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Abstract

Censored quantile regression models are very useful for the analysis of censored data when standard
linear models are felt to be appropriate. However, fitting censored quantile regression is hard numerically
due to the fact that the function that has to be minimized (Powell estimator) is not convex nor concave
in regressors. The performance of standard methods is not satisfactory, in particular if a high degree of
censoring is present. Usual approach in the literature is to simplify (linearize) estimator function and
show theoretically that such approximation tends to good real optimal values. In this paper we suggest
different approach, i.e., we solve directly nonlinear non-convex non differentiable optimization problem.
Our method is based on variable neighborhood search approach, a recent successful technique for solving
global optimization problems. Simulation results presented indicate that our new method can improve
the quality of censored quantizing regressors estimator considerably. Moreover, an extramarital affairs
example involving censored regression analysis is also used to illustrate the method.

Key Words: Censored regression, powell estimator, quantile regression, global optimization, metha-
heuristics, variable neighborhood search.

Résumé

La régression pour quantiles avec censure est très utile lorsqu’un modèle linéaire est jugé appro-
prié. Par contre, ajuster ce type de modèle est numériquement difficile et la performance des méthodes
habituelles n’est pas satisfaisante surtout si le taux de censure est élevé. Dans cet article, nous proposons
de résoudre directement ce problème non-linéaire, non-convexe et non-différentiable. Notre méthode est
basée sur la recherche à voisinage variable. Des résultats de simulations indiquent que notre méthode
peut améliorer considérablement la qualité des estimateurs. Nous illustrons l’utilisation de notre méthode
avec des données traitant de liaisons extraconjugales.
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1 Introduction

The censored regression problem can be written as,

yi = max{y0, x′
iβθ + εθi} , i = 1, . . . , n, (1)

where yi are given latent or dependent values, and y0 is a given censoring point. x′
i is g−dimensional

vector of the independent covariates, which are observed (given) for each i. θ represents confidence level,

and εθi is unobservable error term which is assumed to be normally distributed (also known as quantile).

βθ = (β0θ, . . . , βg−1,θ)
T is g− dimensional parameter of interest that we would like to find. The censored

quantile regression model is sometimes referred to economists as the censored “Tobit” model. The regression

is used to quantify the relationship between a response variable yi and some covaraites xi, i = 1, . . . , n.

There are many applications of censored quantile regression (CQR). Econometrics and statistics have

been interested in CQR model in the recent years, especially due to unknown conditional heteroscedasticity

and their robustness to distributional misspecification of error term. For various applications of CQR, see
also [1, 5, 6, 7, 8, 20, 24, 28].

The Powell [21, 22] suggested an intuitive estimator for censored quantile regression model. This estimator

solves

f(β, θ, y0) = min
β
{
1

n

n∑

i=1

ρθ(yi −max{y0, x′
iβθ}), (2)

where ρθ(λ) = [θ − I(λ < 0)]λ is the check function and I(.) is the usual indicator function. Since θ and y0
are given, function (2) depends only on β. Therefore, we denote Powell estimator (2) as f(β).

The Powell estimator has several disadvantages. First, the censoring point y0 must be known. Second,

obtaining the global minimum of (2) can be difficult because the objective function f(β) is non convex, nor
concave and even non differentiable in β. An example of f(β) with q = 2, n = 100, θ = 0.95, y0 = 0 and

normally distributed random variable ε is illustrated in Figure 1 (more details of this instance will be given

in Section 3.1). Thus, the problem belongs to global (nonlinear) optimization area, and may have many local

optima. Consequently, standard optimization tools, that require the objective function to be differentiable
and/or convex, may fail to discover the true CQR estimator.
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Figure 1: Powell function f(β1, β2) with n = 100, θ = 0.95, y0 = 0 and Gaussian r.v. ε 6= 0
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However, several convex optimization algorithms have been adapted for finding CQR, where the Powell

estimator (2) has been used (see [12] for a survey of such algorithms). For example, in [27] the problem

is linearized by using reduced-gradient algorithm. In that way a local minimizer is found by using linear
programming. An interior point algorithm for quantile regression problem is suggested in [16]. A similar

approach is given in [13]. The estimators suggest in [5, 8] are asymptotically equivalent to original Powell

estimator, they do not allow explicitly for censored observations to be interpolated by the estimated CQR,

where the interpolation property suggests finding an exact solution by using a computationally expensive

algorithm. An iterative linear programming algorithm is introduced in [4].

Those algorithms have difficulties in solving CQR problems. They exhibit a high degree of complexity in

their implementation. Most of them achieve convergence to local optima, whereas finding the global optima

for these problems require a heavy computational loads.

Therefore, the basic question we would like to answer in this paper is, what approach is more promising:

use original Powell estimator (2) and solve CQR problem approximately, or use simplified approximative
model and solving it exactly? Opposite to the most of authors who tried with simplified models, here

we suggest, for the first time, use of approximate global optimization method for solving (2). In order to

do that, we developed nonlinear programminng (NP) code based on variable neighbourhood search (VNS)

metaheuristic (or framework for building heuristics). As far as we know, it is the first time that some

metaheuristics approach is used for solving CQR. Based on computational results section, it appears that
our approach outperforms other methods from the literature.

