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Abstract

The presence of symmetry is common in certain types of scheduling problems. Symmetry can occur
when one is scheduling a collection of jobs on multiple identical machines, or if one is determining pro-
duction schedules for identical machines. General symmetry-breaking methods can be strengthened by
taking advantage of the special structure of the symmetry group in scheduling problems. In this paper,
we examine the effectiveness of symmetry-breaking methods for scheduling problems. We also present
a modified version of orbital branching, a powerful symmetry-breaking procedure, and discuss when it
should and should not be used in practice. Using operating room and power generator scheduling prob-
lems as sample problems, we will provide computational results comparing different methods of symmetry
breaking.

Résumé

La symétrie se retrouve fréquemment dans certains types de problèmes d’optimisation. Elle peut
apparatre quand on fait la planification des tches ou de la production sur plusieurs machines identiques.
Les méthodes générales de bris de symétrie peuvent être renforcées en profitant de la structure spéciale du
groupe de symétrie dans les problèmes d’ordonnancement. Dans cet article, nous examinons l’efficacité
des méthodes de bris de symétrie pour les problèmes de planification. Nous présentons également une
version modifiée de “orbital branching”, une procédure puissante pour le bris de symétrie, et discutons
lorsqu’elle devrait ou ne devrait pas être utilisée en pratique. La planification des salles d’opération et
les problèmesde planification de génération électrique sont utilisés pour démontrer les résultats computa-
tionels avec les différentes méthodes de symétrie.
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1 Introduction

Symmetry has been an obstacle in mixed integer linear programming (MILP) for more than 40 years. In
Jeroslow (1974), Jeroslow presented a class of problems with only one equality constraint on n variables

for which branch-and-bound trees contain an exponential number of nodes if symmetry is not removed

from the problem. Around the same time period Fulkerson et al. (1973) suggested that a class of highly

symmetric covering problems called Steiner Triple Systems (STS) be included in test libraries because they

were notoriously difficult, especially considering the small number of variables in the problem. The STS class
of problems gained attention when some instances were included in the first MIPLIB library (Bixby et al.,

1992). In the past decade, effective symmetry breaking techniques have been developed for MILP problems.

Symmetry breaking methods such as isomorphism pruning (Margot, 2002) are able to remove all symmetries

from the branch-and-bound tree. While we know ways to break symmetry, we do not yet have a clear
understanding of the most effective way to break symmetry in particular contexts, and more importantly,

how symmetry-breaking methods interact with other MILP features such as branching strategies and cutting

plane methods.

To gain some insight on how symmetry breaking affects MILP techniques, we examine symmetry breaking

in scheduling problems. Scheduling problems cover a very broad class of problems with important real world
applications. The structure of symmetry present in these problems allow for efficient symmetry breaking

techniques. It is this structure, also found in bin-packing and graph coloring problems, that makes them

ideal candidates for our study.

In this paper we will show that the success of symmetry-breaking techniques in reducing computation

time is highly dependent on the branching strategy. If good branching strategies are known a priori, sym-
metry breaking constraints that augment the branching strategy can be added to the problem with great

result. However, if branching strategies are not known, adding symmetry-breaking constraints to the problem

formulation may not be the best option. In this case, orbital branching- a symmetry breaking method that

removes symmetry during the branch-and-bound process, is shown to be most effective.

This paper is divided as follows. Section 2 gives an introduction to symmetry in integer programming.
Section 3 uses the operating room scheduling problems to test three different methods of exploiting symmetry

in scheduling problems: symmetry-removing constraints, orbitopal fixing, and orbital branching. In Section 4,

a version of orbital branching that takes advantage of the special structure of machine-scheduling problems is

presented. It is tested against the original version of orbital branching using the unit commitment problem,

an important problem in power generation.

2 Problem Symmetry and Fundamental Domains

Typical formulations of scheduling problems contain binary variables xi,j , where xi,j equal to one signifies

that job i is assigned to machine j, or that machine j is in operation at time i. The x variables can be

interpreted as an m by n 0/1 matrix. Symmetry is often present in scheduling problems since there can be

many identical machines of a certain type. As a result, given any feasible solution x, equivalent solutions
can be generated by permuting the columns of x. For example, suppose one is assigning 5 jobs to 4 identical

machines. A possible solution is

x =













1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0













. (1)
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Because all machines are identical, it is possible to create a new schedule by moving to machine 3 all jobs

that were assigned to machine 4 and vice versa. This gives a new but equivalent solution

x′ =













1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1













. (2)

Because the machines are identical, any permutation of the columns of x yields a different solution, but all

these solutions can have the same real-world interpretation as the original solution.

The presence of symmetry can have a significant negative effect on the performance of branch-and-bound

algorithms. In the same way that it allows multiple equivalent solutions, symmetry also allows different

subproblems in the branch-and-bound tree to be equivalent. Failure to recognize the equivalence of these
subproblems can lead to solving thousands of unnecessary subproblems and making relatively easy problems

impossible to solve using branch-and-bound techniques. In order to prevent this from happening, equivalent

solutions and subproblems must be identified and removed from the search.

2.1 Preliminary Algebra

Let In be the ground set {1, . . . , n} representing the columns of x. Let Sn be the collection of permutations
of the ground set. For a permutation π ∈ Sn, the matrix π(x) is defined by π(x)i,j = xi,π(j). For any two

permutations π and σ in Sn, π(σ(x)) is formed by first permuting the columns of x by σ, then permuting

them by π.

The symmetry group G of an MILP instance is the collection of permutations in Sn that map every feasible

solution to another feasible solution with the same objective value (Margot, 2008). Formally,

G
def
= {π ⊆ Sn | ∀x ∈ F , π(x) ∈ F and c⊤π(x) = c⊤x}, (3)

where F is the feasible region of the MILP.

