
Les Cahiers du GERAD ISSN: 0711–2440

A Parametric Simplex

Search for Unconstrained

Optimization Problem

Q. Zhao, N. Mladenović
D. Urošević

G–2011–28

June 2011

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

A Parametric Simplex Search for

Unconstrained Optimization Problem

Qiuhong Zhao

School of Economics and Management

Beihang University

Beijing, China

qhzhao@buaa.edu.cn

Nenad Mladenović

GERAD & School of Mathematics

Brunel University-West London

Uxbridge, UB8 3PH, UK

nenad.mladenovic@brunel.ac.uk

Dragan Urošević

Mathematical Institute, SANU

Belgrade, Serbia

draganu@mi.sanu.ac.rs

June 2011

Les Cahiers du GERAD

G–2011–28

Copyright c© 2011 GERAD

Les Cahiers du GERAD G–2011–28 v

Abstract

In this paper an effective modification to the original Nelder-Mead simplex method is suggested. It
is shown that the new heuristic outperforms on average the original version of NM as well as its several
modifications, showing especially its robustness in solving the standard functions. This result clearly
indicates benefits of introducing randomness into a deterministic search procedure.

Key Words: Unconstrained optimization; Global optimization; Nonlinear Programming, Direct meth-
ods, Nelder–Mead.

Résumé

Dans cet article, on propose une modification efficace de l’algorithme original du simplexe de Nelder-
Mead. On montre que cette nouvelle heuristique a en moyenne de meilleures performances que la version
originale de Nelder-Mead, ainsi que plusieurs de ses modifications, constatant en particulier la robustesse
de la résolution de fonction standard. Ce résultat illustre clairement le bénéfice d’introduire la randomi-
sation dans une procédure de recherche déterministe.

Acknowledgments: The work of the first author was partially supported by New Century Excellent
Talents in University of China under Project No. NCET-07-0049 and by National Natural Science Foun-
dation of China under Projects No. 70771001 and No.70821061. Second and third authors are partially
supported by Serbian Ministary of Sciences, project number 144007.

Les Cahiers du GERAD G–2011–28 1

1 Introduction

Let us consider unconstrained continuous optimization problem:

min {f(x) | x ∈ Rn}, (1)

where objective function f : Rn → R. If the objective function is nor convex nor concave, there may have

many local minima.

The simplex search methods [13] are a kind of direct search methods. Note that simplex contains (n+ 1)

points xi ∈ Rn, i = 1, ..., n + 1. Among numerous simplex methods, the Nelder-Mead (NM) algorithm is

the most popular one. Since published in 1965, the NM algorithm has been used in many fields of science
and technology. Despite being widely used, the NM’s practical performance can be appallingly poor in some

cases [15]. Recently, numerous modifications to the NM algorithm, including metaheuristic originated NM

versions, have been proposed, most of which aim at improving the worst-case performance.

In this paper, we present a modification to the original NM method, for unconstrained optimization.

We explore the fact that all possible improved solutions belong to the same line, i.e., the line that connects
worst simplex vertex with the centroid of the simplex. Then, instead of taking only reflection, expansion and

contraction points on that line, we introduce randomness to generate more trial points within one iteration.

We call our modification Parametric Simplex Search (PSS) method, since it integrates the parametric search

into the method.

The rest of the paper is organized as follows. In the next section we briefly outline the NM algorithm
and present a general formulation drawn from it. In Section 3 we give details of our algorithm. Extensive

computational analysis is conducted in Section 4. Finally, conclusions are drawn in Section 5.

2 The General Nelder-Mead Method

2.1 NM procedure

In this subsection, the initial simplex, One iteration of the NM algorithm and the termination criterion

are demonstrated respectively. The overall description of NM is given at last.

Initial simplex. It is customary to specify a starting point in Rn that is taken as one of the initial
simplex vertices. The other n vertices are then usually generated by perturbing the starting point by a

specified step along the n coordinate directions, or by creating a regular simplex with specified edge length

and orientation.

One NM iteration. Let X = {x1, x2, . . . , xn+1} be the current simplex, where the points are ordered

according to the function values, let x1 be the best one (with minimal function value), and xn+1 the worst.
One NM iteration is shown in (Algorithm 1).

