
Les Cahiers du GERAD ISSN: 0711–2440

Performance Analysis and
Optimization of Kanban Based
Production Policies in
Multi-Part Unreliable Transfer Lines

S. Youssef
R.P. Malhamé

G–2010–58

October 2010

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

Performance Analysis and Optimization of Kanban

Based Production Policies in Multi-Part

Unreliable Transfer Lines

Stéphane Youssef

Roland P. Malhamé

GERAD and Département de génie électrique

École Polytechnique de Montréal
C.P. 6079, succ. Centre-ville

Montréal (Québec) Canada, H3C 3A7
{stephane.youssef;roland.malhame}@polymtl.ca

October 2010

Les Cahiers du GERAD

G–2010–58

Copyright c© 2010 GERAD

Les Cahiers du GERAD G–2010–58 v

Abstract

Optimization of single machine, single part-type dedicated Kanban policies in multi-part transfer
lines with unreliable machines is considered. At each production stage, available machine production
time is shared according to either one of two modes: (i) a synchronized mode in which distinct part-type
work-in-process (wip) levels at any given stage can be shown to remain proportional to each other at all
times, thus in effect reducing the analysis to that of a single part-type transfer line problem (ii) a more
general prioritized mode such that at any stage the wip levels instead provably reach their maxima and
minima in a fixed priority dependent sequence. A standard cost function which is a combined measure
of long term storage and backlog costs under a constant vector of demand rates for different part types
is employed to measure performance for any given choice of Kanban parameters. For the synchronized
mode, approximate performance computation is achieved via a modification of an existing transfer line
decomposition /aggregation technique, while the prioritized mode requires the development of a new
approximation technique. Both approximate performance evaluation algorithms are validated against
Monte Carlo simulations and are subsequently incorporated within dynamic programming schemes which
compute best choices of Kanban parameters.

Résumé

Nous considérons le problème d’optimisation des seuils de Kanbans dédiés à des machines individu-
elles et pour chaque type de pièces particulier, dans des lignes de transfert multi-pièces en présence de
machines non fiables. À chaque étape de la production, le temps utile d’une machine peut être exploité
selon deux modes distincts : (i) un mode synchrone selon lequel les encours des pièces de différent type à
chaque étape de production demeurent proportionnels et solidaires, réduisant l’analyse à celle d’une ligne
de transfert mono-pièce, (ii) un mode prioritaire plus général tel que, à chaque étape de production, il est
théoriquement établi que les encours de chaque type de pièce atteindront leurs maxima et minima dans un
ordre fixe correspondant à la priorité. Une fonction coût comportant à la fois des coûts de stockage et des
pénalités de retard de livraison en présence d’un vecteur fixe de taux de demande de pièces est adoptée en
vue d’évaluer la performance de la ligne pour un choix donné de seuils de Kanbans. Dans le cas du mode
de production synchrone, une approximation de la performance est obtenue à partir d’une modification
de méthode de décomposition-agrégation existante, alors qu’une technique d’approximation nouvelle est
développée pour analyser la performance du mode prioritaire. Les deux techniques d’évaluation sont
validées par comparaison avec des résultats de simulation de Monte-Carlo, et sont ensuite incorporées à
l’intérieur d’un schéma de programmation dynamique visant à calculer les meilleurs choix de seuils de
Kanbans.

Les Cahiers du GERAD G–2010–58 1

1 Introduction

The flow control problem has drawn considerable attention for unreliable transfer lines composed of ma-
chines in tandem separated by part type dedicated buffers. Such systems are subject to numerous random
phenomena such as machine failures and repairs and variability in the level and nature of the demand. In
this context, positive inventories, or work-in-process (wip) within intermediate machine buffers can act as
an insurance policy against sources of uncertainty. Intermediate storage does indeed play a key role in the
decoupling of machines within the line by allowing partial continuation of production when isolated machine
failures occur in the line. Nevertheless, the stored wip or inventory can be associated with high storage costs,
immobilized capital, and in general high parts transit times within the transfer line. On the other hand,
overly reducing wip and inventory levels can significantly affect the productivity of the transfer line.

For a given production mode, i.e. for the purposes of this paper a rule specifying how productive machines
time is shared between the manufacturing of different part types, our ultimate objective is to determine
optimum kanban sizes (virtual or real buffer sizes) for each part type and at each stage in the production
process, so that given a constant vector of demand rates for different part types, a long term average measure
of combined storage and backlog costs is minimized. This is achieved in two steps: First a computationally
effective approximation method for transfer line performance evaluation for an arbitrary fixed choice of
kanban parameters is developed; secondly, this approximation tool is used within a dynamic programming
scheme aimed at discovering a choice of kanban parameters which effectively optimizes performance. Two
production modes will be considered in this paper. The first one, called synchronized production, is one
such that all wip levels at any given stage within the transfer line, or inventories/backlogs of different part
types move in unison in that they maintain constant relative sizes at all time. This mode of production is
particularly attractive because in effect, it corresponds to a periodic production pattern between different part
types at each machine, and is amenable to analysis via single part transfer line decomposition/aggregation
techniques. The second production mode analyzed here is prioritized production; it is more general in that
it allows for synchronized production as a special case. It requires the devising of a more complex new
decomposition technique for approximation purposes, but holds the potential of better performance than
synchronized production schemes.

The Kanban production policy, besides its simplicity, turns the flow control problem into a parameters
optimization problem where parameters correspond to different part type Kanban levels (buffer sizes). For
a single unreliable machine system, it is equivalent to a so-called hedging policy early on identified as a
candidate for optimality in [13], and later rigorously proved optimal and precisely characterized for various
instances of single machine single part systems (see [1], [4], [12], [21], [15], [14] and [8]).

For single part unreliable transfer lines under Kanban production policies, it is a fact that mean values
of inventories for multi-machine lines can be obtained in closed form only for the cases where buffers are
inexistent (machines could be aggregated) or infinite (machines completely decoupled). Furthermore, Monte
Carlo simulations can be computationally very expensive and difficult to implement for the performance
evaluation of long transfer lines. This is why a large number of decomposition/aggregation techniques have
been developed in the literature of multi-machine single part lines. The main goal of these techniques is to
make the computation of performance evaluation tractable in the approximated line model. Computational
algorithms for different decomposition techniques have undergone vast improvements. [11] proposed an
important algorithm for buffer optimization in decomposed multi-machine single-part production system
based on the algorithms initially proposed in [10]. Also, a competing decomposition approach was developed
in [6]. An efficient and quite precise decomposition technique based on two main approximations, the machine
decoupling approximation and the demand averaging principle, was proposed in [18] and [19] for the case of
transfer lines with respectively so called partially-homogeneous and nonhomogeneous machines.
In this paper, we follow this technique which leads to a simpler causality structure in the sense that influence
propagates from upstream towards downstream, thus defining decision stages best suited for a dynamic
programming optimization formulation. Furthermore, some structural properties of optimal buffering profiles
for the special case of transfer lines with identical machines can be rigorously established (see [18]). While
the analysis of this decomposition technique is limited to single-part systems, we develop here its extension
to multi-part systems.

2 G–2010–58 Les Cahiers du GERAD

The special case of a single unreliable machine producing multiple parts has been also studied in the
literature ([5], [9], [17], [20], [22] and [23]), while the body of work on unreliable transfer lines producing
multiple part types remains very limited. Notable exceptions are [13] where a general modeling framework
was developed for the optimal control of multi-part multiple machine manufacturing systems and qualitative
insights and heuristic algorithms were derived.
More recently, Colledani et al [7] have considered performance analysis of multi-part unreliable manufacturing
systems with transfer line architectures as well as more general architectures, starting from approximate
aggregation tools developed for the queuing theory context ([2]). The current work shares with [13] the
modeling set up while it differs from [7] in that in the latter, the models are defined in discrete time, and for
a given part type, the processing times are identical on all machines; more importantly however, it appears
that the resulting approximate analysis cannot be easily incorporated within an optimization scheme, while
in our view, the main virtue of the framework proposed in this paper resides in the fact that dynamic
programming emerges as a natural optimization tool.

The rest of this paper is organized as follows. In Section 2, the mathematical model is presented and the
Kanban optimization problem is formulated. In Section 3, we recall two transfer lines related approximations
which are key to the rest of the analysis. In Section 4, the synchronized production mode is introduced and
some of its mathematical properties are established. In Section 5, an approximate model of the synchronized
production mode is presented and validated via Monte Carlo simulation. In Section 6, the corresponding
dynamic programming problem is formulated and solved, with numerical results reported in Section 7. Sec-
tions 8, 9, 10, 11 closely parallel Sections 4, 5, 6, 7 respectively, for the alternate prioritized production mode.
Section 12 is our Conclusion.