As variables become fixed via branching or other considerations, the symmetry present in the columns

may disappear. Consider the subproblem a = (F a
1 , F

a
0 ) formed by fixing xi,j to one for every (i, j) in F a

1 and

fixing xk,l to zero for every (k, l) in F a
0 . The symmetry group of subproblem a, Ga, contains all permutations

of the columns that map each feasible solution of a to another feasible solution of a with an identical objective
value. Suppose xi,j is fixed to one in subproblem a. If permutation π is in Ga then xi,π(j) must be equal to one

(because if x is a feasible solution at a then π(x) must also be feasible at a for any π ∈ Ga). Unfortunately,

for an arbitrary π, there may not be enough information present at node a to easily determine if x′
i,π(j)

can be fixed to one. Rather than using subproblem a’s symmetry group Ga, we restrict ourselves to using
permutations that map variables fixed to one only to other variables fixed to one, and variables fixed to zero

to other variables fixed to zero.

The stabilizer of a set S is the subset of Sn that maps elements of S only to other elements of S:

stab(S) = {π ∈ Sn | π(S) = S}. (4)

The set of permutations that stabilize each set in the collection {S1, S2, . . . , Sk} is written as

stab(Si, S2, . . . , Sk) =

k
⋂

j=1

stab(Sj). (5)

The group stab(F a
1 , F

a
0 ) is a subgroup of Ga and will be used to approximate the symmetry group at node a.

A polynomial time algorithm for computing
⋂k

j=1 stab({ij}) is given in Holt (2005), but no polynomial time

algorithm is known for computing stab(S).
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Because π(x) is generated by permuting the columns of x, it is called an equivalent or symmetric solution

with respect to the symmetry group G. The set of all such equivalent solutions to x with respect to a group

G ⊆ Sn is called an orbit of x.

orb(x,G)
def
= {x′ ∈ R

n | ∃π ∈ G such that x′ = π(x)} = {π(x) | π ∈ G}. (6)

In the same way as solutions, orbits can define equivalence in variables.

orb(xi,j ,G)
def
= {xi,π(j) | π ∈ G}. (7)

By definition, if xi,j ∈ orb(G, xi,k), then xi,k ∈ orb(G, xi,j), i.e., the variables xi,j and xi,k share the same

orbit. Therefore, the union of the orbits

O(G)
def
=

M
⋃

i=1

N
⋃

j=1

orb(xi,j ,G) (8)

forms a partition of the variables that is referred to as the orbital partition of G, or simply the orbits of G.

2.2 Using Symmetry to Reduce the Feasible Region

A popular strategy for solving MILPs is to strengthen the LP relaxation by adding valid inequalities that

improve the lower bound. For a general MILP, inequalities are considered valid if and only if they do not

remove any integer-feasible solution from the feasible region. However, this condition is more restrictive

than necessary. An inequality that removes some integer-feasible solutions may be added to the problem
formulation so long as one can guarantee that at least one optimal solution satisfies the inequality. In

practice, guaranteeing that an optimal solution satisfies an inequality is difficult. Knowledge of the problem’s

symmetry group allows for the generation of constraints that remove some solutions from the feasible region,

while also guaranteeing that at least one optimal solution remains feasible.

Formally, a set F is a fundamental domain of the set S with respect to the group Γ if and only if for every
x ∈ F , the set orb(x,Γ) ∩ F is nonempty. A fundamental domain is minimal if it does not contain a smaller

fundamental domain.

Fundamental domains are used in the context of MILP to reduce the size of the feasible region. Let F be

any fundamental domain of FMILP , the feasible region of the MILP, with respect to the symmetry group G
of the MILP. By definition of the fundamental domain, F contains an optimal solution to the MILP as long
as one exists. Thus, constraints that remove integer-feasible solutions from the feasible region may be added

to the problem formulation so long as the resulting feasible region still remains a fundamental domain.

Example 2.1 Consider the problem of assigning 3 unique jobs to 3 identical machines. Let xi,j equal one if

job i is assigned to machine j. There are 27 feasible solutions to this problem. They are





1 0 0
1 0 0
1 0 0









0 1 0
0 1 0
0 1 0









0 0 1
0 0 1
0 0 1



 (9)





1 0 0
1 0 0
0 1 0









1 0 0
1 0 0
0 0 1









0 1 0
0 1 0
0 0 1









0 1 0
0 1 0
1 0 0









0 0 1
0 0 1
1 0 0









0 0 1
0 0 1
0 1 0



 (10)





1 0 0
0 1 0
1 0 0









1 0 0
0 0 1
1 0 0









0 1 0
0 0 1
0 1 0









0 1 0
1 0 0
0 1 0









0 0 1
1 0 0
0 0 1









0 0 1
0 1 0
0 0 1



 (11)
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0 1 0
1 0 0
1 0 0









0 0 1
1 0 0
1 0 0









0 0 1
0 1 0
0 1 0









1 0 0
0 1 0
0 1 0









1 0 0
0 0 1
0 0 1









0 1 0
0 0 1
0 0 1



 (12)





1 0 0
0 1 0
0 0 1









1 0 0
0 0 1
0 1 0









0 1 0
1 0 0
0 0 1









0 1 0
0 0 1
1 0 0









0 0 1
1 0 0
0 1 0









0 0 1
0 1 0
1 0 0



 (13)

All solutions in each of (9), (10), (11), (12), and (13) are equivalent. Any subset of the feasible region

that contains at least one solution from each of these sets of equivalent solutions is a fundamental domain. It

is minimal if the subset contains exactly one solution from each collection. For this example, there are over

100 million different fundamental domains, of which 3,888 are minimal.

