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M. Čangalović
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Abstract

In this paper we consider two similar NP-hard optimization problems on graphs: the metric dimen-
sion problem and the problem of determining minimal doubly resolving sets. Both arise in many diverse
areas, including network discovery and verification, robot navigation, chemistry, etc. For each problem
we propose a new mathematical programming formulation and test it with CPLEX and Gurobi, the two
well-known exact solvers. Moreover, for solving more realistic large size instances, we design Variable
Neighborhood Search based heuristic. An extensive experimental comparison on four different types of
instances indicates that our VNS approach consistently outperforms genetic algorithm, the only existing
heuristic in the literature designed for solving those problems.

Key Words: Metaheuristics, Combinatorial optimization, Variable neighborhood search, Metric di-
mension, Minimal doubly resolving set.

Résumé

Nous considérons dans cet article deux problèmes similaires et NP-difficiles d’optimisation sur les
graphes : le problème de la dimension métrique et le problème de la détermination d’ensembles mini-
maux doublement résolvants. Tous deux se posent dans de nombreux domaines incluant la découverte
de réseaux, la navigation de robots, la chimie, etc. Pour chaque problème, nous proposons une nouvelle
formulation de programmation mathématique, testée avec les deux solveurs exacts bien connus, CPLEX
et Gurobi. De plus, pour résoudre des grandes instances plus réalistes, nous élaborons une heuristique de
Recherche à Voisinage Variable. Une comparaison expérimentale extensive sur quatre types d’instances
indique que l’approche RVV est constamment meilleure qu’un algorithme génétique, le seul à avoir été
proposé dans la littérature pour résoudre ces problèmes.

Acknowledgments: This research was partially supported by Serbian Ministry of Science under grants
174010 and 1474033.
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1 Introduction

The metric dimension problem (MDP) is introduced independently by Slater (1975) and Harary & Melter
(1976). Given a simple connected undirected graph G = (V ,E), where V = {1, 2, ..., n}, |E| = m, d(u, v)

denotes the distance between vertices u and v, i.e. the length of a shortest u − v path. A vertex x of the

graph G is said to resolve two vertices u and v of G if d(u, x) 6= d(v, x). A vertex set B = {x1, x2, ..., xk} of G

is a resolving set of G if every two distinct vertices of G are resolved by some vertex of B. Given a vertex t,

the k-tuple r(t, B) = (d(t, x1), d(t, x2), ..., d(t, xk)) is called the vector of metric coordinates of t with respect
to B. A metric basis of G is a resolving set of the minimum cardinality. The metric dimension of G, denoted

by β(G), is the cardinality of its metric basis.

The MDP has been widely investigated. Since the complete survey of all the results is out of the scope

of this paper, we will mention only some relevant recent results. There exist two different integer linear pro-

gramming (ILP) formulations of the metric dimension problem: Chartrand et al. (2000); Currie & Oellerman
(2001). The metric independence of the graph is defined as the fractional dual of the integer linear program-

ming formulation of the metric dimension problem (Fehr et al., 2006). From the theoretical point of view it

is important to obtain tight lower and upper bounds for the metric dimension of the Cartesian product of

graphs (Peters-Fransen & Oellermann, 2006; Cáceres et al., 2007) and corona product of graphs (Yero et al.,
2011). Another interesting theoretical topic is connection between the metric dimension and graph invariants

such as diameter, number of vertices, vertex degrees, etc (Hernando et al., 2007, 2010). The relation of the

bounds on the metric and partition dimensions of a graph has been established, as well as a construction

showing that for all integers α and β with 3 ≤ α ≤ β + 1 there exists a graph G with partition dimension α

and metric dimension β (Chappell et al., 2008). The metric dimension of several interesting classes of graphs
have been investigated: Cayley digraphs (Fehr et al., 2006), Grassmann graphs (Bailey & Meagher, 2011),

Johnson and Kneser graphs (Bailey & Cameron, 2011), silicate networks (Manuel & Rajasingh, 2011), convex

polytopes (Imran et al., 2010) and generalized Petersen graphs (Javaid et al., 2008; Husnine & Kousar, 2010).

It has been shown that some infinite graphs have also infinite metric dimension (Cáceres et al., 2009; Rebatel
& Thiel, 2011).

The metric dimension arises in many diverse areas including network discovery and verification (Beerliova

et al., 2006), geographical routing protocols (Liu & Abu-Ghazaleh, 2006), the robot navigation, connected

joints in graphs, chemistry, etc.

The concept of a doubly resolving set of graph G has been recently introduced by Cáceres et al. (2007).

Vertices x, y of graph G (n ≥ 2) are said to doubly resolve vertices u, v of G if d(u, x) − d(u, y) 6= d(v, x) −
d(v, y). A vertex set D of G is a doubly resolving set of G if every two distinct vertices of G are doubly

resolved by some two vertices of D. The minimal doubly resolving set problem (MDRSP) consists of finding

a doubly resolving set of G with the minimum cardinality, denoted by ψ(G). Note that if x, y doubly resolve

u, v then d(u, x) − d(v, x) 6= 0 or d(u, y) − d(v, y) 6= 0, and hence x or y resolves u, v. Therefore, a doubly
resolving set is also a resolving set and consequently β(G) ≤ ψ(G).

It has been proved that the metric dimension of the Cartesian product G2G is tied in a strong sense to

doubly resolving sets of G with the minimum cardinality (Cáceres et al., 2007). In the same paper it has

been proved that the upper bound for the metric dimension of G2H can be expressed as the sum of the

metric dimension of G and the cardinality of a minimal doubly resolving set of H minus 1. Thus, doubly
resolving sets are essential in the study of the metric dimension of Cartesian products.

Both problems are NP-hard in general case. The proofs of NP-hardness are given for the metric dimension

problem in (Khuller et al., 1996), for the minimal doubly resolving set problem in (Kratica et al., 2009b).

Moreover, in (Hauptmann et al., 2011) it has been proved that the MDP is not approximable within (1−ǫ) ln n

for any ǫ > 0 and an approximation algorithm which matches the lower bound is given. In a special case, in
which the underlying graph is superdense, a greedy constant factor approximation algorithm is presented.

The first metaheuristic approach to the metric dimension problem is proposed in (Kratica et al., 2009a).

The genetic algorithm (GA) proposed in that paper uses the binary encoding and the standard genetic

operators adapted to the problem. The feasibility is enforced by repairing the individuals. The overall
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performance of GA is improved by a caching technique. Testing on various ORLIB instances and theoretically

challenging classes of graphs shows that GA relatively quickly produces satisfactory results.

A similar genetic approach is used in (Kratica et al., 2009b) for solving the minimal doubly resolving set

problem. The GA results for MDRSP on hypercubes are used in a dynamic programming approach to obtain

upper bounds for the metric dimension of large hypercubes.

In this paper we propose mathematical programming models for MDP and MDRSP with the different

objective functions than in previous papers. Instead of minimizing the cardinality of a resolving set, we

rather minimize the number of pairs of vertices from G that are not resolved (doubly resolved) by vertices

of a set with a given cardinality s. If the value of the new objective function is zero, we apply the same
model with smaller cardinality s. Otherwise, we increase s. In that way the difficulty that arises in solving

the plateaux problem, i.e. a large number of solutions with the same objective function values, vanishes

with our new objective. Such a reformulation approach is not new. For example, the chromatic number

of a graph can be obtained by finding feasible k-colorings with decreasing values of k. Another example
is the p-median/p-center problem, which is usually solved by considering a sequence of covering problems

with given radii, i.e. radii are changed in each iteration (Garcia et al., 2011). Moreover, if we introduce the

distance between two formulations F(s1) and F(s2) to be k if |s1 − s2| = k, then this approach may be seen

as a Formulation space search (Mladenović et al., 2005, 2007; Kochetov et al., 2008). Really, we search for

the best formulation in the formulation space of MDP and MDRSP.

