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Universidad de Sevilla

Spain
ecarrizosa@us.es

Milan Dražić
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Abstract

Variable Neighborhood Search (VNS) has shown to be a powerful tool for solving both discrete and
box-constrained continuous optimization problems. In this note we extend the methodology by allowing
also to address unconstrained continuous optimization problems.

Instead of perturbing the incumbent solution by randomly generating a trial point in a ball of a
given metric, we propose to perturb the incumbent solution by adding some noise, following a Gaussian
distribution. This way of generating new trial points allows one to give, in a simple and intuitive way,
preference to some directions in the search space, or, contrarily, to treat uniformly all directions. Com-
putational results show some advantages of this new approach.

Key Words: Global optimization, Nonlinear programming, Metaheuristics, Variable neighborhood
search, Gaussian distribution.

Résumé

La recherche à voisinage variable est un outil puissant pour résoudre les problèmes d’optimisation
discrète ou continue avec contraintes d’intervalles. Dans cette note, nous étendons la méthode à des
problèmes d’optimisation continue sans contrainte.

Au lieu de perturber la solution dans une boule d’une métrique donnée, nous proposons de perturber
la solution selon une distribution gaussienne. Avec cette procédure, il est facile de donner une préférence
à certaines directions de recherche, ou, au contraire, de chercher uniformément dans toutes les directions.
Les résultats montrent certains avantages de cette nouvelle approche d’un point de vue numérique.

Mots clés : optimisation globale, programmation non linéaire, métaheuristiques, recherche à voisinage
variable, distribution gaussienne.
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1 Introduction

In this paper we consider an unconstrained Nonlinear Program (NLP) of the form

globalmin
x∈IRn

f(x) (NLP )

where f : IRn → IR is a continuous function. No further assumptions are made on f. In particular f does not

need to be convex or smooth, and it may be obtained as the output of a numerical subroutine.

Unconstrained NLPs naturally arise in many applications, e.g. in advanced engineering design, data

analysis, financial planning, risk management, scientific modelling, chemistry, etc. In many cases of practical

interest such problems are very difficult because of the presence of many local minima, the number of which

may grow exponentially with the dimension of the problem. For problems of even moderate size, methods that

offer a guarantee of finding the true global minimum are too time-consuming. Hence, different (meta)heuristic

approaches, which rely heavily on computer power, have been developed, see [1] for a recent presentation of

the state-of-the-art.

A benchmark metaheuristic is Variable Neighborhood Search, [2, 3, 4, 5, 6, 7], which in its most popular

version takes the following form:

Algorithm VNS

/* Initialization */
01 Select the set of neighborhood structures Nk, k = 1, . . . , kmax

02 Choose an arbitrary initial point x ∈ S
03 Set x∗ ← x, f∗ ← f(x)

/* Main loop */

04 repeat the following steps until the stopping condition is met

05 Set k ← 1
06 repeat the following steps until k > kmax

07 Shake: Generate at random a point y ∈ Nk(x
∗)

08 Apply some local search method from y to obtain a local
minimum y′

09 if f(y′) < f∗ then
10 Set x∗ ← y′, f∗ ← f(y′) and goto line 05

11 endif
12 Set k ← k + 1
13 end
14 end
15 Stop. Point x∗ is an approximate solution of the problem.

The idea of using several geometric neighborhood structures and random distributions in shaking step led

to the Glob-VNS variant of VNS [2, 4], which turned out to be noticeably more efficient compared to variants

with fixed geometry and distribution. In most cases Glob-VNS uses m = 4 (geometry, distribution) pairs, but

the user can arbitrarily set their number and combinations.
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Algorithm Glob-VNS

/* Initialization */
01 Select the pairs (Gl,Pl), l = 1, . . . ,m of geometry structures and

distribution types and a set of radii ρi, i = 1, . . . , kmax

02 Choose an arbitrary initial point x ∈ S
03 Set x∗ ← x, f∗ ← f(x)

/* Main loop */

04 repeat the following steps until the stopping condition is met

05 Set l← 1
06 repeat the following steps until l > m

07 Form the neighborhoods Nk, k = 1, . . . , kmax using
geometry structure Gl and radii ρk

08 Set k ← 1
09 repeat the following steps until k > kmax

10 Shake: Generate at random a point y ∈ Nk(x
∗) using

random distribution Pl

11 Apply some local search method from y to obtain a local
minimum y′

12 if f(y′) < f∗ then
13 Set x∗ ← y′, f∗ ← f(y′) and goto line 05

14 endif
15 Set k ← k + 1
16 end
17 Set l← l + 1
18 end
19 end
20 Stop. Point x∗ is an approximate solution of the problem.

