−q

k−1 �
vertices. Since |T |−q

k−1 = kq−q+(r−1)(k−1)+p
k−1 = q+ r− 1+ p

k−1 and 0 ≤ p ≤ k− 1, each color class has q+ r− 1
or q+ r vertices. Hence, the independent set S (which has size q) together with the equitable (k−1)-coloring

of T − S induce an r-equitable k-coloring of T .

Thus Theorems 3.1 and 3.2 give a complete characterization of trees which are r-equitably k-colorable for

r ≥ 1 and k ≥ 2.

4 rrr-equitably kkk-colorable forests

We will explain now how to extend our result on trees to the case of forests. Again we will split the result

into two parts.

Theorem 4.1 Let F = (X,Y,E) be a forest containing at least one edge and such that | |X | − |Y | | ≤ r,

where r ≥ 1. Then F is r-equitably k-colorable if and only if k ≥ 2.

Proof. Clearly, if F is r-equitably k-colorable, then k ≥ 2. Let us show now the converse. Assume k ≥ 2

and let T = (X,Y,E′) be a tree obtained from F by adding some arbitrary edges between X and Y . It

follows from Theorem 3.1 that there exists an r-equitable k-coloring c of T . It is obvious to see that c is also
an r-equitable k-coloring of F .

Theorem 4.2 Let F = (X,Y,E) be a forest such that | |X | − |Y | | > r ≥ 1 and let k ≥ 3 be an integer.

Then F is r-equitably k-colorable if and only if k ≥ � |F |+r
α∗(F )+r+1�.

Proof. It follows from Lemma 2.7 that F is r-equitably k-colorable only if k ≥ � |F |+r
α∗(F )+r+1�. Therefore the

condition is necessary. To prove the sufficiency, we distinguish three cases.
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• If Δ(F ) ≤ 1 then F is clearly r-equitably k-colorable.

• If 2 ≤ Δ(F ) ≤  |F |+3
3 � +  r−1

2 �, then let F1, · · · , Fd be the connected components of F . For every Fi

that is not a single vertex, let xi and yi denote two distinct leaves in Fi. For every Fi consisting of a
single vertex u, let xi = yi = u . We add edges xiyi+1 for i = 1, · · · , d − 1 to get a tree T such that

|F |=|T | and Δ(F ) = Δ(T ) ≤  |T |+3
3 �+  r−1

2 �. It then follows from Theorem 2.2 that T is r-equitably

k-colorable. Clearly, the same coloring is also an r-equitably k-coloring of F .

• If Δ(F ) >  |F |+3
3 � +  r−1

2 �, then by applying the same arguments as in the proof of Theorem 3.2,

we can show that F contains an independent set S with q =  |F |−(r−1)(k−1)
k � vertices and F − S is

equitably (k − 1)-colorable, each color class having q + r − 1 or q + r vertices. Hence, F is r-equitably

k-colorable.

Notice that Lemma 2.6 shows that a tree T = (X,Y,E) is r-equitably 2-colorable if and only if | |X | −
|Y | | ≤ r. As already mentioned in [2], characterizing the equitable 2-colorability of forests is more complicated

because it turns out that this is equivalent to a partitioning problem. Since no explicit proof of the complexity

status has been given so far, we will show here that the problem of deciding whether a forest F = (X,Y,E)
is equitably 2-colorable is NP-complete.

Theorem 4.3 Let F = (X,Y,E) be a forest. Then deciding whether F is equitably 2-colorable is NP-

complete.

Proof. Consider the Partition problem which is defined as follows: we are given a finite set A and a size
s(a) ∈ Z

+ for each a ∈ A; the question is whether there exists a subset A′ ⊆ A such that
∑

a∈A′ s(a) =∑
a∈A\A′ s(a). It was shown that Partition is NP-complete even if the elements in A are ordered as

a1, · · · , a2n and we require that A′ contains exactly one of a2i−1, a2i for 1 ≤ i ≤ n (see [4]). We will refer to

this problem as R-Partition and we will use a reduction from this problem to show the NP-completeness.
Notice that we may assume that

∑
a∈A s(a) is even otherwise there is clearly no solution.

Consider an instance I of R-Partition. Construct a forest F as follows: for every i ∈ {1, · · · , n},
consider an arbitrary tree Ti with bipartition Xi, Yi where |Xi| = s(a2i−1) and |Yi| = s(a2i). This clearly

gives us a forest F = (X,Y,E) with n connected components T1, · · · , Tn and X =
⋃n

i=1 Xi and Y =
⋃n

i=1 Yi.

Now suppose that the answer to I is yes. Then we obtain an equitable 2-coloring of F as follows: for

every i ∈ {1, · · · , n}, if a2i−1 ∈ A′ we color the vertices of Xi with color 1, and if a2i ∈ A′ we color the
vertices of Yi with color 1; after, all remaining yet uncolored vertices will get color 2. This clearly gives us

an equitable 2-coloring of F . Conversely suppose now that F admits an equitably 2-coloring c. Since F has

an even number of vertices we have |V1(c)| = |V2(c)|. Then we construct A′ as follows: for every tree Ti,

i = 1 · · · , n, if the vertices of Xi have color 1 we add a2i−1 to A′ and if the vertices of Yi have color 1, then
we add a2i to A′. Thus A′ ⊆ A is such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a) and hence I has answer yes.

5 Conclusion

In this paper we considered r-equitable k-colorings of trees and forests for r ≥ 1 and k ≥ 2. While the

problem of equitable colorability has been extensively studied, no results seem to be known about r-equitable

colorability for r > 1. Here we generalized known result for r = 1 to the case r ≥ 1. This generalisation

is quite natural since many k-colorable graphs do not admit equitable k-colorings. Thus our paper is a first
step towards a generalisation of equitable colorings but many interesting questions remain open, for instance

the r-equitable colorability of chordal graphs or series-parallel graphs.
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