In this paper, we tackle the MDP and MDRSP by a variable neighborhood search (VNS) approach in order

to improve the existing upper bounds. Experimental results include three sets of ORLIB test instances: crew

scheduling, pseudo boolean and graph coloring. VNS is also tested on theoretically challenging large-scale
instances of hypercubes and Hamming graphs. An experimental comparison on these instances indicates

that VNS approach consistently outperforms the GA approach, both with respect to solution quality and

computation time.

The paper is organized as follows. In Section 2 we present some interesting properties which are used

in the sequel. The existing and a new 0-1 linear programming formulations for both problems are given in

Section 3. The next two sections contain the main features of the variable neighborhood search for both

problems and computational results on various large-scale instances, respectively.

2 Examples and preliminaries

In this section we first illustrate MDP and MDRSP on some simple examples and then we present some of

their theoretical properties.

Example 1 Consider graph G1 on Figure 1. Set B1 = {v1, v2, v3} is a resolving set of G1 since the vectors of

metric coordinates for all the vertices of G1 with respect to B1 are mutually different. More precisely, r(v1, B1)

= (0,1,1); r(v2, B1) = (1,0,2); r(v3, B1) = (1,2,0); r(v4, B1) = (2,1,1); r(v5, B1) = (1,2,1); r(v6, B1) =
(2,1,2). Using the same vector of metric coordinates and the definition it is easy to check that B1 is also a

doubly resolving set.

However, B1 is not a minimal resolving set since B2 = {v1, v3} is also a resolving set with smaller
cardinality. On the other hand, set B3 = {v1} is not a resolving set since d(v2, v1) = d(v3, v1) = 1. Using a

similar argument it is easy to check that none of singleton vertices forms a resolving set, and hence β(G1) = 2.

Note that B2 is not a doubly resolving set because d(v6, v1)−d(v5, v1) = d(v6, v3)−d(v5, v3) = 1. Similarly,
we can show that none of the subsets of two vertices forms a doubly resolving set. Thus, B1 is a minimal

doubly resolving set and ψ(G) = 3.

Example 2 Consider graph G2 given on Figure 1. It can be shown that {v1, v2, v3} is both a minimal

resolving and a minimal doubly resolving set, and therefore β(G2) = ψ(G2) = 3.

Some properties. The metric dimension has many interesting theoretical properties which are out of the

scope of this paper. The interested reader is referred to (Hernando et al., 2005). One of key properties con-
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Figure 1: Graphs in Example 1 and Example 2

necting the metric dimension and the cardinality of a minimal doubly resolving set is stated in Proposition 1,

which was proved in (Cáceres et al., 2007):

Proposition 1 For arbitrary graphs G=(VG, EG) and H=(VH , EH), where |VH | ≥ 2,

max{β(G), β(H)} ≤ β(G2H) ≤ β(G) + ψ(H)− 1 (1)

Here, G2H is a graph which is the Cartesian product of graphs G and H . The vertex set of G2H is

VG × VH = {(a, v)| a ∈ VG, v ∈ VH}, while vertex (a, v) is adjacent to vertex (b, w) whenever a = b and
{v, w} ∈ EH , or v = w and {a, b} ∈ EG.

For some simple classes of graphs it is possible to determine β(G) explicitly: path has β(G) = 1, cycle has

β(G) = 2, the complete graph with n vertices has β(G) = n− 1. On the other hand, the metric dimensions

of some important classes of graphs such as hypercubes and Hamming graphs are still open problems. In the

sequel we give a short description of hypercubes and Hamming graphs.

The hypercube Qr is a graph whose vertices are all r-dimensional binary vectors, where two vertices are

adjacent if they differ in exactly one coordinate. It is clear that Qr has n = 2r vertices and m = r · 2r−1

edges.

Example 3 Hypercube Q4 has 16 vertices (0,0,0,0), (0,0,0,1), (0,0,1,0), ... , (1,1,1,1). For example, vertex
(0,1,1,0) has adjacent vertices (1,1,1,0), (0,0,1,0), (0,1,0,0) and (0,1,1,1).

The Hamming graph Hr,k is the Cartesian product:

Hr,k = Kk2Kk2...2Kk
︸ ︷︷ ︸

r
(2)

whereKk denotes the complete graph with k vertices. The vertices of Hamming graphs can be considered also

as r-dimensional vectors, where every coordinate has a value from the set {0, 1, ..., k− 1}. As for hypercubes,

two vertices are adjacent if they differ in exactly one coordinate. According to such an interpretation Qr =

Hr,2.

Obviously, Hr,k has kr vertices. Also, every vertex has the r-dimensional neighborhood with k − 1

neighbors with respect to each coordinate, so the overall number of edges is kr · r · (k − 1)/2.

Example 4 Hamming graph H4,3 has 34 = 81 vertices (0,0,0,0), (0,0,0,1), (0,0,0,2), (0,0,1,0), ... , (2,2,2,

2). For example, vertex (0,1,1,0) has adjacent vertices (0,1,1,1), (0,1,1,2), (0,1,0,0), (0,1,2,0), (0,0,1,0),
(0,2,1,0), (1,1,1,0), (2,1,1,0).

For Hamming graphs it has been proved in (Cáceres et al., 2007) that β(H2,k) = ⌊ 4k−2
3 ⌋. The metric

dimension is known exactly for hypercubes Qr, r ≤ 8. Upper bounds of β(Qr) for 9 ≤ r ≤ 14 are obtained in

(Cáceres et al., 2007; Kratica et al., 2009a). It has been proved in (Cáceres et al., 2007) that β(Qr) ≤ r − 5
for r ≥ 15. This theoretical upper bound has been improved in (Kratica et al., 2009a) for r ≥ 17. In (Kratica

et al., 2009b) new bounds of β(Qr) for r ≤ 90 are derived.
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3 Mathematical programming formulations

In the literature there exist two integer linear programming (ILP) formulations of the metric dimension
problem (Chartrand et al., 2000; Currie & Oellerman, 2001), and one ILP formulation of the minimal doubly

resolving set problem (Kratica et al., 2009b). In this section for both problems we present the existing models

as well as their new mathematical programming formulations.

3.1 Metric dimension

Let B ⊆ V = {1, ..., n} and let yj =

{
1, j ∈ B
0, j ∈ V \B

. As suggested in (Chartrand et al., 2000) the metric

dimension problem can be formulated as the following 0-1 linear programming problem:

min

n∑

j=1

yj (3)

subject to

n∑

j=1

|duj − dvj | · yj ≥ 1, 1 ≤ u < v ≤ n (4)

yj ∈ {0, 1} , (∀j) 1 ≤ j ≤ n (5)

It is easy to see that each feasible solution of (3)-(5) defines a resolving set B of G, and vice versa. Note

that |duj − dvj | are given constants and therefore the constraints (4) are linear. Instead of |duj − dvj |, the

following coefficients may be introduced:

A(u,v),j =

{
1, duj 6= dvj
0, duj = dvj

(6)

Then (4) becomes
n∑

j=1

A(u,v),j · yj ≥ 1 1 ≤ u < v ≤ n (7)

Thus, (3),(7) and (5) define another ILP model (Currie & Oellerman, 2001) for MDP. Note that both

formulations have n variables and n(n − 1)/2 constraints. Although the second formulation seems to have

tighter constraints, numerical efficiency of CPLEX with respect to the two formulations is almost identical
(Kratica et al., 2009a).