2 Problem formulation

We consider in this paper a production line consisting of n machines in tandem separated by buffers and
producing m part types. Every machine can be in one of two modes: an operational mode or a failure
mode. For i = 1, · · · , n, αi is a binary variable indicating the mode of machine Mi. Thus for αi = 1, Mi is
operational, while for αi = 0, Mi is in a failure state. Each αi is assumed to evolve according to a two-state
continuous time Markov chain with failure rate pi and repair rate ri. The production line is considered to be
nonhomogeneous in the sense that machines have different failure and repair rates. When αi = 1, machine
Mi can produce part j (for j = 1, · · · , m) with a production rate lying between 0 and a maximum rate of kji;
and its production rate is 0 when αi = 0. Note that the maximum production rate of kji could be attained
only in the case of single part production, that of part j. The instantaneous rate of demand for finished parts
j is assumed to be a constant dj (j = 1, · · · , m).

2.1 Assumptions

We make the following assumptions:

• Raw material is always available for the first machine. This means that the first machine is never
starved.

• For all j = 1, · · · , m, maximum production rates for part j respect the following inequality: kj1 ≥ kj2

≥ · · · ≥ kji ≥ · · · ≥ kjn. This condition guarantees that the level of inventory for part j in buffer i
(xji) will increase as long as machine Mi produces part j with the maximal rate kji, no matter the
production rate of part j by machine Mi+1.

• Backlog is permitted only for the last machine (Mn). xji is the inventory level of part j in the storage
bin downstream of machine Mi. Let cji be the instantaneous storage cost per unit xji for j = 1, · · · ,
m and i = 1, · · · , n - 1. For the last machine, its instantaneous storage (respectively backlog) cost per
unit inventory xjn is c+

jn (respectively c−jn).
• We assume an isolated machine demand feasibility condition (see [19]): For j = 1, · · · , m and i = 1,
· · · , n:

ri

ri + pi
kji > dj (1)

Les Cahiers du GERAD G–2010–58 3

This condition is easily interpreted as follows. If machine Mi has to satisfy a demand dj for part j, it
is necessary that the production of part j by machine Mi at full capacity (kji) during the mean time
of operational mode of Mi be higher than the demand dj .

2.2 System dynamics

The work in process xji(t), for j = 1, · · · , m and i = 1, · · · , n, evolves according to:

dxji(t)
dt

= uji(t)− uj,i+1(t) (2)

where uji(t) denotes the instantaneous production rate of machine Mi and uj,n+1(t) = dj .

2.3 Objectives

In this paper, we have two main goals. On the one hand, to construct a simple and effective mathematical
model able to represent the system behavior and thus help in its understanding and its analysis. On the other
hand, to develop a feedback control law, so as to minimize an adequate measure of the expected long term
average storage and backlog costs. We look for optimality within a restricted parameterized class of feedback
control policies: that of Kanban policies. Such policies are characterized by a set of critical inventory or work
in process levels to be maintained whenever possible and have been proven optimal in single machine two-
state manufacturing systems amongst a specific class of admissible control policies (see [12]). The critical
inventory level is extended here as an insurance policy against potential machine failures within the line,
and the ensuing costs associated with backlogged demand. Each work-in-process i for every part j, xji, is
associated with its own Kanban level zji. If xji is less than zji, machine Mi should produce part j at the
maximum rate kji; and if xji exactly equals zji, machine Mi should produce part j at the same rate as Mi+1

(uj,i+1(t)) so as to maintain xji at the level zji. Consequently, xji will never exceed the critical level zji.
The optimization problem is thus reduced to the search for hedging levels (Kanban levels) minimizing an
appropriately defined combined measure of storage and backlog costs. This measure is generally defined as
follows.

J{z}(x0, α
T
0) = lim

t→∞

1
t

{∫ t

0

E
[n−1∑

i=1

m∑
j=1

cjixji(τ) +
m∑

j=1

(c+
jnx+

jn(τ)

+ c−jnx−jn(τ))|x0, α
T
0

]
dτ

}
(3)

where z is the matrix of hedging levels, αT (t) = [α1(t), α2(t), · · · , αn(t)]T the vector of machine states at
instant t and the index 0 correspond to the initial time where the line is considered. Note that under an
ergodicity assumption on the controlled processes, the above limit will be independent of the initial system
state.

3 Two key approximations in the decomposition/aggregation tech-
nique

For multi-machine manufacturing systems, average levels of the work-in-process and inventories can be cal-
culated neither analytically nor numerically. It is thus essential to resort to an approximate decomposition
method. In addition to making numerical performance evaluation possible, line decomposition can play a key
role in simplifying buffer sizes optimization. It allows decomposing an n-machine line into n approximately
decoupled machines. In this paper, we use the decomposition method initially proposed in [16] and enhanced
in [18] and [19]. This decomposition method is based on two key approximations: the machine decoupling
approximation (MDA) and the demand averaging principle (DAP).

4 G–2010–58 Les Cahiers du GERAD

3.1 The Machine decoupling approximation (MDA)

This approximation helps in decoupling a given machine (except the first machine in the line) from its
upstream counterparts. It aims at efficiently summarizing the impact of the universe upstream of this
machine on its operation. In the context of transfer lines, the universe upstream of a given machine acts like
an unreliable supply of parts. Thus from the point of view of the ability of machine Mi+1 to produce, what
matters is the value of the binary part type j supply state Iji(t), j = 1, · · · , m.

Iji(t) = I
[{

xji(t) > 0
}
∪{

xji(t) = 0, αi(t) = 1, Ij,i−1(t) = 1
}] (4)

where I(�) is the indicator function and Ij0(t) ≡ 1. The machine decoupling approximation is the statement
that Iji(t) is a random process which is independent of machine Mi+1 operating state αi+1(t), for j = 1, · · · ,
m and i = 1, · · · , n - 1.

3.2 Demand averaging principle (DAP)

Let the process xji be qualified as ergodic if the unreliable machine Mi, fed by the unreliable work-in-processes
of part j at stage i - 1 (xj,i−1), can satisfy on average the demand from its downstream work-in-processes of
part j, xji. Note that for a constant rate dj of demand for finished part type j and under ergodic controls,
every machine in the transfer line will be responding to the same average rate of demand for part type j;
otherwise inventory would build up to infinity or deplete to zero in some parts of the transfer line. The
aim of DAP is to use this observation to achieve an approximate but compact representation of the effect
of machines downstream of a given buffer i, on the dynamics of the associated storage level xji for part j
and supply state Iji(t). Indeed, it allows one to develop a simple model of the evolution of xji and Iji(t) as
a semi-Markov or Markov chain. DAP states the following: “Under ergodic Kanban production controls in
a transfer line subjected to a constant rate of demand dj of part j (j = 1, · · · , m), the steady-state mean
value of stock level xji(t) over the active portions of the supply cycle (periods where Iji(t) = 1) depends only
on the steady-state mean value of the stochastic instantaneous rate at which parts j are drawn from buffer
i by machine Mi+1 when Iji(t) = 1 and is independent of its higher moments”. This means that uj,i+1(t)
could be replaced during the active portions of the xji supply cycle by an appropriate constant level without
affecting the mean of xji(t). Let x̃ji be the fictitious process approximating xji, i.e. the work-in-process of
the fictitious markovian machine M̃i subjected by virtue of DAP to a constant demand when the supply xji

is active. Let aji be defined as the expected steady-state value of the instantaneous availability coefficient of
supply xji. Given that the steady-state mean of the uj,i+1(t) process must be dj , one can write

dj = lim
t→∞

{
E[uj,i+1(t)|Iji(t) = 1]Pr[Iji(t) = 1]

+E[uj,i+1(t)|Iji(t) = 0]Pr[Iji(t) = 0]

}
= u+

j,i+1aji

(5)

where u+
j,i+1 is the steady-state mean of uj,i+1(t) during the active portions of xji. From (5), the constant

appropriate level of u+
j,i+1 is dj/aji. This means that machine M̃i is subjected to a constant demand of dj/aji

for part j (dj/aji is higher than dj since aji lies between 0 and 1). Thus, the division by factor aji serves to
compensate for the loss of demand from machine Mi+1 whenever xji is not available.

