
Les Cahiers du GERAD ISSN: 0711–2440

An Interior-Point Algorithm with

Selective Addition of Inequalities for

Solving Doubly Non-Negative

Relaxations of Maximum-Stable-Set

and Maximum-Clique Problems

A. Engau, M.F. Anjos,
I. Bomze

G–2011–08

February 2011
Revised: November 2011

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

An Interior-Point Algorithm with Selective Addition of

Inequalities for Solving Doubly Non-Negative

Relaxations of Maximum-Stable-Set and

Maximum-Clique Problems

Alexander Engau

Department of Mathematical & Statistical Sciences
University of Colorado Denver

Denver, Colorado, U.S.A.
aengau@alumni.clemson.edu

Miguel F. Anjos

GERAD & Département de mathématiques et génie industriel

École Polytechnique de Montréal
Montréal (Québec) Canada, H3C 3A7

anjos@stanfordalumni.org

Immanuel Bomze

Applied Mathematics and Statistics
University of Vienna
1010 Vienna, Austria

immanuel.bomze@univie.ac.at

February 2011

Revised: November 2011

Les Cahiers du GERAD

G–2011–08

Copyright c© 2011 GERAD

Les Cahiers du GERAD G–2011–08 – Revised v

Abstract

The maximum-stable-set and maximum-clique problems are operations research problems that arise
in numerous areas such as social networking, electrical engineering, environmental forest planning, bioin-
formatics clustering and prediction, and computational chemistry. The doubly nonnegative relaxation
is known to provide high-quality bounds on the size of the global optimal solution of both problems.
However, it is an expensive conic optimization problem to solve in general. We propose an integrated
interior-point cutting-plane method to efficiently handle the large number of nonnegativity constraints
in the relaxation. The approach is based on a recent interior-point algorithm that selectively adds in-
equalities in a dynamic fashion. We present computational results showing the significant benefits of the
integrated algorithm in comparison to a standard interior-point cutting-plane method.

Key Words: stable set, maximum clique, theta number, semidefinite programming, interior-point al-
gorithms, cutting-plane methods, combinatorial optimization.

Acknowledgments: Research of the first author was partially supported by the DFG Emmy Noether
project “Combinatorial Optimization in Physics (COPhy)” and MITACS, a Network of Centres of Ex-
cellence for the Mathematical Sciences in Canada. The second author’s research was partially supported
by the Natural Sciences and Engineering Research Council of Canada, and by a Humboldt Research
Fellowship.

Les Cahiers du GERAD G–2011–08 – Revised 1

1 Introduction

The maximum-stable-set problem and the closely related maximum-clique-problem are operations research
problems on undirected graphs. Given such a graph G = (V , E), a set V ⊆ V is said to be a stable set or a

clique in G if for all pairs of distinct nodes i ∈ V and j ∈ V with i 6= j, {i, j} /∈ E or {i, j} ∈ E , respectively.
The stability number α(G) and the clique number ω(G) are the maximum cardinality of any stable set and

clique in G, respectively. Since a set V ⊆ V is stable in G if and only if V is a clique in its complement Ḡ,
the stability number of G is identical to the clique number of Ḡ. Hence we mostly focus in this paper on the
stability number α(G). Practical applications of stable sets and maximum cliques arise in areas as varied as

social networking [22], electrical engineering [27], environmental forest planning [4], bioinformatics clustering

and prediction [49], computational chemistry [44], and coding theory [47].

Another closely related concept is that of graph coloring. Given an integer k ≥ 1, a graph G is said to be

k-colorable if there is an assignment of k colors to the nodes V of G such that adjacent nodes receive different
colors, or equivalently, if V can be partitioned into k stable sets. The coloring number or chromatic number

χ(G) is the smallest integer k so that G is k-colorable. The computation of stability, clique, and chromatic

numbers is NP-hard [32]. Because in any k-coloring the nodes in a clique must receive different colors, it

follows that α(G) = ω(Ḡ) ≤ χ(Ḡ).. Several instances are known in which this inequality holds with equality,
for example, if G (or equivalently Ḡ) is perfect, i.e. ω(Ḡ′) = χ(Ḡ′) also for every induced subgraph Ḡ′ of Ḡ.
In these cases, the stability, clique, and chromatic numbers can be computed in polynomial time using the

Lovász theta function ϑ(G) (see Section 2).

The generalization of interior-point methods (IPMs) for linear programming (LP) to convex conic op-

timization [40], and especially to semidefinite programming (SDP) [1], has had a major impact on the
development of tractable approximations for many NP-hard combinatorial problems. Indeed, the fact that

ϑ(G) can be computed efficiently as the optimal value of an SDP is a truly beautiful and powerful conse-

quence of the polynomial-time convergence of IPMs. Thus, IPMs provide the means to both efficiently solve

the maximum-stable-set, maximum-clique, and minimum-graph-coloring problems for perfect graphs, and to

prove their membership in P for which no purely combinatorial method is known [33].

Research on both theoretical and computational aspects of stability, clique, and chromatic numbers re-

mains very active. In particular, several hierarchies of LP and SDP relaxations have been proposed based on

an exact formulation of stability and clique numbers as solutions to certain copositive programs [5, 10, 12, 42].

Copositive programming is linear optimization over the cone of copositive matrices; see the recent surveys

[6, 8, 13] and the bibliography [7] for details. However, although both the copositive cone and its com-
pletely positive dual cone are convex and have self-concordant barriers, these functions cannot be evaluated

in polynomial time so that copositive programming remains NP-hard and IPMs cannot be used efficiently.

The existing relaxation hierarchies therefore approximate the copositive cone. Unfortunately even their

lower-order approximations are typically too large to be useful for computational purposes.

One of the simplest approximations of the copositive cone is the intersection of the semidefinite cone and
the nonnegative cone. This is known as the doubly nonnegative (DNN) relaxation presented as problem (4)

below. The DNN relaxation provides the bound ϑ′(G) which improves on the Lovász theta bound. However,

formulating the DNN relaxation requires a quadratic number of nonnegativity constraints which makes the

resulting SDP expensive to solve.

This paper is concerned with optimizing over the DNN relaxation using IPMs. The use of IPMs is attrac-
tive not only because of their proven polynomial-time convergence but also because they have consistently

shown impressive robustness and efficiency in practice for general conic optimization problems. Specifically,

we propose to view the nonnegativity constraints as cutting planes and to apply an interior-point cutting-

plane scheme with selective addition of inequalities that dynamically adds the necessary constraints within
the interior-point method.. From a theoretical perspective, the algorithm we propose is supported by the

convergence results presented in the recent technical report [20]. From a computational perspective, the

results in this paper extend those in the paper [18] and show the significant benefits from this approach for

a different and generally difficult class of SDP relaxations.