As shown in the example, there are many different fundamental domains. Two important issues are

choosing a fundamental domain, and generating constraints that restrict the feasible region to the chosen
fundamental domain. It is always possible to generate a minimal fundamental domain using lexicographic

ordering, ensuring that the columns of x are lexicographically decreasing. For general scheduling problems,

the following inequalities, along with the restriction that xi,j is binary, guarantee that the resulting solution

has lexicographically decreasing columns:

n
∑

i=1

2n−ixi,j ≥
n
∑

i=1

2n−1xi,j+1 ∀j = 0, . . . , n− 1. (14)

Though adding symmetry-breaking inequalities removes symmetry in the problem, it is not necessarily a

good choice to use a fundamental domain based on lexicographic order. The purpose of the symmetry-

breaking inequalities is to remove subproblems in the branch-and-bound tree that are equivalent. When using

lexicographic order to determine the fundamental domain, branching on variables with large row indices will

not lead to the fixing of variables as a result of symmetry considerations. Thus, branching strategies that tend
to choose variables with large row indices for branching may not be effective at exploiting symmetry. This is

explained in detail in the context of the job scheduling problem, Section 3.5. It will be shown that when using

a fundamental domain based on lexicographic ordering, fixing variables with small row indices is necessary

to break symmetry. Therefore, from a symmetry-breaking standpoint, branching on variables with small row
indices early in the branch-and-bound process is advised. From an MILP standpoint, however, the variables

with small row indices may not make good branching candidates, and may produce large branch-and-bound

trees. How one resolves these two possibly competing issues can have a significant effect on the efficiency of

the solver.

3 Job Scheduling Problems

This section presents methods that exploit symmetry in job scheduling problems that arises when jobs are
assigned to similar machines or machines. The solutions of a job scheduling problem can be expressed as a

0/1 matrix x, where xi,j = 1 if job i is assigned to machine j. Note that each row of x must contain exactly

one 1. In this section, we assume that all machines are identical, meaning that the complete symmetric group

acts on the columns of x. As we will briefly explain in Section 3.4, this assumption is not necessary for the
methods discussed, but is made for notational convenience. In Sections 3.1, 3.2, and 3.3, we describe different

methods from the literature used to exploit this column symmetry.

3.1 Symmetry-Removing Constraints

In (Denton et al., 2009), the authors attack symmetry job scheduling problems, specifically operating room

scheduling problems, by adding symmetry-breaking constraints to the original formulation. These constraints
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restrict the feasible region to a minimal fundamental domain that has lexicographically-decreasing columns.

For example, the 0/1 matrix

x =













1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0













(15)

does not have lexicographically-decreasing columns, so it is not in the fundamental domain. Permuting

columns 3 and 4 gives the matrix

x′ =













1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1













. (16)

The matrix x′ does have lexicographically-decreasing columns, so it is in the fundamental domain.

It is clear that for any x with at least one 1 in the first row and lexicographically decreasing columns x1,1

must be one. Similarly, if any xi,j with i < j is equal to one, then x cannot have lexicographically-decreasing

columns, so all such x terms can be fixed to zero.

These conditions do not suffice to induce a minimal fundamental domain. Consider again the matrix x

from (15). All xi,j with i < j are fixed to zero, but x still does not have lexicographically-decreasing columns.

The problem in this case arises because job 4 is assigned to machine 4, but none of jobs 1 through 3 are assigned
to machine 3. Because no lower-indexed job is assigned to machine 3, column 3 will be lexicographically

smaller than column 4 regardless of where job 5 is assigned. The constraints

xi,j ≤
i−1
∑

u=1

xu,j−1 ∀(i, j), i ≥ j ≥ 2 (17)

guarantee that for any xij equal to one with i and j greater than one, there is at least one lower-indexed job
assigned to machine j − 1.

While the only 0/1 matrices that satisfy constraints (17) have lexicographically decreasing columns, the

constraints can be strengthened to create a tighter LP relaxation. Using the property that each row of x

must contain a single one, the constraints in (17) can be written as

min{i,n}
∑

v=j

xi,v ≤
i−1
∑

u=1

xu,j−1 ∀(i, j), i ≥ j. (18)

3.2 Orbitopal Fixing

Kaibel and Pfetsch (2008) give a complete linear description of the convex hull of all 0/1 job-scheduling

matrices with linearly decreasing columns. It should be noted that the constraints described in Section 3.1

are facets of the polytope, but make up only part of the convex hull. The complete description requires
exponentially many inequalities, but in a subsequent paper Kaibel et al. (2007) present a linear-time algorithm

that fixes variables based on implications of the constraints in (18).

The first part of the orbitopal fixing algorithm attempts to find variables that can be fixed to zero. As

mentioned earlier, it is clear that if any variable xi,j with i < j equals one, then the resulting solution is not

lexicographical maximal. Similarly, if x2,1 equals one, then x3,3 cannot equal one, because neither x1,2 nor

x2,2 equals one, so fixing x3,3 to one would violate a constraint in (18).

In order to recognize which variables can be fixed to zero, they create an m-vector a that provides an
upper bound on the largest indexed machine for each of the m jobs. For example, a[i] = j if no job with an

index less than or equal to i can be performed by a machine with index strictly greater than j. Trivially,
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a[1] always equals one. If it is possible to assign job i− 1 to machine j − 1 without violating the inequalities

in (18), then it will be possible to perform job i in room j, unless of course, j − 1 = n, in which case there

is no room j. It may also happen that xi,j may have been fixed to zero by a previous branching decision.
If that were the case, then obviously job i cannot be performed in room j. Thus, element a[i] is equal to

a[i − 1] + 1 unless either a[i − 1] = n or xi,a[i−1]+1 is fixed to zero, in which case a[i] = a[i − 1]. Since a[i]

represents the upper bound on the machine that job i can be assigned to, all variables xi,j can be fixed to

zero for j > a[i]. A formal description of the algorithm is described in Algorithm 1.

Algorithm 1 Orbitopal Fixing: Zero Setting

Input: Subproblem a = (F a
1 , F

a
0 ).

Output: Subproblem a′ = (F a
1 , F

a∗
0 ) with F a

0 ⊆ F a∗
0 .

