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Abstract

The computational intractability of the dynamic programming (DP) equations associated with optimal
admission and routing in stochastic loss networks of any non-trivial size (Ma et al., 2006, 2008) leads one
to consider suboptimal decentralized game theoretic formulations of the problem.

The special class of radial networks with a central core of infinite capacity is considered, and it is
shown (under adequate assumptions) that an associated decentralized call admission control problem
becomes tractable asymptotically, as the size of network grows to infinity. This is achieved by following
a methodology first explored by M. Huang et al. (2003, 2006-2008) in the context of large scale dynamic
games for sets of weakly coupled linear stochastic control systems. At the established Nash equilibrium,
each agent reacts optimally with respect to the average trajectory of the mass of all other agents; this
trajectory is approximated by a deterministic infinite population limit (associated with the mean field
or ensemble statistics of the random agents) which is the solution of a particular fixed point problem.
This framework has connections with the mean field models studied by Lasry and Lions (2006, 2007) and
close connections with the notion of oblivious equilibrium proposed by Weintraub, Benkard, and Van Roy
(2005, 2008) via a mean field approximation.

Résumé

La complexité des calculs liés à la résolution des équations de la programmation dynamique pour la
construction de stratégies d’admission et de routage optimales pour tout réseau stochastique de commu-
nication avec pertes de taille raisonnable (Ma et al. 2006, 2008), nous conduit à envisager une classe de
solutions sous optimales décentralisées, fondées sur un formalisme de théorie des jeux.

La classe particulière des réseaux de type radial avec un noyau central de capacité de communica-
tion infinie est considérée, et il est établi, sous des hypothèses adéquates, qu’un problème d’admission
décentralisée qui lui est associé devient asymptotiquement gérable au niveau des calculs, lorsque la taille
du réseau tend vers l’infini. Ce résultat est obtenu en s’inspirant de la méthodologie explorée à l’origine
dans Huang et al. (2003, 2006, 2008) dans le contexte des jeux dynamiques à grande échelle pour des
systèmes linéaires stochastiques avec couplage faible. Lorsqu’un équilibre de Nash est établi, chaque agent
doit réagir de manière optimale par rapport à la trajectoire moyenne de la masse des autres agents; cette
dernière est approchée par une trajectoire déterministe représentant le comportement d’une population
infinie (associée avec le champ moyen ou les statistiques d’ensemble des agents aléatoires); elle est cal-
culée grâce à la résolution d’un problème de point fixe particulier. Cette méthodologie est en rapport
avec les champs moyens étudiés dans Lasry et Lions (2006, 2007), et elle est intimement liée à la notion
d’équilibres grossiers proposée par Weintraub, Benkard, et Van Roy (2005-2008), par le biais de champs
moyens.

Acknowledgments: This work was supported by NSERC Discovery and Strategic Grants.
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1 Introduction

In the 1960s Benes [3] pioneered routing control in telephone networks, providing a general mathematical
structure and deriving fundamental properties for such systems. Since that time call admission and routing
control problems for the (stochastic) loss (or circuit-switched) networks have been topics of active research,
examples of recent work in the area are given by [17, 19, 7, 27, 1, 9] and the references therein.

Loss networks can be viewed as systems of multi-server queues with zero internal buffering capacity
whereby one customer can simultaneously occupy or release several servers or links along a given route. More
precisely, a link of capacity c is equivalent to c parallel servers with zero waiting room each and, as a result,
a call request which cannot be admitted instantaneously upon arrival and placed on a route, is immediately
lost. The associated optimal admission and routing problems are strongly tied with problems of optimal
control of queues with the specific difference that in classical queuing problems servers cannot be chosen
simultaneously by the controller. In recent work [24], we have developed a state space representation and the
relevant dynamic programming equations for multi-class, general call request arrivals and general connection
durations loss networks. They correspond to systems of coupled partial differential equations which reduce to
the piecewise linear algebraic equations of Markov decision problems when arrivals are Poisson and connection
durations are exponential. See [2, 1, 10, 29] for related dynamic programming papers in a queuing context.
While the availability of a formal system of equations characterizing optimal admission and routing decisions
in loss networks under fairly general conditions of interest, one cannot escape the computational intractability
of these equations as network size increases; this problem occurs even under the most favorable assumptions
of Poisson call request arrivals and exponential connection durations [27].