2 G–2011–08 – Revised Les Cahiers du GERAD

We are aware of only relatively few papers that either explore similar approaches to the one described in

this paper or offer extensive computational results specifically for computing ϑ′(G). To our knowledge, the

most closely related study is that by Gruber and Rendl [26] who compute ϑ(G) with a primal-dual interior-
point cutting-plane scheme similar to the strategy by Helmberg and Rendl [29]. More recently, Dukanovic and

Rendl [11, 12] also test some of the newer copositive formulations with their primary focus on the resulting

improvement of the bounds for stability, clique, and chromatic numbers. Although this second paper also

reports on some results for ϑ′(G), we did not find running times or any other measures of computational

efficiency discussed in either of these papers. Using a significantly different approach, two sets of highly
competitive results for computing ϑ′(G) are given by two recent articles that develop methods of augmented-

Lagrangian type based on Newton conjugate gradients or an alternating direction approach [52, 53]. Another

recent development is the application of the augmented primal-dual method proposed in [30] to computing

ϑ′(G) [9]. While the problems sizes and running times in [9, 52, 53] are unlikely to be met with any current
IPM implementation, the results in this paper demonstrate the possibility of a fundamentally different and

innovative way to handle large number of inequalities in the IPM framework that is also applicable to other

broad classes of problems.

This paper is structured as follows. In Section 2, we cover the technical details of the problem formulations

and relaxations described above.. Algorithms and cutting-plane methods, including our proposed method
and its new modifications for the maximum-stable-set problem, are discussed in Section 3. Section 4 presents

our computational findings from computing ϑ′(G) using both standard techniques IPM and our own method

on different sets of instances, including instances arising from coding theory [47]. Section 5 summarizes our

results and concludes the paper.

2 Problem Formulations and Relaxations

We denote by G = (V , E) an undirected connected loopless graph with n nodes or vertices V = {1, 2, . . . , n}
and m edges E ⊆ V × V . We let Ḡ = (V , Ē) denote the complement graph of G for which {i, j} ∈ Ē if and

only if {i, j} /∈ E and i 6= j. The symmetric n × n adjacency matrix of a graph G is denoted by A(G). We

write e = (1, 1, . . . , 1)T ∈ R
n for the vector of all ones, E = eeT ∈ R

n×n for the matrix of all ones, and

I ∈ R
n×n for the n-dimensional identity matrix. The set Sn := {S ∈ R

n×n : S = ST } defines the cone of
real symmetric n× n matrices, and we use

Pn := {S ∈ Sn : uTSu ≥ 0 for all u ∈ R
n}

Nn := {S ∈ Sn : Sij ≥ 0 for all (i, j)}

to denote the n-dimensional positive semidefinite and nonnegative cones respectively. For a positive semidef-
inite (nonnegative) matrix X ∈ Pn (X ∈ Nn) we also write X � 0 (X ≥ 0), and for two matrices X and Y

we define their inner product X • Y =
∑n

i=1

∑n

j=1 XijYij = Tr(XY) where Tr(Z) is the trace of matrix Z.

The stability number α(G) is the optimal value of the linear binary program

α(G) = max

n
∑

i=1

xi (1a)

s.t. xi + xj ≤ 1 for all {i, j} ∈ E (1b)

xi ∈ {0, 1} for all i ∈ V (1c)

where x is the incidence vector of the subset V ⊆ V . The convex hull of all feasible incidence vectors of stable

sets defines the stable set polytope

STAB(G) := conv{x ∈ {0, 1}n : xi + xj ≤ 1 for all {i, j} ∈ E}.

The basic linear relaxation of STAB(G) replaces the binary constraint by box or nonnegativity constraints

FRAC(G) := {x ∈ R
n : x ≥ 0, xi + xj ≤ 1 for all {i, j} ∈ E}.

Les Cahiers du GERAD G–2011–08 – Revised 3

FRAC(G) can be tightened either by adding the clique inequalities

QSTAB(G) := {x ∈ R
n : x ≥ 0,

∑

i∈Q

xi ≤ 1 for all cliques Q ⊆ V}

or by adding other types of valid inequalities such as the odd-cycle inequalities

CSTAB(G) := {x ∈ FRAC(G) :
∑

i∈V (C)

xi ≤ 1
2 (|V | − 1) for all odd cycles C ⊆ E}.

While linear optimization over QSTAB remains NP-hard even for perfect graphs [23], the relaxations FRAC(G)
and CSTAB(G) for arbitrary graphs can be solved in polynomial-time using IPMs [24] but provide much
weaker bounds than the SDP relaxations yielding ϑ(G) and ϑ′(G) below. More details on LP and polyhedral

relaxations can be found in the references [25, 33].

The maximum stable set problem can also be formulated as the quadratic program

α(G) = max xTx (2a)

s.t. xixj = 0 for all {i, j} ∈ E (2b)

x2
i = xi for all i ∈ V .. (2c)

Lovász [34] showed that if a vector x ∈ R
n is feasible for (2), then the diagonal of the matrix Y =

(x1) (
x
1)

T
=

(

xxT x

xT 1

)

is contained in

TH(G) :=
{

x ∈ R
n : ∃ Y =

(

X x
xT 1

)

� 0, diag(X) = x, Xij = 0 for {i, j} ∈ E
}

.

TH(G) is known as the theta body and satisfies STAB(G) ⊆ TH(G) ⊆ QSTAB(G) with equality if and only

if G is perfect. Optimizing over TH(G) yields the Lovász theta number

ϑ(G) := max
{

eTx : x ∈ TH(G)
}

.

The theta number satisfies the sandwich inequality α(G) ≤ ϑ(G) ≤ χ(Ḡ), thus yielding the equalities α(G) =
ϑ(G) and ω(G) = χ(G) = ϑ(Ḡ) if G is perfect.

The theta number can be computed in polynomial time using an IPM to solve the SDP problem

ϑ(G) = max E •X (3a)

s.t. I •X = 1 (3b)

Xij = 0 for all {i, j} ∈ E (3c)

X � 0. (3d)

Problem (3) yields α(G) if the additional constraint rank(X) = 1 is enforced. However, this constraint is

non-convex and cannot be handled efficiently.

It is nonetheless possible to improve the Lovász theta bound in an efficient manner. McEliece, Rodemich,

and Rumsey [36] and Schrijver [45] considered the DNN relaxation

ϑ′(G) := max E •X (4a)

s.t. I •X = 1 (4b)

Xij = 0 for {i, j} ∈ E (4c)

X � 0 (4d)

X ≥ 0 (4e)

Alternatively, Szegedy [48] defined

4 G–2011–08 – Revised Les Cahiers du GERAD

ϑ+(G) := max E •X (5a)

s.t. I •X = 1 (5b)

Xij ≤ 0 for {i, j} ∈ E (5c)

X � 0 (5d)

which weakens the edge constraints by means of inequalities (5c) and thereby improves the bound on the

chromatic number, yielding the amended chain of relaxation bounds

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(Ḡ).
In addition, several other classes of cutting-plane inequalities can also be derived from the various techniques

of lift-and-project for general integer programs [3, 35, 46], some of which are nicely described for maximum-

stable-set relaxations in the paper by Gruber and Rendl [26].

In this paper we focus on the computation of ϑ′(G), but we note that our proposed algorithm could also

be used for computing ϑ+(G) if desired.

3 Interior-Point Cutting-Plane Methods and New Algorithm

The basic idea of any cutting-plane method (CPM) is to replace a difficult problem containing a large number

of inequalities by a series of easier relaxations that are successively augmented with violated inequalities until

finding an optimal solution at which all the inequalities are satisfied, whether they have been added or not.