1 Set a[1] = 1, F a∗
0 = F a

0 .
2 for i = 2, . . . , S do:
3 if a[i− 1] = n or (i, a[i− 1] + 1) ∈ F a

0 then
4 a[i] = a[i− 1].
5 else
6 a[i] = a[i− 1] + 1
7 Set F a∗

0 = F a∗
0 ∪ {(i, j)|j > a[i]}.

Orbitopal fixing can also be used to identify variables that must be fixed to one. Consider the partial
solution represented by the matrix









1 0 0 0
? ? 0 0
? ? ? 0
0 0 0 1









. (19)

Algorithmically, orbitopal fixing finds variables to fix to one by assuming variables are fixed to zero and using

Algorithm 1 to search for contradictions. For instance, suppose x2,2 were fixed to zero in the above partial

solution. Using Algorithm 1, both x3,3 and x4,4 would be fixed to zero (as a[2] = 1, a[3] = 2, and a[4] = 3).
Because x4,4 is already fixed to one, this would cause a contradiction, implying that x2,2 must be equal to

one. Similarly, x3,3 can also be fixed to one. Because there can be only one 1 per column, fixing x2,2 to one

implies that x2,j can be fixed to zero for all j not equal to 2. The One-Setting portion of orbitopal fixing is

described in Algorithm 2.

Algorithm 2 Orbitopal Fixing: One Setting

Input: Subproblem a = (F a
1 , F

a
0 ).

Output: Subproblem a′ = (F a′

1 , F a′

0 ) with F a
1 ⊆ F a′

0 , F a
0 ⊆ F a′

0 .

1 Set F a′

1 = F a
1 and F a′

0 = F a
0 .

2 for i = 2, . . . , S with (i, a[i]) /∈ F a′

1 do:

3 Input (F a′

1 , F a′

0 ∪ (i, a[i])) to Algorithm 1, return (F a′∗
1 , F a′∗

0 ).

4 if F a′∗
1 ∩ F a′∗

0 6= ∅

5 F a′

1 = F a′

1 ∪ (i, a[i]), F a′

0 = F a′

0 ∪ {(i, j)|j 6= a[i]}

3.3 Orbital Branching

Orbital branching (Ostrowski et al., 2007) is an entirely different way of breaking symmetry. Unlike the

previous two methods, orbital branching does not choose a fundamental domain a priori. Instead, it uses

branching decisions to break symmetry, and by doing so, lets the branching decisions determine the funda-

mental domain. It should be noted that there is a stronger method to break symmetry called isomorphism
pruning (Margot, 2002, 2003). For a general problem, orbital branching is not guaranteed to restrict the

feasible region to a minimal fundamental domain, while isomorphism pruning is. However, in the case of job

scheduling problems, orbital branching does restrict the feasible region to a minimal fundamental domain,
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making it equivalent to isomorphism pruning. In addition, orbital branching can compute orbits needed for

the job scheduling problem (but not for general problems) in linear time.

Let Ga be the symmetry group of the subproblem represented by node a in the branch-and-bound tree.

Let O = {(i1, j), (i2, j), . . . , (i|O|, j)} ⊆ Na be an orbit of the symmetry group Ga. In the context of
symmetry, the traditional branching disjunction can be replaced. Instead of creating one child node with

xi1,j = 1 and another with xi1,j = 0, orbital branching uses the disjunction

xih,j = 1 ∨
∑

(ik,j)∈O

xik ,j = 0. (20)

The details of correctness are presented in Ostrowski et al. (2010b), but a rough idea of the method is as

follows. The disjunction
∑

(ik,j)∈O xik ,j ≥ 1 ∨
∑

(ik,j)∈O xik ,j = 0 is surely a valid disjunction for any O. In
the left child, the one defined by

∑

(ik,j)∈O xik,j ≥ 1, it is known that some variable xi with i in O takes the

value of 1. Because all variables are equivalent, it is appropriate to arbitrarily choose one such i and fix that

variable to 1. We have the following result:

Theorem 3.1 For any node a, let l be the left child formed by adding the constraint xi,h = 1 for some

(i, h) ∈ O(Ga), and let r denote the child formed by adding the constraint
∑

(i,j)∈O(Ga) xi,j = 0. There is no

solution x feasible in l such that π(x) is feasible in r for any π in G.

Proof. Aiming at a contradiction, suppose x is feasible in l and π in G with π(x) feasible in r when orbit O

was chosen for branching. Each orbit in O(G) represents one row in the matrix x. Because each row contain

exactly one 1, and because both x and π(x) are feasible at node a, (i, π(j)) = (i, j) for all (i, j) in F a
1 . This

mean that π stabilizes every column j that currently has a job assigned to it, and that π ∈ Ga. By symmetry,

π(x)i,h must be equal to one, but because π ∈ Ga, π(x)i,h was fixed to zero at node r as a result of the
branching constraint

∑

(i,j)∈O xi,j = 0.

Theorem 3.1 is a stronger version than that described in Ostrowski et al. (2007), which proved no equiv-

alent solutions with respect to Ga, not G, are found in different children of a.

Performing orbital branching requires knowledge of the orbital partition of the variables at every node
in the branch-and-bound tree. This in turn requires finding the symmetry group (or at least a subset of the

symmetry group). For a general problem, finding the symmetry group requires the use of an algorithm with

a worst-case exponential running time. Fortunately finding the symmetry group is easy for job scheduling

problems. Permutations of the columns of x are in the symmetry group of a job scheduling subproblem if
and only if no job has been assigned to a permuted column. Thus, xi,j and xi,k share the same orbit in a

subproblem if and only if no job has been assigned to either machine j or machine k. Thus, finding an orbit

to branch on can be done in linear time.