It is clear that the number of resolving sets with the same cardinality might be huge. Therefore, any local

search type heuristic has difficulties to continue search after being in such a solution. In order to avoid this

problem, we suggest an auxiliary objective function, and decompose MDP into a sequence of subproblems

with relaxed resolving requirements and fixed cardinalities of feasible sets. In each subproblem we check if
there exists a resolving set B of a given cardinality s. If such a resolving set exists then β(G) ≤ s, otherwise

β(G) > s.

Let B′ be a subset of V with |B′| = s, and let the objective function ObjF (B′) be equal to the number

of pairs of vertices of graph G that are not resolved by B′. If ObjF (B′) = 0 then B′ is a resolving set.

Let A(u,v),j be defined by (6), yj =

{
1, j ∈ B′

0, j ∈ V \B′
and let us introduce a new set of variables as

zuv =

{
1, pair (u, v) is not resolved by B′

0, pair (u, v) is resolved by B′
(8)

Then for a given cardinality s the subproblem can be modelled as the following ILP which minimizes the

ObjF (B′) subject to all B′ ⊂ V, |B′| = s:
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min

n−1∑

u=1

n∑

v=u+1

zuv (9)

subject to

n∑

j=1

yj = s (10)

n∑

j=1

A(u,v),j · yj + zuv ≥ 1, 1 ≤ u < v ≤ n (11)

yj ∈ {0, 1}, zuv ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ u < v ≤ n (12)

Proposition 2 A subset B′ is a resolving set of G of cardinality s if and only if the optimal objective function

value of (9)-(12) is equal to zero.

Proof. (⇒) Suppose that B′ is a resolving set of cardinality s. Then, by (8), for each u, v ∈ V , zuv = 0 and

hence
n−1∑

u=1

n∑

v=u+1
zuv = 0. Constraint (10) is satisfied by assumption because |B′| = s. Since B′ is a resolving

set, for each 1 ≤ u < v ≤ n there exists j ∈ B′ such that duj 6= dvj , implying A(u,v),j = 1. From j ∈ B′ it

follows that yj = 1, so A(u,v),j · yj = 1 which implies
n∑

j=1

A(u,v),j · yj ≥ 1 = 1− zuv.

(⇐) If
n−1∑

u=1

n∑

v=u+1
zuv = 0 then zuv = 0 for all 1 ≤ u < v ≤ n. It follows that

n∑

j=1

A(u,v),j · yj ≥ 1 and

hence there exists at least one j such that duj 6= dvj , which by definition implies that B′ is a resolving set.

Constraint (10) guaranties that |B′| = s.

Using the subproblems (9)-(12) we can solve MDP in the following way. We set s to be equal to an upper

bound for the metric dimension (in the worst case β(G) ≤ n−1) minus one and iteratively solve subproblems
(9)-(12), decreasing s by one as long as the optimal objective function value is zero. If this value is not zero,

the metric dimension is equal to s + 1. Another approach would be to start with s equal to a lower bound

for the metric dimension (in the worst case β(G) ≥ 1) and iteratively solve subproblems (9)-(12), increasing

s by one as long as the optimal objective function value is greater than zero.

3.2 Minimal doubly resolving set

In the case of MDRSP the ILP formulation in (Kratica et al., 2009b) is defined as follows. Let

A(u,v),(i,j) =

{
1, d(u, i)− d(v, i) 6= d(u, j)− d(v, j)
0, d(u, i)− d(v, i) = d(u, j)− d(v, j)

(13)

where 1 ≤ u < v ≤ n, 1 ≤ i < j ≤ n. Variable yi described by (14) determines whether vertex i belongs to a

doubly resolving set D. Similarly, xij determines whether both vertices i, j are in D.

yi =

{
1, i ∈ D
0, i /∈ D

(14)

xij =

{
1, i, j ∈ D
0, otherwise

(15)

The ILP model of the MDRSP can now be formulated as:

min

n∑

k=1

yk (16)
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subject to:

n−1∑

i=1

n∑

j=i+1

A(u,v),(i,j) · xij ≥ 1 1 ≤ u < v ≤ n (17)

xij ≤
1

2
yi +

1

2
yj 1 ≤ i < j ≤ n (18)

xij ≥ yi + yj − 1 1 ≤ i < j ≤ n (19)

xij ∈ {0, 1}, yk ∈ {0, 1} 1 ≤ i < j ≤ n, 1 ≤ k ≤ n (20)

Note that ILP model (16)-(20) has 1
2n

2 + 1
2n variables and 3

2n
2 − 3

2n linear constraints.

MDRSP can be decomposed in a similar way into ILP subproblems. Let D′ be a subset of V with |D′| = s,
and let the objective function ObjF (D′) be equal to the number of pairs of vertices of graph G that are not

doubly resolved by D′. If ObjF (D′) = 0 then D′ is a doubly resolving set. Let A(u,v),(i,j) be defined by (13),

yi =

{
1, i ∈ D′

0, i /∈ D′
, xij =

{
1, i, j ∈ D′

0, otherwise
and let us introduce a new set of variables:

zuv =

{
1, pair (u, v) is not doubly resolved by D′

0, pair (u, v) is doubly resolved by D′
(21)

The following ILP minimizes the ObjF (D′) subject to all D′ ⊂ V with cardinality s.

min
n−1∑

u=1

n∑

v=u+1

zuv (22)

subject to:

n∑

j=1

yj = s (23)

n−1∑

i=1

n∑

j=i+1

A(u,v),(i,j) · xij + zuv ≥ 1 1 ≤ u < v ≤ n (24)

xij ≤
1

2
yi +

1

2
yj 1 ≤ i < j ≤ n (25)

xij ≥ yi + yj − 1 1 ≤ i < j ≤ n (26)

xij ∈ {0, 1} 1 ≤ i < j ≤ n (27)

yk ∈ {0, 1} 1 ≤ k ≤ n (28)

zuv ∈ {0, 1} 1 ≤ u < v ≤ n (29)

Proposition 3 A subset D′ of cardinality s is a doubly resolving set of G if and only if the optimal objective

function value of (22)-(29) is zero.

The proof goes along the similar lines as the proof of Proposition 2 and will be omitted.

4 Variable neighborhood search for MDP and MDRSP

Variable neighborhood search (VNS) is an effective metaheuristic introduced in (Mladenović & Hansen, 1997).

The basic idea of VNS is to use more than one neighborhood structure and to proceed to a systematic change

of them within a local search. The algorithm remains in the same solution until another solution better

than the incumbent is found and then moves there. Neighborhoods are usually ranked in such a way that
intensification of the search around the current solution is followed naturally by diversification. The level of

intensification and diversification can be controlled by a few parameters.
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There are two crucial factors for a successful VNS implementation:

• a choice of suitable neighborhood structures and a shaking procedure which enables diversification;

• a fast and efficient local search procedure.