“Point x is accepted” in Algorithm 1 means that x replaces the worst point from X . According to the

original Nelder-Mead paper [13], the parameters α, β, γ, δ in the NM iteration should satisfy the following

conditions: α > 0, β > 1, 0 < γ < 1, and 0 < δ < 1. Their usual values are α = 1, β = 2,γ = 1
2 , and δ = 1

2 .

Termination criterion. One of the two termination criteria is usually used: either the function values
at all vertices are close, or the volume of the simplex becomes very small (V olume(X) < ε, where X and ε

are the current simplex, and an arbitrary small number, respectively).

The overall steps of the NM algorithm is in (Algorithm 2).

2.2 A Generalization of the NM Procedure

Proposition 1 Reflection, expansion and contraction points belong to the same line xg = x̄+ g(x̄− xn+1).

2 G–2011–28 Les Cahiers du GERAD

Algorithm 1 NM-Iteration(X , f)

1: Order. Order the n+ 1 vertices of X to satisfy f(x1) 6 f(x2) · · · 6 f(xn+1).
2: Reflect. Compute the reflection point xr as xr = x̄+ α(x̄− xn+1), where x̄ = 1

n

∑n

i=1 xi is the centroid
of the n best points (all vertices except for xn+1). If f(x1) 6 f(xr) < f(xn) accept the reflected point
xr, terminate the iteration.

3: Expand. If f(xr) < f(x1), calculate the expansion point xe = x̄ + β(xr − x̄). If f(xe) 6 f(xr), accept
the expanded point xe and terminate; otherwise accept
xr and terminate the iteration.

4: Contract. If f(xr) > f(xn), perform a contraction between x̄ and the better of xn+1 and xr.
(a) Outside. If f(xr) < f(xn+1), then outside contraction: xc = x̄ + γ(xr − x̄). If f(xc) 6 f(xr), accept
xc and terminate; otherwise go to Shrink step.
(b) Inside. If f(xr) > f(xn+1), then inside contraction: xc′ = x̄ − γ(x̄ − xn+1). If f(xc′) 6 f(xn+1),
accept xc′ and terminate; otherwise go to Shrink step.

5: Shrink. Evaluate f at the n points vi = x1 + δ(xi − x1), i = 2, . . . , n + 1. The (unordered) vertices at
the next iteration consist of V = {x1, v2, . . . , vn+1}; set X = V .

Algorithm 2 Nelder-Mead simplex method

1: Get an initial point x ∈ Rn at random
2: X ← Initial-Simplex

3: while The termination criterion is not met do
4: NM-Iteration(X, f)
5: end while

6: return return x1 as solution.

Proof. From Algorithm 1 we have

xr = (1 + α)x̄ − αxn+1, xe = (1 + αβ)x̄ − αβxn+1,

xc = (1 + αγ)x̄− αγxn+1, xc′ = (1− γ)x̄+ γxn+1.

If we denote G = {α, αβ, αγ, −γ}, then we can express the relect, expand and contract (inside and outside)

points in one NM iteration with the following general formulation:

xg = (1 + g)x̄− gxn+1, (2)

where g ∈ G. Therefore, after simple transformation on (2), desired result is obtained.

The original NM algorithm and the most of its modifications specify reflect, expand, contract steps in

sequence and fix the values of α, β, γ in advance. We change systematically at random an interval from which

the value of g in Formulation (2) is selected. In addition, we expand the range of g (contrasting to that given
in the original NM, which is [− 1

2 , 2] at specified points {− 1
2 ,

1
2 , 1, 2}), to search for the global optimum in a

wider but reasonable interval.

3 PSS and RPSS Algorithms

3.1 The PSS Algorithm

By changing the value of parameter g in (2), creating accordingly a new vertex, the PSS algorithm follows

the original version of NM, but in more flexible way. We first specify the initial simplex and the stopping

criteria of the algorithm. One PSS iteration is given in (Algorithm 3). After the illustration of our revised

shrink step, the overall PSS algorithm is given in (Algorithm 4).