The standard CPM that we consider for the computation of ϑ′(G) is outlined as Algorithm 1. We begin

by solving the smaller SDP problem (3) for an optimal solution X∗, and subsequently add only constraints

Xij ≥ 0 for which X∗
ij < 0 and solve again. We define the set of added inequality constraints as

E+ := {(i, j) : Xij ≥ 0 is present in the current relaxation}.
By repeating this process, we eventually must obtain an optimal solution X∗ such that X∗ ≥ 0 and ϑ′(G) =
E •X∗.

The above scheme can be modified in several ways. One common adjustment exploits the fact that a

constraint {i, j} ∈ E+ frequently turns out to be unnecessary after some number of updates of E+ because

X∗
ij > 0 in subsequent optimal solutions. When this happens, we can remove that inequality from E+.

Sophisticated tests for the redundancy of constraints exist; in the context of IPMs, the tests are often based

on vanishing dual variables [14]. A second aspect with noticeable impact on the computational performance
is the number of new inequalities that are added per iteration. We will study this issue in our computational

experiments in Section 4. Finally, several techniques exist to utilize a priori knowledge from the previously

solved relaxations for the choice of a better initial point for solving the updated problem. The state-of-the-art

in such warm start strategies is documented in [15, 38].

The CPM outlined so far is still generic in the sense that we have not specified how to solve each individual

relaxation in Step 2 of Algorithm 1. Whereas the standard cutting-plane method for LP is traditionally based

on a dual simplex method to exploit its favorable warmstarting capabilities, CPMs for SDP are typically based
on bundle or interior-point methods [15, 38]. On the one hand, bundle methods often offer better ways to

exploit known structure and sparsity. This has led to some extremely good results for the max-cut relaxation

whose polyhedral structure is well understood [21, 28, 43, 41]. On the other hand, IPMs are often preferred

due to their overall robustness and efficiency in practice [2, 26, 29, 37, 39]. Moreover, IPMs can compete with

alternative methods if many constraints are added at once, or if it is necessary to stabilize a cutting-plane
or column-generation process [38]. IPMs also suffer far less from effects of degeneracy [37]. For the latter

reasons, we use in this paper a primal-dual path-following IPM.

3.1 Basic Scheme of Primal-Dual IPMs

To establish some notation for the subsequent discussion of our new algorithm, let us briefly recall the major

steps of primal-dual IPMs for solving the SDP relaxations in Step 2 of Algorithm 1. Starting from the initial

Les Cahiers du GERAD G–2011–08 – Revised 5

relaxation (3), in each iteration we have an SDP of the form

max E •X (6a)

s.t. I •X = 1 (6b)

Xij = 0 for all {i, j} ∈ E (6c)

Xij ≥ 0 for all {i, j} ∈ E+ (6d)

X � 0. (6e)

The dual of problem (6) is given by

min
{

t : S = tI +
∑

i∈E
sijEij +

∑

i∈E+
s+ijEij − E � 0, s+ij ≥ 0

}

(7)

where S ∈ R
n×n is a symmetric, positive-definite matrix, t and sij for {i, j} ∈ E are free scalar variables, s+ij

for {i, j} ∈ E+ are nonnegative scalar variables, and Eij is the matrix with entries (i, j) and (j, i) equal to 1
2

and 0 elsewhere.

Using a suitable symmetrization strategy [50] followed by Newton’s method to solve these optimality

conditions, we can compute an associated search direction (∆X,∆S,∆t,∆s,∆s+) at any point (X̂, Ŝ, t̂, ŝ, ŝ+)
from the resulting linear system

I •∆X = 1− I • X̂ (8a)

∆Xij = −X̂ij for {i, j} ∈ E (8b)

∆S − (∆t)I −
∑

i∈E
(∆sij)Eij +

∑

i∈E+
(∆s+ij)Eij

= t̂I +
∑

i∈E
ŝijEij +

∑

i∈E+
ŝ+ijEij − E − Ŝ (8c)

X∆S + (∆X)S = µI − X̂Ŝ (8d)

X̂ij∆s+ij + (∆Xij)ŝ
+
ij = µ− X̂ij ŝ

+
ij for all {i, j} ∈ E+. (8e)

Choosing an appropriate step size β, we then update the current iterate

(X̂, Ŝ, t̂, ŝ, ŝ+)← (X̂, Ŝ, t̂, ŝ, ŝ+) + β(∆X,∆S,∆t,∆s,∆s+) (9)

and for some parameter γ ∈ [0, 1) reduce the barrier parameter according to the formula

µ← γ

(

X̂ • Ŝ +
∑

{i,j}∈E+
X̂ij ŝ

+
ij

)

/ (

n+
∣

∣E+
∣

∣

)

. (10)

3.2 New Cutting-Plane Interior-Point Algorithm

Several improvements have been proposed and implemented for the special case of interior-point CPMs that

solve the relaxations in Step 2 of Algorithm 1 using an IPM as outlined in Algorithm 2. We already mentioned
that the primal-dual nature of IPMs can be exploited effectively for several tests to detect vanishing variables.

Moreover, the second-order nature of IPMs guarantees a reasonable level of robustness which enables the

addition of relatively large numbers of equality or inequality constraints at intermediate iterates. Arguably

the biggest challenge for IPMs is to warm start subsequent relaxations from previous solutions that are often
not sufficiently interior; however, several researchers have recently addressed this question and proposed

several strategies for significant new progress into this direction [15].

The robustness of IPMs, together with the observation that high-accuracy solutions are unnecessary during

earlier stages of CPMs, motivate another modification to the above scheme. Rather than adding and removing

constraints only after solving subsequent relaxations to approximate optimality, these new methods separate

and add new violated inequalities when the current point is still relatively far from the optimal solution but
sufficiently interior to possibly produce much stronger cuts [26, 29, 39]. In the context of LP relaxations, the

early addition of violated cuts was suggested by Mitchell [37] and Mitchell and Borchers [39] who terminate

6 G–2011–08 – Revised Les Cahiers du GERAD

at suboptimal solutions and warm start successive relaxations by manually increasing small values of the

current iterate or choosing the most recent previous primal-dual iterate that is strictly feasible, respectively..

The extension to SDP was explored by Helmberg and Rendl [29] who further distinguish between small and
large adds at intermediate and final iterates of different rounds. In their method, a series of small adds

allow the early addition of a certain number of violated inequalities which are compensated by pushing the

current iterate back into the interior so that all inequalities are again satisfied, before each current relaxation

is eventually solved for an optimal solution for a larger add of new constraints and a restart of the next

relaxation round from a newly chosen initial point.

While IPMs are quite capable of absorbing such changes to the problem and accommodate the integration

of a new sets of constraints, special care needs to be taken when initializing the new dual variables or modifying

the previous iterate to maintain the algorithm’s good performance. Unlike these previous methods, a new

technique was recently proposed for handling large numbers of inequalities in cutting-plane schemes while

avoiding a restart or the modification of the current iterate [18]. Most notably, the corresponding algorithm
does not distinguish successive relaxations but solves the original problem in a single round, selects cut

sets dynamically, and only introduces or redefines sets of new auxiliary variables to temporarily relax the

interiority constraints of the original problem. In particular, the observed stability of the underlying primal-

dual IPM enables the algorithm to continue without any changes to the original primal-dual iterate, which
is updated only by the corresponding Newton steps that guarantees the iterate’s convergence to an optimal

solution. The new algorithm is outlined in Algorithm 3 and basically works like the regular path-following

IPM in Algorithm 2 with an integrated cutting-plane mechanism, so that the number of dual variables s+ij
keeps changing based on the subset E+ of constraints currently in the problem.