In order to make the algorithm Glob-VNS applicable, some choices must be done. First, a geometry G for

the neighborhood structure Nk(x), k = 1, . . . , kmax, x ∈ IRn, is needed. The most popular choices are

Nk(x) = {y| ρ(x, y) ≤ ρk}, (1)

or

Nk(x) = {y| ρk−1 < ρ(x, y) ≤ ρk}. (2)

Metric ρ(·) is usually an ℓp distance, 1 ≤ p ≤ ∞, [2, 3, 4, 5], typically p = 1, 2,∞. The geometry of

neighborhood structures G is thus determined by the choice of metric ρ(·), and Nk(x) is determined by G
and ρk. Both [2] and [3] use neighborhoods as defined in (2). In [3] the ℓ∞ norm is used, while in [2] the

choice of metric is either left to the analyst, or changed automatically in some predefined order. The radii

ρk are monotonically increasing in k, and they are either defined by the user or calculated automatically in

the optimization process.

One also needs to specify the distribution P used for obtaining the random point y from Nk(x) in the

shaking step. Drawing y uniformly in Nk(x) is the most popular choice. The computational burden for

generating points uniformly distributed in Nk(x) will obviously depend on the geometry of the set. Whereas

this issue is trivial for the ℓ∞ norm, things are more complicated if other norms are used. Fore instance,

to generate random points uniformly distributed in the unit sphere B of the the Euclidian norm, different

algorithms can be used. For instance, in the acceptance-rejection method, one generates a random point

uniformly distributed in the cube Q = [−1, 1]n, the point is discarded if it lies outside B, and the process

is repeated until a point falling into B is found. This approach is simple to implement but it is suitable

only for small space dimensions. Indeed, since the ratio of the volumes of B and Q tends to zero, this

approach becomes inefficient when the dimension increases. Alternatively, one can use spherical coordinates

to overcome this problem, but the algorithm uses computationally costly trigonometric functions. A more

efficient proposal has two steps: (i) using Ahrens-Dieter algorithm ([8, 9]) for fast generation of gaussian
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univariate variables, one generates n−dimensional random vectors which, after normalization, gives us a

point uniformly distributed on a unit sphere (ii) a random radius r is generated taking into account that

the density function for r is proportional to the surface of the sphere of radius r, that is, to Crn−1. The

cumulative distribution function F (x) and its inverse can be easily computed, yielding r = F−1(u) where

u ∈ [0, 1] is uniformly distributed. Observe that by an appropriate modification of step (ii) we can also

efficiently generate uniformly distributed point from a neighborhood of the type (2).

In the Glob-VNS implementation, the user can specify the geometry structures Gl induced by the ℓ1, ℓ2 or

ℓ∞ metric in (1) and (2), and Pl as uniform or a hypergeometric distribution [2, 4]. The user can arbitrarily

define the number and order of combinations (Gl,Pl), l = 1, . . . ,m.

Although, as discussed above, drawing y uniformly in Nk(x) is the most popular choice, it is not the only

possible one. For instance, the method proposed in [7] can be seen as taking ℓ2 in (2), and then shaking

by sampling following a mixture of one-dimensional uniform distributions along the directions given by the

different eigenvectors of the hessian at x. Assigning different probabilities to the different eigenvectors (and

thus to the different directions) allows one to give higher priority to those directions considered to be more

promising. Observe that second-order information is used, thus limiting the applicability of the procedure to

smooth functions; moreover, we believe that much efforts may be unnecessarily taken to get neighbors that

adapt to the curvature around incumbent, since this step is followed by a local search which also takes into

account the local behavior of the function.

With respect to the local search procedures, different proposals have been made. The commercial solver

SNOPT [10] is proposed in [3], a trust-region type method is suggested in [7], while in [2] the analyst has a

menu of six different local search optimizers. The local search and the shaking stages can be merged and done

simultaneously, and the metric ρ may vary from one neighborhood to the next. This is done, for instance,

in [6]. Two different neighborhoods, N1(x) and N2(x), are used. With N1(x), random directions from the

current point x are generated, and a one-dimensional search along the direction is performed. This is of

course equivalent to take N1(x) as in (1), with ρ as the Euclidean distance, and combine it with a local

search through the line passing through x and the point y generated in N1(x). It is proposed to repeat this

process r times, r being a parameter. This can be seen as imposing a multistart method, with r trials, on

top of the local search strategy. The second neighborhood N2(x) proposed in [6] has the form of (1), now ρ

taken as the ℓ∞ norm.