Initial Simplex. Let xi = (xi,1, xi,2, ..., xi,n) ∈ Rn denotes the ith vertex of the current simplex,
i = 1, 2, ..., n + 1. The starting vertex x1 = (x1,1, x1,2..., x1,n) ∈ Rn of the initial simplex X is chosen at

random; otherwise x1 is chosen by the following VNS, which is depicted in line 3 (Algorithm 5). The remaining

Les Cahiers du GERAD G–2011–28 3

vertices are created by the formulation listed in line 5 of Algorithm 5, where τ is a positive constant, ei is

the n−dimensional unit vector with one in the ith component and zeros elsewhere.

Stopping Criteria. The stopping criteria are set to be the combination of two conditions: (1) The
continuous iteration number without meeting Inequality (3) accumulates to J :

f∗ − f(x1) > ρ|f∗|, (3)

where f∗ is the minimum function value ever found before, and ρ > 0. (2) The volume of the current simplex

is small enough to meet Inequality (4):

|f(x1)|+ |f(xn+1)|

|f(x1)|+ |f(xn+1)|+ 10εo
6 10εo , (4)

where εo is a minus integer predefined.

One Iteration. We define Ik as the interval, which are characterized by iteration number k. For any
selected, the PSS procedure chooses randomly a value g′ ∈ Ik, and conducts search from a predefined interval

around g′. The PSS based iteration is given in Algorithm 3, In Algorithm 3, according to the following

formulation:

Ik = [dk, uk] = [A− ⌊k/a⌋, A− ⌊k/a⌋+ b], (5)

where A, a and b are the positive constants, ⌊z⌋ the largest integer not larger than z. As shown in (5), along

with the increase of k, dk either keeps unchanged or decreases, so does uk.

Algorithm 3 One iteration of PSS.

1: function OnePSS(n,X, f)
2: k ← 0; xnew ← xn+1.
3: Define Mg′ as an interval around g′ ∈ Ik. Take e as the step for local search.
4: while k 6 kmax do

5: Select randomly a value g′ ∈ Ik, denote xw = minf(xg){xg = (1 + g)x̄− gxn+1|g ∈Mg′}.
6: if f(xw) < f(xn+1) then
7: xnew ← xw

8: break
9: else

10: k ← k + 1;
11: end if

12: end while

13: return xnew

The Modified Shrink Procedure. Our modified shrink step is activated when we fail to find a solution

better than xn+1 in previous step. We shrink only part of the points each time, the number q, is determined

randomly and 1 6 q < r < n, where r (a parameter) is a predefined value. The detailed description of the

modified shrink procedure is given in Algorithm 4.

By shrinking part of the points, we can diversify the simplex, while the information of the previous simplex

can be inherited as well. In the case that q is always too small to diversify the simplex, the algorithm can

avoid of converging to the local optimum and the Restarted PSS processes.

Pseudo-code for PSS. The Pseudo-code for PSS is in Algorithm 4.

3.2 The RPSS algorithm

The RPSS algorithm is characterized by restarting the PSS algorithm when its stopping condition is met.

The way of restarting the NM simplex or its modifications has already been applied ([11, 18], etc.). It
is shown to be significant for the search of the global optimum. The method in [11] is called as Restarted

and Revised Simplex (RRS), which consists of a three-phase application of the NM method in which: (a) the

4 G–2011–28 Les Cahiers du GERAD

Algorithm 4 Pseudo-code for PSS

1: function PSS(n,X, f)
2: X ← Initial-Simplex (n, x)
3: shrink← false
4: while Stopping condition is not met do
5: if shrink then

6: Select randomly a number q < r < n,
7: xi = x1 + δ(xi − x1), i = n− q + 2, . . . , n, n+ 1.
8: shrink ← false
9: else

10: xnew ← OnePSS(n,X, f)
11: if xnew < xn+1 then

12: xn+1 ← xnew

13: else

14: shrink← true;
15: end if

16: end if

17: reorder X
18: end while

19: return x1 as solution.

ending values for one phase become the starting values for the next phase; (b) the step size for the initial

simplex (respectively, the shrink coefficient) decreases geometrically (respectively, increases linearly) over the

successive phases; and (c) the final estimated optimum is the best of the ending values for the three phases.

In [18], the Restarted and Modified NM (RMNM) method takes the same size (volume) of the simplex in the
proceeding phases as in the first one and finishes the procedure when the optimal value f(x1) in the current

phase is not better than the best one (denote it as f(x)) obtained in the previous phase; i.e., the termination

criterion is f(x1) > f(x).