We briefly describe the specific adjustments of this algorithm. Given a current primal iterate X̂ for which
X̂ij < 0 for some {i, j} /∈ E+, i.e. a violated inequality not currently added to the problem, we add the

corresponding inequality constraint as Xij − Yij = 0 with an auxiliary variable Yij ≥ 0 that temporarily

replaces nonnegativity of Xij and removes the need to adjust its current value. To ease this discussion, we

temporarily denote the index set of newly added inequalities by E+add. To maintain primal-dual symmetry,

for each (i, j) ∈ E+add we also add a dual slack zij ≥ 0 to the corresponding dual constraint s+ij − zij =

0 which makes s+ij a free variable that can be initialized to zero. Both computational experience and a

theoretical analysis of this approach show that the slacks Yij are generally sufficiently decoupled from the
other constraints to mitigate the impact of adding new violated cuts [16, 19]. In particular, it turns out that

initial values for Yij and zij can be chosen much smaller than necessary when adjusting the original matrix

X̂ or its entry X̂ij and s+ij in order to avoid jamming, and we have found that Ŷij = ẑij =
√
µ is especially

meaningful because it allows to preserve the current value of µ from the previous iteration:

X̂ • Ŝ +
∑

{i,j}∈E+ X̂ij ŝ
+
ij +

∑

{i,j}∈E+

add

Ŷij ẑij

n+ |E+|+
∣

∣E+add
∣

∣

=
(n+ |E+|)µ+

∣

∣E+add
∣

∣µ

n+ |E+|+
∣

∣E+add
∣

∣

= µ. (11)

After new constraints have been added, we remove inequalities cuts Xij = Yij ≥ 0 and their dual

s+ij = zij ≥ 0 for (i, j) ∈ E+ if the remaining residuals |Xij − Yij | and
∣

∣s+ij − zij
∣

∣ have become sufficiently
small and the primal-dual ratio Yij/zij has grown sufficiently large. Using the theory of indicator functions,

any strictly positive threshold δ > 0 will eventually detect the convergence of vanishing zij and thereby allow

to remove (i, j) from E+ and drop the dual variable and auxiliary primal-dual slacks (s+ij , Yij , zij) from the

problem [14, 18].

For step 3 in Algorithm 3, note that the corresponding Newton system is not the same as in (8) as it is
augmented by the new dual and auxiliary slack variables (ŝ+ij , Ŷij , ẑij) for {i, j} ∈ E+. As demonstrated in

[16, 19], the simple structure of the additional constraints Xij − Yij = 0 and s+ij − zij = 0 allows the use of
a slightly perturbed system of equal size as (8). Finally, the full termination criteria in step 6 also includes

several other (possibly different) tolerance thresholds for both primal and dual infeasibility; writing down

these details is straightforward.

Les Cahiers du GERAD G–2011–08 – Revised 7

1. Drop all nonnegativity constraints and initialize the set of inequalities E+ = ∅.
2. Compute an optimal solution X∗ ∈ Pn for the SDP relaxation

max{E •X : X ∈ Pn, Xij = 0 for all (i, j) ∈ E , Xij ≥ 0 for all (i, j) ∈ E+}.

3. If X∗
ij < 0 for any {i, j} /∈ E , add Xij ≥ 0 as new inequality cut: E+ ← E+ ∪ {(i, j)}.

4. If new constraints were added, remove redundant constrains and go back to step 2.

5. If no new constraints were added, stop: X∗ ∈ Pn ∩ Nn is optimal, ϑ′(G) = E •X∗.

Algorithm 1: Standard Cutting-Plane Method for the Computation of ϑ′(G)

1. Given the primal-dual pair (6,7), initialize (X̂, Ŝ, t̂, ŝ, ŝ+) with (X̂, Ŝ) ≻ 0 and
(X̂ij , ŝ

+
ij) > 0 for all {i, j} ∈ E+; select γ ∈ [0, 1) and a small tolerance value ε > 0.

2. Set or update the barrier parameter µ according to the reduction formula in (10).

3. If max{µ,
∣

∣

∣
I • X̂ − 1

∣

∣

∣
,
∣

∣

∣
A • X̂

∣

∣

∣
,
∣

∣

∣
X̂ij

∣

∣

∣
: {i, j} ∈ E+} ≤ ε, stop with ε-optimal solution.

4. Compute a new direction, step size, and iterate from (8,9) and go back to step 2.

Algorithm 2: Standard Primal-Dual Path-Following IPM for Step 2 in Algorithm 1

1. Drop all nonnegativity constraints and set E+ = ∅; initialize (X̂, Ŝ, t̂, ŝ) with (X̂, Ŝ) ≻ 0;
set γ ∈ [0, 1), tolerance ε > 0, indicator threshold δ > 0, and separation frequency κ.

2. Set or update the barrier parameter µ according to the reduction formula in (11).

3. Compute directions, step sizes, and iterates from an amended Newton system (8).

4. If X̂ij < 0 for any {i, j} /∈ E , add Xij ≥ 0 as new inequality cut: E+ ← E+ ∪ {(i, j)};
add the associated dual variable and primal-dual slacks (ŝ+ij , Ŷij , ẑij) = (0,

√
µ,
√
µ).

5. If
∣

∣

∣
X̂ij − Ŷij

∣

∣

∣
< ε and Ŷij/ẑij > δ, drop cut and (s+ij , Yij , zij): E+ ← E+ \ {(i, j)}.

6. If µ < ε and X̂ ≥ 0, stop: ϑ′(G) = E • X̂ is optimal; otherwise go back to step 2..

Algorithm 3: New Cutting-Plane Interior-Point Algorithm for the Computation of ϑ′(G)

4 Computational Experiments

We implemented a standard interior-point CPM as outlined in Algorithms 1 and 2 and our new method in

Algorithm 3 using MATLAB. All computations were carried out on a 2.0 GHz AMD Dual Opteron Processor.

For the solution of the relaxations in Step 2 of Algorithm 1, we used the solver SDPT3 [51] with default
settings and default initial points, which implements a primal-dual path-following predictor-corrector method

similar to Algorithm 2. Furthermore, we removed previous inequality cuts if the corresponding feasibility

residual fell below ε = 10−4 and its primal-dual ratio exceeded the threshold value δ = 102. While there may

be different values of ε and δ that can further improve the method, these particular choices delivered good
practical performance.

We then conducted a series of computational experiments using different variants of Algorithm 3. To

ensure comparability, we used the same combination of Algorithms 1 and 2 as before but now restricted

the maximum number of Newton iterations taken during each call to the SDP solver to κ. We supplied the

previous iterate as our own starting point, and disabled all preprocessing. As initial point we choose the
scaled identity matrix nI for both the primal and dual matrix, and zero for all other dual variables.. The

separation, addition, and removal of inequalities were done by complete enumeration and based on the two

criteria on feasibility residual and primal-dual ratio..

