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Abstract

We present a Variable Neighborhood Search approach to solving the one-commodity pickup-and-
delivery travelling salesman problem. It is characterized by a set of customers, each of them supplying
(as pickup customers) or demanding (as delivery customers) a given amount of a single product. A vehicle
with a given capacity starts at the depot and must visit each customer once only and, the vehicle’s capac-
ity must not be exceeded. The objective is to minimize the total length of the tour. Thus, the problem
considered contains the checking of existence of feasible travelling salesman’s tour and the design of the
optimal travelling salesman’s tour, both being NP-hard. We adapt a collection of neighborhood structures
which are mainly used for solving the classical travelling salesman problem: k–opt, double-bridge and
insertion operators. Using a binary indexed tree, we efficiently update the data structures for feasibility
checking in these neighborhoods. Our extensive computational analysis shows that the proposed variable
neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solu-
tion quality and computational efforts. Moreover, we improve the best-known solution of all benchmark
instances from the literature (with 100 to 500 customers). We are also able to solve instances with up to
1000 customers.

Key Words: Combinatorial Optimization; Metaheuristics; Variable neighborhood search; Pickup-and-
delivery Travelling salesman problem.

Résumé

Nous présentons une approche de recherche à voisinage variable pour résoudre le problème du voyageur
de commerce avec une commodité chargement et déchargement. Il est caractérisé par un ensemble
d’usagers, chacun d’entre eux offrant (comme usager de chargement) ou demandant (comme usager de
déchargement) une quantité donnée d’un seul produit. Un véhicule avec une capacité donnée part du
dépôt et doit visiter chaque usager une fois seulement et la capacité ne peut être dépassée. L’objectif est
de minimiser la longueur totale du trajet. Donc le problème considéré contient la vérification d’existence
d’un trajet admissible pour le problème du voyageur de commerce et la détermination d’un trajet optimal
pour le voyageur de commerce tous deux étant NP-difficiles. Nous adaptons une collection de structures
de voisinage qui sont principalement utilisées pour résoudre le problème du voyageur de commerce clas-
sique : k–opt, double-pont et opérateur d’insertion. À l’aide d’un arbre binaire indexé, nous mettons à
jour efficacement les structures de données pour vérifier la faisabilité dans ce voisinage. Des expériences
de calcul extensives montrent que l’algorithme VNS proposé donne de meilleurs résultats que les algo-
rithmes plus connus, tant en terme de la qualité de la solution que du temps de calcul. De plus, nous
améliorons la meilleure solution de tous les problèmes tests de la littérature (avec de 100 à 500 usagers).
Nous sommes aussi capables de résoudre des instances avec jusqu’à 1000 usagers.
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Serbian Ministry of Science and Environmental Protection, International Campus on Safety and Inter-
modality in Transportation, the Nord-Pas-de-Calais Region, the European Community, the Regional
Delegation for Research and Technology, the Ministry of Higher Education and Research, and the Na-
tional Center for Scientific Research. The authors gratefully acknowledge the support of these institutions.
We are grateful to Inmaculada Rodrǵuez-Martń and Juan José Salazar-González for providing us with
the executable version of the algorithm proposed in Hernández–Pérez et al. (2009).
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1 Introduction

The one-commodity pickup-and-delivery travelling salesman problem (1-PDTSP for short) was introduced by

Hernández-Pérez and Salazar-Gonzales (2004a), although similar extended variants of the travelling salesman
problem (TSP) were suggested earlier (see, e.g., Chalasani and Motwani (1999), Gendreau et al. (1999),

Mosheiov (1994), Savelsbergh and Sol (1995)). Surveys may be found in Parragh et al. (2008a) and Parragh

et al. (2008b).

Problem description. 1-PDTSP is a routing problem which generalizes the classical TSP as follows. A

set of location is given, with the travel distances or costs between them; one specific location is considered

to be the vehicle depot, while all the others are identified with customers. These customers are divided
into delivery customers and pickup customers, according to the type of service they require. A unique com-

modity or product has to be transported from some customers to others and each delivery/pickup customer

requires/provides a given amount of this commodity. A vehicle with a given capacity starts and ends at the

depot and must visit each customer only once. The vehicle capacity must not be exceeded after visiting a

pickup customer and any delivery customer can be served so long as the load on the vehicle is no less than
its demand. The 1-PDTSP consists of finding a minimum length Hamiltonian route for the vehicle which

satisfies all the customer requirements. It is not assumed that the vehicle leaves either empty or fully loaded

from the depot, and the initial load of the vehicle also has to be determined.

The 1-PDTSP has several applications in routing a single commodity through a circular network in a

graph connecting different sources and destinations. A real-world application of the 1-PDTSP is shown by
Anily and Bramel (1999) in the context of inventory reposition. Consider a set of retailers owned by the

same firm and located at different sites in a state. At a given moment, due to the random nature of the

demand, some retailers may have an excess of inventory, while others are in need of additional stock. If the

firm decides to transfer inventory from the first group of retailers to the second one, then determining the

cheapest Hamiltonian route to serve all the retailers with a capacitated vehicle is exactly the 1-PDTSP. For
example, the customers can be branches of a bank in an area providing or requiring a known amount of

money (the product), and the depot is the main branch of the bank. Clearly, this is a simple variant of a

more realistic problem where several commodities could be considered or several capacitated vehicles used in

transportation, but it is still an interesting problem in its own right.

Notation. We now introduce the notation that will be used throughout this article. Let G = (V,E) be a

complete and undirected graph, with vertex set V = {1, 2, . . . , n}. Vertex 1 represents the depot. The other
vertices from 2 to n represent the customers, each with an associated non-zero demand qi. If qi > 0, i is

a pickup customer; otherwise, it is a delivery customer. The depot can be considered as a customer with

demand q1 = −
∑n

i=2 qi. If q1 > 0, this means the initial load of the vehicle; otherwise q1 represents the

final load after visiting all customers. The travel cost c(i, j) for each edge (i, j) ∈ E is given. It can be

assumed that the travel costs between locations are proportional to the distance. The capacity of the vehicle
is represented by Q > 0. A vehicle with capacity Q must visit each customer only once, and its capacity must

not be exceeded after visiting a pickup customer and its load must be greater than (or equal to) the demand

of the delivery customer before visiting it. The 1-PDTSP should determine a tour starting and ending at the

depot and having minimum length. Note that typically it holds

max
i∈V
|qi| ≤ Q ≤ max{

∑

i∈V, qi>0

qi,−
∑

i∈V, qi<0

qi}.

The left inequality means that no feasible tour can be found if the vehicle capacity is less than the maximum

customer demand, while the second one makes this problem different from the standard TSP.

Previous work. The 1-PDTSP is NP-hard since it coincides with the Travelling Salesman Problem when

the vehicle capacity is large enough. Even more, the problem of checking the existence of a feasible solution
is NP-complete in the strong sense (Hernández–Pérez (2004)).

Hernández-Pérez and Salazar-González (2004b) describe an exact branch-and-cut algorithm able to solve

instances with up to 60 customers. The same authors propose in Hernández–Pérez and Salazar-González
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(2004a) two heuristic approaches to deal with larger instances. The first heuristic is a simple local search

developed to provide an initial upper bound for the branch-and-cut algorithm. The second approach is a more

elaborated algorithm based on ’incomplete optimization’. That is, the branch-and-cut algorithm is applied
to a restricted search space obtained by considering only a subset of variables, associated with promising

edges of the graph. Moreover, the branch-and-cut execution is truncated by imposing a limit to the number

of levels in the search tree exploration. A primal heuristic is also embedded in the branch-and-cut to build

feasible integer solutions from the information given by the fractional solutions. This heuristic is periodically

applied during the tree search process.

The algorithm proposed in Hernández–Pérez et al. (2009) for solving the 1-PDTSP is a hybrid algorithm

which combines the Greedy Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood

Descent (VND) paradigms. The GRASP metaheuristic is a multi-start procedure, consisting of a loop

embedding, a construction phase and a local search phase. The best overall solution is kept as the final

result. The two local search operators are adaptations of the 2–opt and 3–opt edge-exchange operators for
TSP (see e.g., Johnson and McGeoch (1997)). The GRASP loop is iterated until the stopping condition

is met (a combination of the total number of iterations and computation time). Then, a post-optimization

phase consists of a second VND which starts from the best solution found so far and consists of vertex-

exchange neighborhoods: forward and backward insertion operators (shifting only one customer from the
current position in the tour to any other position).

In Hernández–Pérez and Salazar-González (2007), the authors pointed out a close connection between the

1-PDTSP and the classical capacitated vehicle routing problem (CVRP), where a homogeneous capacitated

vehicle fleet located in a depot must collect a product from a set of pickup customers. These authors presented

new inequalities for the 1-PDTSP adapted from recent inequalities for the CVRP and these inequalities have
been implemented in a branch-and-cut framework to solve to optimality the 1-PDTSP.

Recently Zhao et al. (2009a) proposed a genetic algorithm (GA) which on average gave better results

than the GRASP/VND heuristic. The authors in fact suggested a hybrid heuristic which within standard

GA operators uses several local searches and Ant colony ideas. After initializing the parameters used in the

algorithm, the genetic algorithm starts from a random population of individuals (feasible tours), followed
by 2–opt local optimization and iterates for some fixed number of generations. A new pheromone-based

method for a crossover operator was described, which utilizes both global and local information (edge length,

adjacency relations, demands of customers) to construct an offspring. In the proposed GA, the pheromone

trails are updated on the basis of the globally best solution. They used 3 vertex exchange as the mutation

operator as follows: select three customers at random and then exchange their positions in the tour; the best
feasible one among 5 possible is chosen. Furthermore, the authors proposed a better iterative probabilistic

method for constructing the initial solution, based on the nearest neighbors to each customer. A similar

heuristic is developed in Zhao et al. (2009b) for another similar PDTSP version.