The paper is organized as follows. In Section 2, we briefly give VNS rules, and then explain how it works

for solving CQR. In Section 3 we first explain how the data instances are generated and then report extensive

computational analysis usual in this field. In Section 4, we test CQR model and solution methods on the

real Redbook magazine data of extramarital affairs. The final section contains concluding remarks.

2 Variable neighbourhood search for censored quantile regression

As mentioned earlier, CQR problem belongs to continuous global optimization. In this section, we first give

rules of VNS for solving global optimization problem (GOP) and then we explain how we use them for solving
CQR.

2.1 Variable neighbourhood search metaheuristics

Variable neighbourhood search (VNS) [18] is a metaheuristic based upon systematic changes of neighbour-
hoods in order to enable finding better solution in distant parts of a solution space. VNS is designed for

solving both continuous and discrete optimization problems, that may be formulated as

min{f(β)| β ∈ B,B ⊆ S}. (3)

S,B, β and f respectively denote the solution space, feasible set, a feasible solution and a real-valued objective

function. If S is a finite but large set, a combinatorial optimization problem is defined. If S = R
n, we refer

to continuous optimization. An exact algorithm for problem (3), if one exists, finds an optimal solution β∗,

together with the proof of its optimality, or shows that there is no feasible solution, i.e., B = ∅.

Let Nk, k = 1, . . . , kmax, denotes a finite set of pre-selected neighbourhood structures and let Nk(β) be

the set of solutions in kth neighbourhood of β. The neighbourhood structures Nk may be induced from one

or more metrics introduced into a solution space S, either discrete or continuous. We define β′′ ∈ X as a
local minimum w.r.t. Nk, if there is no solution β ∈ Nk(β

′′) ⊆ B such that f(β) ≤ f(β′′). There are three

obvious facts that could explain why change of neighbourhoods idea works well:

Fact 1. A global minimum is a local minimum with respect to all possible neighbourhood structures.

Fact 2. A local minimum with respect to one neighbourhood structure is not necessarily a local minimum

with respect to another neighbourhood structure.
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Fact 3. For many problems local minima with respect to one or several neighbourhoods are relatively close

to each other [14].

Those simple facts are used within VNS in several different ways (see for example recent surveys of VNS in
[14, 15]). The deterministic change of neighbourhoods leads us to a so-called Variable neighbourhood descent

(VND) heuristic. The basic VNS (BVNS) combines deterministic and random search [18]. Its pseudo-code

is given in Algorithm 1.

Function BVNS (β, kmax, tmax);
repeat1

k ← 1;2

repeat3

β′ ← Shake(β, k);4

β”← LocalSearch(β′) ;5

If (f(β”) < f(β)) β ← β”; goto 2;67

k ← k + 18

until k = kmax ;
t← CpuTime()9

until t > tmax ;

Algorithm 1: Steps of the Basic VNS

Let β be the incumbent (the best solution found so far). Within BVNS a point β′ from the neighbourhood
k of β (β′ ∈ Nk(β)) is taken at random where k = 1, . . . , kmax. Such a point is initial one for a local search

routine that provides local minimum β′′. If f(β′′) is better (smaller in the case of minimization) then the

new incumbent is β′′ (β ← β′′) also k is set to 1 (k ← 1) and the process is repeated. Otherwise we generate

random point from the larger neighbourhood (k ← k + 1). The only parameter for the BVNS is the number
of neighbourhoods used (kmax). Once that neighbourhood is reached without finding improvement, k is again

set to 1. All process is repeated until some stopping criterion, as maximum CPU time tmax used, is satisfied

(see Figure 2).

N
1
(x)

f

x

x’

f(x)

x

N (x)
k

Global minimum

 Local minimum

Figure 2: Illustration of the Basic Variable Neighbourhood Search (BVNS)

We may view the VNS as a ”shaking” process, where a movement to a neighborhood further from the
current solution corresponds to a harder shake. Unlike random restart, the VNS allows a controlled increase

in the level of the shake. In this paper we design the GVNS heuristic for solving CQR problem, by minimizing

nonlinear Powell function f(β).

2.2 VNS for CQR

In this subsection we explain how we use VNS to solve the CQR problem. f(β) defined in 2, is a non-

linear objective function with continuous variables β0, . . . , βg−1. Thus, the CQR problem may be solved
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as an unconstrained nonlinear program. If θ = 1

2
, then f(β) gives the median [8]. Observe also that any

unconstrained nonlinear program may be considered as box constrained, if left and right values of variables

that define box are set to the same large negative and positive values ai and bi. Therefore, given input data
X = (xij), i = 1, . . . , n; j = 1, . . . , g−1, Y = (y1, . . . , yn), ε = (ε1, . . . , εn) and the value of β = (β0, . . . , βg−1),

the pseudo-code for evaluating Powell estimator is given in Algorithm 2.