8 G–2011–08 – Revised Les Cahiers du GERAD

Our experiments were carried out on randomly generated graphs as well as on two classes of instances

from the literature. In particular, we investigated whether there is a noticeable difference from restricting

the number of new constraints per iteration, or allowing intermediate steps before new constraints are added
to possibly accelerate convergence but risk a larger number of deeper cuts at a later iterate. For the first

variation, we decided to distinguish between full adds that add all new constraints associated with negative

entries X̂ij < 0, and sparse adds for which we initially sort all current values in increasing order and then

select at most n of the most negative entries so that no two newly added cuts Xij = 0 or Xij = Yij and

Yij ≥ 0 share a common row or column index i or j, respectively. For the second, we specify the additional
separation frequency κ that allows to compare the algorithm when adding or removing constraints after every

iteration (if κ = 1) with variants that also allow few regular intermediate steps (if κ > 1).

4.1 Results on Randomly Generated Graphs

The first set of problem instances were created using the commonly used random graph generator RUDY

written by G. Rinaldi that is available at

http://www-user.tu-chemnitz.de/∼helmberg/rudy.tar.gz.

Specifically, for every size n ∈ {100, 200, . . . , 600} we generated five graphs using the command

rudy -rnd graph n dens rnd seed

where the edge densities dens ∈ {40, 10, 4, 2.5, 1.6, 1} percent are chosen so to achieve graphs with no more

than 2, 000 edges, and the random seed rnd seed is varied between 1, 2, 3, 4, 5. The number of associated
nonnegativity constraints accordingly ranges between 4,950 for n = 100 and 179,700 for n = 600 so that their

separation can still be done reasonably quickly using complete enumeration.

We first solved each of the above problems using our version of Algorithms 1 and 2 with both a full add

and a sparse add. The average results of the five instances for each graph size are given in Table 1 and show

running times (in cpu seconds), the total number of iterations (summed over all individual relaxations), and
the total number of inequalities that remain added at optimality (with the number of removals indicated

in parenthesis). On the one hand, these results suggest that sparse adds are typically more efficient in

identifying a smaller set of relevant cuts because smaller numbers of inequalities remain added at optimality

or are removed in previous stages of the algorithm. On the other hand, sparse adds also lead to additional
iterations because it becomes necessary to solve more yet smaller-sized relaxations until a relevant set of cuts

has been identified and added to the problem. In particular, the trade off between a full and sparse add, or

equivalently between the size and number of relaxations that need to be solved, suggests a full add if the

initial problem is relatively small (n ≤ 400) but switches to sparse adds for the larger and sparser instances

with 500 and 600 nodes.

We then looked at the computational impact of using a full add versus a sparse add, and of varying

the number κ of regular intermediate steps in unit increments between 1 and 10 for Algorithm 3. The

corresponding results are given in Tables 2 to 7 separated by problem size for better readability; a comparison

Table 1: Running times (in cpu seconds), number of iterations, and number of added (and removed) inequality
cuts at optimality when computing ϑ′(G) for random graphs using the standard interior-point CPM in

Algorithms 1 and 2 with full adds and sparse adds.

full add sparse add
n m dens time iter inequalities time iter inequalities
100 1980 40% 125 77 216 (± 36) 257 165 203 (± 10)
200 1990 10% 264 97 644 (± 158) 618 274 518 (± 22)
300 1794 4% 326 110 848 (± 159) 671 315 552 (± 17)
400 1995 2.5% 442 111 902 (± 110) 811 279 525 (± 9)
500 1996 1.6% 897 186 903 (± 70) 872 264 444 (± 5)
600 1797 1% 1298 258 960 (± 39) 1016 282 399 (± 8)

Les Cahiers du GERAD G–2011–08 – Revised 9

Tables 2 to 7: Running times (in cpu seconds), number of iterations, and number of added (and removed) inequality
cuts at optimality when computing ϑ′(G) for random graphs using the integrated interior-point CPM in Algorithm 3

with full adds and sparse adds, and different separation frequencies κ.

Table 2: Results on graphs with n = 100.

full add sparse add
κ time iter inequalities time iter inequalities
1 83 34 244 (± 8) 89 38 236 (± 7)
2 68 32 242 (± 6) 81 38 232 (± 4)
3 59 28 234 (± 5) 89 44 222 (± 3)
4 59 30 229 (± 5) 92 48 221 (± 0)
5 68 36 232 (± 5) 107 58 221 (± 0)
6 53 29 223 (± 0) 111 62 216 (± 0)
7 70 39 232 (± 6) 118 68 212 (± 0)
8 74 41 246 (± 1) 131 76 214 (± 0)
9 89 50 245 (± 8) 148 87 217 (± 0)
10 98 55 252 (± 0) 165 98 219 (± 0)

Table 3: Results on graphs with n = 200.

full add sparse add
κ time iter inequalities time iter inequalities
1 219 69 777 (± 0) 402 164 545 (± 0)
2 237 74 780 (± 21) 410 162 558 (± 5)
3 248 77 771 (± 0) 387 146 577 (± 0)
4 242 74 810 (± 2) 386 150 566 (± 4)
5 219 67 770 (± 38) 328 124 576 (± 7)
6 222 69 768 (± 40) 293 111 573 (± 0)
7 199 66 688 (± 29) 289 109 568 (± 0)
8 170 53 796 (± 0) 317 123 560 (± 0)
9 175 54 806 (± 0) 344 136 554 (± 0)
10 188 59 796 (± 9) 382 152 555 (± 0)

Table 4: Results on graphs with n = 300.

full add sparse add
κ time iter inequalities time iter inequalities
1 243 79 957 (± 0) 394 172 585 (± 0)
2 272 83 970 (± 0) 429 186 592 (± 0)
3 283 88 962 (± 0) 463 201 589 (± 0)
4 282 90 929 (± 27) 471 200 600 (± 1)
5 281 83 990 (± 14) 435 181 608 (± 0)
6 295 89 972 (± 8) 429 180 608 (± 1)
7 307 91 956 (± 37) 357 147 627 (± 1)
8 209 63 934 (± 0) 351 139 622 (± 0)
9 203 60 994 (± 0) 405 169 610 (± 0)
10 225 67 967 (± 40) 380 158 610 (± 0)

Table 5: Results on graphs with n = 400.

full add sparse add
κ time iter inequalities time iter inequalities
1 370 90 971 (± 13) 502 160 596 (± 0)
2 375 89 963 (± 0) 491 160 566 (± 0)
3 370 88 970 (± 0) 556 181 560 (± 0)
4 453 100 1008 (± 1) 532 171 565 (± 0)
5 396 91 968 (± 5) 537 171 563 (± 4)
6 361 85 961 (± 0) 546 173 567 (± 0)
7 345 80 980 (± 15) 537 167 583 (± 0)
8 369 85 993 (± 18) 485 151 601 (± 0)
9 318 72 960 (± 2) 425 128 597 (± 0)
10 356 80 1005 (± 0) 449 141 587 (± 0)

Table 6: Results on graphs with n = 500.

full add sparse add
κ time iter inequalities time iter inequalities
1 347 78 922 (± 0) 481 138 497 (± 0)
2 406 89 939 (± 0) 638 181 511 (± 5)
3 390 84 913 (± 36) 587 167 492 (± 0)
4 416 90 916 (± 1) 555 160 474 (± 0)
5 433 91 968 (± 1) 612 169 518 (± 1)
6 406 84 967 (± 0) 604 170 480 (± 0)
7 349 73 941 (± 0) 592 166 492 (± 1)
8 333 70 961 (± 3) 499 137 494 (± 2)
9 317 72 780 (± 0) 450 123 501 (± 0)
10 366 77 917 (± 6) 460 124 514 (± 0)