4 The synchronized production mode

The synchronized production mode assumes an idealized simultaneous production of the m parts at every
stage in the sense that, at any given time, every machine if operational not starved and not blocked, produces
all the parts (see [24]). In practise, this is equivalent to assuming that every machine dedicates a certain
percentage of its production rate, when it is operational, to each part, and it does so in a cyclic way, with
negligible setup times. Thus, the synchronized production mode is a class of periodic production rules, in

Les Cahiers du GERAD G–2010–58 5

which we consider only the special case where, for any given machine, the maximal simultaneous production
rates and the Kanban levels of all of the parts are consistent with the demand rates ratio. More specifically,
this could be mathematically expressed by the following equalities. For i = 1, · · · , n:

zji

zli
=

k̄ji

k̄li
=

dj

dl
for j, l (6= j) = 1, · · · ,m (6)

where k̄ji is the new maximum production rate of part j by Mi for the parallel synchronized production
scheme. Note that k̄ji must obviously be less than kji. The maximum production rates of the synchronized
production (k̄ji

′s) represent the intersection of the m-dimensional demand vector direction with the upper
boundary of the feasible production rates space (see Figure 7 below). Indeed, this upper boundary is the
hyper surface formed by the feasible sets of simultaneous maximum production rates (kji

′s). The k̄ji
′s are

thus given, for i = 1, · · · , n, by:

k̄1i =
∏m

l=1 kli∑m
j=1

dj

d1

(∏m
l=1,l 6=j kli

)
k̄ji =

dj

d1
k̄1i for j = 2, · · · ,m

(7)

The following proposition establishes the solidarity property of all part type paths under the synchronized
production mode.

Proposition 1 Under assumption (6) of the synchronized production mode, wips associated with different
part types at every stage evolve in unison in the sense that their instantaneous levels remain consistent with
the ratio of the demand rates for each part type. More specifically, for i = 1, · · · , n and j, l = 1, · · · , m

(l 6= j): xji(t)/xli(t) = dj/dl for all t > 0 whenever xji(t) 6= 0 and xli(t) 6= 0.

Proof. See Appendix A

This behavior has the immediate consequence that the availability coefficients for all part types at any
given stock level are identical, i.e. for i = 1, · · · , n, I1i(t) = I2i(t) = · · · = Imi(t) = Ii(t) and hence a1i =
a2i = · · · = ami = ai.

5 Approximate performance analysis of the synchronized produc-
tion mode

In this section we use the previously described approximations to produce a simplified model of wip evolution
under the Kanban based synchronized production mode.The simplified model is subsequently validated via
monte Carlo simulations.

5.1 A lower order Markovian model

The binary state of the first machine M1, α1(t), is represented by a two-state markovian chain with repair
rate r1 and failure rate p1 which according to DAP could be considered subjected to a constant demand of
dj/a1 of parts type j. Also, the binary stock part type availability processes associated with intermediate
buffer part type j in buffer i (i = 1, · · · , n - 1, j = 1, · · · , m), Iji(t), could be represented by a two-state
Markov chain evolving according to a certain failure and a certain repair rate. For index i, the repair rate,
denoted r̃i, has to take into consideration both the real repair rate of machine Mi (ri) and all repair rates of
machines upstream of stage i. Let psi

be the failure rate of any of the (synchronized) part type availability
processes in buffer i and r̃i its repair rate. Let trzji

and t̄rzji
be the first return time to zero of the xji process

and its mean value respectively. Proposition 1 implies that t̄rz1i = t̄rz2i = · · · = t̄rzmi = t̄rzi . psi is considered
to be equal to 1/t̄rzi

. Considering the probabilistic characteristics of the process Ii(t), the proportion of time

6 G–2010–58 Les Cahiers du GERAD

where the buffer xji(t) (for all j = 1, · · · , m) is positive is given by (1/psi)/((1/psi)+(1/r̃i)). This proportion
is also equal to ai, thus yielding the following value of psi

.

psi
=

r̃i(1− ai)
ai

(8)

Figure 1 corresponds to a low order Markov chain representation of the wip availability process associated

Figure 1: Markovian model of wip availability process associated with buffer xji(t), j = 1, · · · , m and i = 1,
· · · , n - 1.

with buffer xji(t). By virtue of MDA, the Markov chain state-space of the decomposed equivalent machine
M̃i is the cartesian product of the Ii−1(t) Markov chain and that of the mode αi(t) of machine Mi. This
results in a four-state Markov chain with a single operational mode and three failure modes (Figure 2). The
failure mode due to the simultaneous failures of Ii−1 and αi is neglected because it occurs very rarely in
general. Thus, only two failures remain. The first one Fail1 represents machine Mi operational (αi = 1) and
process xj,i−1 unavailable (Ii−1 = 0); while Fail2 represents machine Mi in failure (αi = 0) and process xj,i−1

available (Ii−1 = 1). In view of the assumed independence of processes αi and Ii−1 (MDA), probabilities of
Fail1 and Fail2 are given as:

P [Fail1] =
ri

ri + pi
(1− ai−1) (9)

P [Fail2] =
pi

ri + pi
ai−1 (10)

Figure 2: Cartesian product of the two models of Ii−1 and Mi.

It follows that the probability that machine M̃i is in failure due to Fail1 (respectively Fail2) is given by
(11) (respectively (12)).

P [Fail1|Failure] =
ri

ri+pi
(1− ai−1)

ri

ri+pi
(1− ai−1) + pi

ri+pi
ai−1

=
ri(1− ai−1)

ri(1− ai−1) + piai−1
(11)

P [Fail2|Failure] =
pi

ri+pi
ai−1

ri

ri+pi
(1− ai−1) + pi

ri+pi
ai−1

=
piai−1

ri(1− ai−1) + piai−1
(12)

Les Cahiers du GERAD G–2010–58 7

If the equivalent machine M̃i is in failure because of Fail1 (respectively Fail2), it returns to the operational
mode with a repair rate r̃i−1 (respectively ri). The two remaining failure modes could then be aggregated
together yielding an approximate single failure mode machine (Figure 3). In order to minimize the impact
of the loss of information resulting from the aggregation of the two failure modes, the repair rate of the
resultant machine M̃i, r̃i, is computed as an expectation conditional on being in a failure mode. This yields
the expression in (13):

r̃i =
ri(1− ai−1)

ri(1− ai−1) + piai−1
r̃i−1 +

piai−1

ri(1− ai−1) + piai−1
ri (13)

for i = 2,· · · , n. In addition, we impose that the steady-state probability of the state “α̃i = 1” be (r̃i−1/(psi−1+
r̃i−1))(ri/(ri + pi)), the latter being an exact probability under MDA. This yields:

p̃i =
[ri + pi

riai−1
− 1

]
r̃i (14)

Relying on DAP, ai is computed from the single unreliable machine with no backlog expressions derived
in [12], considering that isolated equivalent machine M̃i is subjected to demand dj/ai of part type j.

ai = 1− p̃i

r̃i + p̃i

[1− ρi

1− ρie−µji(1−ρi)zji

]
(15)

with:

µji =
p̃i

k̄ji − dj

ai

(16)

ρi =
r̃i(k̄ji − dj

ai
)

p̃i
dj

ai

(17)

Due to (6), µjizji = µlizli for any j, l = 1, · · · , m and ρi does not depend on the part type (the index j
in (17) could be replaced by 1, 2, ... or m). Solving (15) for zji, using (16) and (17), yields the following
expression of zji.

zji =
1

λji
ln γi (18)

with:

λji = −µji(1− ρi) (19)

γi =
p̃i

[
r̃i

k̄ji

dj
− (r̃i + p̃i)

]
r̃i(r̃i + p̃i)(1− ai)(

k̄ji

dj
− 1

ai
)

(20)

The storage cost for machine M̃i, for i = 1, · · · , n - 1, can also be obtained from [12]. This cost is a function
of three variables r̃i, p̃i and ai (via (16) and (17)).

Tji(r̃i, p̃i, ai) =
cjiρi

(r̃i + p̃i)(1− ρiγi)

[
k̄ji

1− γi

1− ρi
− γi

λji
(r̃i + p̃i) ln γi

]
(21)

The last equivalent machine M̃n allows backlog and is also considered as approximately isolated and
evolving according to a two-state Markov chain with rates p̃n and r̃n. This machine has been studied and
optimized in [4]. Let us define z̄n = zjn/dj ∀ j = 1, · · · , m. According to [4], the total storage and backlog
costs of this machine for part j are given below.

Tjn(r̃n, p̃n, z̄n) = c+
jndj z̄n+

p̃nk̄jn

σjn(r̃n + p̃n)(k̄jn − dj)[
(c+

jn + c−jn)e−σjndj z̄n − c+
jn

]
(22)

8 G–2010–58 Les Cahiers du GERAD

Figure 3: Simplified equivalent two-state model of M̃i.

with:

σjn =
r̃n(k̄jn − dj)− p̃ndj

dj(k̄jn − dj)
(23)

Note that the last buffer does not have an availability coefficient as it can go to -∞, so the variable to be
optimized is z̄n. The ergodicity condition requires σjn to be positive for all j = 1, · · · , m; otherwise, the
demand dj will not be satisfiable by machine M̃n.

5.2 Model validation

In order to evaluate the accuracy of the approximate mathematical model presented in Section 5.1, we will
compare its performance to that of Monte-Carlo simulations for the same transfer lines. Over fifty different
transfer lines were tested. We report the results for only three lines considered as representative samples. For
these three lines, we fixed n = m = 3; the demand vector for the three part types d = [1 1.2 0.9], the unit
storage cost cji = 2 for j = 1, 2, 3 and i = 1, 2, the unit storage cost of the last machine c+

j3 = 2 for j = 1,
2, 3. Finally, the backlog cost for the three part types at the last buffer c−j3 = 10 for j = 1, 2, 3. Remaining
transfer line data is specified in Tables 1, 2 and 3.