Chalasani and Motwani 1999 have studied k-delivery TSP. This problem can be seen as a special case of

the 1-PDTSP, where both delivery and pickup amount are equal to one unit. In the capacitated dial-a-ride
problem (CDARP) (also named the single-vehicle many-to-many dial-a-ride problem), there is a one-to-one

correspondence between pickup customers and delivery customers, and the vehicle should move one unit of a

commodity from its origin to its destination with a limited capacity Q (see Guan (1998)). Another related

problem is the TSP with backhauls (TSPB) (see Gendreau et al. (1997)), where an uncapacitated vehicle
must visit all the delivery customers before visiting a pickup customer.

The rest of this present paper is organized as follows. In Section 2 we give rules of general variable

neighborhood search heuristics for solving the 1-PDTSP. In Section 3 we describe our data structure and

show the complexity of updating the feasibility of the solution when different neighborhood structures are

used. Section 4 consists of computational results on the benchmark and some new large instances. Section 5
concludes the paper.
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2 General Variable Neighborhood Search for 1-PDTSP

In this section we first give the steps of the General Variable Neighborhood search (GVNS) metaheuristic and

then describe the algorithmic components which we have designed for solving 1-PDTSP: the initialization

process, the three neighborhood structures used as local search procedures and the two neighborhoods used

in the shaking step.

2.1 General Variable Neighborhood Search

Variable Neighborhood Search (VNS) (Mladenović and Hansen (1997)) is a metaheuristic, or framework,

for building heuristics whose basic idea is a systematic change of neighborhood structures within the local
search algorithm. To construct different neighborhood structures and to perform a systematic search, one

needs to supply the solution space with some (quasi)-metrics and then induce neighborhoods from them.

Different neighborhood structures can be exploited in both deterministic and stochastic ways. The basic

VNS combines both approaches: a point from the kth neighborhood is taken at random from where the
deterministic local search algorithm starts. If a better solution is found, the new incumbent is obtained and

the search is re-centered around it. Otherwise, a random point is generated from the neighborhood k+1, etc

(for recent surveys of VNS, see Hansen et al. (2008), Hansen et al. (2010) and for its convergence properties

see Brimberg et al. (2010)).

General VNS (GVNS) is an extended version of the basic VNS. It simply uses more than one neighborhood

in a local search. Such a local search is called a Variable Neighborhood Descent (VND). The steps of the

general VNS and VND are given in Algorithm 8 and Algorithm 2 below.

Algorithm 1: Steps of the general VNS

Function GVNS (x, ℓmax, kmax, tmax)
1 repeat
2 k ← 1;
3 repeat
4 x′ ← Shake(x, k);
5 x′′ ← Seq-VND(x′, ℓmax) / Mix-VND(x′, ℓmax) ;
6 k, x← NeighborhoodChange(x, x′′, k);

until k = kmax

7 t← CpuTime();

until t > tmax

8 return x.

We now detail the steps of the GVNS. Let us denote by Nk, for k = 1, . . . , kmax, a finite set of pre-

selected neighborhood structures, and with Nk(x) the set of solutions in the kth neighborhood of x. These

neighborhoods are used within VNS for diversification purposes, i.e., in the Shaking step.

Sequential VND (Seq-VND). We also denote by Nℓ, ℓ = 1, . . . , ℓmax, neighborhood structures used within

VND. Here we first discuss the general difference between the two basic strategies in VND: sequential and

nested. The steps of Sequential VND are presented in Algorithm 2. We call it sequential because the
neighborhood structures are explored one by one in the given sequence. Note that each local search, and thus

the VND, could use first improvement (make a move the first time an improvement in the neighborhood has

been observed) or best improvement strategy (move to the best solution in the neighborhood). The latter

is also known as steepest descent. For all variants of our VND that will be discussed below, we use the first
improvement approach (for the discussion regarding differences between these two strategies in solving the

travelling salesman problem by 2–opt, see Hansen and Mladenović (2006)).

The function NeighborhoodChange() is common for both VNS and VND. Its pseudo-code is given at

Algorithm 3. It compares the value f(x′) with the incumbent value f(x) obtained in the neighborhood k for
VNS, or ℓ for the VND. If an improvement is obtained, k (or ℓ) is returned to its initial value and the new

incumbent updated (line 2). Otherwise, the next neighborhood is considered (line 3).
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Algorithm 2: Sequential Variable Neighborhood Descent

Function Seq-VND(x, ℓmax)
1 ℓ← 1 // Neighborhood counter

2 repeat
3 i← 0 // Neighbor counter

4 repeat
5 i← i+ 1
6 x′ ← argmin{f(x), f(xi)}, xi ∈ Nℓ(x) // Compare

until (f(x′) < f(x) or i = |Nℓ(x)|)

7 ℓ, x← NeighborhoodChange (x, x′, ℓ); // Neighborhood change

until ℓ = ℓmax

8 return x.

Algorithm 3: Neighborhood change or Move or not function

Procedure NeighborhoodChange (x, x′, k)
1 if f(x′) < f(x) then
2 x← x′; k← 1; // Make a move

else
3 k← k + 1; // Next neighborhood

Most local search heuristics in their descent phase use very few neighborhoods (usually one or two,

i.e., ℓmax ≤ 2). Note that the final solution of Seq-VND should be a local minimum with respect to all ℓmax

neighborhoods. Hence the chances of reaching a global minimum are greater than with a single neighborhood
structure. The total size of Seq-VND is obviously equal to the union of all neighborhoods used. Thus, if

neighborhoods are pairwise disjoint (with no common element in any two neighborhoods) then the following

holds

|NSeq−VND(x)| =
ℓmax
∑

ℓ=1

|Nℓ(x)|, x ∈ X.

Nested and Mixed nested VND. Beside this sequential order of neighborhood structures in the VND
above, one can develop a nested (Nest-VND for short) or mixed-nested VND (Mix-VND) according to Ilić

et al. (2010). Assume that we define two neighborhood structures (ℓmax = 2). In the nested VND we

in fact perform local search with respect to the first neighborhood in any point of the second. Thus, the

cardinality of the neighborhood obtained with the nested VND is clearly the product of the cardinalities of

the neighborhoods included, i.e.,

|NNest−VND(x)| =
ℓmax
∏

ℓ=1

|Nℓ(x)|, x ∈ X.

Therefore, the pure Nest-VND neighborhood is much larger than the sequential one. This implies that the
number of local minima with respect to Nest-VND will be much smaller than the number of local minima

with respect to Seq-VND.

In the Mix-VND after exploring b (a parameter) neighborhoods, we switch from a nested to a sequential

strategy. We can interrupt nesting at some level b′ (b′ = ℓmax − b + 1, 0 ≤ b ≤ ℓmax) and continue with

the list of the remaining neighborhoods in sequential manner. If b = 0, we get Seq-VND. If b = ℓmax we
get Nest-VND. Since nested VND intensifies the search in a deterministic way, the boost parameter b may

be seen as a balance between intensification and diversification in deterministic local search with several
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neighborhoods. Its cardinality is clearly

|NMix−VND(x)| =
ℓmax−b
∑

ℓ=1

|Nℓ(x)| ×
ℓmax
∏

ℓ=ℓmax−b+1

|Nℓ(x)|, x ∈ X.

Algorithm 4: Nested Variable Neighborhood Descent

Function Nest-VND (x, x′, k)
1 Make an order of all the ℓmax ≥ 2 neighborhoods that will be used in the search
2 Find an initial solution x; let xopt = x, fopt = f(x)
3 Set ℓ = ℓmax

4 repeat
5 if all solutions from ℓ neighborhood are visited then ℓ = ℓ+ 1
6 if there is any non visited solution xℓ ∈ Nℓ(x) and ℓ ≥ 2 then xcur = xℓ, ℓ = ℓ−1
7 if ℓ = 1 then
8 Find objective function value f = f(xcur)
9 if f < fopt then xopt = xcur, fopt = fcur

until ℓ = ℓmax + 1 (i.e., until there are no more points in the last neighborhood)

Shaking. The Shaking step is in common for both basic VNS and GVNS. It generates randomly a solution

from the k-th neighborhood of the current solution x, or performs sequentially k random moves.

In the following subsections, we present the main features of our adaptation of GVNS metaheuristic to
the 1-DPTSP.

2.2 Initial Solution for PDTSP

The solution space of 1-PDTSP consists of all possible tours starting from the depot. A tour will be repre-

sented as a permutation of {1, . . . , n}. Many of these tours are infeasible since the amount of the commodity

collected from consecutive pickup customers on the tour can exceed the residual capacity of the vehicle or
the amount of commodity requested by consecutive delivery customers can exceed the maximum load of the

vehicle. We start from a tour which may be infeasible. However, once a feasible tour is reached, we restrict

our search to the subspace of feasible tours.

Let x = (x1, x2, . . . , xn) denote a tour which passes through each customer exactly once with x1 = 1 and

let Li(x) be the load of the vehicle after visiting the i-th customer in the tour x,

Li(x) = Li−1(x) + qxi
and L1(x) = qx1

.

Then, as shown in Hernández–Pérez and Salazar-González (2004a), x is a feasible tour of 1-PDTSP if and
only if

max
i∈V

Li(x)−min
i∈V

Li(x) ≤ Q. (1)

We use a method from Zhao et al. (2009a) for generating the initial solution, since it gives better results on
average than the algorithm proposed in Hernández–Pérez et al. (2009). This constructive procedure starts by

randomly choosing the first customer x2. The next customer xi+1 added to the current sub-tour T is chosen

from a static data structure which includes cl = 20 closest customers from the last inserted customer xi. We

consider only feasible sub-tours without violating the capacity constraints to deliver or to collect the demand
with respect to the customer xi+1. Among these cl closest customers, we search for the customers who can

be feasibly added at the end of the tour T and who have not yet been visited – and select the customer with

the largest demand. If such a customer does not exist, we search for all customers who have not appeared in

the sub-tour T and let S be the set of customers who can be feasibly added to the sub-tour. We select the

nearest customer from S with a probability of 0.9, or select a random customer from S with a probability of
0.1. Finally, if there are no customers who can be added (S = ∅), we add a random customer and continue.