3.4 Comparison Between the Methods

Both the symmetry-reducing constraints and orbitopal fixing restrict the set of feasible solutions to be the

matrices x with lexicographically decreasing columns. The difference between the methods is that Denton
et al. (2009) restricts the feasible region by explicitly adding inequalities, while the latter uses these inequali-

ties implicitly to fix variables. Explicitly adding these inequalities may remove fractional solutions that would

have been optimal in the LP relaxation, resulting in better LP relaxations and thus, smaller branch-and-

bound trees. Another advantage of the inequality method over orbital fixing and orbital branching is that
commercial solvers may be able to use these inequalities to generate stronger cutting planes. The cost of

the improved relaxations is that the additional inequalities make the LP relaxations more computationally

intensive. Also, as many optimal solutions may be made infeasible by the constraints, finding an optimal

solution may be more difficult.

Because the minimal fundamental domain is defined a priori, both the constraint version of the formulation
and orbitopal fixing can perform more fixing than orbital branching. As an example, consider the subproblem
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formed by the partial solution


























1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0
? ? ? ?
? ? ? ?

...
? ? ? ?



























. (21)

If the columns were forced to be lexicographically decreasing, x5,4 must equal zero. This is enforced by both

the symmetry-breaking inequalities as well as orbitopal fixing, but not by orbital branching.

While there are many applications of job scheduling, we provide computational results for the deterministic

operating room (OR) scheduling problem. In this application there is a set of m blocks of surgeries planned

for the day and a set of r available operating rooms. It is assumed that the operating rooms are identical

and that the time required for each surgery block is known. Using an operating room incurs a one-time fixed
cost. If the time required to perform the blocks assigned to a particular operating room is over a predefined

limit an overtime cost must be paid for every additional hour. The OR scheduling problem is to find the

minimum cost allocation of patients to operating rooms. The problem can be written as follows:

ZD =min{
m
∑

j=1

(cfyj + cvoj)} (22)

s.t. xij ≤ yj ∀(i, j) (23)
m
∑

j=1

xij = 1 ∀i (24)

n
∑

i=1

dixij ≤ Tyj + oj ∀j (25)

xij , yj ∈ {0, 1} ∀(i, j), oj ≥ 0 ∀j, (26)

where di is the time required to perform surgery block i and T is the total number of hours available for each

OR without paying overtime costs. The parameter cf is the fixed cost associated with opening an OR and

cv is the overtime cost (per minute). The Boolean decision variable yj indicates if room j is open throughout
the day and xij indicates if surgery block i is performed in room j. The variable oj records the overtime of

room j.

We assume that all operating rooms are identical. If there were L different types of rooms, we can express

our solution as a collection of L 0/1 matrices xl, where xl
i,j = 1 means that surgery block i is assigned to

the jth room of type l. Note that in this case, rows of xi are not guaranteed to contain a “1”, a fact that

is exploited by orbitopal fixing and the symmetry removing constraints. These methods can still be used by
adding a dummy row zero and column row zero to the xl matrix, where xl

i,0 = 1 signifies that surgery block

i is not performed in any room of type l.

Computational results comparing the above methods are done using data based on surgery times given

in Gul et al. (2010). All problems have 20 blocks of surgeries and 10 operating rooms. In addition to the

surgery time, 20 minutes of prep time for each surgery was added to each block. Results are shown in

Table 1. Two different methods of orbitopal fixing were tested, both dealing with how branching variables
are determined. Kaibel and Loos (2009) recommend choosing the free variable with smallest row index for

branching. This branching strategy is called minimum indexed branching (MIB) and selects a variable, with

the smallest row index with the additional constraint that its LP solution value is greater than 1
n
. The second

method uses CPLEX version 12’s preferred branching variable. The results show that orbital branching is

significantly better than both orbitopal fixing and constraint generation, solving 21 of the 25 problems faster
than either of the other methods. A cutoff of 1,000,000 nodes was used. The best results, by number of

nodes and time, for each problem are indicated by bold entries.
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Table 1: Comparison of Methods on OR Scheduling Problems

Problem Denton OF (CPLEX) OF (MIB) OB
Nodes Time Nodes Time Nodes Time Nodes Time

1 1000000 589.1 570446 434.4 1000000 741.6 35514 23.2

2 35502 27.2 193377 146.0 147760 95.8 2417 2.0

3 26223 26.5 1000000 572.4 1000000 697.3 158063 102.8
4 11576 9.4 568422 386.4 1000000 636.1 2326 1.5

5 1000000 553.4 1000000 820.7 1000000 767.9 1023 1.0

6 15361 15.1 712234 505.3 1000000 669.1 937 1.0

7 75996 77.1 1000000 790.3 1000000 725.6 4622 3.3

8 70175 64.5 1000000 825.2 1000000 652.2 35357 25.4

9 84158 75.7 876960 573.6 1000000 649.5 2112 1.5

10 10907 6.7 1000000 780.1 1000000 597.4 9881 6.6

11 41555 45.2 514036 378.8 482927 336.9 11892 8.9

12 101304 130.1 1000000 746.1 1000000 722.5 3914 2.8

13 77019 57.6 426468 281.2 1000000 619.9 5053 3.3

14 129884 138.5 469133 353.7 369447 247.1 4135 3.0

15 170445 144.0 1000000 818.8 1000000 696.9 4077 3.3

16 26645 34.0 1000000 786.46 1000000 879.87 55939 37.9
17 28107 40.3 433824 284.2 986471 583.7 275 0.3

18 496599 289.4 400112 249.6 1000000 608.5 14577 9.0

19 108494 109.9 332340 233.9 207160 132.1 226 0.3

20 74762 61.1 1000000 968.8 1000000 626.0 67049 43.7

21 25083 30.4 1488 1.0 22644 13.8 2730 1.7
22 105641 118.6 968257 670.1 1000000 698.7 1198 1.0

23 105302 87.0 135617 97.2 1000000 651.7 975 1.0

24 59870 54.3 1000000 739.6 1000000 645.3 227636 143.7
25 28633 40.2 1000000 746.3 1000000 650.0 425 0.6