Table 1: Data for the first line.
pi ri

0.1 0.08 0.15 0.5 0.45 0.6
kji zji

9 8.7 8.5 5 3 7
11 10.5 10 6 3.6 8.4

7.955 7.786 7.532 4.5 2.7 6.3

Table 2: Data for the second line.
pi ri

0.05 0.07 0.075 0.45 0.55 0.5
kji zji

7.5 8 8.5 2 2.72727 6
8.7 7.5 6.5 2.4 3.27273 7.2
7.5 6.5 6 1.8 2.45455 5.4

Table 3: Data for the third line.
pi ri

0.2 0.15 0.1 0.6 0.45 0.4
kji zji

9 8.7 8.5 3 5 7
11 10.5 10 3.6 6 8.4

7.95536 7.78551 7.53165 2.5 4.5 6.3

Les Cahiers du GERAD G–2010–58 9

Let Ttot be the mean total storage and backlog cost of the line, i.e. Ttot =
∑3

j=1

∑2
i=1 Tji(r̃i, p̃i, ai) +∑3

j=1 Tj3(r̃3, p̃3, z̄3). Tables 4, 5 and 6 show the results of the comparison between approximate analytic
evaluation of the system performance using our model and that of Monte-Carlo simulations for the three
lines.

Table 4: Comparison of theory based and simulation based results, Line 1.
Model based M.-C. %

estimate simulation relative error
a1 0.97746 0.98334 0.60156
a2 0.94462 0.95198 0.77915
Ttot 83.62864 84.09018 0.55189

Table 5: Comparison of theory based and simulation based results, Line 2.
Model based M.-C. %

estimate simulation relative error
a1 0.95757 0.95681 0.07937
a2 0.95099 0.95809 0.74659
Ttot 59.54076 61.0687 2.56621

Table 6: Comparison of theory based and simulation based results, Line 3.
Model based M.-C. %

estimate simulation relative error
a1 0.93627 0.94692 1.13749
a2 0.92741 0.95931 3.43969
Ttot 81.24034 81.24801 0.00944

These results suggest that the theoretical estimates of the availability coefficients and total storage and
backlog costs can be quite accurate. The maximal error of the evaluation of the mean total cost is around
2.5%. Furthermore, numerous other Monte Carlo based validations were made. They do tend to confirm the
accuracy of the theoretical estimates based on the approximate model. The only exceptions are cases where
the transfer line is strongly stressed i.e., when it has to respond to part type demand rates at the limits of
its capacity set. In such cases, random sample paths of the backlog process display significant variance and
even the Monte Carlo simulations display extremely slow convergence.

6 Kanbans optimization via dynamic programming

6.1 Optimization problem

In Section 5.1, we developed a simplified approximate two-state model for the equivalent machine M̃i, for i
= 1, · · · , n (with M̃1 = M1, p̃1 = p1 and r̃1 = r1). States (r̃i,p̃i) at every stage i are a subset of R2. The
decision variable for i = 1, · · · , n - 1 is the availability coefficient ai, which is bounded with a lower and an
upper bound; while for the last stage the decision variable is z̄n which has only an upper bound. The global
optimization problem separates naturally into two sub-problems, the first one from 1 to n - 1 and the second
one for stage n. We will solve the two sub-problems separately.

We start with the last equivalent machine and assume that its parameters which are a consequence of
sizing decisions taken at previous production stages, are given. Recall that the last equivalent machine M̃n

evolves according to a two-state Markov chain with rates p̃n and r̃n and is subject to a demand dj of part type
j (j = 1, · · · , m). Bielecki and Kumar [4] developed an analytical expression for the optimal hedging level
minimizing the total storage and backlog costs for this machine in the case of single part production. Because
of the solidarity of evolution amongst the inventories/backlogs of distinct part types under the synchronized

10 G–2010–58 Les Cahiers du GERAD

production mode, the Bielecki-Kumar result can be extended in a straightforward way to this case. Indeed,
the total cost related to the last stage of production is as follows:

TF (r̃n, p̃n, z̄n) =
m∑

j=1

Tjn(r̃n, p̃n, z̄n) (24)

It can be aggregated into the cost associated with a single “macro” part with adequately augmented running
costs. Following [4], if ∂TF (r̃n, p̃n, z̄n)/∂z̄n > 0 at z̄n = 0, the optimal value of z̄n will be zero; otherwise, a
positive optimal value of z̄n is to be found for which ∂TF (r̃n, p̃n, z̄n)/∂z̄n = 0 and ∂2TF (r̃n, p̃n, z̄n)/∂z̄2

n > 0.
Note that a negative value of z̄n can never be optimal (see [4]). Finally, let β be defined as follows.

β =
(r̃n + p̃n)(k̄1n − d1)

∑m
j=1 c+

jndj

p̃nk̄1n

∑m
j=1(c

+
jn + c−jn)dj

(25)

From the above discussion, the optimal value of z̄n minimizing (24) is given by the following equation.

z̄∗n =

{
0 if β ≥ 1

1
σ1nd1

ln(1
β) otherwise

(26)

Consequently, the optimal storage and backlog costs of the last machine M̃n (T ∗F (r̃n, p̃n, z̄∗n)) is obtained by
substituting the value of z̄∗n of (26) in (24) according to the value of β (25). This cost is a function of r̃n and
p̃n which depend on an−1 (see (13) and (14)) and thus has to be taken into consideration when solving the
global dynamic programming problem.

With the last stage optimal cost expression thus obtained as a function of the last machine parameters
(r̃n, p̃n), it becomes possible to address the second subproblem of optimizing the rest of the sizing decisions
upstream. The solution of this second sub-problem ultimately leads to the solution of the first one given that
z̄∗n depends indirectly on an−1. Again, one uses dynamic programming to determine the sequence a∗i (for i =
1, · · · , n - 1), if it exists, that allows one to attain the lower bound of the following total storage and backlog
costs.

J∗ = inf
ai∈Ai(r̃i+1,p̃i+1)

i=1,..,n−1

{ m∑
j=1

n−1∑
l=1

Tjl(r̃l, p̃l, al) + T ∗F (r̃n, p̃n)
}

(27)

with Tjl(r̃l, p̃l, al) given by (22) and T ∗F (r̃n, p̃n) given by (24) but substituting z̄n with z̄∗n of (26) according
to the value of β.
Ai(r̃i+1, p̃i+1), for i = 1, · · · , n - 1, are the sets of admissible availability coefficients (ai). Two main
constraints determine an upper and lower bound of Ai(r̃i+1, p̃i+1). As ai is an availability coefficient, so 0 ¡
ai ¡ 1. In addition, for the demand dj to be satisfiable by machine M̃i, the following inequality must hold :

r̃i+1

(r̃i+1 + p̃i+1)
k̄j,i+1 > dj (28)

with r̃i+1 and p̃i+1 are given respectively by (13) and (14) with index i + 1 replacing i.

6.2 Solution of the dynamic programming problem

In the following, we propose an algorithm for the solution of the dynamic programming problem (27). A
discretization of the decision variable a1 over its complete admissible range leads to the generation of the
state space at stage 2 [r̃2 , p̃2]T based on (13) and (14) and using the fact that r̃1 = r1 and p̃1 = p1. In turn,
the generated state space [r̃2 , p̃2]T with a discretization of the decision variable a2 over its admissible range
leads to the generation of the state space at stage 3 [r̃3 , p̃3]T ; and so on until the state discretized space at
the last stage n is obtained. Once the state space has been generated, dynamic programming backwards costs
could be calculated from i = n to 1 to identify an optimal trajectory (see [3] for further insights on dynamic
programming). The optimal hedging levels zji

′s could then be calculated by substituting, in (18), ai
′s with

the optimal ai
′s found by the algorithm. This method is actually very expensive in terms of operating time

Les Cahiers du GERAD G–2010–58 11

and memory as it generates an exact discretized state space. Indeed, the state space grows exponentially as
i increases from 1 to n.