In this paper, we restart PSS for global searching. Whenever PSS is restarted, we diversify the initial

simplex, such that the iteration process can be conducted in a wider interval if the function value is not
improved.

Constructions of the initial simplex are included in Algorithm 5. If it is the first time to run PSS, the

point x1 in the initial simplex X is selected randomly; whenever PSS is restarted, the point x1 is constructed

by perturbing the best vertex gained in the previous phases, as shown in line 3, where m > 1. In both

cases, the other points are created by the formulation listed in line 5, where τ is a positive constant, ei is
the n-dimensional unit vector with one in the ith component and zeros elsewhere. As shown in line 3, even

though x1 is chosen randomly, the probability of x1 departuring more from the best vertex gained increases

if the optimal function value keeps unimproved in the previous phases, until k = K.

4 Computational Analysis

The computational process is divided into two parts. In the first subsection, we run the RPSS algorithm on
a series of functions, whose dimensions change steadily within a given range, and compare the results with

those drawn from [18]; in the second subsection, the computational experiment focuses on the functions with

specified dimensions, which were also run by some meta-heuristic algorithms recently.

In Table 1, we list the values of some parameters in the PSS algorithm. These values are classified

regarding the algorithm in which they are listed.

The values of the parameters listed in the column OnePSS are decided based on the analysis conducted

in Section 3.1; the values of the parameters listed in the columns PSS and RPSS are decided based on testing.

Les Cahiers du GERAD G–2011–28 5

Algorithm 5 Pseudo-code of RPSS

1: function RPSS(n,X, f)
2: x∗ ←PSS (n,X, f), x1 ← x∗, k ← 0
3: while k 6 K do

4: x1 ← x1 · (1 +
k

mK
· ω), ω ∈ [0, 1]

5: z = max|x1j |, j = 1, ..., n
6: xi+1 = x1 +max{1, z} · ei, for i = 1, ..., n
7: x∗ ← PSS(n,X, f)
8: if x∗ < x1 then

9: x1 ← x∗, k ← 0;
10: else

11: k ← k + 1
12: end if

13: end while

14: return x1 as solution.

Table 1: The values of some parameters in the PSS algorithm

OnePSS PSS RPSS

Parameter A a b I e J εo r ρ K m τ

Value 2.5 5 1 25 0.2 500 10−6 n

2
1.5 10 5 3

4.1 Standard test functions with different dimensions

In this subsection, we conduct the comparative analyses on the functions in Table 2, with different dimensions.

Besides the RPSS algorithm, three other methods —- NM, RRS and RMNM, are also considered, which are

drawn from [18]. For each method, the initial simplex X is generated in the same way as the PSS method in

the first phase of RPSS (that is, the point x1 is generated randomly, the other points are generated based on
the formation in line 5 of Algorithm 5, where k = 0). The termination criterion of NM is the same as each

phase of RSS as well as RMNM, which is the combination of the iteration number without improvement (it

is set to 10, 000) and Inequality (4). The values of the parameters α, β, γ, δ for these methods except for

RPSS are the same as what shown in Section 2.

All of these algorithms are coded in C++ and run on a Pentium 4 computer with 1400MHz processor and
256 MB of RAM. The same as in [2, 10], we use the following criterion to judge success (i.e., convergence to

the global minimum) of a trial:

f̃ − fmin < ǫ1 | fmin | +ǫ2, (6)

where f̃ refers to the best function value obtained by the algorithm, fmin is the exact global minimum, ǫ1
and ǫ2 are set equal to 10−4 and 10−6, respectively.

In Table 2, the name and the abbreviation of each test function are in the first two columns. The third

column, n, denotes the dimensions and the last column fmin gives known minimum function values. These

test functions (or some of them) can be found for examples in [3, 9, 2], etc., with diversity in characteristics

of difficulties that arise in global optimization problems. By changing steadily dimension of these functions
within a given range, we can well evaluate the robustness of these methods under consideration.

As shown in Table 2, for all the functions except Powell’s function (which dimension should be times of 4),

the dimension is changed from 10 to 100, with step 5, while the latter is from 8 to 100, with step 4. Thus,

each test function consists of 19 (100−10
5 + 1) instances (100−8

4 + 1 = 24 instances for the Powell function).