The VNS algorithm usually explores different increasingly distant neighborhoods whenever a local opti-

mum is reached by a prescribed local search. Let Nk (k = kmin, ... , kmax) be a finite set of neighborhood

structures, where Nk(X) is the set of solutions in the k-th neighborhood of the current solution X . The

simplest and most common choice is a structure in which the neighborhoods have increasing cardinality:
|Nkmin(X)| < |Nkmin+1(X)| < ... < |Nkmax(X)|.

Given an incumbent X and an integer k ∈ {kmin, . . . , kmax} associated to a current neighborhood, shaking

procedure generates a feasible solution in Nk(X). Then a local search is applied around generated feasible

solution in order to obtain a possibly better solution. If the local search gives a better solution then it

becomes the new incumbent and in the standard VNS the next search begins at the first neighborhood
Nkmin . Otherwise, the next neighborhood in the sequence is considered in order to try to improve upon

the current solution. Should the last neighborhood Nkmax be reached without a solution better than the

incumbent being found, the search begins again at the first neighborhood Nkmin until a stopping condition,

e.g., a maximum number of iterations, is satisfied.

A detailed description of different VNS variants is out of the scope of this paper and can be found
in (Hansen et al., 2008, 2010). An extensive computational experience on various optimization problems

shows that VNS often produces high quality solutions in a reasonable time. Some of the recent applications

are: mixed integer programming (Lazić et al., 2010), minimum labeling Steiner tree (Consoli et al., 2009),

bandwidth reduction (Mladenović et al., 2010), uncapacitated single allocation p-hub median problem (Ilić

et al., 2010) and uncapacitated multilevel lot-sizing problems (Xiao et al., 2011).

Algorithm 1: VNS pseudo code

Function VNS (kmin, kmax, itermax, pmove)
B ← RSInit()1

B′ ← DeleteLast(B)2

k ← kmin3

iter← 04

repeat5

iter← iter + 16

B′′ ← Shaking(B′, k)7

LocalSearch(B, B′′)8

if Compare(B′′, B′, pmove) then B′ ← B′′
9

else10

if k < kmax then k← k + 111

else k ← kmin12

end13

until iter ≤ itermax14

return B15

Metric dimension. The VNS approach to MDP is based on the idea of decomposition described in Section 3.

The initial set B is obtained by a simple procedure RSInit() which starts from the empty set and adds

randomly chosen vertices from V until B becomes a resolving set. We set s to be equal to |B| − 1 and
iteratively solve subproblems (9)-(12), decreasing s by one as long as the optimal objective function value is

zero.

More precisely, for a given resolving set B we delete the last element using procedure DeleteLast(B) and

obtain the set B′. Since in the implementation sets are represented as arrays, the last element of the set is

the last element of the array.
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The following steps are repeated until the stopping criterion is met. For a given k set B′′ in Nk(B′) is

obtained using the function Shaking(). Starting from B′′ and B the local search procedure LocalSearch()

tries to improve B′′ and updates B whenever a new resolving set with smaller cardinality is generated.
Within the function Compare() we compare set B′ with set B′′, update B′′ if necessary, and continue VNS

procedure. The pseudo-code of VNS implementation for solving MDP is given in Algorithm 1.

Algorithm 2: Pseudo code of the local search

Function LocalSearch (B, B′′)
repeat1

impr← false2

objval← ObjF(B′′)3

foreach vr ∈ B
′′ do4

foreach v ∈ V \B′′ do z[v]← 05

LexSort(V , B′′ \ {vr})6

SetBL ← IdentifyBlocks(V, B′′ \ {vr})7

foreach BL ∈ SetBL do8

foreach p ∈ BL do9

foreach q ∈ BL with q > p do10

foreach v ∈ V \B′′ do11

if d(p, v) = d(q, v) then z[v]← z[v] + 112

vmin ← arg min {z[v]| v ∈ V \B′′}13

if z[vmin] = 0 then14

B ← B′′ ∪ {vmin} \ {vr}15

B′′ ← DeleteLast(B)16

objval← ObjF(B′′)17

impr← true18

else19

if z[vmin] < objval then20

B′′ ← B′′ ∪ {vmin} \ {vr}21

objval ← z[vmin]22

impr← true23

until not impr24

Neighborhoods and shaking. The neighborhood Nk(B′) contains all sets obtained from B′ by deleting

k of its elements and replacing them by k elements from V \ B′. It is clear that k must be less or equal to

|B′|. It is easy to see that such neighborhoods have increasing cardinality, i.e. |Nk| =

(
s
k

)

·

(
n− s
k

)

<
(

s
k + 1

)

·

(
n− s
k + 1

)

= |Nk+1| for every k < ns−s2−1
n+2 . Using the function Shaking(), for a given k, B′′ is chosen

randomly from Nk(B′).

Local search. In the local search procedure LocalSearch(), starting with B′′ we interchange one element
of set B′′ with one element of its complement. We use the best improvement strategy, i.e. in every step we

perform an interchange which gives the maximal decrease of the objective function. Whenever the improved

set is a resolving set, the current set B is updated, the new set B′′ is obtained by deleting the last element

and the procedure continues. The procedure stops when there was no improvement.

The objective function value objval = ObjF (B′′) is computed as the number of pairs of vertices from

V which have the same metric coordinates with respect to B′′. In order to speed up computation of the

objective function, instead of comparing metric coordinates for each two pairs of vertices from V , we sort
vectors of metric coordinates in the lexicographical order. Then we can calculate the objective function value

simply by searching the sorted list of vectors of metric coordinates.
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In the straight-forward implementation of the best improvement strategy in the local search we have one

call of the built-in sorting function qsort for each interchange, which gives total of |B′′| · (|V | − |B′′|) calls.

We have obtained a significant speedup in the local search implementation by the following procedure, which
requires only |B′′| calls of qsort in the best improvement strategy.

Let vr denote the element of B′′ which is a candidate for replacing with some vertex from V \ B′′. Let

z be an array which will store objective function values ObjF (B′′ ∪ {v} \ {vr}) for each vertex v ∈ V \ B′′.

Initially we set z[v] = 0, v ∈ V \B′′.

We sort vectors of metric coordinates with respect to B′′ \ {vr} in the lexicographical order (procedure

LexSort()). Next, the blocks of vertices SetBL with the same metric coordinates are identified by procedure
IdentifyBlocks(). If a block BL consists of one vertex, the metric coordinates of that vertex are different from

all other vertices from V and that vertex has no influence on the objective function, i.e. on the array z. If a

block BL consists of two or more vertices then for every pair of vertices p, q from that block and v ∈ V \B′′

we increase z[v] by one whenever d(p, v) = d(q, v).

Finally, we determine the vertex vmin with minimal value z[vmin]. If z[vmin] = 0 then B := B′′∪{vmin}\
{vr} is a new resolving set of smaller cardinality. The new set B′′ is obtained by deleting the last element of

B, and the local search continues. Otherwise, if z[vmin] < ObjF (B′′) we set B′′ := B′′ ∪ {vmin} \ {vr} and

continue the local search. If for each vr ∈ B
′′ we have z[vmin] ≥ ObjF (B′′), the local search ends with no

improvement.

The described local search algorithm can be formally presented as the pseudo code given in Algorithm 2.