In this paper, following the work in [26, 23] we employ non-cooperative dynamic game theory for the
analysis of networks of large populations of weakly coupled agent subnetworks. More specifically, in this
formulation, the original large network is split into a collection of small, self-optimizing agent network systems
feeding into a large core network. For the purposes of the paper, each local agent network system is modelled
as a peripheral node of a radial network together with its link (each of these pairs termed an agent) to the
central core, which itself is abstracted as a central node (with infinite capacity). Due to the assumed radial
network topology and the infinite capacity of the core, the analysis in this paper is effectively limited to issues
of admission (not routing) control.

Our analysis is motivated by the relationship in a large population system between an individual agent
and the mass of agents which is fundamental to the so-called Nash certainty equivalence (NCE)(or mean
field games) methodology developed by Huang et al., see e.g. [14, 13, 16, 15, 11]; this has been applied to
the construction of explicit distributed control laws in large scale linear quadratic regulator games and to
the analysis of large classes of multi-agent non-linear stochastic dynamic games. A closely related approach
has recently been independently developed by Lasry and Lions [21, 20], while Weintraub, Benkard and
Van Roy [32, 31, 30] proposed the notion of oblivious equilibrium for models of many firm industry dynamics
by use of a mean field approximation.

Call requests are assumed to randomly appear at each local network and can be local, or destined for
distant networks. A call request mobilizes actual link resources only if it is admitted by both origin and
destination nodes. In an effort to view each agent as a separate decision maker, we focus on the outgoing and
incoming subsets of external aggregated call request streams respectively originating at or destined for the
local agent, and which have already secured the distant node part of the admission process. These streams
are called the filtered streams/processes of the local network. A notion which is central to our analysis and
optimization of the distributed control of radial networks with uniform subnetworks is that of a network
decentralized state (NDS). An NDS is characterized by filtered processes which constitute a pair of Poisson
processes, which are mutually independent, independent from one agent to another, and in general have
a pair of distinct deterministic intensities, common to all agents. The NDS property implies that under
local controls, the states of individual agents become independent, and for uniform controls, a uniformity
relationship holds in that the probabilities of admission by a local network of either an outgoing call request
or an incoming call request respectively are common to all networks at any given time. Thus under NDS,
major simplifications of the analysis become possible.
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(i) Given a specified class of local cost functions for each agent, and (ii) if it is the case that each of a
set of local admission control laws is optimal for its associated decentralized state boundary streams, then
there results in an NDS, called a network decentralized equilibrium (NDE), for which the Nash equilibrium
property holds. The existence of precisely such a set of local admission control laws is established in this
paper within the class of randomized feedback admission rules.

A variety of approaches distinct from that taken in this paper has been proposed in the literature to
mitigate the computational complexity of search procedures for optimal admission and routing decisions in loss
networks. More specifically, the analysis in [7] is based upon the assumption of the statistical independence
of each network link; an approximation result is obtained in [27] using reinforcement learning techniques [5];
and in [18] a game theoretic analysis is developed and uses the notion of shadow prices from decentralized
optimization; while using a technique of polynomial cost approximation a suboptimal control is implemented
in [28].

The paper is organized as follows. In Section 2, we formulate call admission control problems for a
class of loss networks. Section 3 then specifies the class of agent subnetworks which are connected into the
radial mass network under study. Then network decentralized states (NDSs) for distributed network systems
are defined and their existence established. In Section 4, based upon the decentralized model developed
in Section 3, control problems for the global networks under consideration are formulated as distributed
control problems and the hybrid dynamic programming (DP) equation systems for each of the agent systems
(developed in [24]) are then presented. It is subsequently established that there always exist randomized
admissible local feedback rules which induce an NDS of the type introduced above with the Nash equilibrium
property with respect to each agent’s loss function. Section 6 contains the conclusions and outlines future
work. Some of the proofs in this paper are given in the Appendices.

2 Call admission control of radial loss networks

The conceptual model of a communications network in this paper is that of a radial network consisting of a set
of subnetworks which are mutually connected through a central hub of unlimited capacity (see Figure 2.1 (i));
this configuration is then abstracted into a radial network of connected vertices corresponding to individual
agents.