3.5 Choosing a Fundamental Domain

As mentioned in Section 2.2, there can be more than one minimal fundamental domain. Does it matter which
fundamental domain is used? Reducing the feasible region to a fundamental domain can allow for more

opportunities to fix variables. It is these fixings that make symmetry-exploiting tools like orbital branching

and orbitopal fixing powerful. Ideally, it is preferable to fix variables with respect to symmetry as early in

the tree as possible. When the fundamental domain is generated by choosing only lexicographical minimal

solutions, i.e. the fundamental domain described by adding the constraints (18), this additional fixing is done
when branching on variables with small row indices. For example, suppose there were 100 surgery blocks

and 25 operating rooms. Fixing a variable x100,j , for any j, as a result of a branching disjunction does not

strengthen any inequality in (18). Branching on the variable xi,j for any i ≤ 25 and any j, does strengthen

inequalities in (18) and leads to additional fixings. For example, fixing x2,2 to zero as a result of branching
(either by branching on x2,2 directly, or by fixing x2,1 to one) also allows for the fixing of x3,3, x4,4, ... x25,25

to zero.

Because restriction of the feasible region to the lexicographic fundamental domain strengthens the branch-

ing disjunctions associated with variables of small row indices, it is important (for symmetry considerations)

to branch on variables with a small row index early in the branch-and-bound tree. However, from an integer
programming perspective, the choice of branching variables is very important, and can have a significant

effect on the size of the branch-and-bound tree. Good branching candidates from an MILP perspective are

those that improve the LP relaxation the most. What if variables that are good branching candidates from a

symmetry point of view are bad candidates from an MILP point of view? This can be remedied by a better

choice of fundamental domain.
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An intuitive and effective branching strategy for bin packing type problems like the OR scheduling problem

is to first branch on items with the largest weight, in this case the largest surgery time. Given this branching

strategy, a fundamental domain that increases the importance of surgery blocks with larger completion time
can be created. This is done by reindexing the variables such that the di terms, the completion time for

each surgery, form a decreasing sequence. Now, instead of representing a random surgery block, variable x1,j

indicates whether the block with the largest completion time is performed in room j.

As orbital branching creates the minimal fundamental domain throughout the branching process, it is

not necessary to determine how to best reindex variables. In theory, reindexing should not affect the overall

performance of orbital branching, as it uses symmetry to strengthen CPLEX’s branching, something that
should not be dependent on variable indices. However, in the case of tie-breaks, indices may play a role in

determining what variable is chosen for branching.

Computational results for the reindexed problems are given in Table 2. As the results show, reindexing

variables leads to significant improvements in computation time for both the constraint method as well

as orbitopal fixing. With orbital branching, reindexing the variables does affect the results, but not in a
predictable way.

Table 2: Comparison of OR Scheduling After Reindexing

Problem Denton OF (CPLEX) OF (MIB) OB
Nodes Time Nodes Time Nodes Time Nodes Time

1 9679 19.3 345317 223.8 101336 62.2 37652 24.5
2 396 0.5 4471 3.3 6801 4.6 1571 1.5
3 8209 53.2 1000000 755 163287 113.4 552746 564.8
4 879 1.1 9656 6.6 4218 2.8 437 0.5

5 271 0.6 9218 7.1 409 0.5 513 0.6
6 4057 8.2 48475 35.8 4119 3.5 2341 1.8

7 6784 35.3 1000000 843.5 241657 170.1 18929 23.1

8 3332 20.8 118552 91.3 14626 10.9 9688 7.4

9 606 1.1 11169 7.6 252 0.4 1342 1.2
10 4419 13.5 34802 23.8 22031 14 1782 1.5

11 2456 3.7 11716 8 5562 3.8 2698 2.1

12 3311 8.1 241544 177.7 21911 14.9 2851 3.7

13 595 0.9 3604 2.5 1457 0.9 1041 1.5
14 805 1.2 5787 4.2 2510 1.7 8570 6.4
15 5931 56.1 1000000 842.5 415775 292.9 73368 52.9

16 6705 11.2 684789 503.2 108536 73.6 12976 16.4
17 243 0.2 272 0.3 325 0.3 362 0.7
18 6850 5.4 21455 13.7 11786 7 27595 16.8
19 496 0.6 263 0.4 186 0.3 2093 2
20 4537 10.3 804223 553.5 122993 78.4 85444 70.3
21 139 0.2 973 0.8 597 0.5 88 0.2

22 1944 3.4 8244 5.8 2487 1.9 1036 0.9

23 2897 8.8 136253 100.6 3605 3 1243 1.2

24 1381 3.7 9189 7 2915 2.5 6517 4.6
25 1856 4.4 77194 54.6 3551 2.9 1383 1.2

As is shown by the results, choosing an appropriate fundamental domain is important if one wishes to
break symmetry by adding constraint or by orbitopal fixing. Doing so seems to lead to the best possible

solution times. However, in order to construct an ideal fundamental domain, good branching strategies

must be known a priori. If the branching strategy is not know a priori, orbital branching is the more

effective choice in solving these problems. One method for determining a branching strategy for general

MILP problems is discussed in Margot (2003). The idea is to perform a dive in the branch-and-bound tree
using strong branching to choose branching variables. The variables are then reindexed to reflect the order

in which they were branched upon during the initial dive. The minimal fundamental domain used is the one
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generated by the lexicographically minimal solutions in the reindexed problem. Ideally strong branching will

branch on variables that influence the LP bound the most first, so these variables should be given smaller

indices.

4 Machine Scheduling Problems

This section explores symmetry exploiting methods in machine scheduling problems. Specifically, the problem

of determining the on-off status of identical machines over a finite time horizon is explored. Like the job

scheduling problem, we express solutions to the machine scheduling problem as an m×n 0/1 matrix. Unlike
the job scheduling problem, there are no restrictions on the number of ones in each row. This fact makes

complete symmetry removal much more challenging.