In order to avoid the exponential growth of the state space, we define an Abscissa reduced state space
generation method specifically tailored for the current problem. This method is based on the observation,
from (13) and (14), that the two-dimensional state at stage i + 1 depends only on r̃i and ai, but not directly
on p̃i. A way of generating an approximate state space of fixed size say N2 at every stage (from i = 3 to n) is
defined as follows; a1 is discretized into N values over its admissible range. The N values of a1 generate, given
r1, N two-dimensional states at stage 2 using (13) and (14). These N states at stage 2 with N discretized a2

generate N2 two-dimensional states at stage 3. The range of abscissas (r̃3) is then divided into N equidistant
intervals and only N states representing these N intervals are retained from the N2 states generated at
stage 3 (one state representing each interval). The N representative states are chosen according to abscissas
closest possible to the centers of the N intervals. The same procedure is repeated until one has generated an
N2 size state space at every stage (stages 3 to n). Figures 4 and 5 illustrate the procedure of the Abscissa
reduced state space generation method for N = 3 where ak

i represents the kth discretized value of ai. The

Figure 4: Generation of state space at stage 2 from r1 and the discretized values of a1, for N = 3.

Figure 5: Generation of state space at stage 3 from r̃2 and the discretized values of a2, for N = 3.

proposed computational algorithm relies on Abscissa reduced state space generation method. In phase 1 of the
algorithm, one uses the Abscissa reduced state space generation method with a certain N2 space size in order
to quickly generate an initial rough discrete state space discretization and identify a corresponding initial
suboptimal dynamic programming trajectory. In a second phase, one generates N2 size discrete state space
at each stage, but this time concentrated in the neighborhood of the initial suboptimal trajectory of phase 1
by selecting upper and lower bounds of ai (for i = 1, · · · , n - 1) around the optimal ai of phase 1. Then, an
enhanced dynamic programming solution is obtained according to the state space generated in phase 2. Note
that in this phase a different value of N could be used. Phase 2 of the algorithm is repeated until one reaches
the desired accuracy. This algorithm appears to be quite fast while maintaining very good accuracy, when
compared to the exponentially growing state search. The latter suffers from both an explosion in computing
requirements and a non uniform state space accuracy of state space discretization from one stage to another.

12 G–2010–58 Les Cahiers du GERAD

By contrast, the proposed algorithm combined with abscissa reduction at every stage, maintains the same
accuracy of discretization at all stages, and computes a steadily improving sub-optimum.

7 Numerical results for the synchronized production mode

In the following, we apply the algorithm proposed in Section 6.2 in order to optimize kanban sizing decisions
in a multi-part transfer line. The algorithm was applied to optimize a large collection of transfer lines; as an
example we consider the following line: a 6-machine 4-part type nonhomogeneous transfer line with repair
rates of [0.5 0.8 0.7 0.85 0.7 0.6]; failure rates of [0.4 0.4 0.45 0.285 0.28 0.5]; demand rates for the 4 parts
of [1.5 , 1.25 , 1.75 , 1]; storage costs of cji = 2 (for i = 1, · · · , 5 and j = 1, · · · , 4) and c+

j6 = 2 (for j =
1, · · · , 4); backlog costs of c−j6 = 10 (for j = 1, · · · , 4) and maximal production rates for i = 1, · · · , 6 of
k1i = 15.5 - (0.01 * (i - 1)), k2i = 16 - (0.01 * (i - 1)), k3i = 16.5 - (0.01 * (i - 1)) and k4i = 15 - (0.01
* (i - 1)). The resulting optimal availability coefficients are shown in Figure 6 with their lower and upper
bounds. The optimal solution was obtained after 58 cycles and achieves an accuracy (size of the discretization
step) of 10−8 with an initial state-space size (N2) of 752. The overall running time is 5.7841 minutes using
a Pentium 4 CPU - 3.00GHz - 512 MB of RAM computer. With the classic (exponentially growing state
space) discretization algorithm, it takes around 6 days of calculation on the same computer to obtain an
optimal solution with a precision of only 10−4.

Figure 6: Optimal availability coefficients of buffer i for i = 0, · · · , 5.

8 Prioritized production mode

The class of synchronized production strategies (Sections 4 to 7), although interesting both from a practical
standpoint (cyclic character of the production) and because of its analytical and computational tractability,
represents however only a very particular case of the more complex so-called Prioritized production mode,
which for ease of exposition we shall develop for a 2-machine 2-part type transfer line. The two machines are
M1 and M2, each followed by a buffer sharing two part types. xji represents level of part j in buffer i for j =
1, 2 and i = 1, 2. The prioritized production mode is a class of production strategies aiming at enforcing a
certain priority ordering for each part type. This order imposes that the highest priority part always attains
its maximum kanban level first, and then the next highest priority part type and so on. In addition, the same
priority structure must hold for different part type wip levels in the sense that at any given production stage,
the wip associated with any particular part type can never be zero unless wips of lower priority part types
are all zero. In other words, the availability of the wip of any given part type is always greater than or equal

Les Cahiers du GERAD G–2010–58 13

to that of a lower priority part type. The assumptions of Section 2.1 continue to hold here. Furthermore, let
us assume that part type 1 has higher priority than part 2. The prioritized production mode with priority
given to part type 1 is characterized by the following (design) parameters at machine Mi (i = 1, 2): (i) Two
vectors of maximum Kanban levels [z1i , z2i]T . (ii) Two vectors of parts production rates, [k

′

1i, k
′

2i]
T , which

also satisfy the rates monotonicity assumption (second assumption in Section 2.1). Note that it is assumed
that the chosen production vectors are maximal in the sense that the following holds: (k

′

1i/k1i) + (k
′

2i/k1i)
= 1, i = 1, 2. Let uji(t) be the instantaneous production of part j by machine Mi for j, i = 1, 2. When
machine Mi can produce, it produces part 1 with a rate k

′

1i and part 2 with a rate k
′

2i until either x1i attains
its maximum level z1i or machine Mi fails. Note that, if (k

′

1i/k
′

2i) > (d1/d2), x1i attains z1i before x2i attains
z2i (see further proof of Proposition 2). At that point, part 1 is produced with a rate u1,i+1(t) (with u13(t)
= d1 and u23(t) = d2 for all t > 0 where d1 and d2 are the demand rates for the two part types) required to
maintain x1i at its maximal level z1i. By the monotonicity assumption, this rate must be less than k

′

1i and
thus some production capacity is freed. It is then entirely dedicated to an increase in the production rate of
part type 2 which is given by:

ka
2i = (1− u1,i+1

k1i
)k2i (29)

Sufficient conditions on the design parameters of prioritized production policies so as to achieve the required
pathwise prioritized behavior are given in Proposition 2 for a general m-part n-machine transfer line.

Proposition 2 The following set of inequalities will insure a part-type priority ordering with the highest
priority associated with part-type index 1, and lowest priority associated with part-type index m:

m∑
j=1

k
′

ji

kji
= 1 (for i = 1, · · · , n)

k
′

j1

k
′
l1

=
zj1

zl1
>

k
′

j2

k
′
l2

=
zj2

zl2
> · · · >

k
′

j,n−1

k
′
l,n−1

=
zj,n−1

zl,n−1
>

k
′

jn

k
′
ln

>
dj

dl

(for j, l (6= j) = 1, · · · , m) (30)

Proof. See Appendix B

Figure 7: Space of maximum production rates for machine Mi in the case of two parts.

Let a11 (respectively a21) be the availability coefficient of part 1 wip (respectively part 2 wip) at the end
of the first production stage, Proposition 2 guarantees that a11 > a21, provided that the design parameters
of the prioritized production policy satisfy the inequalities stated in the Proposition.

14 G–2010–58 Les Cahiers du GERAD

9 Approximate performance analysis in prioritized mode

In this section, we shall approximate the transfer line in the part type 1 prioritized mode as a collection of
isolated equivalent Markovian machines, each associated with work on a given part type at a given production
stage. Estimates of various quantities based on the approximate model are subsequently validated against
the results of Monte Carlo simulations.

9.1 Approximate mathematical Model

9.1.1 Machine M1 producing part type 1

The first machine is preceded by an infinite stock. It evolves according to a Markov chain with failure rate p1

and repair rate r1. Following the decomposition technique proposed for the synchronized production mode,
this machine is considered as subjected to a constant rate of demand for part type 1, d1/a11 with a11 the
unknown availability coefficient of wip x11. It depends on the choice of Kanban parameter z11. It is calculated
through the implicit equation [12]:

a11 = 1− p1

r1 + p1

[1− ρ11

1− ρ11e−µ11(1−ρ11)z11

]
(31)

with :

µ11 =
p1

k
′
11 − d1

a11

(32)

ρ11 =
r1

µ11
d1
a11

(33)

Let c11 be part type 1 unit storage cost per unit time within the first production stage. This storage cost for
part type 1 by the isolated machine with backlog not allowed is obtained via the following equation ([12]).