Note that this algorithm can end with an infeasible solution.
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2.3 Neighborhood Structures for the 1-PDTSP

In a local search algorithm a neighborhood structure is introduced to generate moves from one solution to

another. The final solution provided by a local search is a local optimum which can not be improved by
using the neighborhood structure under consideration. Fundamental neighborhood structures for the TSP

which are based on edge exchanges and node insertion moves can also be extended efficiently for 1-PDTSP.

Classical heuristics of this type are the k-exchanges (Lin and Kernighan (1973)), also called k−−opt, which
are successfully used in local searches for assignment, routing and scheduling problems (see, e.g. Gamboa
et al. (2006), Laporte (1992), Rego et al. (2010)).

The 2–opt procedure is the simplest method; it removes two edges from the tour and reconnects the two

paths created. There is only one way to reconnect two paths and still have a valid tour. We perform this

move only if the new tour will be shorter and we continue removing and reconnecting the tour until no 2–opt
improvements can be found. By the so called neighbor-list implementation of 2–opt (see, e.g., Hansen and

Mladenović (2006)), we sort all customers in non-decreasing order of their distances in the preprocessing step,

i.e., we construct the ranked matrix for them. For the selected edge ei = (xi, xi+1), we search for another

edge ej = (xj , xj+1) such that

c(xi, xi+1) + c(xj , xj+1) > c(xi, xj) + c(xi+1, xj+1).

For the fixed edge ei, the customers xj are processed in non-decreasing order according to their distances

from the customer xi (and similarly customers xj+1 are processed according to their distances from the

customer xi+1). Clearly, we can break the processing of vertices if c(xi, xj) > c(xi, xi+1) (and similarly we

can break the processing of vertices according to their distances from xi+1 if c(xi+1, xj+1) > c(xi+1, xi)).
In other words, the neighbor-list implementation of the 2–opt significantly reduces the number of pairwise

choices of edges ei and ej.

The k–opt neighborhood is a generalization of the 2–opt. It drops some k edges and adds k new edges in

order to reconstruct a new tour. There are several possible ways to reconstruct a feasible tour after deleting
k edges. In addition, the number of neighboring solutions in a k–opt neighborhood is O(nk) (Johnson and

McGeoch (1997)). Hence, exploring complete k–opt neighboring solutions is costly. This is why restricted

k–opts are generally used:

(i) Insertion is a special case of 3–opt where each customer is inserted between any other two customers.
Its cardinality is O(n2);

(ii) Or–opt (Or (1976)) is also a special case of 3–0opt. As well as inserting one customer, by Or–opt each

two or three consecutive customers on the tour are inserted between any other two customers. Its

cardinality is also O(n2);

(iii) Swap (interchange) is a special case of 4–opt where 2 customers exchange places in the tour. Its

cardinality is obviously O(n2);

(iv) Double bridge (Johnson and McGeoch (1996)) is a special case of 4–opt as well (see Figure 1 (a)). It is

very important for some combinatorial problems, since it keeps the orientation of the tour.

In this paper, beside 2–opt, we use Insertion, 3–opt and double-bridge neighborhood structures within the

General VNS framework; see Figure 1. In addition, Insertion neighborhood is split into two disjoint subsets:

forward and backward insertion.

The forward insertion move tries to find a shorter tour by moving a customer from its current position i

in the tour, to some position j with j > i. This implies that all customers in positions i+1, i+2, . . . , j have
to be shifted backwards one position. Customers in positions 1 to i− 1 and j + 1 to n remain unchanged.

The backward insertion operator works in a similar way, but this time the selected customer at position

i, is moved to a position j in the tour, such that j < i, and intermediate customers are shifted forward one

position.
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(a) (b) (c)

Figure 1: Double–bridge (a) and 3–opt without change of direction (b) and with change of direction (c)

2.4 Local Search and Shaking

A complete local search is organized as Variable neighborhood descent through a 2–opt neighborhood (N1),

forward and backward insertion neighborhoods (N2 and N3), i.e., a parameter ℓmax from Algorithm 2 has the

value 3. We call it Seq-VND. Another local search is designed as Mixed-nested VND (see also Ilić et al. (2010)

for details): let x be the current solution; we take solution x′ from 3–opt or double–bridge neighborhoods
of x at random and then apply sequential VND (which consists of 2–opt, forward and backward insertion

neighborhoods) starting from solution x′. If such an obtained solution is of better quality than the incumbent

x, we move to it and re-centre the search around it (x← x′). Otherwise we repeat the complete procedure,

i.e., we again choose a new solution at random followed by the sequential VND. The maximum number of
such unsuccessful trials is set at 200. Therefore, this local search is not fully deterministic.

Shaking is performed by using two well known neighborhoods designed for solving TSP: 3–opt and double–

bridge (see Figure 1). We get a random point from Nk neighborhood by performing k3−−opt 3–opt moves and

kdb double–bridge moves, where k3−−opt is a randomly chosen parameter from [k/2, k] and kdb = k−k3−−opt.

The 3–opt and double–bridge moves are performed such that feasibility is kept (assuming that the incumbent
solution is feasible). Otherwise, a random point from 3–opt or from double–bridge neighborhoods is generated.

3 An Efficient Implementation of GVNS for 1-PDTSP

From the point of view of implementation, the main difference between the 1-PDTSP and TSP is that in the

first problem not any permutation of customers represents the feasible tour. Therefore, we need to design a

data structure which will allow us to obtain efficiently tours which not only are shorter, but are also feasible.
In this section we describe the computer implementation of feasibility checking on all neighborhood structures

used within our VND, i.e., within our General VNS.

3.1 2–opt with Feasibility Checking

As mentioned in the previous section, we use what is called the neighbor-list implementation of 2–opt (Johnson

and McGeoch (1997)). In addition, for each solution from the 2–opt neighborhood of the current one, we

need to check if it is feasible. In order to do this efficiently, we propose here the use of a binary indexed

tree (BIT) data structure. This data structure will allow us to check the feasibility of the neighbor tour

in O(log n) (instead of O(n) if the usual data structure is used). If a better solution is found, we need to

construct a new BIT structure in O(n log n) time.

BIT is an efficient data structure introduced by Fenwick (1994) for maintaining the cumulative frequencies

(or partial summations). The basic idea is that each integer can be represented as the sum of certain powers
of two and therefore a cumulative frequency can be also represented as the sum of certain sets of cumulative

sub-frequencies. The operations to access this data structure are based on the binary coding of the index.

Let L be an array of n elements. The binary indexed tree supports the following basic operations:
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• for a given value v and index i, add v to the element Li, 1 ≤ i ≤ n;

• for a given interval [i, j], find maximum/minimum among values Li, Li+1, . . . , Lj, 1 ≤ i ≤ j ≤ n.

We store the data structure in the array Tree (see Algorithm 5 and Algorithm 6 for the maximum case).

The structure is space-efficient in the sense that it needs the same amount of storage as merely a simple array

of n elements. For vehicle loads we will use a binary indexed tree data structure to compute the maximum

and minimum values in the intervals of vehicle loads. The structure Tree is a complete binary tree with the
root node 1. Its leafs correspond to the elements from the array L, moving from left to right in the last level.

Therefore, the elements of the array L are stored at the positions which start from 2p to 2p + n− 1, where

p is the depth of the binary tree defined as the smallest integer such that 2p ≥ n. The internal nodes of

the Tree store the cumulative values (sum, max, min, ...) of the leafs in the subtrees rooted at these nodes.
This implies that the value of the internal node i is just the cumulative value of its two children. The parent

of the node i is ⌊ i2⌋, while the left and the right children of the node i are 2i and 2i + 1, respectively. By

definition, it follows that the number of nodes in BIT is at most 2n, while the depth is ⌈log2 n⌉.

For the updating procedure, we simply need to traverse the vertices from the leaf to the root and update
the values in the parent vertices. For the query procedure, we consider the parents of the left (i) and right (j)

vertices and the intervals which they cover and then iteratively calculate max/min in [i, j]. It can easily be

seen that the max/min operators can be replaced by any distributive function such as sum, product, etc. The

binary indexed tree is updated after setting the element Li to the new value v as described in Algorithm 5.

In the algorithms we use fast binary operators. The bitwise exclusive OR operator (XOR) used in these

algorithms compares each bit of its first operand to the corresponding bit of its second operand. If one bit

is 0 and the other bit is 1, the corresponding result bit is set to 1. Otherwise, the corresponding result bit

is set to 0. Furthermore, instead of using div operator for integer division by 2, we can use the bitwise shift
left operator shl.

Algorithm 5: Updating the binary indexed tree, after setting the element Li to the new value v

1 Input: The value v, element index i and p = max{s : 2s < n}.
2 i← i+ 2p+1 − 1;
3 Tree[i]← v;
4 while i > 0 do
5 Tree[i div 2]← max(Tree[i], T ree[i xor 1]);
6 i← i div 2;

Algorithm 6: Calculating the maximum value in interval Li, Li+1, . . . , Lj

1 Input: The parameters i and j are extreme values of interval [i, j] and p = max{s : 2s < n}.
2 Output: The maximum value among elements Li, Li+1, . . . , Lj .
3 i← i+ 2p+1 − 2; j ← j + 2p+1;
4 vmax ← −1;
5 while (i div 2) 6= (j div 2) do
6 if (i and 1) = 0 then vmax ← max(vmax, T ree[i+ 1]);
7 i← i div 2;
8 if (j and 1) 6= 0 then vmax ← max(vmax, T ree[j − 1]);
9 j ← j div 2;

10 return vmax.

Property 3.1 Updating the binary index tree after setting the element Li to the new value is executed in

O(log n).

Proof. First we need to update the corresponding node in the tree that keeps the value Li, then the iteratively

traverse parents (i, parent[i], parent[parent[i]], ...) and update the cumulative values in these nodes. Since
the depth of the tree is at most ⌈log2 n⌉, the overall complexity O(log n).
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Property 3.2 Calculating the maximum value in interval [Li, Lj], j > i, is executed in O(log n) time.