Table 7: Results on graphs with n = 600.

full add sparse add
κ time iter inequalities time iter inequalities
1 371 77 979 (± 0) 595 155 481 (± 2)
2 475 95 982 (± 2) 615 155 518 (± 2)
3 430 85 912 (± 53) 589 149 500 (± 2)
4 486 95 940 (± 45) 616 157 508 (± 5)
5 463 92 970 (± 15) 585 147 519 (± 2)
6 539 103 986 (± 11) 616 155 505 (± 9)
7 461 91 905 (± 4) 549 141 471 (± 4)
8 445 85 917 (± 70) 548 140 462 (± 4)
9 494 92 921 (± 66) 502 125 488 (± 0)
10 465 87 989 (± 10) 521 130 504 (± 5)

across problem sizes is facilitated using Figures 1 and 2 that show the different running times, number of

iterations, and number of inequalities at optimality for increasing problem size n and different separation

frequencies κ.

First, it is evident that our new approach is a significant improvement over the standard cutting-plane

method. We also see that a full add leads to larger relaxations than a sparse add but finds the optimal
solution more quickly and using fewer iterations. In contrast with Table 1, however, this holds now for all

problem sizes. As is to be expected, the running times increase slightly with problem dimension for both a

full add and sparse add, and the same trend can be observed with respect to iterations and inequalities for

a full add, in principle. Best seen from the plots in Figures 1 and 2 is the almost identical number of about
1,000 inequalities for all larger instances when using a full add, and the (possibly surprising) observation that

the number of iterations and inequalities does not seem to correlate with the problem size for a sparse add

10 G–2011–08 – Revised Les Cahiers du GERAD

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

500

550
cp

u
se

co
nd

s

κ
1 2 3 4 5 6 7 8 9 10

20

30

40

50

60

70

80

90

100

110

nu
m

be
r

of
 it

er
at

io
ns

κ
1 2 3 4 5 6 7 8 9 10

200

300

400

500

600

700

800

900

1000

1100

nu
m

be
r

of
 in

eq
ua

lit
y

cu
ts

κ

n=600
n=500
n=400
n=300
n=200
n=100

Figure 1: Running times (in cpu seconds), number of iterations, and number of added (and removed) inequal-
ity cuts at optimality when computing ϑ′(G) for random graphs using the integrated interior-point CPM in
Algorithm 3 with full adds and different separation frequencies κ.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

cp
u

se
co

nd
s

κ
1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

160

180

200

220

nu
m

be
r

of
 it

er
at

io
ns

κ
1 2 3 4 5 6 7 8 9 10

200

250

300

350

400

450

500

550

600

650
nu

m
be

r
of

 in
eq

ua
lit

y
cu

ts

κ

n=600
n=500
n=400
n=300
n=200
n=100

Figure 2: Running times (in cpu seconds), number of iterations, and number of added (and removed) inequal-
ity cuts at optimality when computing ϑ′(G) for random graphs using the integrated interior-point CPM in
Algorithm 3 with sparse adds and different separation frequencies κ.

(excluding the smallest instances with n = 100 at the far bottom). Of course, it is important to recall that in

spite of the increasing number of nodes we always maintain about 2, 000 edges and therefore compare graphs

with very different sparsity structures. In summary, these results confirm the previously observed trade off
between larger relaxation sizes yet smaller running times due to fewer iterations for a full add, and the more

accurate identification of a relevant set of cutting planes at the cost of a larger running time for a sparse add.

Regarding the separation frequencies, we note that there is no clear trend as to an optimal parameter

value especially for the running times for a full add, and the number of inequalities for a full add and a

Les Cahiers du GERAD G–2011–08 – Revised 11

sparse add. Excluding again the smallest instances with n = 100, the running times for a sparse add and the

number of iterations for both a full and a sparse add seem to show an overall decrease for larger values of κ,

although still subject to quite a bit of variation. Most notably, and contrasting with our earlier experience
with a similar approach for max-cut in which we observed that κ values of 2 or 3 gave the most competitive

running times [17, 18], the new features implemented for our current method seem to further improve the

overall robustness of the algorithm and lead to more consistent results over a wider spectrum of parameter

choices.

Finally, we note that any tested variant of the integrated interior-point CPM in Algorithm 3 improves
the performance of the standard CPM both in terms of running times and total number of iterations, while

finding very similar sets and practically the same number of cuts at optimality. This last aspect is particu-

larly important as it convincingly demonstrates the general validity of adding and dropping inequalities at

intermediate iterates without compromising the progress of the algorithm.

4.2 Results on DIMACS and Sloane Test Graph Instances

We applied Algorithm 3 to some of the standard benchmark problems from the Second DIMACS Implemen-

tation Challenge on Maximum Clique, Graph Coloring, and Satisfiability [31] that are available on the ftp

site

ftp://dimacs.rutgers.edu/pub/challenge/

and to some independent set problems arising in coding theory [47] provided on the web site

http://www2.research.att.com/∼njas/doc/graphs.html

maintained by Sloane. The DIMACS collection also includes problems based on coding theory (johnson and

hamming instances) as well as various other applications including fault diagnosis, randomized vertex covers

(sanr instances), and some specific set covering instances of the Steiner Triple problem (MANN instances).
As all the DIMACS instances are formulated as maximum-clique problems, we converted them to equivalent

stable set problems on the complement graphs (for simplicity we refer to these problems by the same name)

and then chose all of those problems with no more than 2,000 nodes and 5,000 edges. The representative

results in Tables 8 and 9 give for each graph G the corresponding problem dimensions n and m, the true
stability (or clique) number α(G), the computed integer bound from ϑ′(G) using problem (4), the computed

integer bound from ϑ(G) from (3), and the running time (in seconds), number of iterations, and number of

remaining and removed inequalities at optimality when using Algorithm 3 with a full add and κ = 1. Note

that the values for ϑ(G) and ϑ′(G) reported here are not new and consist of the computed values rounded

down to the nearest integer.

Table 8: Exact stability numbers α(G) and known Lovász bounds ϑ(G) (rounded down to the nearest integer)
with running times (in cpu seconds), number of iterations, and number of added (and removed) inequality
cuts at optimality when computing ϑ′(G) for DIMACS graphs using the integrated interior-point CPM in
Algorithm 3 with full adds and κ = 1.