Neighborhood change. After the local search procedure we have three possibilities. Within the function

Compare() we decide whether to move to the solution B′′ or stay in the current solution B′:

• In the case when the solution B′′ is better than B′, i.e. |B′′| < |B′| or ObjF (B′′) < ObjF (B′) we set
B′ := B′′ and continue the search with the same neighborhood Nk;

• If |B′′| = |B′| and ObjF (B′′) > ObjF (B′) then we repeat the search with the same B′ and the next

neighborhood;

• If |B′′| = |B′| and ObjF (B′′) = ObjF (B′) then with probability pmove we set B′ := B′′ and continue
search with the same neighborhood Nk and with probability 1− pmove we repeat search with the same

B′ and the next neighborhood.

Discussion. The described VNS approach tries to minimize number of pairs of vertices with the same metric
coordinates with respect to the set B′ (|B′| = |B| − 1). In the local search procedure we interchange one

element of set B′′ with one element of its complement. The interchange procedure assumes that |B′| − 1 =

|B′′| − 1 ≥ 1. Therefore, our VNS approach for MDP can be applied only for graphs with metric dimension

at least three. This is not a serious drawback since the case when the metric dimension is at most two has

been theoretically characterized in (Sudhakara & Kumar, 2009). Moreover, the complexity of solving the
MDP by total enumeration in this case is O(n2).

The following example illustrates the local search procedure on the graph from Example 2.

Example 5 Let B = {v1, v2, v4, v6} be the initial resolving set and B′ = {v1, v2, v4}. Suppose that after the

shaking step with k = 1 we have B′′ = {v1, v3, v4}. The corresponding objective function value is ObjF (B′′) =

1 since all pairs of vectors of metric coordinates are different except one: r(v2, B
′′) = r(v6, B

′′) = (1, 2, 1).
We try to exchange e.g. vr = v1 with one element v ∈ V \ B′′ using the best improvement strategy. After

sorting the vectors of metric coordinates with respect to B′′ \ vr = {v3, v4} in the lexicographical order and

identifying the blocks of vertices with the same metric coordinates, we obtain array z which stores objective

function values ObjF (B′′ ∪{v} \ {vr}) = ObjF ({v3, v4}∪{v}) for each vertex v ∈ V \B′′ = {v2, v5, v6}. The
results of this process are displayed in Table 1. Since blocks {v3}, {v4}, {v5}, {v1} consist of only one vertex,

they have no influence on array z and entries in the corresponding rows are omitted. As in the array z all

entries are zero, vmin can be any of the vertices v2, v5, v6. For example, if vmin = v2 a new resolving set

B = {v2, v3, v4} is obtained. After removing the last element we obtain B′′ = {v2, v3}. The corresponding
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Table 1: Local search in Example 5 for B′′ = {v1, v3, v4}

v3 v4 v2 v5 v6
v3 0 1

v4 1 0

v5 1 1

v1 1 2

v2 2 1 0 2 1
v6 2 1 1 1 0

z 0 0 0

Table 2: Local search in Example 5 for B′′ = {v2, v3}

v3 v1 v4 v5 v6
v3 0

v1 1 0 2 1 1
v4 1 2 0 1 1
v5 1 1 1 0 1

v2 2 1 1 2 1
v6 2 1 1 1 0

z 1 1 1 3

objective function value is ObjF (B′′) = 1 since we have one pair of vectors of metric coordinates that are the

same: r(v1, B
′′) = r(v4, B

′′) = (1, 1). We try to exchange e.g. vr = v2 with one element v ∈ V \ B′′ using

the best improvement strategy. After sorting the vectors of metric coordinates with respect to B′′ \ vr = {v3}

in the lexicographical order and identifying the blocks of vertices with the same metric coordinates, we obtain

array z which stores objective function values ObjF (B′′ ∪ {v} \ {vr}) = ObjF ({v3} ∪ {v}) for each vertex
v ∈ V \B′′ = {v1, v4, v5, v6}. The results of this process are displayed in Table 2. Since the block {v3} consist

of only one vertex, it has no influence on array z and entries in the corresponding row are omitted. As in the

array z all entries except last are one, vmin can be any of the vertices v1, v4, v5 and z(vmin) = 1 = ObjF (B′′)

and local search procedure stops since there was no improvement. Note that β(G2) = 3, and therefore the
objective function value could not be further improved with any shaking and/or local search step.

VNS for Minimal doubly resolving set. As the MDRSP is closely related to the MDP the described VNS

approach can be easily accommodated to solve the MDRSP. The differences occur in the functions: RSInit,
ObjF and LocalSearch. In each of the functions checking whether the current solution is a resolving set or

not is replaced by doubly resolving set checking. In order to increase the efficiency of this identification we

use the results of the following proposition.

Proposition 4 (Kratica et al., 2009b) A subset D = {x1, x2, ..., xk} ⊆ V is a doubly resolving set of G if
and only if for every p, q ∈ V there exists i ∈ {1, 2, ..., k} such that

d(p, xi)− d(p, x1) 6= d(q, xi)− d(q, x1) (30)

For each v ∈ V let r′(v,D) = (d(v, x2) − d(v, x1), ..., d(v, xk) − d(v, x1)). According to Proposition 4 it

is sufficient to exchange r with r′ and apply a procedure which checks whether D is a resolving set, using

vectors r′ instead of r. Using this observation, the previous VNS approach for MDP has been effectively

adapted to solve MDRSP. It should be noted that this VNS approach can be applied only for graphs with

the cardinality of the minimal doubly resolving set at least four. Similarly as for MDP, this is not a serious
drawback.

Another interesting related problem is the strong metric dimension problem (SMDP), introduced in (Sebo

& Tannier, 2004). A genetic algorithm for SMDP is presented in (Kratica et al., 2008). That problem could

also be tackled by VNS. However, a strongly resolving set cannot be identified by sorting vertices as in the
case of a resolving set or a doubly resolving set. Therefore, a straightforward adaptation of the described

VNS approach for SMDP is not possible.
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5 Experimental results

This section presents the results of VNS approach to MDP and MDRSP on various classes of graph in-
stances which have already been tackled by GA approach in (Kratica et al., 2009a,b): pseudo boolean, crew

scheduling, graph coloring, hypercubes and Hamming graphs.

All tests were performed on an Intel 2.5 GHz single processor with 1GB memory, under Windows XP

operating system. In our experiments we have used the following values for VNS parameters kmin = 2,

kmax = 20, pmove = 0.2, itermax = 100. The VNS has been run 20 times for each instance and the results
are summarized in Tables 3-8. The tables are organized as follows:

• the first three columns contain the test instance name, the corresponding number of vertices and edges

respectively;

• the next four columns contain the results of VNS performance for MDP and the comparison with GA

from (Kratica et al., 2009a). The fifth and the sixth column contain the cardinality, named best, of
the best resolving set obtained by GA in 20 runs and average GA running time, named t. The seventh

and the eight column contain the experimental VNS results, presented in the same way as for GA. The

solutions that are known to be optimal are bolded and underlined;

• the results for MDRSP are presented in the last four columns and organized in the same way as the

data for MDP.

For large-scale hypercubes Qr, r ≥ 13, the distance matrix can not fit in the memory. In order to overcome

this obstacle we have developed a special VNS for MDP and MDRSP on hypercubes. Instead of generating

and memorizing whole distance matrix, this VNS computes the distance between two vertices each time it is
needed. The code has been optimized using the special structure of hypercubes. The results of one run on

hypercubes Q8 - Q17 are presented in Table 9, which is organized in the same way as Tables 3–8.