Definition 2.1 A capacitated network of size M , M ≥ 2, denoted NetM (V,L,C), is a graph with a set of
vertices V =

{
v0, v1, · · · , vM

}
, and a set of (bidirectional) links L =

{
(v0, vi); i ∈ M}

, M = {1, · · · ,M},
where the capacities of the links are denoted C = {cl = c; l ∈ L} and where c ≥ 1. Any link (v0, vk), k ∈M,
is called an agent network. ¤
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Figure 2.1: (i) Conceptual representation of a radial network; (ii) The abstraction NetM (V,L,C)

2.1 Call request, connection and termination process specification

We assume that the call request, connection and termination process for a given infinite sequence NetM (V,L,

C), M ≥ 2, satisfy the specifications (S1)-(S3) given below:
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(S1) The (local) call request process, i.e. a call request process between a peripheral vertex vi and the central
vertex v0, denoted RqM

{j,0}, with call request events denoted e+
{j,0}, is a homogeneous Poisson process

with rate λ1 < ∞;
The duration of the m-th established (local) connection between vj and v0, denoted η

{j,0}
m , with ter-

mination event denoted e−{j,0}, is exponentially distributed with parameter 1/µ1 < ∞. The counting

termination process of the events e−{j,0} process is denoted DpM
{j,0}.

(S2) The (external) call request process, i.e. a call request from vj to vk, denoted RqM
〈j,k〉, with events

denoted e+
〈j,k〉, is a homogeneous Poisson process with rate 1

M−1λ2 < ∞. In other words, the rate of

the process RqM
〈j,k〉 is inversely proportional to the M .

The duration of the m-th established (external) connection from vj to vk, denoted η
〈j,k〉
m with termina-

tion event e−〈j,k〉, is exponentially distributed with fixed parameter equal to 1/µ2 < ∞. The counting

termination process of the events e−〈j,k〉is denoted DpM
〈j,k〉.

Throughout the paper, whenever convenient and when no ambiguity is engendered, the occurrence of a
given binary point process event will be identified with the characteristic function of the event taking the
value 1, which otherwise takes the value 0.

(Note the use of {.} for local (necessarily bidirectional) events and 〈.〉 for external (necessarily directional)
events.)
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Figure 2.2: An illustration of events in a radial network

(S3) The set of the stochastic processes and random variables of each network NetM (V,L,C), specified in
(S1) and (S2) are mutually independent.

Henceforth, we use (Ω,F ,P) to denote a probability space which will carry all the stochastic processes and
random variables in the paper. Furthermore, all control processes are taken to be measurable with respect to
the σ-fields generated by their argument processes.

2.2 Fundamental call request and connection activation model

An activated connection occupies a link resource in either an origin agent network only, or in both an origin
network and a destination agent network.

Connection activation can only occur in response to a call request event. Call request events are of two
types:

(i) Local call requests, these are such that connection activation decisions are entirely local (to an agent).
(ii) External call requests, these are simultaneously detected by an origin agent and a destination agent.

If the origin agent does not reject the call request, it is said to be released; likewise, if the destination
network does not reject the call request, it is said to be accepted.
An external call request which is both released and accepted becomes a connection activation event.

A call request resulting in a connection activation is said to be admitted.
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It is assumed that all of the decisions above take place instantaneously upon detection of a call request.
The activated connection is of random duration, it ends with a connection termination event at which the
occupied link resources in both the origin and destination networks are released.

2.3 The decentralized nature of generic agent j’s decision making process

For the purposes of developing a decentralized control model at a local agent for what is, in essence, a
sequence of bilateral agents’ transactions over time, we conduct the analysis in terms of a stream of labeled
incoming call requests and labeled outgoing call requests.

We define the jth stream of incoming and outgoing call requests respectively as the stream of external
call requests destined for, or that originating from, agent j. In addition, we define the jth stream of local
call requests, as those local call requests originating in the network of agent j.

We shall develop the decentralized formulation of the decision making process by extracting the following
three substreams from the streams above, the first two of which are called filtered processes:

• The jth stream of incoming call requests labeled as released by their originating agent, (also referred
to as the jth incoming released stream of call requests) designed ej,+

RI .
• The jth stream of outgoing call requests labeled as accepted by their destination agent, (also referred

to as the jth outgoing accepted stream of call requests) designed ej,+
AO .

• The jth stream of local call requests designed ej,+
Loc .