Graph G n m α(G) ϑ′(G) ϑ(G) time iter inequalities
hamming6-2 64 192 32 32 32 1 11 0 (± 0)
hamming6-4 64 1312 4 4 5 10 13 32 (± 0)
hamming8-2 256 1024 128 128 128 7 10 0 (± 0)
johnson8-2-4 28 168 4 4 4 0 8 0 (± 0)
johnson8-4-4 70 560 14 14 14 2 10 0 (± 0)
johnson16-2-4 120 1680 8 8 8 14 9 0 (± 0)
san200 0.9 1 200 1990 70 70 70 26 14 0 (± 0)
san200 0.9 2 200 1990 60 60 60 23 13 0 (± 0)
san200 0.9 3 200 1990 44 44 44 33 21 0 (± 0)
sanr200 0.9 200 2037 42 48 49 295 95 673 (± 114)
MANN a9 45 72 16 17 17 0 12 0 (± 0)
MANN a27 378 702 126 132 132 11 13 0 (± 0)
MANN a45 1035 1980 345 356 356 188 17 0 (± 0)

12 G–2011–08 – Revised Les Cahiers du GERAD

Table 9: Exact stability numbers α(G) and known Lovász bounds ϑ(G) (rounded down to the nearest integer)
with running times (in cpu seconds), number of iterations, and number of added (and removed) inequality cuts
at optimality when computing ϑ′(G) for Sloane graphs using the integrated interior-point CPM in Algorithm 3
with full adds and κ = 1.

Graph G n m α(G) ϑ′(G) ϑ(G) time iter inequalities
1dc.64 64 543 10 10 10 13 35 501 (± 0)
1dc.128 128 1471 16 16 16 498 76 2666 (± 6)
1dc.256 256 3839 30 30 30 262 26 1343 (± 0)
1et.64 64 264 18 18 18 1 12 0 (± 0)
1et.128 128 672 28 29 29 7 17 154 (± 0)
1et.256 256 1664 50 54 55 812 104 2261 (± 294)
1et.512 512 4032 100 103 104 1794 77 1512 (± 540)
1tc.64 64 192 20 20 20 1 15 0 (± 22)
1tc.128 128 512 38 38 38 3 15 0 (± 0)
1tc.256 256 1312 63 63 63 64 62 377 (± 0)
1tc.512 512 3264 110 112 113 3025 156 2430 (± 0)
1zc.128 128 1120 18 20 20 9 13 0 (± 21)
1zc.256 256 2816 36 37 38 138 32 56 (± 0)

The results in Table 8 first illustrate the advantage of a cutting-plane approach to compute ϑ′(G) compared

to solving the full relaxation directly. Namely, these results show that the DNN relaxation does not always
improve the SDP relaxation, and that the Lovász function ϑ(G) in all but two instances (hamming6-4 and

sanr200 0.9) already gives the exact stability number for an optimal matrix that is both positive semidefinite

and nonnegative, without the need of explicit nonnegativity constraints. Consequently, in these cases the

large majority of inequalities can remain dropped so that there is no difference between a full and a sparse add.
Considering the two instances in which ϑ′(G) improves ϑ(G) so that several inequalities become necessary,

however, we observe that specifically for the larger problem sanr200 0.9 with 200 nodes and 2, 037 edges

the running time (295 sec), number of iterations (95), and number of inequalities (673 ± 114) fall within

those for the random instances of similar size in Table 3, with n = 200 and either a full or sparse add (time:

219/402 sec, iter: 69/164, ineq: 777/545).

Finally, the selected results in Table 9 show that for the Sloane test graphs, ϑ′(G) frequently improves
ϑ(G) and often requires a considerable number of additional inequalities. These results are obtained with the

same parameter settings as before, using a full add and a separation frequency κ = 1. Although we found

that specific instances can be solved faster, in fewer iterations, or with a smaller number of added inequalities

for different parameter choices, these results suffice to demonstrate the general success and overall robustness
of our proposed method to dynamically select and add the relevant inequalities.

5 Conclusions

We proposed an interior-point cutting-plane method to efficiently handle the large number of nonnegativity

constraints in the DNN relaxation for instances of the stable set and maximum clique problems. The method
views the nonnegativity constraints as cutting planes and applies an interior-point cutting-plane scheme with

selective addition of inequalities that dynamically adds the necessary constraints within the interior-point

method.. Supported by the theoretical convergence results presented in the recent technical report [20], the

method is shown to deliver significant computational benefits for this class of challenging SDP relaxations.

Our computational experience is summarized in two observations:

1. The computational comparison of full adds versus sparse adds reveals the characteristic trade off in

CPMs between the aggressive addition of new constraints that reduce the number of iterations but also

cause the underlying Newton systems to grow more rapidly, or a more conservative separation strategy

that keeps the size of each relaxation smaller but typically requires more iterations until a relevant

cut set can be determined. Although a best strategy is unlikely to exist, we find that the ability to

quickly drop seemingly redundant inequalities provides the integrated technique with some advantages

when using a full add compared to both a sparse add and the use of a more standard technique.

Les Cahiers du GERAD G–2011–08 – Revised 13

2. The variation of the frequency for adding and removing inequalities shows that a good performance can

be achieved for a wide spectrum of strategies. This is in contrast to previous experience with triangle

inequalities for max-cut where the best results were obtained for κ = 2 or 3. The reason may be either
the structural differences in these two problems and the different classes of cutting planes used, or a

consequence of our improved implementation of the detection and handling of cuts specifically for this

new class of problems. It is important to note that the underlying interior-point code was the same in

both cases.

In summary, these results support the paradigm of our method to add a limited number of cuts early on to
steer the algorithm more quickly towards an optimal solution, but also indicate the general robustness and

stability of this new method when taking few intermediate iterations or adding significantly larger numbers

of inequalities.

References

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization.
SIAM J. Optim., 5(1):13–51, 1995.

[2] M. F. Anjos and A. Vannelli. Computing globally optimal solutions for single-row layout problems using semidef-
inite programming and cutting planes. INFORMS J. Comput., 20(4):611–617, 2008.

[3] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math.
Programming, 58(3, Ser. A):295–324, 1993.

[4] F. Barahona, R. Epstein, and A. Weintraub. Habitat dispersion in forest planning and the stable set problem.
Operations Research, 40(1-Supplement-1):S14–S21, 1992.

[5] I. M. Bomze and E. De Klerk. Solving standard quadratic optimization problems via linear, semidefinite and
copositive programming. J. Global Optim., 24(2):163–185, 2002.

[6] I.M. Bomze. Copositive optimization – recent developments and applications. Europ. J. Oper. Research, page
to appear, 2011.

[7] I.M. Bomze, W. Schachinger, and G. Uchida. Think co(mpletely)positive ! – properties, examples and a
commented bibliography on copositive optimization. Technical Report 2011-02, ISOR, Univ. Vienna, 2011.

[8] S. Burer. Copositive programming. In Miguel F. Anjos and Jean Baptiste Lasserre, editors, Handbook of
Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, to appear.,
International Series in Operations Research and Management Science. Springer, New York, 2011.

[9] T. Davi and F. Jarre. Solving large scale problems over the doubly nonnegative cone. Technical report, Institut
für Informatik, Universität Düsseldorf, 2011.

[10] E. de Klerk and D. V. Pasechnik. Approximation of the stability number of a graph via copositive programming.
SIAM J. Optim., 12(4):875–892, 2002.

[11] I. Dukanovic and F. Rendl. Semidefinite programming relaxations for graph coloring and maximal clique prob-
lems. Math. Program., 109(2-3, Ser. B):345–365, 2007.

[12] I. Dukanovic and F. Rendl. Copositive programming motivated bounds on the stability and the chromatic
numbers. Math. Program., 121(2, Ser. A):249–268, 2010.