T11(p1, r1, a11) =
c11ρ11

(r1 + p1)(1− ρ11γ11)[
k
′

11

1− γ11

1− ρ11
− γ11

λ11
(r1 + p1) ln γ11

]
(34)

where

λ11 = −µ11(1− ρ11) (35)

γ11 =
p1

[
r1k

′

11 − d1(r1 + p1)
]

r1(r1 + p1)(1− a11)(k
′
11 − d1

a11
)

(36)

9.1.2 Machine M1 producing part type 2

The production rate of part type 2 by the first machine depends on the machine M1 operating state α1 and
wip x11. The proposed approximate Markovian model of machine M1 producing part type 2 designated by
M̃21 is shown in Figure 8. The model has three states 0, 1 and 2 where the only failure state is 0. Let Π0, Π1

and Π2 be the probabilities at steady state to be respectively in state 0, 1 and 2. Π0 is the steady-state failure
probability of machine M1 (Π0 = p1/(p1 + r1)) while Π1 + Π2 is the steady-state operational probability
of machine M1 (Π1 + Π2 = r1/(p1 + r1)). Π2 is the probability that x11 = z11 and α1 =1. It is given as
follows [12].

Π2 = Pz11 =
r1

r1 + p1

(1− ρ11)eλ11z11

1− ρ11eλ11z11
(37)

From the flow balance equations at steady state, one obtains:

ra
21 =

p1Pz11
r1

r1+p1
− Pz11

(38)

The stationary probabilities of this isolated machine as well as its storage cost for part 2 are calculated via
the solution of the corresponding Kolmogorov equations ([15] and [8]). This cost depends on p1, r1, a11 and
a21.

Les Cahiers du GERAD G–2010–58 15

Figure 8: Equivalent machine M̃21. It approximates machine M1 producing part type 2.

9.1.3 Machine M2 producing part type 1

This machine designated as M̃12 is modeled using exactly the same approximations as for the last machine
downstream in the synchronized mode decomposition method (Equations (13), (14), with i = n). Note that
state α̃12 = 1 corresponds to machine M2 effectively able to produce part type 1 (i.e. it is operational and wip
x11 is available), while α̃12 = 0 corresponds to either x11 unavailable or machine M2 not operational. Fur-
thermore, The Bielecki-Kumar optimization result [4] still applies, and thus, the optimal Kanban parameter
z12 is given by:

Figure 9: Equivalent machine M̃12 which is an isolated Markovian machine version of M2 producing part
type 1.

z̄∗12 =

{
0 if β12 ≥ 1
1

σ12
ln(1

β12
) otherwise

(39)

with

σ12 =
r̃12(k

′

12 − d1)− p̃12d1

d1(k
′
12 − d1)

(40)

β12 =
c+
12(r̃12 + p̃12)(k

′

12 − d1)
(c+

12 + c−12)p̃12k
′
12

(41)

where c+
12 (respectively c−12) is the finished parts storage (respectively backlog) cost per unit of time and

product for part type 1 within the second stock. The optimal cost of storage and backlog of part type 1 for
this machine is given by:

T̄ ∗12(p̃12, r̃12, a11) =

c−12p̃12k

′
12

σ12(r̃12+p̃12)(k
′
12−d1)

if β12 ≥ 1
c+
12d1

r̃12+p̃12
+ c+

12
σ12

ln 1
β12

otherwise
(42)

9.1.4 Machine M2 producing part type 2

Production rate of part type 2 by the second machine depends on the state of M2 and the levels of buffers
x21 and x12. We propose a two step procedure to approximately model the dynamic behavior of machine

16 G–2010–58 Les Cahiers du GERAD

M2 producing part type 2. Figure 10 is a first approximate Markovian representation of machine M2 feeding
from wip x21. It is denoted M̄22 using equations similar to those of M̃21. More specifically:

r̄22 =
r2(1− a21)

r2(1− a21) + p2a21
r1 +

p2a21

r2(1− a21) + p2a21
r2 (43)

p̄22 =
(r2 + p2

a21r2
− 1

)
r̄22 (44)

Its states are ᾱ22 = 1 which corresponds to “α2 = 1 and x21 > 0” while ᾱ22 = 0 corresponds to either

Figure 10: The equivalent machine M̄22.

“α2 = 1 and x21 = 0” or “α2 = 0 and x21 > 0”. Machine M̄22 captures the effective operational state of
machine M2 when producing part type 2. Indeed, M2 can produce type 2 parts only if both M2 itself is
operational and wip M21 is available. However, M̄22 as such does not capture the influence of stock x12 on
the production rate of M2, this is why we require an additional modeling step. In Figure 11, state ᾱ22 of M̄22

is disaggregated into two states: in state 1, M2 will produce at maximum rate k
′

22, while in state 2 machine
M2 can redirect the extra capacity freed whenever x12 reaches its maximum level z12, towards production
of part type 2. This results in the augmented production rate ka

22, and the resulting Markovian machine is
designated as M̃22. In Figure 11, we set r̃22 = r̄22, and p̃22 = p̄22.

Figure 11: Equivalent machine M̃22 which is an isolated Markovian machine version of M2 producing part
type 2.

Let Π0, Π1 and Π2 be the steady state probabilities to be in states 0, 1 and 2 of Figure 11. Π1 + Π2

represents the probability that ᾱ22 = 1, i.e. α2 = 1 and x21 > 0, and thus Π1 + Π2 = a21r2/(r2 + p2) =
r̃22/(r̃22+ p̃22). Let Pz12 be the probability that α̃12 = 1 (α2 = 1 and x11 > 0) and x12 = z12. This probability
can be calculated as follows [4]:

Pz12 =
σ12d1

r̃12 + p̃12
(45)

Les Cahiers du GERAD G–2010–58 17

State 2 represents ᾱ22 = 1 (α2 = 1 and x21 > 0), x11 > 0 and x12 = z12. Thus, the stationary probability to
be in state 2 (Π2) is given by :

Π2 = P [x21 > 0, α2 = 1, x11 > 0, x12 = z12]

= P [x21 > 0|α2 = 1, x11 > 0, x12 = z12]Pz12 (46)

According to MDA (Section 3), the binary availability process for x21, and state α2 are independent. We
further assume also that events x21 > 0 and x12 = z12 are independent. In addition, because part type 1 has
priority over part type 2, if x21 is positive, x11 will also be positive. So, we obtain the following equation:

P [x21 > 0|α2 = 1, x11 > 0, x12 = z12] = P [x21 > 0|x11 > 0]

=
P [x21 > 0, x11 > 0]

P [x11 > 0]

=
a21

a11
(47)

Finally, the steady state probability flow balance equations in state 2 yield ra
22Π1 = p̃22Π2, thus leading to

the following value of ra
22.

ra
22 =

p̃22
Pz12
a11

r2
r2+p2

− Pz12
a11

(48)

The stationary probabilities of this isolated machine as well as the storage and backlog costs for part type
2 are calculated by the solution of the corresponding Kolmogorov equations ([21]). This cost depends on p̃22,
r̃22, a11 and a21.

9.2 Monte Carlo validation of the approximate performance models

In this section, we verify the performance of our approximate mathematical model by comparison with
the results of Monte-Carlo simulations for given choices of prioritized production mode design parameters.
Tables 7 and 8 show respectively data for two distinct transfer lines, both with d1 = 1.25 and d2 = 1.5. For
the first line: p1 = 0.2, p2 = 0.25, r1 = 0.45 and r2 = 0.75; for the second line: p1 = 0.22, p2 = 0.25, r1 =
0.42 and r2 = 0.6.

Table 7: Data for the first transfer line.
cj1 c+

j2 c−j2
2 2 10
2 2 10

kji k
′

ji zji

6.686 9.25 3.65 2.75 2 7.5
9.36 4.625 4.25 3.25 2.35 8.9

Table 8: Data for the second transfer line.
cj1 c+

j2 c−j2
1 2 4
1 2 4

kji k
′

ji zji

9.45 10.417 4.8 3.5 1.9 4.77
11.34 6.25 5.58 4.15 2.25 5.7

Let Ttot be the total transfer line storage and backlog costs for part types 1 and 2. Tables 9 and 10
summarize the results of comparisons of theoretical estimates based on the approximate model and Monte
Carlo based estimates for availability coefficients and total costs for the two transfer lines.

18 G–2010–58 Les Cahiers du GERAD

Table 9: Comparison of theory based and simulation based results, Line 1.
M-C Model based %

simulation estimate Relative error
a11 0.8288 0.8221 0.812
a21 0.8263 0.8209 0.656
Ttot 37.64 38.099 1.221

Table 10: Comparison of theory based and simulation based results, Line 2.
M-C Model based %

simulation estimate Relative error
a11 0.80573 0.78621 2.42
a21 0.80387 0.78542 2.29
Ttot 22.33 23.235 3.9

The worst case error is about 4%. Over 50 different transfer lines were studied with transfer line as well
as policy design parameters satisfying the assumptions stated in the paper. The results are consistent with
the ones reported here.