Proof. To begin with, we need to use the offset 2p− 1 in order to get the nodes in BIT which correspond to

the indices i and j. Value i will represent the leftmost subtree, while the value j will represent the rightmost

subtree that has a nonempty intersection of the given interval. Nodes i and j will always be at the same

level of the binary indexed tree, and we will update the global cumulative value (the maximum function in
Algorithm 6) as long as the parents of i and j are different. If Node i is the left child of its parent, then

the whole right subtree rooted at i + 1 is contained in the given interval and we need to update the global

cumulative value with Tree[i + 1]. Similarly, if Node j is the right child of its parent, then the whole left

subtree rooted at j − 1 is contained in the given interval and we need to update the global cumulative value

with Tree[j − 1]. Since the query algorithm visits exactly two nodes per level of the binary tree, calculating
the maximum value in the interval [Li, Lj] takes O(log n) time in total.

Property 3.3 Checking the feasibility of the 2–opt move for 1-PDTSP with BIT structure is in O(log n).

Proof. Let x = (x1, . . . , xn) be a current tour and L = (L1, . . . , Ln) its associated load vector (where

Li = Li(x) is the load of vehicle after visiting the i-th customer in the tour x). We will use Equation (1)

for checking the feasibility of the solution. Let Treemax and Treemin be the binary indexed structures for
computing the maximum and minimum vehicle loads for each city. After performing the 2–opt move with

attributes i and j associated with the edges ei = (xi, xi+1) and ej = (xj , xj+1) with 1 ≤ i < j ≤ n, the new

tour x′ looks like

x1 → x2 → . . .→ xi → xj → xj−1 → . . .→ xi+1 → xj+1 → xj+2 → . . .→ xn−1 → xn → x1.

or as

x′

k =







xk for k = 1, . . . , i,
xi+j−k+1 for k = i+ 1, . . . , j
xk for k = j + 1, . . . , n.

Thus, only the vehicle loads for the customers xi+1, xi+2, . . . , xj are changed. More precisely, the new load
L′ associated with the new solution x′ is computed as follows:

L′

k =







Lk for k = 1, . . . , i,

Li +
∑k

h=i+1 qxi+j−h+1
for k = i+ 1, . . . , j

Lk for k = j + 1, . . . , n.

Since L0 = 0 and
∑n

i=1 qxi
= 0, it is easy to see that we have

Li +
k

∑

h=i+1

qxi+j−h+1
= Li + Lj − Lk−1 for k = i+ 1, i+ 2, . . . , j − 1, j.

Therefore, in order to find the new minimum vehicle load, we need to find the maximum load among

Lj−1, Lj−2, . . . , Li and subtract this number from Li + Lj. This can be computed in O(log n) time, us-

ing the Treemin structure for the interval [i, j − 1] (see Properties 3.1 and 3.2). Analogously, we calculate
the new maximum vehicle load and check the feasibility of the new tour x′.

3.2 Illustrative Example

For illustration, we consider the small example n20q10B.tsp from the benchmark instances of 1-PDTSP (see

Section 4) with n = 20 nodes and capacity Q = 10. The optimal tour x⋆ and a suboptimal tour x with their

associated loads are:

x⋆ = (1, 11, 17, 14, 19, 4, 8, 20, 15, 18, 12, 6, 16, 10, 2, 9, 13, 5, 7, 3, 1),

x = (1, 11, 17, 14, 19, 4, 8, 20, 15, 18, 12, 6, 2, 10, 16, 9, 13, 5, 7, 3, 1),
L(x⋆) = (8, 3, 8, 0, 10, 7, 8, 1, 7, 1, 3, 3, 4, 9, 6, 7, 3, 4, 0, 0),

L(x) = (8, 3, 8, 0, 10, 7, 8, 1, 7, 1, 3, 3, 0, 5, 6, 7, 3, 4, 0, 0).
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Tours x⋆ and x are presented in Figure 2, and their associated BIT structures for the loads L(x⋆) and L(x)

are presented in Figure 3. Observe that the optimal tour x⋆ is derived from the suboptimal x by one 2–opt

move by considering the edges (6, 16) and (2, 9), i.e. by reversing the part 16, 10, 2. This 2–opt move changes
the values in three leaves of the binary indexed tree (as shown in Figure 3) which corresponds to Nodes 13,

14 and 15, and their parents.

Also note that the optimal tour crosses itself, which is not possible for the Euclidean TSP optimal tour.

Figure 2: Optimal and suboptimal tour

Figure 3: Binary indexed trees for two tours

Insertion feasibility checks. For the feasibility checking of Insertion (forward and backward) moves, the

binary indexed structure is not necessary.

Property 3.4 Feasibility checking of insertion moves for 1-PDTSP is in O(1) time.
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Proof. We traverse the customers i from 1 to n in that order. After moving the customer i to the position

j > i, we have the following loads

L1, L2, . . . , Li−1, Li+1 − qxi
, Li+2 − qxi

, . . . , Lj−1 − qxi
, Lj − qxi

, Lj, Lj+1, . . . , Ln.

Therefore, we need to maintain the minimum and maximum values of Li+1, Li+2, . . . , Lj , which can be
updated in O(1) time after traversing from position j to j + 1.

The overall complexity for an Insertion local search is O(n2).

3.3 Maintaining the Feasibility of 3–opt and Double Bridge Moves

Once feasibility is reached, one would like to keep it in both the local search and Shaking steps of VNS. The
two next properties give sufficient conditions for the feasibility of random moves in 3–opt and double-bridge

neighborhoods.

The size of the 3–opt neighborhood is O(n3). Once three arbitrary edges from the current tour are deleted,
there are 8 possible ways to add three new edges to obtain a new tour. One among them, which does not

change the orientation, is presented in Figure 1. We denote this special 3–opt by 3–opt*. Assume that we

choose three non-consecutive customers from the tour xi1 , xi3 , xi5 and let xi2 , xi4 , xi6 be their successors on

the tour, respectively. Without loss of generality, assume that the depot is located between the customers
xi6 and xi1 .

Property 3.5 If Li1 = Li3 = Li5 holds for the vehicle loads, then we can perform the 3–opt* modification

without violating the feasibility condition.

Proof. It is enough to show that the loads for the customers involved in the move remain the same. For

example, the new loads for the vertices xi4 , xi2 , xi6 remain the same,

L′

i4
= qx1

+ . . .+ qxi1
+ qxi4

= Li1 + qxi4
= Li3 + qxi4

= Li4

L′

i2
= qx1

+ . . .+ qxi1
+ qxi4

+ . . .+ qxi5
+ qxi2

= Li5 + qxi2
= Li1 + qxi2

= Li2

L′

i6
= qx1

+ . . .+ qxi1
+ qxi4

+ . . .+ qxi5
+ qxi2

+ . . .+ qxi3
+ qxi6

= Li3 + qxi6
= Li5 + qxi6

= Li6 .

For the double-bridge move, assume that we choose from the tour four non-consecutive customers xi1 ,

xi3 , xi5 , xi7 and let xi2 , xi4 , xi6 , xi8 be their successors on the tour, respectively (see Figure 1).

Property 3.6 If Li1 = Li5 and Li3 = Li7 then a new solution, obtained by the double bridge-move, is

feasible.

Proof. Without loss of generality, assume that the depot is located between customers xi8 and xi1 . If

Li1 = Li5 and Li3 = Li7 holds for the vehicle loads, we can perform a double-bridge modification without

violating the feasibility condition. For example, the new loads for the vertices xi6 , xi4 , xi2 , xi8 remain the

same,
L′

i6
= qx1

+ . . .+ qxi1
+ qxi6

= Li1 + qxi6
= Li5 + qxi6

= Li6

L′

i4
= qx1

+ . . .+ qxi1
+ qxi6

+ . . .+ qxi7
+ qxi4

= Li7 + qxi4
= Li3 + qxi4

= Li4

L′

i2
= qx1

+ . . .+ qxi1
+ qxi6

+ . . .+ qxi7
+ qxi4

+ . . .+ qxi5
+ qxi2

= Li5 + qxi2
= Li1 + qxi2

= Li2

L′

i8
= qx1

+ . . .+qxi1
+qxi6

+ . . .+qxi7
+qxi4

+ . . .+qxi5
+qxi2

+ . . . qxi3
+qxi8

= Li3 +qxi8
= Li7 +qxi8

= Li8 .

Therefore, we prune our shaking method by choosing four customers such that Li1 = Li5 and Li3 = Li7

and in this way feasibility is preserved.



12 G–2011–33 Les Cahiers du GERAD

3.4 Sequential and Mixed General VNS for 1-PDTSP

Finally we summarize briefly our two new heuristics for solving 1-PDTSP. Both are given in Algorithm 8.

The first one uses sequential VND as a local search (see Algorithm 2) and we denote it by Seq-GVNS. The

second one uses mixed nested VND as a local search and we denote it Mix-GVNS. Three neighborhoods are

used in both sequential and mixed VND routines: 2–opt, forward insertion and backward insertion. For the

2–opt, we use of the tree data structures since it allows us a fast feasibility check in updating (see Properties
3.1 - 3.3 and the illustrative example in Figures 2 and 3). For insertion moves, we do not need to use tree

data structure (see Property 3.4). In order to keep the feasibility after the perturbation of the incumbent

solution, we design special kinds of random 3–opt and double-bridge moves (see Properties 3.5–3.6). The

kth shaking consists of k repetitions of random 3–opt∗ or double-bridge moves in such a way as to preserve
feasibility (see Figure 1). A move is made if and only if a better solution is found.

For both GVNS methods, we use two usual parameters which should be estimated by the user: tmax –

the total running time of the heuristic; kmax = 2 – the total number of neighborhoods used in the outer loop

(the Shaking step). Note that ℓmax (the total number of local search routines used in the VND) is equal to 3.

4 Computational Results

In this section the computational results of presented GVNS methods and their comparison with algorithms

from the literature are given. All tests were carried out on the Intel Core 2 Duo T5800 2.0 GHz with 2 GB
RAM, running the Linux operating system. The algorithms were coded in C++ programming language and

compiled with -O2 optimization. The memory used by our algorithm is as small as O(n2) and so it stays

under 1 MB for even the largest test cases.