It is interesting to note that computational results reported by all VNS-based heuristics were very promis-

ing, usually outperforming other recent approaches from the literature. However, one should observe that,

since the number kmax of different neighbors is assumed to be finite, one cannot reach any point in IRn from

an incumbent solution, and thus one may not reach the region of attraction of the true global optimum. In

other words, the strategy is most promising when the problem under consideration is not unconstrained but

box-constrained,

globalmin
x∈S

f(x), (3)

with S = {x ∈ IRn | ai ≤ xi ≤ bi, i = 1, 2, . . . , n}. For unconstrained NLPs, lower and upper bounds on

variables are set to arbitrarily large negative and positive values, respectively. Then the radii ρk are chosen

so that the full sequence of neighborhoods Nk(x), 1 ≤ k ≤ kmax allows one to reach any point in the (huge)

box S, assumed to contain an optimal solution of (NLP). This is a drawback of the existing versions of VNS,

since, if we want the largest neighborhoods to reach any point in S, a very large number kmax should be

chosen. The so-obtained radii may then be less efficient for the problem.

In this note we suggest a new variant of VNS which avoids this limitation. Instead of defining a sequence

of neighborhoods N1(x), . . . ,Nkmax(x), and shaking by sampling (eventually from a uniform distribution) on

Nk(x), we define a sequence of shaking distributions P1(x), . . . ,Pkmax(x), and the trial points are drawn from

such shaking distributions. For simplicity we assume that each Pk(x) is a n-variate Gaussian distribution

centered at x, and call this version Gaussian VNS, Gauss-VNS. With this approach, one can jump from an

incumbent x to any trial point in the space, and thus the region of attraction of the true global optimum is
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reachable from any starting point. Moreover, by an adequate choice of the covariance matrices of the shaking

distributions, higher priority to more promising search directions can be given, as in [7], or we can treat

equally all directions by taking diagonal covariance matrices for the gaussian distributions. Computational

results on standard test functions from the literature show that the average number of function evaluations

needed to find the global minimum is smaller than in existing VNS-based methods.

The paper is organized as follows. In Section 2, details of our Gauss-VNS method are given. Section 3

reports our computational experience on test instances from the literature. The paper ends with Section 4,

where some concluding remarks are given and future lines of research are outlined.

2 Gaussian VNS

We generalize the paradigm of neighborhoods so that problems with unbounded domains can be addressed.

The idea is to replace the class {Nk(x)}1≤k≤kmax of neighborhoods of point x by a class of probability dis-

tributions {Pk(x)}1≤k≤kmax . The next random point in the shaking step is generated using the probability

distribution Pk(x).

If we take as Pk(x) the uniform (or some other previously mentioned) distribution with support Nk(x),

then we recover the classical approach. For a distribution with unbounded support, a natural choice is the

multivariate Gaussian distribution. We assume in what follows that each Pk(x) is a multivariate Gaussian

distribution with mean x and covariance matrix Σk. In other words, the trial point in the shaking process is

generated from an n-dimensional random vector y with density function of the form

φ(y) =
1

(2π)n/2|Σk|1/2
e−

1
2 (y−x)⊤Σ−1

k (y−x)

Algorithm Gauss-VNS

/* Initialization */
01 Select the set of covariance matrices Σk, k = 1, . . . , kmax

02 Choose an arbitrary initial point x ∈ S
03 Set x∗ ← x, f∗ ← f(x)

/* Main loop */

04 repeat the following steps until the stopping condition is met

05 Set k ← 1
06 repeat the following steps until k > kmax

07 Shake: Generate y from a Gaussian distribution with
mean x∗ and covariance matrix Σk

08 Apply some local search method from y to obtain a local
minimum y′

09 if f(y′) < f∗ then
10 Set x∗ ← y′, f∗ ← f(y′) and goto line 05

11 endif
12 Set k ← k + 1
13 end
14 end
15 Stop. Point x∗ is an approximate solution of the problem.