Function Powell(β,X, Y, y0, ε)
Powell← 01

for i = 1, . . . , n do2

s← 03

for j = 1, . . . , g − 1 do4

s← s+ xijβj5

r ← yi −max{y0, s− εi}6

Powel ← Powell + θr7

if r < 0 then8

Powell ← Powell - r9

Algorithm 2: Pseudo-code for finding Powell estimator value

Neighborhoods–Shaking. For solving GOP, VNS has already been used in two different ways: with

neighbourhoods induced by using an ℓp norm [9, 19, 17] and without using an ℓp norm [26]. Here we apply
VNS that uses ℓp norm, i.e., we define distances between any two solutions β and γ as

δ(β, γ) = (

g−1∑

i=0

|βi − γi|
p)

1

p , (4)

or

δ(β, γ) = max
0≤i≤g−1

|βi − γi|, p =∞. (5)

The neighbourhood Nk(β) denotes the set of solutions in the k–th neighbourhood of β, and using the metric
δ, it is defined as

Nk(β) = {γ ∈ B | rk−1 < δ(β, γ) ≤ rk}, (6)

where rk is a given radius of neigbourhood Nk (k = 1, . . . , kmax).

Our CQR-VNS procedure for solving CRQ problem contains the following parameters in addition to kmax

(a maximum number of neighbourhoods used in the search) and tmax (the maximum time allowed in the

search):

(i) Values of radii rk, k = 1, . . . , kmax. Those values may be defined by the user or calculated automatically

during the minimization process. The geometry of the neighbourhood structure is induced by the ℓ1 (4) and
ℓ∞ (5). We use balls as in (6). Radii r1 ≤ r2 ≤ · · · ≤ rkmax

are automatically computed as follow: let

β = (β0, . . . , βg−1)
T ∈ Rg be the current incumbent solution and let

aj ≤ βj ≤ bj, j = 0, . . . , g − 1

defines box or hyper-cube

H =

g−1∏

j=0

[aj , bj]

around the incumbent solution β. In order to find kmax neighbourhoods automatically and thus make our

CQR VNS more user-friendly, we divide βj − aj and bj − βj into a kmax intervals:

δj =
βj − aj

kmax

; δj =
bj − βj

kmax

.
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Then the kmax hyper-cubes (boxes) H1, H2, . . . , Hmax around the incumbent (the best solution found so far)

β are given

aj + (k − 1)δj ≤ βj ≤ bj − (k − 1)δj , k = 1, . . . , kmax

or
djk ≤ βj ≤ djk, k = 1, . . . , kmax

Figure 3 illustrates our construction of continuous neighbourhoods as hyper-cubes for the case of kmax = 3

and g = 2 (or β = (β0, β1)
T ).

a1 b1

a2

b2

0

BH1

H2

H3

Figure 3: Automatic construction of neighbourhoods with g = 2 and kmax = 3

(ii) (Geometry, distribution) pairs. Geometry of neighbourhood structures Nk is defined by the choice
of the metric functions used in the search through the solution space. The usual choices are the ℓ1, ℓ2, and

ℓ∞ norms. Their order in the search is also important within VNS. Different distributions may be used for

obtaining the random point y from the same neighbourhood Nk in the Shaking step. Uniform distribution

in Nk is the obvious choice, but other distributions may lead to much better performance on some problems.

Beside uniform (u), we also implement hypergeometric distribution (h)[9, 19].

Note that different choices of geometric neighbourhood shapes and random point distributions lead to

different VNS-based heuristics. We denote them as (α, γ), where α and γ represents geometry (metric) and

distribution used, respectively. Therefore, in total we have 6 different variants of VNS defined by (geometry,

distribution) pairs: (ℓ1, u),(ℓ2, u),(ℓ∞, u),(ℓ1, h), (ℓ2, h), (ℓ∞, h). Note that ”u” denotes uniform distribution,
while ”h” denotes hypergeometric (special) distribution. For simplicity, we will denote those variants in

pseudo-code as (1,1),(2,1),(3,1),(1,2),(2,2) and (3,2): (1,1)= (ℓ1, u), (2,1)=(ℓ2, u), etc. For example, pair

(3,2) indicates that ℓ∞ norm (3) and the special distribution (2) are used in the shaking step.

However, after extensive computational analysis, we remain on four (geometry, distribution) pairs in our
CQR-VNS in the following order: distribution type order = (1,2) (1,1) (3,1) and (3,2). After that a radius

from interval [0, rk] is taken at random in order to get a point from Nk(x). Therefore, a random point within

Shaking step of CQR-VNS is generated in two steps: (i) find random direction; (ii) find random radius along

that direction.

Local Search. As a local search for solving CQR we apply the direct search Nelder-Mead nonlinear pro-

gramming method since it does not use derivatives. The left and right boundaries aj and bj for variables are

defined as appropriate.