The same as [18], to all the test functions and their dimensions considered, we run the RPSS code one
time. The computational results of NM, RSS, RMNM and RPSS are in Table 3. In Table 3, for each function

with m = 19 (m = 24 for Powell) time’s running, we list from Column 2 to Column 6 the convergent times of

each algorithm to the global minimum (Conv. Times), and from 7 to 11 the average of all the function values

6 G–2011–28 Les Cahiers du GERAD

Table 2: Standard test instances

Fun. Abbr. n fmin

Dixon and Price DP 10, 15, 20, ..., 100 0
Griewank GR 10, 15, 20, ..., 100 0
Powell PO 8, 12, 16, ..., 100 0
Rosenbrock RO 10, 15, 20, ..., 100 0
Schwefel SC 10, 15, 20, ..., 100 0
Zakharov ZA 10, 15, 20, ..., 100 0
Rastrigin RA 10, 15, 20, ..., 100 0

Table 3: The computational results of the test functions in Table 2

Conv. Times Av.Val.
Fun. NM RSS RMNM RPSS NM RSS RMNM RPSS
DP 0 0 3 0 209732.08 1.83 0.56 0.63
GR 0 8 9 19 61.88 0.04 0.02 0.00

PO 3 23 16 24 38.71 0.00 0.00 0.00

RO 0 1 4 1 832.14 58.88 127.44 41.35

SC 0 0 3 0 12091.18 10836.81 6659.31 1314.28

ZA 2 3 8 19 37.76 0.26 0.00 0.00

RA 0 0 18 19 300.94 208.59 0.00 0.00

Total 5 35 61 82 223094.69 11106.41 6787.33 1363.59

Avg. 1 5 9 12 1616.63 80.48 49.18 9.88

(AV.Val.) accordingly, where the computational results except for RPSS are drawn from [18]. We show in

bold the best results (Conv.Times and Av.Val.) for each function.

In Table 3, for 4 functions, the convergence times of RPSS outperforms the other methods, while RMNM

dominates the others. In addition, contrasting to other methods without 100 percentage convergency to any
function, RPSS converges to the optimum at 100 percentage rate for the four functions it dominates. It can

be seen from the last two rows that the total (average, accordingly) convergent times of RPSS is the biggest,

where Average = ⌈Total/7⌉.

Usually the global optimums are unknown for the real problems, so “Average function Value” (Av.Val.)

is an important index to judge the ability as well as robustness of any solver for complex unconstrained
optimizations. In Table 3, the outperform of RPSS is also shown in column AV.Val. Except for function DP,

RPSS either has the minimal average function value or has it the same as the best one.

4.2 Global optimization instances with specified dimension

In this section, we analyze the efficiency of RPSS, which is tested by using a set of benchmark functions

with specified dimensions. Details of these functions can be found in [5, 9]. In Table 4, we list each function
the name (Fun.), abbreviation (Abbr.), dimension (n) and optimal function value (fmin). The metaheuristic

algorithms compared with RPSS in this subsection are listed in Table 5. The first six methods in Table 5

use NM as subroutine, the last two have no relation with NM, however, they also employ VNS to find the

optimum.

The same as other metaheuristic algorithms compared with RPSS in this subsection, we run the code
of RPSS 100 times for per function, and summarize the results by following two criteria below: the rate of

successful minimization, the average of the objective function evaluation number (which is called later as

function evaluation number), where the latter criterion relates only to the successful trials.

The computational results are listed in the middle part of Table 6, where Columns contain the number of

function evaluations needed to find the first global minimum. The numbers in parentheses denote number of

runs for which the method found the global minimum; in the case of 100% no number is reported. For each
function, we highlight in bold the minimal function evaluation times (100% success) in bold. For all methods

except for RPSS, we draw the results from the references given in Table 5, which are also listed in [18]. Since