From the implementation point of view it is important to have an efficient generator for Gaussian random

points. Random values following Pk(x) are easily obtained from n independent values z1, . . . , zn of a univariate

Gaussian distribution with mean 0 and variance 1. Indeed, if Σk = LkL
⊤
k is the Cholesky decomposition of the

symmetric positive definite matrix Σk, then it turns out that the random vector x+Lz, with z = (z1, . . . , zn),

is distributed as Pk(x). Hence generating a random vector from Pk(x) is reduced to first calculating the

Cholesky decomposition of Σk and then generating n univariate independent Gaussian with 0 mean and
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variance 1. The process is even simpler if one assumes the covariance matrices Σk to be multiple of the

identity matrix I,

Σk = σ2
kI, k = 1, 2, . . . , kmax, (4)

since in such a case the Cholesky decomposition is simply Σk = (σkI) (σkI)
⊤
. In this particular case coor-

dinates zi of the random vector z are univariate independent Gaussian variables with 0 mean and variance

σk.

Comparing Gauss-VNS with Glob-VNS, we see that Gauss-VNS has less parameters to be specified. For

Glob-VNS the user must specify the number and combination of (geometry, distribution) pairs (Gl,Pl),

l = 1, . . . ,m, and radii ρk, k = 1, . . . , kmax. However, in Gauss-VNS all neighborhoods are equal (to S

or IRn) and only one family of distribution (Gaussian) is used. With the obvious choice of Σk = σ2
kI only

the variances σk, k = 1, . . . , kmax should be specified.

3 Numerical experiments

Recently many metaheuristic based methods for solving continuous global optimization have been proposed.

Heuristics are usually compared by the number of function evaluations until the optimal solution is reached.

However, such a comparison is not easy. Indeed, different methods use different stopping conditions, see

e.g. [11] for a list of commonly used stopping criteria, different precision, they are implemented in different

programming languages and they run in different computers. Despite of those difficulties for direct compar-

ison, we decided to compare our Gauss-VNS heuristic only with the four recent VNS-based approaches that

were already briefly described in the Introduction of this note. Note that these VNS-based methods compared

favorable with other metaheuristics used for the comparison purposes in papers where they were proposed,

and thus comparison against other types of metaheuristics is not performed here. The computational effort,

measured by means of the number of function evaluations, is given for the following methods:

• Gauss-VNS - this paper;

• Glob-VNS - Dražić et al. (2006), [2];

• VNS-1 - Bielaire et al. (2010), [7];

• VNS-2 - Toksari, Güner (2007) [6] and

• VNS-3 - Audet et al. (2008), [12].

Software platform. The two methods Glob-VNS and Gauss-VNS were integrated into the package GLOBC, a

test platform for numerical experiments with VNS. It is recently expanded with algorithm Gauss-VNS. GLOBC

is coded in C+ computer language. As mentioned earlier, the quality of any method for solving (NLP) is

usually measured by the number of function evaluations until the optimal (or best known) solution is reached.

However, the computational effort strongly depends on a number of input parameters such as a tolerance

value for the stopping rule or the choice of the local optimizer. Here we use the same package GLOBC, which

contains different heuristic algorithms, but they use mostly the same set of parameters. This approach gives

us a more realistic picture of effectiveness of the new algorithm Gauss-VNS compared to the existing ones.

The total execution time is set to be sufficiently large so that the global minimum is found in every test run.

Then, we measure the average computer effort until such optimum was found.

VNS parameters. The best-found parameterizations for Glob-VNS, as given in [2], are also used for

Gauss-VNS. In other words, no efforts have been made to estimate the parameters values in favor or Gauss-VNS,

which competes against the best-found parameterizations of Glob-VNS. The number of neighborhoods for both

Gauss-VNS and Glob-VNS are fixed to kmax = 5, and all tolerances for the local search are set to 1e− 4. The

remaining parameters of Glob-VNS (Gauss-VNS), namely the radii ρk (deviations σk) were tuned for each

instance, but always following a geometric progression. Typical choices for ρk, (σk) k = 1, . . . , 5 were (0.1,

0.2, 0.5, 1.0, 2.0) or (0.1, 0.5, 1.0, 3.0, 5.0). The local-search procedure was chosen from a list of well-known

methods: Nelder-Mead (NM), Hooke-Jeeves (HJ), Rosenbrock (RO), Steepest Descent (SD), Fletcher-Powell

(FP) and Fletcher-Reeves (FR). One-dimensional search is done with the Quadratic Approximation method
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(QA). The local-search procedure was not optimized for Gauss-VNS as well: we simply took the best options

obtained for Glob-VNS, which gives a clear advantage for Glob-VNS against Gauss-VNS. Despite of that, it

appears that our Gauss-VNS is comparable, and sometimes even better than the optimized Glob-VNS.