Pseudo-code. The algorithm Glob-VNS for solving CQR is given in Algorithm 3, where kmax and tmax are

usual VNS parameters, given by user.

After choosing (geometry, distribution) pairs and random initial solution β∗ ∈ Rg−1 in steps 1 and 2
respectively, we apply Algorithm 2 to find Powell estimator f(β∗). We denote with β the incumbent solution.

As explained in Algorithm 1, outer loop of VNS is running until predefined stopping condition is met. The
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Function CQR-VNS (β∗, kmax, tmax, X, Y, y0, ε)
Select (geometry, distribution) pairs as: (1,2), (1,1), (3,1), (3,2)1

Choose an initial point β∗ ∈ B at random2

f∗ ← Powell(β∗, X, Y, y0, ε)3

β ← β∗, t← 04

while t < tmax do5

k ← 16

repeat7

for each (geometry, distribution) pair do8

β′ ← Shake(β, k) // Get β′ ∈ Nk(β) at random9

β
′′

← Nelder-Mead(β′, f) // Get local minimum β
′′

by Nelder-10

Mead
if (f < f∗) then11

β ← β
′′

; f∗ ← f ; go to line 612

k ← k + 113

until k = kmax

t← CpuTime()14

Algorithm 3: VNS for CQR

inner loop is repeated kmax times, if there is no improvement in regressors β. In each neighbourhood a random

point from the Nk(β) is taken (line 9) and well known Nelder-Mead unconstrained nonlinear programming

code run (line 10). The local minimum value for Powel’s estimator is denote with f . If the better solution is
obtained, we save it (line 12) and repeat all process with the first neighbourhood (i.e., return to step 6).

3 Computational results

We perform extensive computational analysis to investigate how our new CQR-VNS method compares with

other approaches. We first give general rules for the computational simulation performed, and then present

comparative results on various test instances.

Methods compared. We compare our VNS-CQR with the following approaches from the literature.

1. The first group of methods are the same as in [3]:

• the direct heteroscedastic method;

• modified bootstrap and

• resampling methods.

2. The second group of methods are from [5]:

• CV method which denotes the CQR-LP estimator with log likelihood cross-validated bandwidth;

• CVa method, which denotes the CV estimator with bandwidth adjusted to conform with assump-

tion K;

• PR method, which denotes the CQR-LP estimator with probit estimates for censoring probability;

• HO and HOa are the same as CV and CVa except that the kernel function involves a higher order

kernel, and

• CR denotes Powell’s estimator.

3. Lastly, we apply our method to an extramarital affairs. Data set is taken from [11].
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Computer support. Our code was written in C++ and complied with Microsoft Visual Studio 8.0. The

program was run into Intel(R) Core(TM) 2 at 1.73 GHz with 2 GB of RAM. Unfortunately, there is no

information about the computers which were used to get results by other methods. Therefore, the efficiency
(i.e., the running CPU time of methods) could not be compared in this study. So, we will concentrate the

comparison only to their effectiveness or precision.

VNS parameters. Along the space dimension, initial and boundary conditions which are different in each

test instance, in the CQR-VNS we used the following parameters.

• CPU time was limited to tmax = 5 seconds;

• The number of neighbourhoods structures used is set to 10, kmax = 10;

• We choose the Nelder-Mead local search method. It stops when one among the following three criteria

are met:

– a diameter of a simplex is less than 0.1e-5 (ls eps = 0.1e-5),

– the difference between two consecutive objective function values is less than 0.1e-5 (ls fun eps =

0.1e-5) and

– the number of iterations reached 500.

3.1 Simulation comparison

In this part, we compared our CQR-VNS (whose pseudo-code is given in Algorithm 3) with the three algorithms

used in [3]. There the following model is considered:

yi = max{β0 + x1iβ1 + x2iβ2 + εi, y0}. (7)

The details regarding simulation are listed below:

• x1 is generated as Bernoulli distribution centered at zero, with the success probability equal to 1

2
;

• x2 is a standard normal variable N(0, 1);

• The censoring point is y0 = 0;

• Three different types of error ε are considered:

– a standard normal distribution;

– a heteroscedastic normal (1 + x2)×N(0, 1), and

– a normal mixture 0.75×N(0, 1) + 0.25×N(0, 4), as suggested in [3].

• It is assumed that the best estimator values are known and all equal to 1, (β0, β1, β2) = (1, 1, 1). Then

yi is calculated by using formula (7).

• For each of the following confidence level θ ∈ {0.95, 0.90, 0.85} the standard (S) and percentile (P)
methods [10] are used to construct confidence intervals. In particular, we compare the 95%, 90% and

85% confidence levels for each type of error.

• A size n = 100 of random sample is generated, i.e., {(x1i, x2i, yi), i = 1, 2, . . . , 100}. Those data space

points are obtained with the three different types of error ε. Two of them are plot in Figure 4.

• The simulation is repeated 1000 times and the average results reported.