4.1 Test Instances

All experiments were tested on the benchmark instances of 1-PDTSP proposed in Hernández–Pérez et al.

(2009). They are taken from http://webpages.ull.es/users/hhperez/PDsite/#XM94. These benchmark

instances for n ≤ 500 are randomly generated in the following way. The n−1 customers are randomly located
in the square [−500, 500]× [−500, 500], each having a corresponding demand qi randomly chosen from interval

[−10, 10]. The depot is located in the origin (0, 0) with demand q1 = −
∑n

i=2 qi. The travel cost c(i, j) was

computed as the Euclidean distance between points i and j. The vehicle capacities take values from the set

{10, 20, 40}. For each n and Q, 10 random instances are generated. They are denoted with A, B, ..., I. In order
to save space, we report the average values obtained on those 10 problem instances. However, the detailed

results can be found in the Appendix and at our web page: http://www.mi.sanu.ac.rs/~nenad/pdtsp.

All the instances may be divided into two classes: small instances with a value of n from {20, 30, 40, 50, 60}
and large instances with n from {100, 200, 300, 400, 500}. Note that, for a given number of customers n, the
smaller Q, the more difficult problem, is obtained. However, if Q is too large (let us say Q = 1000) the

solution of the 1-PDTSP coincides with the solution of the TSP. Similarly to the above, we constructed

instances with n = 1000 customers. Thus, we tested our code with instances which were twice as larger as

the largest of those used in the past.

The optimal solutions for all small instances are known since they are obtained by means of the branch-

and-cut algorithm in Hernández–Pérez and Salazar-González (2004b). For large instances, optimal solutions

are not known. However, the best known results can be found in Hernández–Pérez et al. (2009) and Zhao

et al. (2009a).

4.2 Preliminary Experimentation

Initial solutions. The first tests that were conducted are multistart initializations with or without local

searches, 2–opt and forward/backward insertions. In the initialization, we generated ms ∈ {1, 10, 50, 100})
times the initial tour: if a feasible solution is found, we use it as the starting tour, otherwise we use the

solution with minimal infeasibility (defined as maxi∈V Li(x) − mini∈V Li(x)). In the first case we perform

http://webpages.ull.es/users/hhperez/PDsite/#XM94
http://www.mi.sanu.ac.rs/~nenad/pdtsp
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local search procedures in order to improve the initial tour, while in the second case we do not perform

further modifications of the tour. Table 1 contains the results of this experiment: in the first row the number

of feasible tour lengths found in 1000 starts is shown; in the second, third and fourth rows the best, worst
and average feasible tour lengths are shown; in the fifth, sixth and seventh rows the best, worst and average

tour lengths are shown (including infeasible tours); in the eighth row the average execution time is shown.

According to these results, we conclude that for a large enough ms after the first local search procedure we

have a feasible solution in almost all restarts. This is of great importance for the rest of the algorithm.

Table 1: Multistart comparison for n = 400 on A and I instances with local search

Q = 10 Q = 20
ms = 1 ms = 10 ms = 50 ms = 100 ms = 1 ms = 10 ms = 50 ms = 100

Num. feasible 665 797 955 990 1000 1000 1000 1000
Min feasible 33106.50 33167.60 32988.20 32656.90 22665.80 22665.80 22665.80 22665.80
Max feasible 36555.90 35667.10 37402.00 37402.00 26739.70 26739.70 26739.70 26739.70
Avg. feasible 34560.79 34779.50 34912.70 34966.05 24389.75 24336.90 24336.90 24336.90
Min of all 33106.50 33167.60 32988.20 32656.90 22665.80 22665.80 22665.80 22665.80
Max of all 93025.00 93750.90 92266.00 91599.70 26739.70 26739.70 26739.70 26739.70
Avg. of all 46955.69 44316.48 37227.58 35494.67 24389.75 24336.90 24336.90 24336.90
Avg. time 0.55 0.61 0.74 0.72 0.36 0.36 0.38 0.36
Num. feasible 400 427 562 651 1000 1000 1000 1000
Min feasible 30760.80 30760.80 31020.40 30605.80 21779.90 21780.70 21780.70 21780.70
Max feasible 83924.60 83924.60 86255.90 88312.70 26537.10 25634.40 25634.40 25634.40
Avg. feasible 32946.10 32708.91 32919.97 33023.48 23343.05 23306.95 23306.95 23306.95
Min of all 30760.80 30760.80 31020.40 30605.80 21779.90 21780.70 21780.70 21780.70
Max of all 92022.00 92601.00 92766.10 91611.30 26537.10 25634.40 25634.40 25634.40
Avg. of all 52513.70 58327.25 54465.37 50447.75 23343.05 23306.95 23306.95 23306.95
Avg. time 0.45 0.44 0.50 0.50 0.32 0.32 0.34 0.33

Multi-start local searches. In order to clearly see the impact of each neighborhood on the solution quality,

we run 1000 times six local search heuristics: (a) forward insertion; (b) backward insertion; (c) 2–opt; (d)

Seq-VND, (e) Seq-VND3 (uses full 3–opt as the last in the VND list) and (f) Mix-VND. These heuristics are

tested on instances with n = 200 and n = 400, in both Q = 10. The results are reported in Table 2,
where columns 4, 5 and 6 give minimum, average and maximum % deviation from the best known solution,

respectively. The last column reports the average computing time spent to reach local minima.

Table 2: Comparison of different local search algorithms on two instances

n Q Local Search Min. % dev Max. % dev Avg. % dev Avg. time
200 10 forward-insertion 95.650 255.517 181.195 0.088

backward-insertion 94.753 252.827 186.318 0.081
2–opt 13.882 242.910 32.433 0.138
Seq–VND 12.275 242.910 27.808 0.163
Seq–VND–3 8.991 242.910 24.309 0.478
Mix–VND 1.269 242.910 12.958 2.989

400 10 forward-insertion 78.320 218.770 165.603 0.385
backward-insertion 81.881 218.770 169.416 0.317
2–opt 12.078 217.104 21.852 0.831
Seq–VND 10.684 217.104 18.954 0.769
Seq–VND–3 8.951 203.738 16.035 4.062
Mix–VND 1.492 217.104 6.573 26.569

Regarding the solution quality of a single neighborhood structure, it appears that the 2–opt significantly

outperforms both forward and backward insertion. Comparing 3 VND heuristics we see that Mix-VND takes
much more time than other two, but it is still able to get a very good solution. It is also clear that including

3–opt in VND is not beneficial enough: for just 2% better average performance, more than 5 times as much

computer time is spent. So we decided to keep Seq-VND and Mix-VND in our further experiments.

Results on instances with n = 200 are also illustrated on a distance-to-target diagram (Figure 4), where

each local minimum is represented by the point (ui, vi), i = 1, . . . , 1000. The best known solution is in origin:
ui is the distance of local minima i to the best known solution and vi represents its % deviation from the

best known objective function value. The distance between any two tours is calculated as the number of their

different edges. The comparison between local searches are clearly illustrated in Figure 4. It is interesting to

note that with all 6 neighborhoods local minima of bad quality are detected, even with Mix-VND.
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Figure 4: Distribution of 1000 local minima on distance-to-target diagram for different local search algorithms

VNS without 3–opt versus VNS with 3–opt. As mentioned earlier, we also implemented a 3–opt

neighborhood with binary index tree structure. It is considered as the last neighborhood in the sequential
VND. Let us denote it with VND-3 and with VND-2 the previous VND. In Table 3 are presented the results

obtained in 20 runs of VNS with VND-2 and VNS with VND-3 as local search procedures. From this table

we can conclude that the results obtained with 3–opt and the results obtained without 3–opt are very similar

(in both solution quality and execution time). Based on these findings and with the wish to use a more

user-friendly heuristic, we choose VNS with VND-2 as a local search for our final heuristics.
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Table 3: Comparison of VND without 3–opt (VND-2) and with 3–opt (VND-3)

Parameters VNS (with VND-2) VNS (with VND-3)
n Q Best Average Time Best Average Time

200 10 18699.1 18989.62 49.74 18709.1 19000.88 51.70
200 20 13385.1 13627.38 37.60 13391.4 13637.40 40.10
200 40 11223.8 11323.93 18.00 11236.4 11338.02 19.73
400 10 25545.1 25962.14 165.95 25555.6 25974.50 167.58
400 20 18518.9 18786.59 69.41 18530.7 18801.92 71.05
400 40 15680.0 15803.19 48.67 15687.2 15821.80 50.62

4.3 Main Computational Results

The results of VNS for small and large instances are presented in Table 4 and Table 5 respectively. For each

Q ∈ {10, 20, 40}, we report the best and the average lengths of the vehicle tour and the execution time. For
small instances with n ≤ 60, we report the optimal length of the vehicle tours.

The optimal solutions for all small instances are known, since they are obtained by means of the branch-

and-cut algorithm in Hernández–Pérez and Salazar-González (2004b). For large instances, optimal solutions

are not known. However, the best known results can be found in Hernández–Pérez et al. (2009) and Zhao

et al. (2009a). Note that the CPU times for GA are missing in Table 4 and Table 5, since Zhao et al. (2009a)
report only the average running times for large instances on n = 100, 200, 300, 400, 500 nodes and Q = 10

with the conclusion that their GA method is faster than the hybrid heuristic algorithm of Hernández–Pérez

et al. (2009).