For Gauss-VNS, we assumed the covariance matrices Σk to have the form (4). The Ahrens-Dieter algorithm

([8, 9]) was implemented to generate univariate Gaussian variables in the shaking phase.

Comparison on standard test instances. Experiments were performed on a set of standard test functions

from literature ([7, 13]). We measured the computer effort (the number of function calls plus n times the

number of gradient calls) made until the algorithm finds the global minimum. Each experiment was repeated

10 times, and the average values are taken as results.

The dimensionality of most of these standard test problems is rather low, and should not be considered

at all as the size limit of problems VNS can successfully handle. However, the results give a clear picture

about how computational effort varies between the different versions analyzed.

The numerical results are summarized in Table 1. The results in columns 4 (VNS-1) and 5 (VNS-2) are

the same as reported in [7] and [6] respectively. The next four columns contain information about the local

minimizer used in Glob-VNS and Gauss-VNS and computational effort for Glob-VNS and Gauss-VNS. Finally,

the last column marked % Improvement contains the ratio of previous two calculated values, namely

fGlob−VNS − fGauss−VNS

fGauss−VNS

· 100%.

The smallest computational effort among 4 methods is boldfaced.

Table 1: Standard test functions

Computer effort local Computer effort % Impr-

function n VNS-1 VNS-2 minim. Glob-VNS Gauss-VNS ovement

Branin RC 2 153 308 FR 131 112 16.96%

asom ES 2 167 – HJ 163 148 10.14%

Goldstein and Price GP 2 – 206 NM 260 116 124.14%

Rastrigin RA 2 246 – RO 206 199 3.52%

Hump HM 2 335 – NM 160 80 100.00%

Shubert SH 2 366 – FR 382 591 -35.36%

De Joung DJ 3 104 – FP 38 26 46.45%

Hartmann H3,4 3 249 521 NM 246 223 10.31%

Hartmann H6,4 6 735 1244 HJ 397 448 -11.38%

Colville CV 4 854 – NM 669 497 34.61%

Shekel S4,10 4 590 988 SD 599 399 50.13%

Griewank GR 6 807 – SD 135 126 7.14%

Dixon DX 10 2148 – FP 1640 1576 4.06%

Rosenbrock R2 2 556 – NM 158 125 26.40%

Rosenbrock R5 5 1120 – NM 1286 1308 -1.68%

Rosenbrock R10 10 2653 – FP 2357 2561 -7.97%

Rosenbrock R50 50 11934 – FR 38621 37901 1.90%

Rosenbrock R100 100 30165 – FR 147274 122446 20.28%

Zakharov Z2 2 251 – FR 179 133 34.59%

Zakharov Z5 5 837 – FR 728 461 57.92%

Zakharov Z10 10 1705 – FR 1142 1010 13.07%

Zakharov Z50 50 17932 – FR 4304 5302 -17.28%

Average 22.17%
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The results from Table 1 in columns VNS-1 [7] and VNS-2 from [6] are not directly comparable with those

reported for Glob-VNS and Gauss-VNS due to different stopping criteria and tolerance parameters used in

corresponding programs, but they are nevertheless illustrative. The remarkable performance of VNS-1 for

R50 and R100 functions are consequence of a better local minimizer used, i.e., a truncated conjugate gradient

algorithm for the trust-region problem. However, the Rosenbrock test functions have only one local minimum,

and thus they are not suitable for comparing the global optimization methods.

As Table 1 shows, Gauss-VNS heuristic outperformed Glob-VNS in most of the standard test instances.

Since the main goal of our numerical test was to compare VNS-based heuristics, we fixed in advance most

of parameters for all test functions. This implies that these results should not be considered as best-possible

for each test function. Further, Gauss-VNS used the same parameters as Glob-VNS, which makes it possible

to perform even better with other configuration of parameters.

Comparison on large size test problems. The behavior of our new algorithm was also tested in problems

of higher dimensionality. Three challenging test problems from the literature were chosen, RAn, MPEn, ACn.