In Figure 1 an instance of this type is plot in the regressor space (β1, β2), where the value of β0 is fixed

to 1. Powell’s estimator values are obtained by applying Algorithm 2 and taking (β1, β2) in each point of

the square grid [0,2]×[0,2] and increment 0.2 for each variable: βjk = 0.2 · k, ∀j = 1, 2; ∀k = 0, . . . , 10. The

version of the same instance, but with εi = 0 in (7), is presented in Figure 5.

Table 1 contains results for estimation of the regression coefficients β2 only. We compare the empirical

coverage probabilities to other three algorithms used in [3]. Therefore, we investigate the finite sample
performance of four methods: our VNS for CQR (CQR-VNS), the direct heteroscedastics bootstrap method

(Bootstrap for short), the resampling method (Resampling for short) and Bilias, Chen and Ying’s bootstrap
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Figure 4: Points (x1i, x2i, yi), i = 1, . . . , 100, in data space with the standard normal (left) and normal
mixture (right) errors with fixed β1 = 1 and β2 = 1
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Figure 5: Censored Quantile Regression function f(β) and ε = 0
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Figure 6: Points (x1i, x2i, yi), i = 1, . . . , 100, in data space with the standard normal and normal mixture
errors, and their estimated values (denoted as ”o”), obtained by CQR-VNS (denoted as ”+”)
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Table 1: Empirical coverage probabilities for confidence intervals

Bootstrap Resample M − Bootstrap V NS

Confidence level ECP ECP ECP ECP

Standard Normal
0.95 S 0.956 0.929 0.912 0.948

P 0.974 0.952 0.943 0.951
0.90 S 0.909 0.878 0.863 0.897

P 0.941 0.900 0.886 0.901
0.85 S 0.868 0.830 0.812 0.847

P 0.906 0.846 0.833 0.851

Normal Mixture
0.95 S 0.957 0.936 0.926 0.950

P 0.975 0.938 0.935 0.951
0.90 S 0.923 0.892 0.875 0.899

P 0.941 0.878 0.872 0.901
0.85 S 0.879 0.843 0.824 0.852

P 0.901 0.829 0.822 0.851

Heteroscedastic Normal
0.95 S 0.963 0.950 0.946 0.937

P 0.966 0.948 0.943 0.951
0.90 S 0.922 0.906 0.896 0.895

P 0.925 0.898 0.887 0.901
0.85 S 0.887 0.859 0.851 0.846

P 0.868 0.838 0.832 0.851

Note: The model includes three regressors, a constant and two other, the real vector of coefficient is (1, 1, 1), and the censoring
point here is y0 = 0. P denotes percentile. S denotes the standard. VNS denotes variable neighbourhood search. ECP is the
empirical coverage probabilities.

method (M-Bootstrap for short) [3]. The quality of solutions obtained by CQR-VNS may be seen in Figure 6

as well.

As we can see in Table 1, for standard normal distribution error and normal mixture error, VNS method

gives better results when compared to other methods. For heteroscedastic normal error term, our CQR-VNS

reports better results than others for finding the percentile ”P”, but it is not the best one in finding standard
”S” case. The distribution best solutions obtained by our CQR-VNS in 100 runs are presented at Figure 7.

Therefore, we can conclude that VNS based heuristic with the Powell’s estimator is a new promising method

for solving CQR problem. Our results also show that the choice of approximate solution method applied on

exact model could be better choice that use of exact methods on approximate model.

3.2 Finding root mean square, mean bias, mean absolute deviation and median

bias

In this subsection, there are two possible regression functions. First one can be written as

y = max{β0 + xi1β1 + xi2β2 + εi, y0}, (8)

and second one can be written as

y = max{β0 + xi1β1 + xi2β2 + xi3β3 + xi4β4 + xi5β5 + εi, y0}, (9)

where (β0, β1, β2, β3, β4, β5) equals (1, 1, 0.5,−1,−0.5, 0.25). xi are generated as a standard normal distribu-

tion, truncated as {‖ xi ‖∞< 2}. The error term has the multiplicative herteroscedasticity structure, where
it can be formulated as

εi = uiv(xi),

where v(xi) can be written as
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Figure 7: Distribution of local minima in (β1, β2) space, obtained by 100 restart of CQR-VNS

v(xi) = a0 +

m∑

j=1

(aj1xji + aj2x
2

ji),

a0 = 1, aj1 = 0.5 and aj2 = 0.5. The censoring point is y0 = −0.75.

Two alternative distributions are considered for ui: a normal distribution N(0, 25), and a χ2 distribution

with four degrees of freedom, re-centered to have zero median. In this part we have done the following:

• We generate the data as above according to [5], i.e. the paper we are comparing with [5].

• We repeat the simulation 10.000 times for each of the three cases of sample size: {(yi, xi), i = 1, 2, . . . ,

100}, {(yi, xi), i = 1, 2, . . . , 400}, and {(yi, xi), i = 1, 2, . . . , 600}.