Table 4: Comparison on small benchmark instances

Parameters Best Seq-GVNS Mix-GVNS GRASP VND GA CPU time
n Q known Best Average Best Average Best Average Best Average Seq-GVNS Mix-GVNS GRASP GA
20 10 5402.50 0.00 0.38 0.02 0.68 0.00 0.00 0.00 0.00 0.03 0.47 0.07

20 4237.30 0.00 0.10 0.00 0.10 0.00 0.00 0.01 0.10 0.03
40 3977.40 0.00 0.37 0.00 0.28 0.00 0.00 0.01 0.04 0.02

30 10 6576.10 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.14 0.70 0.33
20 5017.20 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.11 0.08
40 4604.50 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.05

40 10 7189.30 0.00 0.07 0.00 0.00 0.00 0.40 0.00 0.04 0.78 1.95 0.80
20 5500.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.15 0.15
40 5142.50 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.18 0.09

50 10 8681.70 0.00 0.58 0.00 0.06 0.01 1.14 0.00 0.39 1.37 4.06 1.51
20 6537.70 0.00 0.09 0.00 0.00 0.00 0.16 0.48 1.29 0.34
40 5945.90 0.00 0.01 0.00 0.00 0.00 0.00 0.14 0.83 0.17

60 10 9165.80 0.00 0.70 0.00 0.11 0.15 2.03 0.00 0.74 2.22 7.02 2.40
20 6956.00 0.03 0.12 0.00 0.00 0.08 0.34 0.73 2.81 0.49
40 6361.70 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.88 0.26

Table 5: Comparison on large benchmark instances

Parameters Best Seq-GVNS Mix-GVNS GRASP VND GA CPU time
n Q known Best Average Best Average Best Average Best Average Seq-GVNS Mix-GVNS GRASP GA

100 10 12718.60 0.29 1.52 0.0 0.35 1.88 4.62 0.96 1.85 9.96 23.79 8.85
20 9357.60 0.02 0.96 0.00 0.18 0.65 2.55 5.89 14.95 2.22
40 8165.40 0.00 0.20 0.00 0.04 0.00 0.57 1.84 5.97 0.69

200 10 18578.80 0.65 2.21 0.00 1.05 4.81 7.50 2.70 4.09 49.74 75.69 41.77
20 13319.00 0.50 2.32 0.00 0.91 4.58 6.86 37.60 67.58 17.37
40 11214.80 0.08 0.97 0.00 0.31 1.34 3.18 18.00 42.32 4.35

300 10 22935.30 0.83 2.39 0.00 1.47 5.30 7.67 4.20 5.62 104.61 122.83 117.86
20 16313.40 0.88 2.60 0.00 1.43 6.60 8.62 38.74 115.93 50.90
40 13671.40 0.41 1.40 0.00 0.56 2.85 4.80 24.91 88.63 12.89

400 10 25467.20 0.31 1.94 0.00 1.12 5.66 7.68 4.02 5.82 165.95 165.44 220.40
20 18407.00 0.61 2.06 0.00 1.30 6.49 8.61 69.41 152.36 91.73
40 15602.90 0.49 1.28 0.00 0.70 3.41 5.20 48.67 144.29 23.92

500 10 28774.20 0.00 1.54 0.10 1.28 5.80 7.76 5.57 7.37 124.14 209.76 391.01
20 20927.00 0.17 1.70 0.00 1.38 6.53 8.43 107.01 194.76 164.77
40 17495.50 0.41 1.50 0.00 0.86 4.47 6.10 89.81 193.52 43.98

1000 10 44744.20 0.96 19.74 0.00 1.52 349.59 393.22
20 31661.10 1.64 3.57 0.00 1.56 7.69 8.95 478.08 441.03 618.33
40 25450.00 1.20 2.66 0.00 1.28 6.64 8.14 474.72 430.16 440.00
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In this study, we also compare our VNS with

• heuristics from Hernández–Pérez and Salazar-González (2004a) (only the best solution found);

• the hybrid GRASP/VND metaheuristic algorithm from Hernández–Pérez et al. (2009) (the best solu-
tion, average solution and execution time);

• the genetic algorithm from Zhao et al. (2009a) (best solution, average solution and standard deviation).

Clearly, our approach improves the best known solutions in all large benchmark instances, as showed in

Table 6, Table 7 and Table 8. Furthermore, in Table 9 we compare the hybrid GRASP/VND metaheuristic
with our basic VNS algorithm. For Q = 10 the hybrid GRASP/VND metaheuristic has failed to find a

feasible solution, while in all other cases our VNS finds better solutions (5 percent on average).

Based on these results, we conclude that:

(i) the VNS based heuristic improves the best known solutions in all benchmark instances.

(ii) VNS is robust. For some problem sizes, the worst average solution (out of 20) obtained by VNS is of
better quality than the best ones obtained by other two methods. For example, compare the values of

19515.5, 19472.1, 19080.3 and 18578.8 from Table 6 in line with the best values obtained for n = 200

and Q = 10.

(iii) GA performs better than GRASP/VND, but instances with larger Q are not tested;

(iv) using our VNS approach, we are able to efficiently solve instances with n = 1000 customers.

5 Conclusion

We develop a General variable neighborhood search (GVNS) based heuristics for solving the One-commodity

pickup-and-delivery travelling talesman problem (1-PDTSP). This problem contains two NP-hard problems:
TSP and the feasibility checking of the tour.

GVNS is a variant of VNS which consists of the usual Shaking operator, but several neighborhoods are

used in deterministic fashion in the local search step. For performing such a local search, known as the

Variable Neighborhood Descent (VND), we propose the use of three different operators: 2–opt, insertion

(forward and backward) and 3–opt. Moreover, we use those structures in two ways: sequentially (following
the prescribed order) and nested. In order to store and update the incumbent solution, we implemented a

binary index tree structure and proved several properties regarding the complexity of the feasibility checking

step.

The Shaking operator which we designed uses 3–opt and double–bridge moves, maintaining the feasibility

of the incumbent solution. Based on computational results, our method significantly improves the best-known
solutions for all large instances in the literature. The average improvement over the previous state-of-the-

art heuristics is up to 7%! For new large instances with n = 1000, the improvements reported are even

larger. These results are obtained in less computing time than other methods, while keeping memory using

reasonable.

These results are very encouraging and we are considering as future research topics the application of a
similar VNS methodology to related pickup-and-delivery problems.
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6 Appendix – Detailed Results for Large Instances

Table 6: Comparison of the results on large instances

Parameters UB2 GRASP/VND GA Seq-GVNS Mix-GVNS
Name Best H-Best H-Average Time Best Average Stdev Best Average Time Best Average Time

n100q10A 12042 11874 12087.60 8.48 11828 11922.60 71.30 11669 11850.35 9.75 11669 11702.45 25.90

n100q10B 13172 13288 13582.60 10.23 13114 13301.60 157.10 13005 13191.45 10.58 12938 12983.65 25.32

n100q10C 14063 14069 14421.30 10.27 13977 14095.20 147.20 13893 13999.90 12.79 13893 13900.55 23.44

n100q10D 14490 14542 14787.50 8.95 14253 14406.40 111.90 14386 14542.80 11.48 14245 14298.90 25.45

n100q10E 11546 11650 12502.60 6.13 11411 11436.40 52.40 11403 11668.15 7.50 11403 11422.40 19.71

n100q10F 12021 11734 12010.70 7.67 11644 11699.00 34.50 11626 11745.45 7.28 11609 11621.35 19.75

n100q10G 12170 12049 12366.90 7.82 12038 12120.20 104.80 11866 11986.95 9.19 11866 11912.45 22.36

n100q10H 13056 12892 13169.20 9.39 12818 12906.20 125.10 12656 12828.70 10.06 12647 12699.20 30.39

n100q10I 14191 14048 14390.20 7.94 14032 14137.20 95.90 13888 13985.55 8.70 13751 13863.40 20.35

n100q10J 13439 13430 13737.60 11.65 13297 13516.80 216.40 13165 13323.05 12.28 13165 13227.75 25.21

Average 13019.0 12957.6 13305.60 8.85 12841.2 12954.20 111.70 12755.7 12912.24 9.96 12718.6 12763.21 23.79

n200q10A 18013 18145 18564.00 36.00 17686 17987.00 201.90 17422 17687.75 42.35 17029 17336.70 73.08

n200q10B 18154 18520 18932.50 33.68 17798 18069.40 243.10 17546 17969.55 40.78 17439 17518.15 79.51

n200q10C 17305 16969 17280.30 41.01 16466 16751.20 245.80 16224 16424.60 38.76 16128 16301.15 71.86

n200q10D 21565 21848 22285.70 33.51 21306 21564.40 207.30 20878 21133.40 62.56 20819 21027.70 81.70

n200q10E 20033 19913 20643.20 39.75 19299 19713.00 358.90 18992 19331.35 43.20 18854 19095.10 70.31

n200q10F 22090 21949 22284.60 80.93 21910 22144.00 247.70 21303 21520.60 64.31 21250 21418.40 75.07

n200q10G 17956 18035 18627.70 28.58 17712 17797.80 80.60 17147 17448.85 44.92 17056 17249.05 71.59

n200q10H 21995 21463 22084.90 47.45 21276 21584.00 278.40 20777 21065.60 62.35 20719 20965.80 73.20

n200q10I 18695 18606 19184.80 34.31 18380 18509.80 149.60 18078 18282.65 47.55 17846 18004.25 80.94

n200q10J 19349 19273 19839.50 42.43 18970 19274.20 205.50 18624 19031.85 50.57 18648 18825.95 79.66

Average 19515.5 19472.1 19972.70 41.77 19080.3 19339.50 221.90 18699.1 18989.62 49.74 18578.8 18774.23 75.69

n300q10A 23244 23566 24052.90 112.51 23242 23592.00 265.10 22501 22831.90 111.33 22134 22611.70 133.35

n300q10B 23256 23187 23845.60 109.55 22934 23028.60 114.90 22264 22653.80 126.49 22172 22406.40 118.91

n300q10C 22276 21800 22516.60 104.58 21922 22083.40 189.60 21191 21468.35 124.20 20919 21191.75 118.98

n300q10D 26434 25971 26462.10 162.95 25883 26289.80 253.50 24902 25349.35 130.20 24719 25099.80 117.82

n300q10E 27931 27420 27892.10 139.56 27367 27923.80 358.50 26224 26688.55 137.44 26061 26612.35 117.99

n300q10F 25096 24852 25278.20 153.93 24826 25055.40 171.80 23730 24144.80 125.91 23739 23999.30 122.08

n300q10G 24363 24308 24760.50 151.22 23868 24300.60 412.00 23316 23655.40 133.34 23210 23492.75 118.95

n300q10H 22869 22684 23116.50 67.49 21625 21965.00 278.50 21414 21715.30 53.08 21183 21420.55 128.27

n300q10I 25157 24633 25492.60 76.72 24513 24959.20 330.10 23726 24099.70 58.08 23503 23815.40 119.92

n300q10J 23468 23086 23530.20 100.05 22810 23045.00 351.10 21989 22224.30 46.05 21713 22071.15 132.03