Les Cahiers du GERAD G–2011–28 7

Table 4: Global optimization test problems

Fun. Abbr. n fmin

Branin RCOS BR 2 0.3979
Goldstein and Price GP 2 3.0000
Hartmann H3,4 3 -3.8628

H6,4 6 -3.3224
Rosenbrock RO2 2 0.0000

RO10 10 0.0000
Shekel S4,5 4 -10.1532
Shubert SH 2 -186.7309

Table 5: The global minimizers

Method Reference
Genetic and Nelder-Mead (GNM) Chelouah and Siarry [3]
Genetic with Nelder-Mead (GANM) Fan et al. [7]
Swarm with Nelder-Mead (SNM) Fan et al. [7]
Niche hybrid genetic algorithm (NHGA) Wei and Zhao [16]
Tabu Search and Nelder-Mead (TSNM) Chelouah and Siarry [4]
Continuous Genetic Algorithm (CGA) Chenouah and Siarry [2]
Restart and Modified Nelder-Mead (RMNM) Zhao et al. [18]
Variable Neighborhood Descent (VND) Toksari and Guner [14]
Basic Variable Neighborhood Search (B-VNS) Toksari and Guner [14]

some results are not available for some instances, Table 6 contains empty entries. In the last column, we list

for each function the average of evaluation number of all the methods 100% succeeded in finding the global

minimum.

Table 6: Comparison of RPSS with heuristics listed in Table 5

Fun. G
N
M

G
A
N
M

S
N
M

N
H
G
A

T
S
N
M

C
G
A

R
M
N
M

V
N
D

B
-V

N
S

R
P
S
S

A
V
E

BR 295 356 230 – 125 – 60 372 308 178 241
GP 259 422 304 – 151 410 69(80) 294 206 215 283
H3,4 492 688 436 – 698 – 67 408 521 132 430
H6,4 930 – – – 2638 – 398(50) 2274 1244 2583 1934
SH 345 1009 753 – 279 – 275(40) – – 138 505
RO2 459 738 440 239 369 960 224 – – 363 474
RO10 14563(83) 5194 3303 6257 – 21563 5946(95) – – 6333 8530
S4,5 698(85) 2366 850 – 545(69) 610(76) 912(90) 806 571 3624 1643

For each function in Table 6, the rate of RPSS for success is 100 percentage. However, except for SH in

Table 6, RPSS does not dominate the other functions regarding minimal function evaluation number. To

further analyze the performance of RPSS, we list in Table 7 the compared results of function evaluation
number with the average (which are listed in the last column of Table 6 and denoted as AV Ei). We denote

Evaij as the function evaluation number of method j on function i, for example, if the method j is GNM

and the function i is BR, Evaij = 295, and Comij as the compared results of Evaij with AV Ei, which is

defined as

Comij =



































+
if the rate of successful minimization is
100% and Evaij > AV Ei

−
if the rate of successful minimization is
100% and Evaij 6 AV Ei

U
if the rate of successful minimization is
less than 100%

NA if Evaij is not available

8 G–2011–28 Les Cahiers du GERAD

Table 7: Comparison of RPSS with heuristics listed in Table 5

Fun. G
N
M

G
A
N
M

S
N
M

N
H
G
A

T
S
N
M

C
G
A

R
M
N
M

V
N
D

B
-V

N
S

R
P
S
S

BR + + - NA - NA - + + -
GP - + + NA - + U + - -
H3,4 + + + NA + NA - - + -
H6,4 - NA NA NA + NA U + - +
SH - + + NA - NA U NA NA -
RO2 - + - - - + - NA NA -
RO10 U - - - NA + U NA NA -
S4,5 U + - NA U U U - - +

The advantage of RPSS is obvious by observing the results in Table 7. First, contrasting to GNM

and RMNM which also test all functions in Table 6, RPSS exceeds them by 100% of success and by more

“−” outcomes; second, for most functions (6 out of 8), RPSS has better results than the average ones,

outperforming on average the other methods.

5 Conclusions

In this paper, a modification of Nelder-Mead (NM) algorithm is proposed. Our Parametric Simplex Search

(PSS) algorithm integrates all the steps (except Shrink) by changing systematically and randomly parameter

values in the general formulation for one step of original NM iteration. This makes the algorithm capable of

searching for the optimum in a diversified and flexible way. The shrink step is also revised, in the way that

more information of the previous simplex can be inherited.

To make the algorithm be capable of global searching, we restart the PSS algorithm until the termination

criterion is met. We call our algorithm as the Restart and Parametric Simplex Search NM (RPSS).