Unlike Section 3, this section considers the possibility that only subsets of machines are identical. The

on/off status of n identical machines of type i over m hours can be represented as an m by n 0/1 matrix, xi,

where a 1 (0) in entry (k, j) means that machine k is (is not) in operation at time j. Because the machines
of type i are identical, there is complete symmetry with respect to the columns of xi.

Recall from Section 2.2 that the following inequalities guarantee that the resulting xi matrix has lexico-
graphically decreasing columns, and thus define a minimal fundamental domain:

n
∑

i=1

2n−ixi
j(t) ≥

n
∑

i=1

2n−1xi
j+1(t) ∀j = 0, . . . , n− 1. (27)

Because of the exponential coefficient, adding constraints like those in (27) are not practical from a com-
putational standpoint. Unlike the job-scheduling problem, the structure of the machine scheduling problem

cannot be used to simplify these constraints. Thus, it is not obvious how to set up symmetry removing con-

straints. Also, orbitopal fixing requires the structure provided by the job scheduling problem and cannot be

applied to machine scheduling problems. However, work has been done to study the structure of the set of all

lexicographically minimal 0/1 matrices. Kaibel and Loos (2010) present a compact extended formulation for
all 0/1 matrices with lexicographically decreasing columns, removing all symmetry resulting from identical

machines. Unfortunately, this extended formulation requires O(TK3) many variables. Even if we were able

to define a minimal, or at least a small fundamental domain a priori, we would still have to worry about

choosing an appropriate domain. With the OR scheduling case it seemed reasonable to assume that a good
branching strategy would be to branch on variables representing surgery block with large completion times

first. For a general machine scheduling problem however, it may not be easy to determine a good branching

strategy, and as a consequence a good fundamental domain, a priori.

In the case of job scheduling problems, isomorphism pruning was identical to orbital branching. This,

however, is not the case in machine scheduling problems, as orbital branching does not guarantee complete

symmetry removal. Unlike isomorphism pruning, orbital branching is easily implemented and finding the
required orbits can be done in polynomial time for scheduling problems. Therefore, even though isomorphism

pruning guarantees complete symmetry removal, only orbital branching will be considered in this section.

Recall from Section 3.3 that at any node a in the branch-and-bound tree, orbital branching chooses an

orbit Oi = {j1, j2, . . . , j|Oi|} ⊆ Na of the symmetry group Ga and branches on the disjunction

xi
jk

= 1 ∨
∑

jk∈Oi

xi
jk

= 0. (28)

In Section 3.4 we showed that for job scheduling problems, orbital branching is effective at using branching

decisions to generate a good fundamental domain. It would make sense then to expect that orbital branching

would be well suited for machine scheduling problems where good branching strategies are not known. When

using orbital branching on some machine scheduling problems, we were surprised to see that orbital branching
was not as effective as we expected it to be. Closer examination of the results showed that much like the

constraint method and orbitopal fixing on job scheduling problems, the fundamental domain chosen by orbital
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branching was not well suited for CPLEX’s desired branching behavior. This is an immediate consequence

of the fact that more than one “1” can exist in every row of the optimal solution.

Consider the following partial solution

xi =









1 ? ? ? ?
? ? ? 1 ?
? 1 ? ? ?
? 1 1 ? ?









.

In the subproblem, all of the column permutations have been removed from the symmetry group. What if

xi
LP =









1 .95 1 ? ?
? ? ? 1 ?
.97 1 1 ? ?
.95 1 1 ? ?









(29)

is the corresponding LP solution? Technically, there is no symmetry found in this subproblem. However, it is

likely that the optimal solution to this problem has each of x1,2, x3,1, and x4,1 equal to one. If each of these

variables had been fixed, then all permutations of the first three columns of x would be in the subproblem’s

symmetry group, and those permutations could be used to strengthen the branching disjunction.

We would like to let CPLEX choose our branching candidate, then augment that branching decision using

orbital branching. The problem with this strategy in the machine scheduling case is that if xi,j is chosen

to branch on at a node, then it is unlikely that xi,k will be chosen at a child node. This is especially true

in cases similar to (29). Variables that take a value near one in the LP solution (and especially if they are
equal to one) will likely not be chosen for branching because doing so will not improve the bound. However,

from a symmetry point of view, those variables need to be fixed to create larger symmetry groups (to further

strengthen the next branch). To exploit symmetry early in the branch-and-bound tree, it is important to

branch on variables in the same row as previously fixed variables, but this is not a good branching strategy
from an MILP point of view. In contrast to the job scheduling case, where we find a new fundamental

domain to better complement a branching strategy, for machine scheduling we adapt our branching decisions

to better complement our fundamental domain.

With the aim of creating strong disjunctions that keep as much symmetry in the subproblems as possible,

orbital branching is modified as follows.

For any l ∈ Z+ and any Oi = {j1, j2, . . . , j|Oi|} ⊆ Na, the following disjunction is valid:

∑

jk∈Oi

xi
jk

≥ l ∨
∑

jk∈Oi

xi
jk

≤ l− 1. (30)

If Oi represents a set of variables that are equivalent with respect to the column symmetry in xi, then

Equation (30) can be modified as
l

∑

k=1

xi
jk

= l ∨

|O|−l+1
∑

k=1

xi
jk

= 0. (31)

Theorem 4.1 The branching disjunction (31) is valid for machine scheduling problems.