10 Dynamic programming based optimization

When carrying out the following optimization, we consider the rate design parameters for the prioritized
production policy as given (of course, ultimately, they themselves would have to be optimized). Let us
rewrite (30) as follows.

k
′

ji

k
′
li

=
γj

γl

dj

dl
for i = 1, · · · , n and j, l = 1, · · · , m

zji

zli
=

γj

γl

dj

dl
for i = 1, · · · , n - 1 and j, l = 1, · · · , m (49)

with 1 = γ1 > γ2 > · · · > γm > 0. Thus, the variables to be optimized are a1i for i = 1, · · · , n - 1, γj for j =
2, · · · , m, and zjn for j = 1, · · · , m. Note that γ1 = 1, and the availability coefficients a2i, · · · , ami (for i =
1, · · · , n - 1) do not have any degree of freedom, they are related to a1i by virtue of (49). The optimization
problem is divided into two sub-problems of different natures; the first one for i = 1, · · · , n - 1, and the second
one for the last stage (i = n). For the second sub-problem, that of the last stage, the optimal value of z1n is
obtained directly from the result of Bielecki-Kumar [4] as a function of a1,n−1; while no analytical expression
is available for the optimal value of zjn (j = 2, · · · , m) for the approximate Markovian machine M̃jn has
more than two states. Nevertheless, the optimal values of zjn, j = 2, · · · , m, could be calculated numerically
from the optimization of the sum of the individual costs for the equivalent machine M̃jn (j = 2, · · · , m), each
obtained from the corresponding Kolmogorov equations ([15] and [8]). In other words, the optimal values of
zjn, j = 2, · · · , m, are obtained from the minimization of

∑m
j=2 Tjn(r̃jn, p̃jn, zjn), where Tjn(r̃jn, p̃jn, zjn)

is the equivalent machine M̃jn total storage and backlog cost calculated numerically from the corresponding
Kolmogorov equations, and r̃jn (respectively p̃jn) is calculated in a similar way to (43) (respectively (44)).
This leads to an optimal cost depending on a1,n−1 (which by its turn depends on the previous availability
coefficients). Consequently, the optimal cost of the second sub-problem has to be taken into consideration
into the global cost dynamic programming based optimization problem, which is thus formulated as follows:
To determine the values of the availability coefficients a1i (i = 1, · · · , n - 1), γj (j = 2, · · · , m), and zjn (j =
1, · · · , m), if they exist, so as to minimize the total storage and backlog costs in the transfer line, J , defined
as:

J =
m∑

j=1

n−1∑
i=1

Tji(r̃ji, p̃ji, a1i, γj) + T ∗F (a1,n−1) (50)

Les Cahiers du GERAD G–2010–58 19

where Tji(r̃ji, p̃ji, a1i, γj) is calculated as presented in Section 9 with r̃11 = r1 and p̃11 = p1, T ∗F (a1,n−1) is the
total optimal storage and backlog cost of the last equivalent machine defined as T ∗1n(a1,n−1) obtained from
Bielecki-Kumar [4] plus

∑m
j=2 Tjn(r̃jn, p̃jn, z∗jn(a1,n−1)) calculated numerically. The admissible set of the

coefficient a1i has a lower bound of (d1/ k
′

1,i+1)((ri+1+pi+1)/ri+1) given from the ergodicity condition (the
demand feasibility condition) and a higher bound of 1; both bounds are not admissible (open admissibility
set). γj satisfies 1 = γ1 > γ2 > · · · > γm > 0. For stages 2 to n - 1 of the dynamic programming, the
availability coefficient aji corresponding to zji is calculated from the iterative algorithm of Appendix C, and
zji is related to z1i (which is a function of a1i, see (31)) by (49). Also, we impose k

′

ji > ka
j,i+1, for j = 2, · · · ,

m and i = 1, · · · , n - 1, to guarantee that wip xji increases when machine M̃i produces part type j whatever
the rate at which this part type is drawn by machine M̃i+1.

11 Numerical results

We consider a 2-machine 2-part transfer line and provide the optimization results for both synchronized
and prioritized modes to be able to compare between them. As a sample of our numerous experiments, we
consider the following transfer line. c11 = c21 = c+

12 = c+
22= 2, c−12 = c−22= 10, d1 = 1.25, d2 = 1.5, p1 = 0.2,

p2 = 0.3, r1 = 0.5, r2 = 0.7, k11 = 8.20857, k21 = 11.492, k12 = 10.94 and k22 = 5.75789. For the prioritized
production, the solution of this dynamic programming problem is done according to Section 10 where the
variables to optimize are a11, γ2, z12 and z22; while the synchronized production is optimized according to
Section 6.

Table 11 summarizes the results obtained using the dynamic programming for both cases. T ∗tot is the
minimal storage and backlog cost for the whole line. Note that for the synchronized production mode γj = 1
for all j = 1, · · · , m. The two optimal solutions appear to give very close results although the details of the
solutions are completely different. This situation is expected to occur given that the prioritized production
mode, although distinct and much harder to optimize, includes the synchronized production mode as a special
case. Table 11 shows also that the total optimal cost of the prioritized production mode is more optimal (less)
than that of the synchronized production mode. Numerous comparisons appear to confirm this conclusion.
It is also consistent with the result of [9] obtained for single-machine multi-part systems. On the other hand,
the extreme cases where the ratio k

′

1i/k
′

2i gets closer to one of both extremities, (k1i,0) or (k̄1i,k̄2i) (see
Figure 7), the prioritized strategy is less advantageous than the synchronized strategy as it produces higher
total optimal costs.

Table 11: Comparing optimal solutions for the synchronized and the part type 1 prioritized modes.
synchronized production prioritized production

γ∗2 1 0.9309
a∗11 0.85368 0.84897
a∗21 0.85368 0.84201
z∗12 4.40562 4.17497
z∗22 5.28674 5.82972
T ∗tot 31.42143 30.39928

12 Conclusion

We have proposed two consistent Kanban based production modes for multi-part unreliable transfer lines,
and their corresponding approximate performance evaluation schemes. The production modes are consistent
in that under an idealized transfer line model with negligible set up times and fluid part production, they
provably do exactly what they were set up to do. More specifically:
(i) For the synchronized production mode: it is shown that a solidarity property holds for different part
type wips at every production stage in that they reach their maxima or zero simultaneously; this permits a
representation of the multi part transfer line as a single part type transfer line with modified costs.

20 G–2010–58 Les Cahiers du GERAD

(ii) For the prioritized production mode: sufficient conditions on production parameters are given guarantee-
ing that an order relation is preserved at all times and at every production stage among different part type
wip sizes, consistent with the announced priority assignment.
Computationally efficient approximations schemes are proposed for both classes of production modes. These
approximation schemes lead in a natural manner to dynamic programming based optimization schemes for
Kanban levels; this is because of their underlying causality structure with unidirectional propagation of the
effects of sizing decisions (upstream to downstream in this case), thus permitting the definition of sequential
decision stages. While prioritized production strategies are more general than synchronized ones, their im-
plementation and optimization remain harder. In this respect, it is our feeling that synchronized production
strategies can still provide a viable, easily implementable (periodic sharing of machines productive time be-
tween distinct part types at every stage) and computationally tractable class of production strategies, in so
far as optimization is concerned.

13 Appendices

A Synchronized production mode (Proposition 1)

Consider synchronized production policies. They are governed by the following equations, for i = 1, · · · , n:

k̄1i(~d)
d1

=
k̄2i(~d)

d2
= · · · = k̄mi(~d)

dm
m∑

j=1

k̄ji(~d)
kji

= 1 (51)

z1i

d1
=

z2i

d2
= · · · = zmi

dm

with ~d ≡ [d1, d2, · · · , dm]T . Introducing a part-type dependent normalization of wip/ inventory/ backlog
variables, for j = 1, · · · , m and for i = 1, · · · , n:

x̃ji =
xji

dj
k̃ji =

k̄ji

dj

z̃ji =
zji

dj
ũji =

uji

dj
(52)

We notice, in view of (52) that for i = 1, · · · , n:

k̃ji = k̃i

z̃ji = z̃i ∀j = 1, · · · ,m (53)

With this normalized system of variables, the dynamics of the parts of type j evolve according to:

˙̃xji = ũji − ũj,i+1

˙̃xjn = ũjn − 1 (54)

In (54), machine operating states, machine maximum production rates and maximum Kanban levels are i
dependent but independent of j. (54) clearly indicates that for identical initial conditions, the normalized
sample paths will be the same for any j part-type trajectories, thus establishing the pathwise synchrony of
all part-type trajectories. Furthermore, it is not difficult to see that if the constraints on zjn (j = 1, · · · ,
m) are removed in (54), one could still establish synchrony of the normalized trajectories for all part types
provided one imposes that they all start for example with Kanban maximal levels initially attained.