Average 24409.4 24150.7 24694.70 117.86 23899.0 24224.30 272.50 23125.7 23483.15 104.61 22935.3 23272.12 122.83

n400q10A 31821 31486 31912.00 282.00 31678 31964.40 309.90 30061 30505.75 179.45 29904 30274.30 174.08

n400q10B 24883 25243 25606.40 204.21 24262 24752.40 283.20 23744 24279.15 175.10 23658 23917.50 162.85

n400q10C 29044 28942 29463.20 246.29 28741 29287.40 603.60 27782 28123.15 186.32 27550 27878.65 159.57

n400q10D 24639 24597 25308.60 142.84 24508 24794.80 320.10 23212 23574.45 182.68 23194 23426.05 160.61

n400q10E 25548 25644 26120.00 219.87 25071 25473.00 276.40 24217 24665.05 180.27 24258 24533.85 159.67

n400q10F 27215 27169 27755.10 273.01 26681 27362.80 411.60 26197 26475.15 186.58 25900 26243.85 174.16

n400q10G 24728 24626 25088.40 181.55 23891 24290.40 273.00 23189 23589.70 178.19 23366 23471.55 155.69

n400q10H 26191 26030 26468.80 220.74 25348 25811.40 351.50 24550 25002.60 185.46 24392 24703.35 161.33

n400q10I 28992 29154 29596.60 202.43 28714 29261.60 488.70 27730 28129.20 124.04 27640 27980.75 174.87

n400q10J 26607 26204 26916.20 231.03 26010 26489.40 281.60 24769 25277.20 81.36 24810 25096.40 171.56

Average 26966.8 26909.5 27423.50 220.40 26490.4 26948.80 360.00 25545.1 25962.14 165.95 25467.2 25752.63 165.44

n500q10A 29536 28742 29323.60 400.63 28857 29258.80 478.30 27301 27711.85 110.99 27159 27557.05 222.29

n500q10B 27370 27335 27711.10 332.67 26648 27454.80 525.70 25728 26021.15 102.19 25610 25959.85 213.21

n500q10C 31494 31108 31692.70 440.35 30701 31426.80 609.40 29165 29768.90 134.43 29365 29778.50 213.69

n500q10D 31752 30794 31428.40 426.51 30994 31442.20 376.90 29264 29650.30 127.22 29346 29639.40 184.32

n500q10E 31555 30674 31371.70 398.15 30905 31154.60 231.30 29155 29527.40 139.40 29174 29571.95 193.95

n500q10F 28957 29258 29812.30 263.14 28882 29241.00 244.90 27581 27873.90 106.17 27513 27809.65 215.39

n500q10G 27492 27198 27958.20 306.38 27107 27473.00 212.50 25765 26065.70 107.66 25741 25981.50 212.66

n500q10H 37185 36857 37361.10 600.00 37626 38142.40 258.80 34995 35587.55 160.90 35241 35562.60 212.82

n500q10I 31612 31045 31536.00 316.74 30796 31044.60 306.00 29272 29910.45 124.94 29291 29662.80 210.89

n500q10J 31412 31423 31877.90 425.56 31255 32310.00 617.90 29516 30042.40 127.46 29586 29910.10 218.42

Average 30836.5 30443.4 31007.30 391.01 30377.1 30894.80 386.20 28774.2 29215.96 124.14 28802.6 29143.34 209.76
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Table 7: Comparison of the results on large instances for Q = 20

Parameters UB2 GRASP/VND Seq-GVNS Mix-GVNS
Name n Best H-Best H-Average Time Best Average Time Best Average Time

n100q20A 100 8768 8616 8779.20 1.63 8613 8645.55 5.26 8613 8620.70 5.79

n100q20B 100 9629 9536 9686.90 2.51 9469 9554.20 3.89 9469 9524.60 4.90

n100q20C 100 10099 9993 10191.20 3.03 9928 9995.70 5.17 9928 9951.35 18.87

n100q20D 100 10464 10064 10340.70 3.07 10015 10133.65 7.63 10015 10015.00 10.92

n100q20E 100 8929 8838 8986.20 1.42 8829 8914.00 4.04 8829 8833.85 17.66

n100q20F 100 9056 9029 9106.20 1.63 8975 9019.40 4.71 8959 8977.30 20.63

n100q20G 100 9022 8865 9078.50 1.58 8838 8932.60 7.08 8838 8838.00 15.33

n100q20H 100 9708 9495 9681.00 2.36 9413 9525.25 6.36 9406 9431.55 17.25

n100q20I 100 10144 10005 10192.70 2.41 9868 9986.15 8.04 9868 9877.05 12.85

n100q20J 100 9835 9742 9922.70 2.56 9651 9769.45 6.72 9651 9673.45 25.31

Average 100 9565.4 9418.3 9596.53 2.22 9359.9 9447.60 5.89 9357.6 9374.29 14.95

n200q20A 200 13455 13422 13714.80 11.01 12860 13194.70 27.95 12824 12995.55 65.81

n200q20B 200 13242 13419 13714.80 12.32 12704 13059.10 28.77 12689 12877.90 62.35

n200q20C 200 12264 12314 12678.50 8.93 12047 12152.65 26.80 11999 12008.60 47.11

n200q20D 200 15387 15212 15548.60 24.59 14641 14876.65 42.27 14605 14707.75 68.86

n200q20E 200 14109 14066 14298.30 18.41 13469 13660.60 42.79 13370 13481.95 71.60

n200q20F 200 15105 15167 15542.00 30.87 14548 14805.05 56.40 14490 14612.60 75.37

n200q20G 200 13203 13200 13495.70 11.43 12713 12959.75 34.26 12689 12785.70 61.14

n200q20H 200 15518 15278 15571.80 26.74 14606 14882.90 51.46 14543 14715.00 80.64

n200q20I 200 13082 13338 13597.80 13.63 12860 13041.30 27.63 12690 12810.75 68.83

n200q20J 200 14043 13870 14159.40 15.80 13403 13641.05 37.69 13291 13402.80 74.12

Average 200 13940.8 13928.6 14232.17 17.37 13385.1 13627.38 37.60 13319.0 13439.86 67.58

n300q20A 300 16830 16920 17242.80 41.74 15982 16197.00 36.43 15868 16031.35 118.15

n300q20B 300 16844 17050 17248.40 39.31 15977 16363.70 35.73 15932 16157.05 106.65

n300q20C 300 16548 16364 16661.10 34.11 15502 15740.65 34.70 15417 15556.90 103.18

n300q20D 300 18024 18178 18651.70 61.75 17299 17533.35 44.25 17105 17354.00 119.37

n300q20E 300 19130 18715 19088.50 86.47 17747 18033.65 44.03 17829 17954.05 115.69

n300q20F 300 18216 18126 18387.10 63.61 17015 17294.55 40.97 16737 17035.15 129.37

n300q20G 300 17490 17363 17759.40 53.70 16548 16879.15 42.85 16433 16653.75 123.59

n300q20H 300 16759 16725 16997.70 32.67 15733 16096.55 35.02 15591 15933.80 115.97

n300q20I 300 18048 17654 17996.00 60.08 16740 17024.60 40.97 16449 16822.20 110.55

n300q20J 300 17027 16811 17168.50 35.51 16019 16208.60 32.42 15773 15971.60 116.82

Average 300 17491.6 17390.6 17720.12 50.90 16456.2 16737.18 38.74 16313.4 16546.99 115.93

n400q20A 400 21741 21617 22042.20 198.75 20574 20837.15 82.67 20344 20682.05 145.60

n400q20B 400 18459 19021 19260.70 60.09 17979 18251.95 63.51 17883 18029.60 154.34

n400q20C 400 20827 20765 21172.00 125.79 19433 19799.80 83.54 19418 19653.20 151.05

n400q20D 400 18443 18375 18767.00 49.26 17267 17480.25 63.78 17133 17393.70 148.73

n400q20E 400 18598 18764 19153.60 64.63 17659 18002.95 59.56 17481 17772.85 149.91

n400q20F 400 20112 19941 20223.80 85.24 18796 19030.70 67.91 18549 18831.20 140.42

n400q20G 400 18695 18624 18900.50 55.50 17512 17775.55 60.58 17515 17707.50 154.44

n400q20H 400 18882 18829 19468.30 73.13 18039 18261.85 69.45 17989 18199.70 162.23

n400q20I 400 20682 20610 21120.30 132.23 19561 19825.90 75.78 19563 19756.95 148.60

n400q20J 400 18958 19478 19804.60 72.65 18369 18599.80 67.27 18195 18444.55 168.29

Average 400 19539.7 19602.4 19991.30 91.73 18518.9 18786.59 69.41 18407.0 18647.13 152.36

n500q20A 500 21702 21585 21758.20 121.52 20057 20382.10 107.76 20092 20292.00 186.75

n500q20B 500 20523 20762 21082.20 92.81 19424 19669.30 97.40 19333 19586.30 187.88

n500q20C 500 23034 22738 23108.70 177.94 21100 21583.05 109.96 21169 21480.60 185.50

n500q20D 500 22774 22737 23032.20 163.36 21111 21554.40 104.82 21141 21442.45 201.96

n500q20E 500 22775 22480 22812.10 192.74 21213 21476.65 107.78 21183 21435.85 197.43

n500q20F 500 21745 21679 22022.80 121.52 20494 20749.10 93.72 20334 20663.00 204.66

n500q20G 500 20325 20617 20983.30 93.22 19463 19715.75 98.66 19501 19733.80 214.66

n500q20H 500 26250 25383 25968.70 347.42 23993 24279.00 128.46 23822 24246.85 188.82

n500q20I 500 22472 22442 23083.60 172.67 21386 21722.05 111.07 21392 21644.35 186.14

n500q20J 500 22756 22517 23054.50 164.47 21388 21697.10 110.43 21303 21641.80 193.77