The action by an agent of labeling an incoming, respectively, outgoing, call request e+
〈j,k〉 as released,

or accepted, an incoming, respectively, outgoing, call request is enacted by the local multiplication of
the {0, 1} valued event e+

〈j,k〉 by a {0, 1} valued random variable φj , respectively φk, which in general
depend only upon local state, the event type and time.

A call request between local networks i and j is activated if and only if φj .φk = 1.

Note that in the above external call request streams, the identity of agents other than j is suppressed, see
Figure 3.5 for an illustration.

We denote RqM,j
e (t) and DpM,j

e (t), where e = Loc, RI, or AO as the counting process of the call request
event and the departure event of activated connections respectively.

jv
0
v

1v

Mv

1Mv

2v

kv

,M j
RIRq

Released or accepted call request by remote agents

,M j
AORq

jv
0v
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kv

Not-Released or Not-accepted call request by remote agents

Agent network jAgent network j

Figure 2.3: Left: Released incoming call request stream of agent network j; Right: Accepted outgoing call
request stream of agent network j

Evidently, the request and termination counting processes increment by 1 if and only if the corresponding
events occur; for example, RqM,j

RI (t) = RqM,j
RI (t−) + 1 if and only if the call request event ej,+

RI occurs at
instant t, and so on.

Furthermore, note that given the above three point processes, all admission decisions can be carried out
by the local agent in a decentralized manner, without violating system wide admission rules. Specifically,
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in order to complete admission an incoming released call request must be accepted by j, while an outgoing
accepted call request must be released by j.

We shall call the above external call request streams the filtered processes of agent j. Although local
agents need only be concerned with their own filtered processes to make their (optimal) control decisions, it
is important to note that they must qualify all external call requests of which they are either a source or a
destination with a 1 (release or accept) or 0 (neither release nor accept)label obtained as an outcome of their
randomized local state feedback control laws (see Section 3.1 below). This is in order that all agents be able
to identify their individual filtered processes.

More precisely, any external call request involving agents j and k will produce simultaneous randomized
decisions (which may be pictured as coin tossing with local state dependent probability) qualifying the call
as released or not by the source, and accepted or not by the destination With this information, agents can
construct their individual filtered processes.

3 Linkwise decentralized admission control analysis

3.1 Randomized control laws of agent networks

We denote N j as the set of (admissible) connection vectors of agent network j, such that:

N j =
{
nj ≡ (nj

1, n
j
2, n

j
3); nj

b ∈ {0, 1, · · · },
3∑

b=1

nj
b ≤ c

}
(3.1)

with nj
b, b = 1, 2, 3, denoting respectively the number of active local, released incoming and accepted outgoing

connections of agent network j, (see Figure 3.4 for an example of nj).

Note that by the symmetry property of the mass system, N j = N k, j 6= k ≤ M ; then for notational
simplicity we shall use N to refer to any N j.

j
v

0v

1

n 2

2

j =

a local connection

an accepted outgoing connection

a released incoming connection

Agent network j

Figure 3.4: Example of a connection vector of agent network j

We denote Ej as the set of events of agent network j, such that:

Ej =
{∅, ej,+

Loc , e
j,+
RI , ej,+

AO , ej,−
Loc , e

j,−
RI , ej,−

AO

}
, (3.2)

see Section 2.3 for the interpretations of components of Ej .

Denote nM
j : [0,∞) × Ω → N and eM

j : [0,∞) × Ω → Ej as the process of connection vectors and event
process of agent network j respectively.

The event transition equation of agent network j is specified in the following:

eM
j (t) =

{
e, in case NM,j

e (t) = NM,j
e (t−) + 1

φ, otherwise
(3.3)

where NM,j
e (t) represents the counting process of event e of agent network j.
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Agent network j
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Figure 3.5: Illustration of events of agent network j

We denote U(n, e) as the (admissible) control set, of agent network j, with respect to (n, e) ∈ N × Ej ,
such that

U(n, e) =





{0, ab}, in case e = ej,+
b and n + ab ∈ N

{−ab}, in case e = ej,−
b

{0}, otherwise
, with b = 1, 2, 3, (3.4)

where ab denotes respectively the b-th unit vector in R3, and for notational simplicity, we denote ej,+
b , with

b = 1, 2, 3, as ej,+
Loc , ej,+

RI and ej,+
AO respectively, and denote ej,−

b , with b = 1, 2, 3, as ej,−
Loc , ej,−

RI and ej,−
AO ,

respectively.