B Prioritized production mode (Proposition 2)

The above synchronized production policies can be turned into prioritized control policies by creating a
“distortion” in the demand vector. To fix ideas assume, without loss of generality, that the objective is to

Les Cahiers du GERAD G–2010–58 21

produce a priority ordering consistent with the part-type labeling, i.e. the highest priority part type is 1 and
the lowest priority part type is m. Denote ~ddis ≡ [γ1d1, γ2d2, · · · , γmdm]T with:

1 = γ1 > γ2 > · · · > γi−1 > γi > γi+1 > · · · > γm > 0 (55)

Consider the synchronized policy production rates, and the corresponding Kanban maximum levels k̄ji(~ddis),
zji, j = 1, · · · , m. They satisfy the following ((51) like) constraints:

k̄1i(~ddis)
γ1d1

=
k̄2i(~ddis)

γ2d2
= · · · = k̄mi(~ddis)

γmdm
for i = 1, · · · , n

m∑
j=1

k̄ji(~ddis)
kji

= 1 for i = 1, · · · , n (56)

z1i

γ1d1
=

z2i

γ2d2
= · · · = zmi

γmdm
for i = 1, · · · , n - 1

While the production rates in (56) have been obtained on the basis of a “distorted” demand vector, the real
demand vector remains ~d. Under these production rates, the real demand vector, and using the entries to
normalize the wip and production rate variables, the counterpart of (54) becomes in this case:

˙̃xji = ũji − ũj,i+1 (57)

˙̃xjn = ũjn −
1
γj

(58)

With machine operating states, normalized maximum production rates (equal to 1), and normalized maximum
Kanban levels i dependent but independent of j. These normalized sample paths have identical underlying
dynamics except for the 1

γj
in (58) which corresponds to a different constant demand j dependent normalized

variable. However, the trajectories generated by (57), (58) decrease monotonically with 1
γj

. In view of
inequalities (55), part-type 1 trajectories will be pathwise dominant, while in general part-type j will dominate
part-type j+1 pathwise for j = 1, · · · , m - 1. Thus, the defining properties of prioritized policies are satisfied.
As a result, part-type 1 will attain its maximum Kanban level before any other part, thus freeing up some
production capacity for the next highest priority part-type. The situation will remain so as long as the
wip/inventory of part-type 1 sits at its maximum level (thus securing its relatively dominant position all the
time). Likewise for an arbitrary j not equal to m. It will dominate pathwise all part types of lower index,
particularly with the extra help that it may get from the extra capacity freed by the part of immediately
higher priority, and its dominance will remain secured even when it, itself, frees extra capacity for the next
lower priority part type. At this point, if we ignore the (arbitrary) γj variables, (56) becomes equivalent to
the following system of inequalities characterizing the parameters of potential prioritized policies:

m∑
j=1

k
′

ji

kji
= 1 (for i = 1, · · · , n)

k
′

j1

k
′
l1

=
zj1

zl1
>

k
′

j2

k
′
l2

=
zj2

zl2
> · · · >

k
′

j,n−1

k
′
l,n−1

=
zj,n−1

zl,n−1
>

k
′

jn

k
′
ln

>
dj

dl

(for j, l (6= j) = 1, · · · , m) (59)

C Iterative algorithm for the calculation of aji from zji

In the following, we give the main steps of the iterative algorithm for the calculation of aji from a certain
value of zji.

1. Set a value for the required precision (ε).
2. At iteration 0, a0

ji = 1.
3. At iteration k > 0, solve the system’s Kolmogorov equations ([15] and [8]) as function of zji to find the

stationary probability that x21 = 0 (P0).

22 G–2010–58 Les Cahiers du GERAD

4. a
(k)
ji = 1 - P

(k)
0 and precision(k) = absolute value of a

(k)
ji - a

(k−1)
ji .

5. While precision(k) > ε:
i = i + 1.
Return to step 3.

References

[1] Akella R., and Kumar P. R., Feb. 1986, “Optimal control of production rate in failure prone manufacturing
system”, IEEE Trans. Automat. Contr., vol. AC-31, no. 2, pp. 116–126.

[2] Baynat B., and Dallery Y., 1996, “A product-form approximation method for general closed queuing networks
with several classes of customers”, Performance Evaluation, vol. 24, pp. 165-188.

[3] Bertsekas D., Dynamic Programming and Optimal Control, Athena Scientific, Belmont, Massachusetts, Vol. I, 3rd

edition 2005.

[4] Bielecki T., and Kumar P. R., July-Aug. 1988 “Optimality of zero-inventory policies for unreliable manufacturing
systems”, Operations research, vol. 36, no. 4, pp. 532–541.

[5] Caramanis M. C., and Sharifnia A., 1991, “Near-optimal manufacturing flow controller design”, International
Journal of Flexible Manufacturing Systems, vol. 3(4), pp. 321–336.

[6] Chiang S.Y., Kuo C. T., and Meerkov S. M., 2000, “DT-Bottlenecks in Serial Production Lines: Theory and
Application.” IEEE Transactions on Robotics and Automation, 16(5), pp. 567-580.

[7] Colledani M., Gandola F., Matta A., and Tolio T., 2008, “Performance evaluation of linear and non-linear multi-
product multi-stage lines with unreliable machines and finite homogeneous buffers”, IIE Transactions, vol. 40, pp.
612–626.

[8] El-Férik S., and Malhamé R. P., 1997, “Padé approximants for transient optimization of hedging control systems
in manufacturing”, IEEE Tranactions on Automatic Control, vol. 42, no. 4, pp. 440–457.

[9] El-Férik S., and Malhamé R. P. and Boukas E.-K., 1998, “A tractable class of maximal hedging policies in multi-
part manufacturing systems”, Discrete Event Dynamic Systems: Theory and applications, vol. 8, pp. 299–331.

[10] Gershwin S. B., Mar-apr 1987, “An efficient decomposition method for the approximate evaluation of tandem
queues with finite storage space and blocking”. Operations Research Society of America, vol. 35, no. 2, pp. 291–305.

[11] Gershwin S. B., and Schor J. E., “Efficient algorithms for buffer space allocation”, Ann. Oper. Res., vol. 93, 2000,
pp. 117–144.

[12] Hu J. Q., Feb. 1995, “Production control for failure-prone production systems with no backlog permitted”, IEEE
Trans. Automat. Contr., vol. 40, pp. 299–305.

[13] Kimemia J. G., and Gershwin S. B., Dec. 1983, “An algorithm for the computer control of production in flexible
manufacturing systems”, IIE Transactions, vol. AC-15, pp. 353–362.

[14] Malhamé R. P., Feb 1993, “Ergodicity of hedging control policies in single-part multiple-state manufacturing
systems”, IEEE Tranactions on Automatic Control, vol. 38, no. 2, pp. 340–343.

[15] Malhamé R. P., and Boukas E.-K., May 1991, “A renewal theoretic analysis of a class of manufacturing systems”,
IEEE Tranactions on Automatic Control, vol. 36, no. 5, pp. 580–587.

[16] Malhamé R. P., and Boukas E.-K., May 1991, “Optimization of a class of decentralized hedging production
policies in an unreliable two-machine flow shop”, 38th IEEE Conf. Decision Control, Tampa, FL, pp. 2282–2287.

[17] Perkins J. R., and Srikant R., March 1997, “Scheduling multiple part-types in an unreliable single-machine
manufacturing system”, IEEE transactions on Automatic Control, vol. 42, no. 3, pp. 364–377.

[18] Sadr J., and Malhamé R. P., Jan. 2004, “Decomposition/Aggregation-based dynamic programming optimization
of partially homogeneous unreliable transfer lines”, IEEE Transactions on Automatic Control, vol. 49, pp. 68–81.

[19] Sadr J., and Malhamé R. P., 2004, “Unreliable transfer lines: Decomposition/Aggregation and optimization”,
Annals of Operations Research, vol. 125, pp. 167–190.

[20] Sethi S. P., Suo W., Taksar M. I., and Yan H., Mar 1998, “Optimal Production Planning in a Multi-Product
StochasticManufacturing System with Long-Run Average Cost”, Discrete Event Dynamic Systems, vol. 8, no. 1,
pp. 37–54.

[21] Sharifnia A., 1988, “Production control of a manufacturing system with multiple machine States”, IEEE Trans-
actions on Automatic Control, vol. 33, pp. 620–625.

[22] Srivatsan N., and Dallery Y., Jan-Feb 1998, “Partial Characterization of Optimal Hedging Point Policies in
Unreliable Two-Part-Type Manufacturing Systems”, Operations Research, vol. 46, no. 1, pp. 36–45.

Les Cahiers du GERAD G–2010–58 23

[23] Veatch M. H., and Caramanis M. C., May 1999, “Optimal Manufacturing Flow Controllers: Zero-Inventory
Policies and Control Switching Sets”, IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 914–921.

[24] Youssef S., and Malhamé R. P., June 2008, “An improved dynamic programming algorithm for nonhomogeneous
transfer line Kanban optimization”, 16th Mediterranean Conference on Control and Automation, Ajaccio, France,
pp. 204–209.