• We apply the VNS for two cases of regression function. the first one as (8), and the second one as (9).

• We find the root mean square errors (RMSEs), mean bias, mean absolute deviation (MAE), and median

bias for all (β1, β2).

• Our results compare with the results from the CV method (which denotes the CQR-LP estimator
with log likelihood cross-validated bandwidth), the CVa method (which denotes the CV estimator with

bandwidth adjusted to conform with assumption K), the PR method (which denotes the CQR-LP

estimator with probit estimates for the censoring probability), the HO and HOa methods (which are

the same as CV and CVa, except that the kernel function is order kernel), the CR method, which is a

Powell’s estimator, and the VNS method [5].

We use in Table 2 the regression function as (8). Applying VNS method to original Powell estimator for

solving CQR outperforms better than the six other methods for the regression coefficient β1 for all sample

sizes and both kinds of error. On the other hand, the VNS method did not work very well for the regression

coefficient β2. The explanation is that the VNS works to give the minimum of the objective function in total,

not the minimum of each component of this objective function.

In Table 3 the regression function has five regressors, as in (9). The data are generated in the same way

as in Table 2.

Table 3 shows that the VNS method with Powell estimator in general for solving CQR gives very good

results in the case of five regressors. We note that VNS is the best for all sample size in both kind of error

for slope coefficient. In the case of the x2 coefficient VNS works well, better than other methods most of the
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Table 2: Monte Carlo simulation with three regressors for 0.50 quantile and 0.75 censoring point (10,000
repetition)

Intercept - β0 Slope - β2

CV CV a PR HO HOa CR V NS CV CV a PR HO HOa CR V NS

N(0, 25)

n = 100
RMSE 2.88 3.34 1.59 4.39 3.02 4.11 0.42 2.16 2.10 2.18 2.41 1.98 2.85 0.73
Meanbias 0.14 0.07 0.60 0.18 0.44 −0.08 −0.23 0.31 0.28 0.70 0.32 0.40 0.33 −0.65
MAE 0.82 0.80 0.94 0.83 0.92 0.74 0.23 0.86 0.83 1.21 0.85 0.90 0.92 0.65
Meanbias 0.93 0.32 0.70 0.45 0.60 0.35 −0.00 0.06 0.01 0.49 0.05 0.13 −0.31 −0.69

n = 400
RMSE 0.58 0.57 0.56 0.60 0.66 0.68 0.28 0.61 0.59 0.90 0.67 0.71 0.66 0.65
Meanbias 0.20 0.17 0.17 0.19 0.30 0.19 −0.14 −0.06 −0.10 0.28 −0.05 0.04 −0.45 −0.61
MAE 0.39 0.38 0.36 0.41 0.45 0.41 0.14 0.39 0.39 0.53 0.43 0.44 0.55 0.61
Meanbias 0.20 0.16 0.16 0.19 0.29 0.19 −0.00 −0.12 −0.17 0.21 −0.12 −0.05 −0.52 −0.57

n = 600
RMSE 0.48 0.48 0.46 0.48 0.52 0.49 0.24 0.50 0.48 0.71 0.54 0.56 0.57 0.62
Meanbias 0.18 0.16 0.14 0.12 0.20 0.20 −0.12 −0.06 −0.11 0.25 −0.17 −0.10 −0.47 −0.58
MAE 0.33 0.32 0.31 0.33 0.35 0.33 0.12 0.33 0.33 0.44 0.40 0.40 0.50 0.58
Meanbias 0.18 0.16 0.15 0.13 0.20 0.19 −0.00 −0.10 −0.15 0.23 −0.22 −0.16 −0.49 −0.54

χ2(4)

n = 100
RMSE 0.63 0.62 0.62 0.65 0.70 0.67 0.25 0.72 0.70 0.92 0.76 0.79 0.90 0.59
Meanbias 0.26 0.23 0.25 0.30 0.37 0.20 −0.12 −0.05 −0.08 0.19 −0.01 0.04 −0.14 −0.52
MAE 0.41 0.40 0.39 0.43 0.45 0.39 0.12 0.46 0.45 0.54 0.48 0.49 0.56 0.52
Meanbias 0.24 0.21 0.22 0.27 0.33 0.19 −0.00 −0.11 −0.13 0.12 −0.08 −0.03 −0.37 −0.49

n = 400
RMSE 0.32 0.31 0.28 0.32 0.35 0.31 0.13 0.35 0.35 0.39 0.37 0.37 0.51 0.50
Meanbias 0.17 0.16 0.09 0.17 0.21 0.12 −0.06 −0.11 −0.14 0.00 −0.09 −0.07 −0.45 −0.47
MAE 0.22 0.21 0.18 0.22 0.23 0.20 0.06 0.24 0.24 0.25 0.25 0.25 0.48 0.47
Meanbias 0.17 0.16 0.08 0.17 0.20 0.11 −0.00 −0.13 −0.15 −0.02 −0.11 −0.08 −0.47 −0.45

n = 600
RMSE 0.26 0.265 0.23 0.27 0.29 0.25 0.10 0.30 0.30 0.32 0.30 0.30 0.50 0.48
Meanbias 0.14 0.14 0.06 0.15 0.18 0.09 −0.04 −0.10 −0.13 −0.01 −0.09 −0.07 −0.46 −0.46
MAE 0.18 0.18 0.15 0.18 0.19 0.17 0.04 0.21 0.21 0.22 0.21 0.21 0.48 0.46
Meanbias 0.14 0.13 0.06 0.14 0.17 0.10 −0.00 −0.12 −0.14 −0.03 −0.10 −0.08 −0.48 −0.44