Proof. Suppose that a solution feasible at node a was wrongly removed from the feasible region of both

child nodes. Let x∗ correspond to such a solution that maximizes the function
∑

(t,jk)∈Oi 2|O
i|−kxi

t,jk
. It

can be assumed that
∑

(t,jk)∈Oi xi
t,jk

∗
≥ l. Because the solution is not feasible in the left child node, there

exists c ≤ l with x∗it,jc
i
t,jc

= 0, and by the pigeonhole property, there exists d > c with x∗i
t,kd

= 1. Because

columns jc and jd are equivalent, there exists a permutation in Ga permuting only these columns. Applying
this permutation to the solution either gives a solution feasible in the left child, contradicting that the

solution was wrongly removed, or a solution with x′i with
∑

(t,jk)∈Oi 2|O
i|−kx′i

t,jk
>

∑

(t,jk)∈Oi 2|O
i|−kx∗i

t,jk
,

contradicting our choice of x∗i.
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Branching in this way has the benefit of keeping symmetry present in the child nodes. As a result,

branching decisions are not influenced by ancestors’ branching decisions. Also, branching in this way produces

more balanced branch-and-bound trees.

4.1 Computational Results

Computational results demonstrating the effectiveness of orbital branching and modified orbital branching

are presented in this section. We have chosen to use instances of the Unit Commitment problem to make
up the testbed for this section. The unit commitment problem is an example of a production scheduling

problem in the power industry. It can be formulated as

Minimize
∑

t∈T

∑

j∈J

cj(p
i
j(t)) (32)

subject to
∑

j∈J

pij(t) ≥ D(t), ∀ t ∈ T (33)

pij ∈ Πi, ∀j ∈ J i. (34)

where Πi represents the set of feasible production schedules for generators of type i. The function cj(p
i
j(t))

gives the cost of generator j producing pj(t) units of electricity at time t. It is generally assumed to be a

quadratic function, but for this paper it is approximated by a piecewise linear function. Strong inequalities

for the linear approximation, called perspective cuts, are given in Frangioni and Gentile (2006) and Frangioni
et al. (2009).

The operational constraints defining Πi ensure that generators of type i operate within their physical

limits. These limits typically include limitations of how much the power output from a generator can change

over time, and minimum amounts of time a generator must be turned on/off. An explanation of different

formulations of Πj(t) can be found in Ostrowski et al. (2010a).

The solution of the unit commitment problem can be represented by the collection of matrices vi and pi,

vi representing the on/off status and pi representing the power generated. For each generator type i, and for
every solution, one can apply the same permutation to columns of vi and pi to create an equivalent solution.

Because these matrices are interdependent, attention will focus on exploiting symmetry in the vi matrices.

Random instances on 21 to 42 generators were created using eight different types of generators. These

generators are described in Ostrowski et al. (2010a). Both versions of orbital branching were implemented in

CPLEX 12.1 using the branch callback feature. Unfortunately, using callback functions disables other CPLEX
features, notably “dynamic search”. In addition to comparing classical orbital branching with the version

discussed in the section, we also give results based on CPLEX’s default (dynamic search plus additional

features) and CPLEX with the disabled features (using traditional branch-and-cut). Computational results

are given in Table 3. Problems not solved within two hours are denoted by “-”. As the table indicates, the

modified orbital branching performs significantly better than the original method. CPLEX with dynamic
search seems to perform better than traditional orbital branching, while the traditional branch-and-cut version

of CPLEX solves only one problem. The difference between CPLEX using the traditional branch-and-cut

and dynamic search is remarkable. One wonders how effective modified orbital branching would be on these

problems if it were incorporated into dynamic search.

5 Conclusions

If symmetry is present in an MILP problem, it must be dealt with in an effective manner. There are many

strategies one can use to break symmetry, but as we have shown in this paper, some methods may interact

poorly with branching rules. By studying the impact of each symmetry breaking technique on branching
disjunctions, one can modify the symmetry breaking to better fit the problem.

We have shown that given specific knowledge of the job scheduling problem, a fundamental domain can

be chosen a priori to increase the strength of branching disjunctions. Constraints added to the problem can
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Table 3: Comparison of Methods on UC Problems

# of CPLEX Only
Generators Dynamic Search B&B OB Modified OB

Nodes Time Nodes Time Nodes Time Nodes Time
21 923 544.0 - - 5498 482.8 190 57.9
23 499 386.5 82539 6415.5 3190 342.2 390 78.9
23 878 1227.6 - - - - 715 308.6
24 3259 1169.3 - - 6259 691.2 517 155.7
26 972 978.4 - - 37150 5461.1 206 138.4
26 516 529.5 - - 2574 366.2 180 68.4
26 558 558.4 - - 3830 628.6 219 107.4
26 500 425.6 - - 13790 1552.5 158 74.4
26 515 465.3 - - 27890 2015.2 218 111.4
26 4369 1320.9 - - 16805 1758.5 341 104.0
27 579 535.3 - - 3323 494.5 187 105.4
27 545 594.3 - - - - 7222 1339.8
28 522 679.5 - - - - 720 307.7
28 532 444.0 - - 5162 578.0 358 107.8
29 1182 975.6 - - - - - -
30 1793 1514.6 - - - - 2523 631.0
30 541 862.7 - - - - 1252 381.8
31 1268 1210.3 - - 4010 6553.9 6521 1197.4
31 538 783.5 - - 13475 3660.6 113 107.3
31 537 712.5 - - - - 842 296.1
31 1172 1360.8 - - 19929 4599.6 570 220.7
34 544 739.0 - - - - 4201 1401.9
35 600 1204.9 - - 21612 4697.3 1190 404.5
37 4029 2808.2 - - - - 946 447.0
42 994 1540.1 - - - - 495 396.8

be modified to enhance the branching decisions and this approach seems to be the most effective. If one does
not know effective branching strategies, however, adding constraints a priori can be a very weak strategy. In

this case, creating the fundamental domain while branching using orbital branching can be very effective.

The effectiveness of orbital branching to generate fundamental domains that enhance branching does not

extend to machine scheduling problems. However, by slightly modifying the branching rule to better adapt

to the fundamental domain we see a sizable decrease in the computational time needed.

While we used scheduling problems as an example, we expect relationships between symmetry breaking

and branching to exist for general integer programming problems. Examining the relationship between

symmetry-breaking techniques and MILP techniques is a fruitful area for future research.
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