We analyze the quality of our RPSS algorithm by conducting comparative analysis with other algorithms.
We evaluate the RPSS algorithm from two aspects. First, we analyze the robustness of the algorithm, which

is characterized by the deviation of the function values from the optimum when the function dimension

changes; second, we evaluate the effectiveness of RPSS, where we propose an index “AGAP”, to well evaluate

the performance of RPSS. It is shown by computational experiments that, the RPSS algorithm outperforms

in average the original version of NM as well as some other recent successful modifications.

Future work may include search for better parameter values in more automatic fashion. Such an extension

may be seen as Parametric Space Search approach. In addition our PSS may be used as a local search routine

within some metaheuristic scheme, such as Variable Neighborhood Search [12].

References

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England: Addison-Wesley, 1999.

[2] R. Chelouah and P. Siarry, A continuous genetic algorithm designed for the global optimization of multimodal
functions. Journal of Heuristics 6 (2000) 191–213.

[3] R. Chelouah and P. Siarry, Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization
of continuous multiminima functions. European Journal of Operational Research 148 (2003) 335–348.

[4] R. Chelouah and P. Siarry, A hybrid method combining continuous tabu search and Nelder-Mead algorithms for
the global optimization of multiminima functions. European Journal of Operational Research 161 (2005) 636–654.

[5] J. Dréo and P. Siarry, Continuous interacting ant colony algorithm based on dense heterarhy. Future Generation
Computer Systems 20 (2004) 841–856.

[6] J. Dréo and P. Siarry, Hybrid continuous interacting ant colony aimed at enhanced global optimization. Algorithmic
Operations Research 2 (2007) 52–64.

[7] S.K.S. Fan, Y.C. Liang and E. Zahara, A genetic algorithm and a particle swarm optimizer hybridized with Nelder-
Mead simplex search. Computers and Industrial Engineering 50 (2006) 401–425.

Les Cahiers du GERAD G–2011–28 9

[8] P. Hansen and N. Mladenović, Variable neighborhood search. In: Glover F, Kochenberger G (Eds), Handbook of
Metaheuristics. Kluwer: Dordgecht. (2003) 145–184.

[9] A.R. Hedar and M. Fukushima, Tabu search directed by direct search methods for nonlinear global optimization.
European Journal of Operational Research 170 (2006) 329–349.

[10] F. Herrera, M. Lozano and D. Molina, Continuous scatter search: An analysis of the integration of some combi-
nation methods and improvement strategies. European Journal of Operational Research 169 (2006) 450–476.

[11] D.G. Humphrey and J.R. Wilson A revised search procedure for stochastic simulation response surface optimiza-
tion. INFORMS Journal on Computing 12 (2000) 272–283.

[12] N. Mladenović and P. Hansen, Variable neighborhood search. Computers and Operation Research 24 (1997) 1097–
1100.

[13] J.A. Nelder and R. Mead, A simplex method for function minimization. Computer Journal 7 (1965) 308–313.

[14] M.D. Toksari and E. Guner, Solving the unconstrained optimization problem by a variable neighborhood search.
Journal of Mathematical Analysis and Applications 328 (2007) 1178–1187.

[15] V. Torczon, Multi-directional Search: A direct search algorithm for parallel machines. PhD thesis, Rice University,
Houston, Texas, USA. 1989.

[16] L.Y. Wei and M. Zhao, A niche hybrid genetic algorithm for global optimization of continuous multimodal func-
tions. Applied Mathematics and Computation 160 (2005) 649–661.

[17] M.H. Wright, Direct search methods: once scorned, now respectable. In Numerical Analysis(Griffiths DF and
Watson GA, ed.), Addison Wesley Longman, Harlow, United Kingdom (1996) 191–208.

[18] Q.H. Zhao, D. Urošević, N. Mladenović and P. Hansen, A restarted and modified simplex search for unconstrained
optimization. Computers and Operations Research 36 (2009) 3263–3271.

	Introduction
	The General Nelder-Mead Method
	NM procedure
	A Generalization of the NM Procedure

	PSS and RPSS Algorithms
	The PSS Algorithm
	The RPSS algorithm

	Computational Analysis
	Standard test functions with different dimensions
	Global optimization instances with specified dimension

	Conclusions