As can be seen from Tables 3–9, VNS produces much better results on both MDP and MDRSP than GA

approach described in (Kratica et al., 2009a,b). More precisely, results of VNS are never worse than GA

results and in most of the cases the GA upper bound is significantly improved. For all instances where the
metric dimension or the cardinality of a minimal doubly resolving set is known, VNS reaches their values.

Results for crew scheduling ORLIB instances reported in Table 3 show that VNS for MDP has improved

GA results in 8 out of 10 cases. The best improvement is achieved for csp400, where the upper bound for the

metric dimension is reduced from 26 to 21. VNS for MDRSP is better than GA in 9 out of 10 cases, with the

best improvement from 28 to 22. In all cases the running time of VNS is significantly smaller than GA. For
example, VNS running time for csp500 is less than 8 seconds, while GA running time is about 157 seconds.

VNS results on graph coloring instances in Table 4 show that the GA upper bounds has been improved

by one for MDP and one/two for MDRSP. The running time of VNS is again significantly smaller. Table 5

summarizes results on pseudo boolean instances. In all 40 cases VNS for MDP is better than GA with

the improvement ranging from 2 to 10. Similarly, VNS for MDRSP outperforms GA in all cases, with the
improvement range from 4 to 15. For both problems the VNS running time at least five times smaller.

Tables 7 and 8 contain results on Hamming graphs. For graphs H2,k, 3 ≤ k ≤ 30, H3,3, H3,4, H4,3 both

GA and VNS reach their metric dimensions, previously known from literature. For other Hamming graphs,

for which the metric dimension is not known, VNS has improved GA upper bounds in 15 out of 24 cases,

with the improvement range 1-3. For MDRSP, VNS has improved GA results in 17 out of 55 cases. The
running time of VNS is again considerably smaller than GA.

Since average values of VNS are usually better than the best GA results, we omitted columns with average

behaviour of VNS. We give here the details for MDP results only for largest instances from all tables. For

csp500 from Table 3, average VNS value is 25.1 while the best GA value is 29. For gcol21-gcol30 instances

from Table 4, the worst average VNS value is 11.55, while the best GA value is 12. For the largest frb
instances from Table 5, the worst average VNS value is 39.65, while the best GA value is 47. Hypercubes and

Hamming graphs, due to symmetry, are easier both for VNS and GA and the results are closer. Nevertheless,
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for H6,4 average VNS value is 8.25, while the best GA value is 9. For MDRSP similar average behaviour can

be observed.

Tables 6 and 9 present results for hypercubes. For hypercubes Qr, 3 ≤ r ≤ 10, both GA and VNS obtain

the metric dimensions, previously known from the literature. In other 7 cases, the GA bound is improved by
one for Q13, Q15,Q16 and Q17. For MDRSP, VNS has improved GA results by one in 4 out of 15 cases. Note

that in the case of large-scale hypercubes (r ≥ 13) the VNS running time is larger than GA running time for

both MDP and MDRSP. The reason is the fact that for graphs with huge number of vertices (n ≥ 213 = 8192)

the local search procedure is time consuming. In three cases, denoted in Table 9 by asterisk, VNS was stopped
after one day running time.

Table 3: VNS results on crew scheduling ORLIB instances

Inst. n m MDP MDRSP

GA V NS GA V NS

best t best t best t best t

csp50 50 173 8 2.764 8 0.035 11 5.065 11 0.046
csp100 100 715 11 6.297 11 0.172 12 6.642 11 0.192
csp150 150 1355 15 14.016 13 0.404 15 12.932 13 0.463
csp200 200 2543 16 19.974 14 0.761 17 21.131 15 0.889
csp250 250 4152 18 25.421 15 1.240 19 26.922 16 1.414
csp300 300 6108 23 41.578 19 2.051 25 48.569 20 2.407
csp350 350 7882 23 47.615 20 2.814 24 49.850 20 3.253
csp400 400 10760 26 79.810 21 3.914 28 88.577 22 4.518
csp450 450 13510 27 112.939 23 4.996 27 116.412 23 5.819
csp500 500 16695 29 157.422 24 6.502 29 157.759 25 7.620

Table 4: VNS results on graph coloring ORLIB instances

Inst. n m MDP MDRSP

GA V NS GA V NS

best t best t best t best t

gcol1 100 2487 9 4.411 8 0.153 9 4.603 8 0.153
gcol2 100 2487 9 4.205 8 0.149 9 4.059 8 0.153
gcol3 100 2482 9 4.798 8 0.149 9 4.263 8 0.158
gcol4 100 2503 9 5.228 8 0.150 9 4.812 8 0.150
gcol5 100 2450 9 4.264 8 0.152 9 4.526 8 0.150
gcol6 100 2537 9 4.309 8 0.153 9 4.374 8 0.153
gcol7 100 2505 9 4.804 8 0.153 9 4.550 8 0.157
gcol8 100 2479 9 4.693 8 0.153 9 5.039 8 0.154
gcol9 100 2486 9 4.186 8 0.154 9 4.091 8 0.156
gcol10 100 2506 9 4.370 8 0.149 9 4.443 8 0.153
gcol11 100 2467 9 4.211 8 0.151 9 4.144 8 0.148
gcol12 100 2531 9 3.958 8 0.152 9 3.833 8 0.153
gcol13 100 2467 9 4.479 8 0.153 9 4.279 8 0.159
gcol14 100 2524 9 4.694 8 0.149 9 4.385 8 0.157
gcol15 100 2528 9 4.227 8 0.153 9 4.244 8 0.151
gcol16 100 2493 9 4.245 8 0.156 9 3.986 8 0.148
gcol17 100 2503 9 4.967 8 0.146 9 4.644 8 0.150
gcol18 100 2472 9 4.428 8 0.149 9 4.527 8 0.153
gcol19 100 2527 9 4.728 8 0.152 9 4.117 8 0.150
gcol20 100 2420 9 4.615 8 0.155 9 4.349 8 0.154
gcol21 300 22482 12 16.883 11 1.182 12 15.607 11 1.231
gcol22 300 22569 12 16.325 11 1.171 12 16.039 11 1.218
gcol23 300 22393 12 16.474 11 1.178 13 15.679 11 1.255
gcol24 300 22446 12 17.018 11 1.186 12 16.997 11 1.224
gcol25 300 22360 12 16.324 11 1.192 12 15.646 11 1.243
gcol26 300 22601 12 16.167 11 1.186 12 16.102 11 1.232
gcol27 300 22327 12 17.005 11 1.175 13 15.759 11 1.222
gcol28 300 22472 12 16.519 11 1.184 13 15.619 11 1.214
gcol29 300 22520 12 16.958 11 1.170 12 16.584 11 1.228
gcol30 300 22543 12 16.462 11 1.186 12 15.878 11 1.207
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Table 5: VNS results on pseudo boolean instances