Note: The model includes three regressors: a constant and two random i.i.d. N(0,1)regressors. The vector of coefficients is
(1,1,.5). The censoring point is set at 0.75.

time. We may conclude that, when we increase the dimension of regression function, VNS method with the

exact Powell estimator outperforms other methods from the literature.

4 A censored quantile regression model for extramarital affairs

The phenomenon of an extramarital affair is important in many areas of expertise such as psychology,
sociology and economic see [2, 11]. In 1974, Redbook magazine published a survey of extramarital affairs.

This data set had been used in Fair’s study [1978].

In this section, we apply CQR-VNS to an extramarital affair data. The same instance is tested by three-step

CQR method in [8]. The sample consists of 6366 first-time married women. The 68.5 percent of the data set

have no extramarital affairs. In the CQR model eight independent variables and latent variable were defined
as Fair defined them [11].
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Table 3: Monte Carlo simulation with six regressors for 0.50 quantile and 0.75 censoring point (10,000
repetition)

Intercept Slope

CV CV a PR CR V NS CV CV a PR CR V NS

N(0, 25)

n = 100
RMSE 3.29 3.25 4.36 3.93 0.52 2.24 2.24 2.74 3.05 0.61
Meanbias 1.66 1.38 3.59 0.70 −0.30 0.26 0.21 0.72 0.43 −0.41
MAE 2.07 1.89 3.56 1.55 0.30 1.12 1.09 1.60 1.11 0.41
M − bias 1.77 1.54 3.53 1.22 −0.00 0.05 0.00 0.51 −0.12 −0.13

n = 400
RMSE 1.34 1.28 1.46 1.31 0.42 0.78 0.77 1.15 0.89 0.52
Meanbias 0.78 0.62 1.15 0.74 −0.23 −0.19 −0.24 0.26 −0.38 −0.32
MAE 0.89 0.80 1.17 0.81 0.23 0.52 0.51 0.69 0.66 0.32
M − bias 0.79 0.64 1.15 0.78 −0.00 −0.25 −0.30 0.19 −0.54 −0.01

n = 600
RMSE 1.11 1.01 1.07 0.91 0.38 0.63 0.63 0.88 0.71 0.48
Meanbias 0.67 0.54 0.81 0.64 −0.20 −0.14 −0.16 0.16 −0.50 −0.29
MAE 0.74 0.66 0.84 0.65 0.20 0.45 0.45 0.54 0.63 0.29
M − bias 0.67 0.56 0.81 0.62 −0.00 −0.20 −0.22 0.11 −0.60 −0.00

χ2(4)

n = 100
RMSE 1.53 1.46 2.01 1.33 0.38 1.02 1.03 1.34 1.23 0.51
Meanbias 0.96 0.87 1.63 0.69 −0.20 −0.22 −0.24 0.10 −0.12 −0.32
MAE 0.99 0.93 1.54 0.75 0.20 0.66 0.64 0.80 0.73 0.32
M − bias 0.93 0.84 1.53 0.68 −0.00 −0.30 −0.34 −0.02 −0.37 −0.00

n = 400
RMSE 0.88 0.80 0.69 0.62 0.19 0.51 0.52 0.57 0.60 0.36
Meanbias 0.72 0.62 0.51 0.46 −0.07 −0.24 −0.29 −0.04 −0.47 −0.20
MAE 0.70 0.61 0.52 0.46 0.07 0.37 0.38 0.38 0.54 0.20
M − bias 0.70 0.60 0.50 0.45 −0.00 −0.27 −0.31 −0.07 −0.52 −0.00

n = 600
RMSE 0.80 0.72 0.54 0.54 0.13 0.42 0.43 0.45 0.57 0.31
Meanbias 0.69 0.60 0.40 0.42 −0.04 −0.17 −0.19 −0.04 −0.50 −0.17
MAE 0.69 0.60 0.41 0.41 0.04 0.29 0.31 0.30 0.53 0.17
M − bias 0.69 0.60 0.40 −0.00 −0.65 −0.18 −0.20 −0.06 −0.53 −0.00

Note: The model includes six regressors: a constant and five random i.i.d. N(0,1)regressors. The vector of coefficients is
(1,1,.5,-1,-.5,.25). The censoring point is set at 0.75.