Rastrigin function (RAn) (see Figure 1 for n = 2):

f(x) = 10n+
n∑

i=1

(
x2
i − 10 cos(2πxi)

)
−5.12 ≤ xi ≤ 5.12, i = 1, . . . , n, fmin = 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
0

1

2

3

4

x
y

Figure 1: Rastrigin test function RA2

Molecular potential energy function (MPEn) function [14, 15]:

f(x) =
n∑

i=1

(
1 + cos 3xi +

(−1)i√
10.60099896− 4.141720682 cosxi

)
,

0 ≤ xi ≤ 5, i = 1, . . . , n, fmin = −0.0411183034 · n

and Ackley (ACn) function [16, 17]:

f(x) = 20 + e− 20 exp

(
−0.2

√
1

n

∑n

i=1
x2
i

)
− exp

(
1

n

∑n

i=1
cos(2πxi)

)
−15 ≤ xi ≤ 30, i = 1, . . . , n, fmin = 0.
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Figure 2: Ackley function with bounds [-15,30]×[-15,30], and [−2, 2]× [−2, 2]

All three functions have an exponential number of local minima (11n for RAn, 3n for MPEn and 45n for

ACn). The tolerances were set to 1e-5. The comparison between Glob-VNS and Gauss-VNS on Rastrigin,

Molecular potential energy and Ackley functions are presented in Tables 2, 3 and 4, where kmax is increased

to 15 and 10 respectively.

It appears that no systematic advantage of one heuristic over the others exists. Glob-VNS performed better

for RAn, while Gauss-VNS was better for MPEn and superior for ACn. We believe that Glob-VNS performs

better for instances with local minima distributed rectangularly (RAn) while Gauss-VNS gives better results

in case of spherical-like function shapes. For Ackley function Gauss-VNS even improves its superiority for

higher dimensions.

Comparison on a two-dimensional instance. Finally we compare Glob-VNS and Gauss-VNS with Mesh

Adaptive Direct Search method (MADS) coupled with VNS (VNS-3) [12]. To do this, one test instance

from [12] is used. This test instance, that was firstly suggested in [18] (problem 4), has 2 variables a, b ∈
[−5, 5]:

f(a, b) = esin(50a) + sin(60eb) + sin(70 sin a) + sin(sin(80b))−

− sin(10(a+ b)) + (a2 + b2)/4. (5)

The global optimum (a∗, b∗) of f(a, b) is known, namely,

f(a∗, b∗) = f(−0.024, 0.211) = −3.307.

The graph of the objective function (5) is shown in Figure 3. Beside the plot on the entire domain [−5, 5]×
[−5, 5] we zoom in f(a, b) on the rectangle [−0.2, 0.2]× [0.0, 0.4]. As initial solution we use (−3, 3), the same

point used in [12], where several algorithmic variants of MADS had been tested. Those that contain VNS are

denoted as C, E, F, E+F. The results for Glob-VNS, Gauss-VNS and VNS-3 (C,D,E,F,E+F) are summarized

in Table 5. Again, the performances of these methods are not easy to compare. The stopping criterion of the

VNS-3 stops in most cases before the global minimum is found. This explains why the average errors in the

best function values are rather big for this test function. On the other hand, Glob-VNS and Gauss-VNS are

designed to search for the solution for a longer time (as much as we can afford) with better chances to find

the global minimum for harder problems. In Table 5 the overall computational effort until the program stops

is also presented. In order to compare with VNS-3, we also limited the number of VNS meta-iterations to

examine how well the algorithms behave in given time. In all cases tolerances were set to 1e-4, Hook-Jeeves

was used as local search algorithm and average values for 10 test runs are presented (always with the same

initial solution (3,3)). It appears that Glob-VNS is more efficient than Gauss-VNS. Moreover, both VNS

versions found approximate solutions with less function evaluations than MADS (VNS-3). For instance, while

VNS-3 found the solution with an error of 7.62% in 6146 function evaluations, Glob-VNS found it with 5.16%

with 4374 evaluations. For an error of 9.01% VNS-3 took 5182 evaluations while Gauss-VNS needed 3930 for

an error of 8.92%.
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Table 2: Rastrigin function

local Computer effort % Impr-
function n minim. kmax Glob-VNS Gauss-VNS ovement

RA10 10 SD 15 52471 85589 -38.69%
RA20 20 SD 15 213597 287075 -25.60%
RA30 30 SD 15 366950 599635 -38.80%
RA40 40 SD 15 697160 1115923 -37.53%
RA50 50 SD 15 1334842 1504701 -11.29%
RA100 100 SD 15 5388075 6248753 -13.77%
RA150 150 SD 15 11007093 13678014 -19.53%
RA200 200 SD 15 24026456 31639001 -24.06%