Inst. n m MDP MDRSP

GA V NS GA V NS

best t best t best t best t

frb30-15-1 450 17827 24 55.410 20 4.679 25 37.248 21 5.392
frb30-15-2 450 17874 23 70.027 21 4.678 26 41.524 20 5.357
frb30-15-3 450 17809 24 73.131 21 4.739 28 45.207 21 5.474
frb30-15-4 450 17831 25 62.235 20 4.696 27 41.608 20 5.434
frb30-15-5 450 17794 25 58.981 20 4.804 25 40.886 20 5.502
frb35-17-1 595 27856 28 140.927 23 9.011 30 109.885 24 10.620
frb35-17-2 595 27847 28 131.696 24 8.957 31 118.449 23 10.517
frb35-17-3 595 27931 28 121.679 24 8.721 31 91.654 24 9.986
frb35-17-4 595 27842 27 139.799 23 8.505 29 101.825 23 10.040
frb35-17-5 595 28143 28 149.224 23 8.691 29 111.843 23 10.172
frb40-19-1 760 41314 32 219.515 26 15.289 35 214.606 27 18.472
frb40-19-2 760 41263 32 226.957 27 16.100 36 191.55 27 19.088
frb40-19-3 760 41095 32 212.460 27 16.167 34 178.413 27 18.891
frb40-19-4 760 41605 33 198.968 27 16.107 35 168.067 27 19.264
frb40-19-5 760 41619 32 240.240 27 16.117 35 196.174 27 19.188
frb45-21-1 945 59186 36 343.935 30 28.774 37 309.096 30 36.485
frb45-21-2 945 58624 37 320.295 30 30.944 41 288.275 31 37.517
frb45-21-3 945 58245 36 338.475 30 30.045 38 290.948 30 36.574
frb45-21-4 945 58549 38 357.220 30 30.255 38 282.366 30 37.175
frb45-21-5 945 58579 36 357.336 30 31.157 39 296.772 30 38.434
frb50-23-1 1150 80072 41 425.927 33 51.668 43 354.589 33 64.661
frb50-23-2 1150 80851 40 490.511 32 53.123 45 386.198 33 65.820
frb50-23-3 1150 81068 40 535.953 34 55.554 43 372.89 34 67.020
frb50-23-4 1150 80258 40 502.052 34 55.533 43 417.271 34 68.054
frb50-23-5 1150 80035 40 488.454 34 56.176 44 419.106 34 69.353
frb53-24-1 1272 94227 42 635.440 34 68.666 45 521.004 34 84.995
frb53-24-2 1272 94289 41 657.049 35 71.022 47 546.576 35 88.628
frb53-24-3 1272 94127 44 592.430 35 71.011 46 526.495 36 88.643
frb53-24-4 1272 94308 43 597.553 36 71.868 44 548.656 36 90.307
frb53-24-5 1272 94226 43 608.632 36 72.114 45 511.89 36 89.293
frb56-25-1 1400 109676 45 739.162 36 89.995 49 591.043 36 109.515
frb56-25-2 1400 109401 43 690.399 37 90.821 50 525.07 36 109.323
frb56-25-3 1400 109379 45 777.074 37 90.945 51 588.939 36 113.454
frb56-25-4 1400 110038 47 669.820 37 90.449 50 623.492 37 110.670
frb56-25-5 1400 109601 45 745.054 37 91.263 50 679.74 37 112.842
frb59-26-1 1534 126555 47 881.819 38 113.916 51 698.808 38 139.759
frb59-26-2 1534 126163 47 846.511 38 112.644 51 786.456 38 133.025
frb59-26-3 1534 126082 47 888.085 39 115.607 52 716.212 39 136.703
frb59-26-4 1534 127011 47 845.265 38 111.652 51 660.34 38 133.021
frb59-26-5 1534 125982 48 814.813 39 115.925 50 718.742 39 140.197

Table 6: VNS results on hypercubes

Inst. n m MDP MDRSP

GA VNS GA V NS

best t best t best t best t

Q1 2 1 1 <0.001 - - 2 0.001 - -
Q2 4 4 2 0.042 - - 3 0.001 - -
Q3 8 12 3 0.082 3 0.001 4 0.157 4 0.001
Q4 16 32 4 0.393 4 0.003 4 0.399 4 0.006
Q5 32 80 4 0.767 4 0.011 5 0.903 5 0.018
Q6 64 192 5 1.932 5 0.046 6 2.037 6 0.055
Q7 128 448 6 4.595 6 0.158 6 4.15 6 0.324
Q8 256 1024 6 13.762 6 0.892 7 13.546 7 0.954
Q9 512 2304 7 77.522 7 2.895 7 73.647 7 6.440
Q10 1024 5120 7 217.574 7 19.885 8 219.807 8 19.615
Q11 2048 11264 8 601.708 8 69.528 8 632.325 8 137.291
Q12 4096 24576 8 1668.568 8 464.351 9 1543.678 8 951.600
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Table 7: VNS results on Hamming graphs

Inst. n m MDP MDRSP

GA V NS GA V NS

best t best t best t best t

H2,3 9 18 3 0.012 3 0.001 3 0.013 - -
H2,4 16 48 4 0.414 4 0.002 5 0.368 5 0.005
H2,5 25 100 6 0.764 6 0.012 6 0.78 6 0.006
H2,6 36 180 7 1.168 7 0.018 7 1.179 7 0.020
H2,7 49 294 8 1.257 8 0.042 8 1.263 8 0.039
H2,8 64 448 10 2.378 10 0.070 10 2.449 10 0.075
H2,9 81 648 11 2.886 11 0.122 11 2.915 11 0.134
H2,10 100 900 12 3.986 12 0.196 12 4.111 12 0.221
H2,11 121 1210 14 5.153 14 0.300 14 5.107 14 0.343
H2,12 144 1584 15 7.460 15 0.451 15 7.637 15 0.519
H2,13 169 2028 16 10.156 16 0.663 16 10.529 16 0.768
H2,14 196 2548 18 13.667 18 0.908 18 13.285 18 1.078
H2,15 225 3150 19 18.443 19 1.276 19 21.159 19 1.521
H2,16 256 3840 20 25.074 20 1.773 20 25.676 20 2.117
H2,17 289 4624 22 33.520 22 2.298 22 31.861 22 2.771
H2,18 324 5508 23 43.487 23 3.028 23 45.658 23 3.650
H2,19 361 6498 24 68.759 24 3.966 24 65.359 24 4.813
H2,20 400 7600 26 102.586 26 4.941 26 101.699 26 6.055
H2,21 441 8820 27 132.269 27 6.338 27 135.887 27 7.629
H2,22 484 10164 28 167.221 28 7.858 28 177.343 28 9.800
H2,23 529 11638 30 230.036 30 9.481 30 213.27 30 11.864
H2,24 576 13248 31 262.499 31 11.814 31 261.502 31 15.021
H2,25 625 15000 32 336.314 32 14.533 33 344.89 32 18.710
H2,26 676 16900 34 412.840 34 17.393 34 372.812 34 22.935
H2,27 729 18954 35 500.236 35 23.568 35 526.236 35 28.479
H2,28 784 21168 36 497.301 36 28.778 37 555.582 36 35.043
H2,29 841 23548 38 596.084 38 31.791 39 643.672 38 42.940
H2,30 900 26100 39 638.735 39 42.491 39 773.202 39 53.728

Let us point out that the improvement of the upper bound for the metric dimension of Q15 implies the
improvement of the theoretical upper bound β(Qr) ≤ r − 5 for r ≥ 15 from (Cáceres et al., 2007). Namely,

the following proposition holds:

Proposition 5 β(Qr) ≤ r − 6 for r ≥ 15

Proof. According to Proposition 1

β(Qr) = β(Qr−12Q1) ≤ β(Qr−1) + ψ(Q1)− 1 = β(Qr−1) + 1 (31)

Since β(Q15) ≤ 9 then β(Qr) ≤ r − 6 for all r ≥ 15.