The dependent variable, which is also called the level of affairs, can be calculated as the number of

paramours multiplied by the number of relationships with each partner, divided by the number of years of
marriage. If there is no affair, the latent variable y = 0. The independent variables can be introduced as

follows:

• Marriage Rating: there are five answers here, 5=very good, 4= good, 3= fair, 2= poor and 1= very

poor.

• Age: the ages of the women are divided into six groups, 17.5= under 20, 22= from 20 to 24, 27= 25 to
29, 32= 30 to 34, 37= 35 to 39 and 42= 40 and over.

• Years of Marriage: there are divided into seven groups, 0.5= less than one year, 2.5= 1 to 4 years, 6=

5 to 7 years, 9= 8 to 10 years, 13.5= more than 10 years and the with oldest child under 12 years old,

16.5= more than 10 years and with the oldest child between 12 and 17 years old and 23= more than
10 years and with the oldest child 18 years old and over.

• Number of Children per marriage: marriages are divided into six groups, 0= none, 1= 1, 2= 2, 3= 3,

4= 4, 5.5= 5 or more.
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• Religiosity: response rating 1 to 4, 1= not religious, 2= mildly, 3= fairly, 4= strongly.

• Education: six groups, 9= if the wife went only to grade school, 12= high school, 14= had some college
experience, 16= was a college graduate, 17= had some graduate experience, and 20= an advanced

degree.

• Occupation: also it divided to six groups, 6= professional with advanced degree, 5= managerial, ad-

ministrative, business, 4= teacher, counsellor, social, social worker, nurse, artist, writer, technician,
skilled worker, 3= white-collar ( sales, clerical, secretarial), semiskilled or unskilled worker, other and

1= student.

• Husband’s Occupation: same division as occupation.

as it was mentioned in [11].

4.1 The model

The censored regression model can be written as follow:

f(β, θ, y0) = min
β

∑
ρθ(y −max{y0, β0 + x1β1 + x2β2 + x3β3 + x4β4 + x5β5 + x6β6 + x7β7 + x8β8})

where the censored point is y0 = 0.1, and the θ = {0.4, ....., 0.9} as in [11]. x1 denotes marriage rating,
x2 denotes age, x3 denotes years married, x4 denotes number of children, x5 denotes religiosity, x6 denotes

education, x7 denotes occupation, x8 denotes husband’s occupation and y is a level of the affair. The

(β0, β1, β2, β3, β4, β5, β6, β7, β8) = (7.85,−1.53,−0.107, 0.130,−0.0285,−0.944,−0.0853, 0.314, 0.0151), which
are the final results in Fair’s model [11].

4.2 Result analysis

The results from the CQR model are explained in Figure 8. As one can see on Figure 8, that the religiosity

effect is strongly negative at all quantiles of affair. The education effect is strongly negative and it is increasing

according to quantiles. In Fair’s model, the education effect is inexplicable until they appear to have meaning

in view of the relational perspectives toward an affair among the educated and intelligent individuals [23].

Also we can note that the age effect is negative at all quantiles. This can be explained by the fact that
younger wives are more likely to engage in extramarital affairs than older ones.

The number of children inside the family is strongly negative at all quantiles. This may be related to the

relationship between wife and husband is more strong when the family has children.

The women’s occupation effect is strongly positive. That mean the wive with high income are more likely

to engage in an affair. There are two views of explanation. In [25] explains that such status creates an

interactional advantage, increasing the hazard of an affair and subsequent marital dissolution. In [11] there
is another explanation, where is related to income status, that means the higher status occupation gives

high income. On the other hand, husband’s occupation is negative, but [11] predicts the positive effect of

husband’s occupation, because a higher value of goods consumed in marriage causes wives to substitute labor

activities for time spent with family and paramour.

We can sum up that the analytic and statistical predictions of Fair derived from normal model.

5 Conclusion

In this paper we suggest a new method for solving censored quantile regression (CQR). It is based on

variable neighbourhood search (VNS) global optimization technique. As objective function it is used Powell

estimator, which is known to be non convex-nor concave. Other approaches in the literature try to find linear

approximation of Powell function and then solve the problem exactly. We rather apply an approximation
method on exact CQR model. Our method adapts VNS rules in order to solve this global optimization
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Figure 8: CQR for extramarital affairs

problem. The basic idea of VNS metaheuristic is use of different metric functions in defining neighbourhood
structure of the current solution.

We perform extensive computational analysis on groups of test instances. Moreover, we use one real world

data instance to check how our approach behave in such type of problems.

It is appears that our new approach is competative with state-of-the-art methods from the literature.

Moreover, our results indicate that the better solution are usually obtained by using nonlinear model and

effective approximate solution method that use of approximate (linear) model with exact solution procedure.

Future research may include use of other, more sophisticated global optimization techniques for solving

CQR. Moreover, it may include extension our approach to semi censored quantile regression ([22]) as well.

In addition, new neigbourhood structures may be tried out within variable neigbourhood approach.
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