Average -26.16%

Table 3: Molecular potential energy function

local Computer effort % Impr-
function n minim. kmax Glob-VNS Gauss-VNS ovement

MPE10 10 SD 10 8102 5015 61.56%
MPE20 20 SD 10 26647 21172 25.86%
MPE30 30 SD 10 66441 49162 35.15%
MPE40 40 SD 10 118006 109468 7.80%
MPE50 50 SD 10 202280 143309 41.15%
MPE100 100 SD 10 830343 1183873 -29.86%
MPE150 150 SD 10 2353315 2802372 -16.02%
MPE200 200 SD 10 7683209 5859705 31.12%

Average 19.59%

Table 4: Ackley function

local Computer effort % Impr-
function n minim. kmax Glob-VNS Gauss-VNS ovement

AC10 10 SD 10 188670 50149 276.22%
AC20 20 SD 10 433194 158412 173.46%
AC30 30 SD 10 909918 304825 198.51%
AC40 40 SD 10 1577138 528718 198.30%
AC50 50 SD 10 4791075 1143721 318.90%
AC60 60 SD 10 7820247 2315178 237.78%
AC70 70 SD 10 36641634 4255533 761.04%
AC80 80 SD 10 212944367 17180658 1139.44%

Average 412.96%

4 Conclusions

In this note a new VNS-based heuristic for solving continuous unconstrained optimization problems has

been presented. It is called Gauss-VNS since the Gauss distribution is used for generating random points x′

from the kth neighborhood of the incumbent solution x (x′ ∈ Nk(x)). This simplifies previous VNS-based

methods, as proposed in [4], where four different distribution types were considered: (i) uniform in the ball of

the ℓ1 norm; (ii) uniform in the ball of the ℓ∞ norm; (iii) hypergeometric in the ball of the ℓ1 norm and (iv)

special distribution in the ball of the ℓ∞ norm. Instead, the normal distribution with different values of the

parameter σ2
k is used. This way, the concept of neighborhood Nk(x) is replaced by the concept of (Gaussian)

distribution Pk(x). Beside simplifying the previous algorithm, our Gauss-VNS has two additional desirable

properties: (i) it can be used in cases where there are no bounds on variables (box constraints); (ii) it allows

us to generate uniformly distributed points in the ball of the ℓ2 norm (previously only ℓ1 and ℓ∞ norms were

used).
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Figure 3: Function (5) with bounds [-5,5]×[-5,5], and [−0.2, 0.2]× [0.0, 0.4]

Table 5: Comparison of 3 methods on 2-dimensional function (5) from [18]

# Comp. Total Comp.
Iterations fbest % error efforts efforts

Glob-VNS 300 -3.3069 0% 7303 26133
200 -3.2970 0.30% 5907 17466
100 -3.2286 2.37% 3994 8750
50 -3.1364 5.16% 3158 4374
30 -2.9789 9.92% 2356 2630

Gauss-VNS 400 -3.3069 0% 11585 37918
300 -3.2970 0.30% 9149 27391
200 -3.2871 0.60% 8259 17199
100 -3.1539 4.63% 4265 7953
50 -3.0121 8.92% 2801 3930
30 -2.9059 12.13% 1648 2364

MADS-VNS C -3.009 9.01% 5182
(VNS-3) E -3.055 7.62% 6146

F -2.837 14.21% 2809
E+F -2.778 15.99% 3171
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It is shown that the results obtained by our Gauss-VNS are comparable with four recent VNS-based

heuristics from the literature. In comparing these methods it should be taken into account that GLOB-VNS is

a state-of-the-art method for solving unconstrained NLPs, and also the fact that the comparison is performed

in favor of GLOB-VNS, since no efforts were made to tune the parameters for Gauss-VNS, and instead the tuned

parameters of GLOB-VNS were used.

Future research may contain extension to the constrained case, as well as the design of procedures for

automatic estimation of the range of the parameter σ2 during the execution of the code.
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[4] N. Mladenović, M. Dražić, V. Kovačević-Vujčić, and M. Čangalović. General variable neighborhood search for
the continuous optimization. European Journal of Operational Research, 191(3):753–770, 2008.
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