Comparison of the new ILP model (9)-(12) with the existing ILP model (3), (7), (5), was performed using

CPLEX 12.1 and Gurobi 3.0 on smaller crew scheduling and graph coloring instances. In order to make a

fair comparison, we have added to the existing ILP model (3), (7), (5) a new constraint (29), which bounds
the cardinality of resolving sets with some given upper bound ub.

n∑

j=1

yj < ub (32)

If CPLEX and/or Gurobi have found an optimal solution of the ILP model (3), (7), (5), (29), this value

is the metric dimension and it is obviously less than ub. On the other hand, if model (3), (7), (5), (29) does
not have a feasible solution, then ub is the metric dimension.

For the new ILP model, we set s = ub − 1 and iteratively solve subproblems (9)-(12) by both CPLEX
and Gurobi, decreasing s by one as long as the optimal objective function value is zero. If this value is not

zero, the metric dimension is equal to s+ 1.
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Table 8: VNS results on Hamming graphs

Inst. n m MDP MDRSP

GA V NS GA V NS

best t best t best t best t

H3,3 27 81 4 0.602 4 0.008 4 0.625 4 0.013
H3,4 64 288 6 1.937 6 0.040 6 1.956 6 0.044
H3,5 125 750 7 3.905 7 0.175 7 3.942 7 0.193
H3,6 216 1620 9 9.588 9 0.500 9 9.601 9 0.539
H3,7 343 3087 11 21.548 10 1.482 11 21.067 10 1.652
H3,8 512 5376 12 89.063 12 3.739 12 89.396 12 4.143
H3,9 729 8748 14 132.708 13 8.453 14 133.122 13 9.715
H3,10 1000 13500 16 226.388 15 18.008 16 245.427 15 20.773
H3,11 1331 19965 18 413.829 16 36.289 18 394.249 16 41.572
H3,12 1728 28512 19 562.828 18 74.154 19 559.288 18 84.736
H3,13 2197 39546 21 827.800 19 120.992 21 879.626 19 137.738
H3,14 2744 53508 23 1346.247 21 206.352 23 1363.252 21 240.385
H3,15 3375 70875 24 1917.173 22 338.940 24 1851.26 22 393.890
H3,16 4096 92160 27 2880.383 24 573.980 26 3170.444 24 663.147
H3,17 4913 117912 28 3661.674 25 883.357 28 3948.072 25 993.114
H4,3 81 324 5 2.744 5 0.062 5 2.797 5 0.110
H4,4 256 1536 7 13.908 7 0.600 7 12.172 7 0.627
H4,5 625 5000 9 73.462 8 5.622 9 66.995 8 5.748
H4,6 1296 12960 11 247.111 10 26.567 11 238.93 10 29.222
H4,7 2401 28812 13 661.861 12 107.429 13 663.141 12 116.753
H4,8 4096 57344 15 1715.241 14 405.037 15 1785.401 14 431.946
H5,3 243 1215 5 10.871 5 1.090 5 10.863 5 1.929
H5,4 1024 7680 8 211.686 8 12.051 8 205.811 8 13.609
H5,5 3125 31250 10 1005.747 10 164.445 10 877.189 10 175.898
H6,3 729 4374 6 74.924 6 7.822 6 78.964 6 14.329
H6,4 4096 36864 9 1400.755 8 376.677 9 1491.185 9 335.454
H7,3 2187 15309 7 440.175 7 79.295 7 447.028 7 110.884

Table 9: Results of special VNS algorithm on hypercubes

Inst. n m MDP MDRSP

GA VNS GA V NS

best t best t best t best t

Q8 256 1024 6 17.25 6 1.016 7 14.034 7 1.169
Q9 512 2304 7 51.96 7 2.896 7 33.613 7 7.884
Q10 1024 5120 7 113.95 7 18.332 8 78.261 8 20.012
Q11 2048 11264 8 258.35 8 48.85 8 196.800 8 141.898
Q12 4096 24576 8 637.32 8 308.85 9 403.458 8 896.054
Q13 8192 53248 9 1378.95 8 1970.98 9 980.312 9 2019.484
Q14 16384 114688 9 2524.72 9 4841.12 10 1940.877 9 13511
Q15 32768 245760 10 5414.69 9 31262 10 4752.388 10 26505
Q16 65536 524288 11 15321 10 66831 11 10873 10 86400*
Q17 131072 11114112 11 34162 10 86400* 12 24356 11 86400*

Since the best existing upper bounds are VNS results presented in Tables 3 and 4, they have been used for

value of ub. This enables us to additionally evaluate the quality of VNS solutions by checking that CPLEX

or Gurobi is unable to improve ub.

The experimental results for MDP are summarized in Table 10, which is organized as follows:

• the first two columns contain the test instance name and the optimal value, if it has been found;

• the next four columns contain the results related to the ILP model (3), (7), (5), (29). The third and fifth

column contain the values obtained by CPLEX and Gurobi while the fourth and sixth column represent

the corresponding running times in seconds. Bold and underlined results mean that the optimality has
been proved;

• the last four columns contain the results for the ILP model (9)-(12), and are organized in a similar way.
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Table 10: CPLEX and Gurobi results on small instances

existing ILP new ILP

Inst. opt CPLEX Gurobi CPLEX Gurobi

res t res t res t res t

MDP

csp50 8 8 0.3 8 0.4 8 1.17 8 1.70
csp100 11 11 497 11 628 11 7154 11 6217
csp150 13 13 8603 13 6047 13 93796 13 94233
csp200 - 14 296804 14 232443 14 306164 14 89675
gcol1 - 8 148213 8 233077 8 96953 8 128107
gcol2 - 8 53268 8 233077 8 51238 8 67260

MDRSP

csp50 11 11 4933 11 1660 11 22493 11 56591

Since MDRSP is harder than MDP exact methods can deal only with instance csp50. Results of CPLEX
and Gurobi are given in the last row of Table 10.

For larger crew scheduling and graph coloring instances CPLEX and Gurobi either run out of memory
or the running times significantly exceed one day. It is interesting to note that performance of CPLEX

and Gurobi on the new ILP models for MDP and MDRSP is slightly worse than on the existing ones with

respect to the running time. The situation with metaheuristics is quite different. Namely, the decomposition

approach within VNS is superior to GA which is based on the objective function of models (3), (7), (5) and
(16)–(20).

6 Conclusions

In this paper an efficient variable neighborhood search approach to solving the metric dimension problem

and the problem of determining minimal doubly resolving sets is presented. VNS apparoach is based on a

decomposition of MDP, i.e. MDRSP, into a sequence of subproblems with an auxiliary objective function.

Also, for both problems the corresponding new integer linear programming formulations are given.

The new objective function calculates the number of vertices that are not resolved (doubly resolved).

The neighborhood structures defined on these models allow effective shaking procedure. Local search is
implemented very efficiently which results in excellent overall VNS performance.

An extensive experimental comparison with the only existing heuristic approach based on genetic algo-

rithm indicates superiority of VNS approach with respect to both solution quality and computation time.

This research can be extended in several ways. It would be challenging to investigate application of the

presented VNS approach to similar problems on graphs. Also, computational results can be used to generate

theoretical hypotheses about the metric dimension and the cardinality of minimal doubly resolving sets for

some special classes of graphs.
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