[13] M. Dür. Copositive programming — a survey. In Moritz Diehl, Francois Glineur, Elias Jarlebring, and Wim
Michiels, editors, Recent Advances in Optimization and its Applications in Engineering, pages 3–20. Springer,
Berlin Heidelberg New York, 2010.

[14] A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables in interior-point
methods. SIAM Rev., 36(1):45–72, 1994.

[15] A. Engau. Recent progress in interior-point methods: Cutting plane methods and warm starts. In M. F.
Anjos and J. B. Lasserre, editors, Handbook of Semidefinite, Cone, and Polynomial Optimization. Springer, in
preparation.

[16] A. Engau, M. F. Anjos, and A. Vannelli. A primal-dual slack approach to warmstarting interior-point methods
for linear programming. In J. W. Chinneck, B. Kristjansson, and M. J. Saltzman, editors, Operations Research
and Cyber-Infrastructure, pages 195–217. Springer, 2009.

[17] A. Engau, M. F. Anjos, and A. Vannelli. An improved interior-point cutting-plane method for binary quadratic
optimization. Electronic Notes on Discrete Mathematics, 36:743–750, 2010.

[18] A. Engau, M. F. Anjos, and A. Vannelli. On handling cutting-planes in interior-point methods for solving
semidefinite relaxations of binary quadratic optimization problems. Optim. Meth. Soft., 2010. forthcoming.

14 G–2011–08 – Revised Les Cahiers du GERAD

[19] A. Engau, M. F. Anjos, and A. Vannelli. On interior-point warmstarts for linear and combinatorial optimization.
SIAM J. Optim., 10(4):1828–1861, 2010.

[20] A. Engau and M.F. Anjos. A primal-dual interior-point algorithm for linear programming with selective addition
of inequalities. Cahier du GERAD G-2011-44, GERAD, Montreal, QC, Canada, 2011.

[21] I. Fischer, G. Gruber, F. Rendl, and R. Sotirov. Computational experience with a bundle approach for semidef-
inite cutting plane relaxations of Max-Cut and equipartition. Math. Program., 105(2-3, Ser. B):451–469, 2006.

[22] S. Fortunato. Community detection in graphs. Phys. Rep., 486(3-5):75–174, 2010.

[23] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimiza-
tion. Combinatorica, 1(2):169–197, 1981.

[24] M. Grötschel, L. Lovász, and A. Schrijver. Relaxations of vertex packing. J. Combin. Theory Ser. B, 40(3):330–
343, 1986.

[25] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization, volume 2 of
Algorithms and Combinatorics: Study and Research Texts. Springer-Verlag, Berlin, 1988.

[26] G. Gruber and F. Rendl. Computational experience with stable set relaxations. SIAM J. Optim., 13(4):1014–
1028, 2003.

[27] I. Hamzaoglu and J.H. Patel. Test set compaction algorithms for combinational circuits. In Proceedings of the
1998 IEEE/ACM international conference on Computer-aided design, ICCAD ’98, pages 283–289, New York,
NY, USA, 1998. ACM.

[28] C. Helmberg. A cutting plane algorithm for large scale semidefinite relaxations. In The sharpest cut, pages
233–256. SIAM, Philadelphia, PA, 2004.

[29] C. Helmberg and F. Rendl. Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes. Math.
Programming, 82(3, Ser. A):291–315, 1998.

[30] F. Jarre and F. Rendl. An augmented primal-dual method for linear conic programs. SIAM J. Optim., 19(2):808–
823, 2008.

[31] D. S. Johnson and M. A. Trick, editors. Cliques, coloring, and satisfiability. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, 26. American Mathematical Society, Providence, RI, 1996.

[32] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations (Proc.
Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New
York, 1972.

[33] M. Laurent and F. Rendl. Integer programming and semidefinite programming. In K. Aardal, G. L. Nemhauser,
and R. Weismantel, editors, Discrete optimization, volume 12 of Handbooks in Operations Research and Man-
agement Science, pages 393–514. Elsevier Science B.V., Amsterdam, 2005.

[34] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.

[35] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim., 1(2):166–
190, 1991.

[36] R. J. McEliece, E. R. Rodemich, and H. C. Rumsey, Jr. The Lovász bound and some generalizations. J. Combin.
Inform. System Sci., 3(3):134–152, 1978.

[37] J. E. Mitchell. Computational experience with an interior point cutting plane algorithm. SIAM J. Optim.,
10(4):1212–1227, 2000.

[38] J. E. Mitchell. Cutting plane methods and subgradient methods. In M. Oskoorouchi, editor, Tutorials in
Operations Research, chapter 2, pages 34–61. INFORMS, 2009.

[39] J. E. Mitchell and B. Borchers. Solving real-world linear ordering problems using a primal-dual interior point
cutting plane method. Ann. Oper. Res., 62:253–276, 1996.

[40] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming, volume 13 of
SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 1994.

[41] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wiegele. Computational approaches to max-cut. In
M.F. Anjos and J.B. Lasserre, editors, Handbook of Semidefinite, Conic and Polynomial Optimization: Theory,
Algorithms, Software and Applications, International Series in Operations Research and Management Science.
Springer, New York, 2011.

[42] J. Peña, J. Vera, and L. F. Zuluaga. Computing the stability number of a graph via linear and semidefinite
programming. SIAM J. Optim., 18(1):87–105, 2007.

[43] F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by intersecting semidefinite and polyhedral
relaxations. Math. Program., 121(2, Ser. A):307–335, 2010.

Les Cahiers du GERAD G–2011–08 – Revised 15

[44] N. Rhodes, P. Willett, A. Calvet, J.B. Dunbar, and C. Humblet. Clip: Similarity searching of 3d databases using
clique detection. Journal of Chemical Information and Computer Sciences, 43(2):443–448, 2003.

[45] A. Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inform. Theory, 25(4):425–429,
1979.

[46] H. D. Sherali andW. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations
for zero-one programming problems. SIAM J. Discrete Math., 3(3):411–430, 1990.

[47] N.J.A. Sloane. Unsolved problems in graph theory arising from the study of codes. Graph Theory Notes of New
York, 18:11–20, 1989.

[48] M. Szegedy. A note on the Theta number of Lovász and the generalized Delsarte bound. In 35th Annual
Symposium on Foundations of Computer Science, 20-22 November 1994, Santa Fe, New Mexico, USA, pages
36–39, 1994.

[49] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data.
Bioinformatics, 18(suppl 1):S136–S144, 2002.

[50] M. J. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming.
Optim. Methods Softw., 11/12(1-4):1–46, 1999.

[51] R. H. Tütüncü, K.-Ch. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear programs using SDPT3.
Math. Program., 95(2, Ser. B):189–217, 2003.

[52] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented lagrangian methods for semidefinite pro-
gramming. Technical report, IEOR, Columbia University, 2009.

[53] X.-Y. Zhao, D. Sun, and K.-C. Toh. A Newton-CG augmented Lagrangian method for semidefinite programming.
SIAM J. Optim., 20(4):1737–1765, 2010.

	Introduction
	Problem Formulations and Relaxations
	Interior-Point Cutting-Plane Methods and New Algorithm
	Basic Scheme of Primal-Dual IPMs
	New Cutting-Plane Interior-Point Algorithm

	Computational Experiments
	Results on Randomly Generated Graphs
	Results on DIMACS and Sloane Test Graph Instances

	Conclusions