Average 500 22435.6 22294.0 22690.63 164.77 20962.9 21282.85 107.01 20927.0 21216.70 194.76
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Table 8: Comparison of the results on large instances for Q = 40

Parameters UB2 GRASP/VND Seq-GVNS Mix-GVNS
Name n Best H-Best H-Average Time Best Average Time Best Average Time

n100q40A 100 7938 7938 7941.80 0.60 7938 7938.00 0.36 7938 7938.00 0.91

n100q40B 100 8144 8124 8182.60 0.72 8124 8151.90 2.53 8124 8127.00 7.71

n100q40C 100 8441 8441 8514.50 0.81 8441 8464.70 1.08 8441 8441.00 2.15

n100q40D 100 8380 8264 8360.00 0.82 8264 8330.20 3.92 8264 8293.90 17.89

n100q40E 100 7960 7960 7996.50 0.58 7960 7960.00 0.74 7960 7960.00 1.75

n100q40F 100 8074 8074 8116.10 0.56 8074 8080.10 1.65 8074 8074.00 2.40

n100q40G 100 8183 8168 8189.00 0.60 8168 8175.70 1.30 8168 8168.65 9.34

n100q40H 100 7992 7992 8022.30 0.74 7992 7992.00 0.87 7992 7992.00 0.54

n100q40I 100 8484 8440 8504.10 0.71 8438 8462.90 3.04 8438 8439.75 11.99

n100q40J 100 8255 8255 8289.10 0.71 8255 8257.85 2.86 8255 8255.00 5.04

Average 100 8185.1 8165.6 8211.60 0.69 8165.4 8181.34 1.84 8165.4 8168.93 5.97

n200q40A 200 11136 11156 11369.30 3.42 11039 11172.75 18.78 11039 11055.65 44.68

n200q40B 200 11305 11296 11489.60 3.48 11207 11274.00 15.65 11178 11213.45 54.60

n200q40C 200 10919 10849 11038.40 3.01 10833 10860.30 12.21 10833 10833.00 9.86

n200q40D 200 12002 11802 12037.40 5.39 11533 11683.60 23.79 11533 11598.40 45.26

n200q40E 200 11276 11237 11474.70 4.70 11042 11219.90 19.56 11042 11108.95 54.15

n200q40F 200 11931 11836 11988.10 6.35 11530 11684.05 21.96 11528 11577.50 56.09

n200q40G 200 11174 11154 11302.00 3.54 11008 11093.35 16.25 10987 11029.85 46.86

n200q40H 200 12234 12088 12430.20 5.87 11990 12067.60 30.91 11982 12013.00 35.81

n200q40I 200 11272 11115 11298.10 3.66 11040 11100.15 10.70 11040 11045.40 29.87

n200q40J 200 11181 11123 11281.50 4.07 11016 11083.60 10.23 10986 11016.95 45.99

Average 200 11443.0 11365.6 11570.93 4.35 11223.8 11323.93 18.00 11214.8 11249.22 42.32

n300q40A 300 13670 13787 14008.10 11.32 13517 13619.30 27.58 13429 13486.75 100.28

n300q40B 300 13881 13875 14127.20 10.95 13571 13723.05 22.19 13563 13615.70 81.63

n300q40C 300 13489 13642 13792.70 9.79 13263 13373.10 14.51 13263 13310.00 71.69

n300q40D 300 14477 14426 14733.60 14.66 14008 14177.95 26.10 14016 14084.50 100.80

n300q40E 300 14616 14521 14902.10 20.21 14174 14338.65 34.38 14098 14240.95 96.56

n300q40F 300 14390 14345 14665.70 15.30 13998 14165.25 27.01 13900 14005.20 89.44

n300q40G 300 14299 14151 14382.60 13.10 13806 13939.10 22.55 13730 13826.40 98.94

n300q40H 300 13816 13674 14047.10 9.39 13505 13623.20 23.57 13463 13513.75 66.06

n300q40I 300 14396 14232 14489.20 14.58 13920 14023.60 29.15 13768 13874.40 92.57

n300q40J 300 13759 13963 14127.70 9.58 13514 13641.85 22.03 13484 13518.05 88.29

Average 300 14079.3 14061.6 14327.60 12.89 13727.6 13862.51 24.91 13671.4 13747.57 88.63

n400q40A 400 16966 16939 17198.20 41.83 16259 16465.30 60.47 16279 16371.10 144.34

n400q40B 400 16027 16013 16217.00 18.56 15554 15692.45 45.38 15448 15544.95 125.85

n400q40C 400 16506 16588 16964.10 31.03 16107 16242.00 58.88 16045 16169.20 143.26

n400q40D 400 15691 15801 16033.20 15.39 15526 15573.75 37.86 15429 15504.05 137.77

n400q40E 400 15658 15638 15906.50 18.91 15215 15314.90 42.51 15133 15235.10 146.57

n400q40F 400 16085 16373 16541.00 23.52 15816 15910.95 44.44 15724 15802.85 138.35

n400q40G 400 15603 15716 15955.20 16.92 15362 15434.15 47.00 15264 15405.40 140.09

n400q40H 400 15936 15848 16236.60 20.01 15469 15674.30 46.27 15404 15574.20 164.97

n400q40I 400 16554 16477 16809.60 32.49 15930 16042.10 54.90 15825 15947.65 154.74

n400q40J 400 15678 15951 16286.30 20.52 15562 15682.05 48.97 15478 15564.55 146.96

Average 400 16070.4 16134.4 16414.77 23.92 15680.0 15803.20 48.67 15602.9 15711.91 144.29

n500q40A 500 17966 17840 18064.60 36.50 17190 17323.45 78.01 17101 17237.05 216.17

n500q40B 500 17161 17574 17898.50 28.87 17107 17235.20 71.94 17056 17149.10 216.25

n500q40C 500 18529 18498 18758.40 45.04 17752 17979.20 102.32 17675 17832.60 190.89

n500q40D 500 18307 18573 18838.40 44.01 17838 17987.00 87.24 17791 17972.55 200.26

n500q40E 500 18351 18335 18608.80 47.78 17598 17797.80 87.45 17539 17683.10 181.44

n500q40F 500 18101 17976 18263.60 36.48 17249 17473.45 83.71 17284 17382.25 194.50

n500q40G 500 17697 17600 17894.20 29.68 17045 17209.65 77.65 16936 17098.40 184.58

n500q40H 500 19633 19619 19881.40 79.68 18645 18846.95 112.93 18588 18724.25 183.00

n500q40I 500 18349 18322 18618.40 47.21 17538 17802.05 93.14 17398 17604.60 173.18

n500q40J 500 18446 18445 18796.70 44.57 17706 17927.85 103.67 17587 17782.10 194.93

Average 500 18254.0 18278.2 18562.30 43.98 17566.8 17758.26 89.81 17495.5 17646.60 193.52

Table 9: Comparison of basic VNS and GRASP/VND for n = 1000

Name GRASP/VND Seq-GVNS Mix-GVNS
Name Best Average Time Best Average Time Best Average Time

n1000q10A 45618 50922.40 380.91 44846 45320.30 408.93

n1000q10B 48857 71844.40 257.69 47565 48034.55 363.68

n1000q10C 46188 59191.45 322.52 45397 49355.10 419.24

n1000q10D 42100 54614.30 303.89 42109 48600.95 364.46

n1000q10E 43125 51783.00 266.54 43083 43679.65 315.05

n1000q10F 45376 56567.95 342.57 45531 46584.00 445.90

n1000q10G 42432 47030.35 339.12 41879 42962.25 353.93

n1000q10H 43352 44029.95 436.84 43005 43547.10 409.78

n1000q10I 43577 48055.95 401.83 43449 44009.05 436.77

n1000q10J 51108 51718.70 443.99 50578 51555.65 414.49

n1000q20A 33605.00 34088.90 630 32473 33010.05 481.08 31967 32612.3 458.12

n1000q20B 34762.00 35308.90 625 33738 34547.75 483.62 33586 34136.75 472.27

n1000q20C 33193.00 33724.75 620 31948 32825.95 485.02 31862 32471.3 471.98

n1000q20D 31846.00 32255.40 615 30610 30975.00 473.79 30226 30565.15 432.29

n1000q20E 32370.00 32751.25 615 31114 31563.20 483.46 30642 30995.95 412.8

n1000q20F 33528.00 33966.70 625 32204 33052.75 486.16 31894 32396.6 428.7

n1000q20G 30621 31279.10 479.76 30337 30701.5 434.46

n1000q20H 32637.00 32996.20 610 31183 31833.55 457.20 30577 31103.9 429.08

n1000q20I 33270.00 33599.15 615 32125 32600.95 474.75 30944 31521.25 424.14

n1000q20J 36385.00 36892.50 630 35774 36230.85 475.98 34576 35046.85 446.44

n1000q40A 27093 27402.80 430 25979 26481.45 467.87 25652 25952 379.83

n1000q40B 27099 27794.45 525 26503 26958.85 478.24 26011 26350.25 399.77

n1000q40C 26820 27075.00 450 25705 26011.30 477.04 25295 25683.8 430.57

n1000q40D 26137 26338.85 340 24797 25225.30 468.30 24816 25030.85 428.32

n1000q40E 26273 26701.95 335 25309 25560.70 478.95 25003 25348.3 414.67

n1000q40F 26820 27178.55 440 25780 26175.40 465.80 25376 25737.5 445.63

n1000q40G 26345 26606.35 310 25324 25472.30 477.62 24696 25149.8 447.23

n1000q40H 26600 26761.60 350 25328 25718.40 472.42 25142 25472.35 424.07

n1000q40I 26488 27083.45 360 25728 26070.05 482.05 25574 25795.15 469.01

n1000q40J 28335 28718.55 610 27103 27591.65 478.94 26935 27239.05 462.51
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Hernández–Pérez, H., J. J. Salazar-González. 2004. Heuristics for the one-commodity pickup-and-delivery traveling
salesman problem. Transportation Science 38 245–255.
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