Here, the control actions are interpreted as follows: (i) uj(n, ej,+
1 ) = 0 (a1, respectively) denotes that the

call request ej,+
1 ≡ ej,+

Loc is rejected (accepted, resp.) by agent j; (ii) uj(n, ej,+
3 ) = A0 (a3, resp.) denotes that

the call request ej,+
3 ≡ ej,+

AO is rejected (released, resp.) by agent j; (iii) uj(n, ej,+
2 ) = 0 (a2, resp.) denotes

that the call request ej,+
2 ≡ ej,+

RI is rejected (accepted, resp.) by agent j; and (iv) uj(n, ej,−
b ) = −ab, with

b = 1, 2, 3, denotes the deletion of an active local, released incoming or accepted outgoing connection in agent
network j respectively which necessarily occurs upon its termination.

We define a set of (randomized) control laws of agent network j, denoted Uj [0,∞), as follows:

Uj [0,∞) =
{
uj : [0,∞)×N × Ej × Ω → U ;

such that uj(t) is σ(nM
j (t−), eM

j (t))× Bj
t (Ω) measurable

}
, (3.5)

where Bj
t (Ω) is a sigma field on the probability space Ω, such that P

(
uj(t)

∣∣nM
j (t−), eM

j (t)
)
, for all j, are

mutually independent and independent of all random variables in {s; s < t}.
Furthermore, we call {uj ; j ≤ M} as a collection of uniform controls, if the following holds

P
(
uj(t) = u

∣∣ (n, e)
)

= P
(
uk(t) = u

∣∣ (n, e)
)
, for any u and (t,n, e). (3.6)

for any pair of agent networks j and k.

Subject to a control law uj , the state transition equation of agent network j is specified as follows:

nM
j (t) = nM

j (t−) + uj(t,nM
j (t−), eM

j (t)) (3.7)

We may now formally state agent and mass networks as follows:

Definition 3.1 A family of local state processes
[
nM

j

eM
j

]
, 1 ≤ j ≤ M , induced by the transition equations

(3.3,(3.7) subject to (S1) - (S3), with the set of control laws Uj [0,∞), 1 ≤ j ≤ M , is called an agent network
(system) Sj , 1 lej ≤ M , while the collection of agent network SM = {Sj ; j ≤ M} is called a mass agent
network (with size M) and a sequence of mass systems S∞ = {SM;M ≥ 2} is referred to as an infinite mass
network S∞. ¤
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3.2 Asymptotic mutual independence of the set of state processes nM, and asymptotic Pois-
son property of filtered streams

We now specify the following critical initial hypothesis H(t0) at the initial instant t0:

H(t0): The set of initial local connection vector values nM(t0) ≡ {nM
j (t0); j ≤ M} is asymptotically i.i.d. as

M goes to infinity. ¤

It will be established in Lemma 3.1 below that given the hypothesis H(t0), as M goes to infinity, the
probability of either a direct or indirect call request between any given pair of agents j and k over an interval
[t0, T ], with T − t0 < 1/(2λ2), goes to zero. We observe that the analysis in the lemma is independent of the
value of t0.

Then in Theorem 3.1, under the hypothesis H(t0), and by use of Lemma 3.1 and the total probability
theorem, it is shown that asymptotic identical distribution and independence holds for the set {nM

j (t); j ≤ M}
for any t ≥ t0.

Consider any pair of distinct agent networks Sj and Sk, in the mass system SM, and K ∈ {0, · · · ,M−2},
a set of ordered sequence of vertices denoted AM

K (j, k) is specified as follows:

AM
K (j, k) ,

{〈v1, · · · , vK〉; vi ∈M \ {j, k} and vi 6= vl, ∀i, l
}
, (3.8)

with K = 1, · · · ,M − 2, and AM
0 (j, k) , {∅}, where 〈v1, · · · , vK〉 denotes the ordered sequence of vertices.

Note: ∅ in the above is considered as a component of the set.

For any 〈v1, · · · , vK〉 ∈ AM
K , we define BM

K,T (j, k; 〈v1, · · · , vK〉) as the member of the sigma field, on Ω, on
which each call request in the set

{
e+
{j,v1}, e

+
{vi,vi+1}, e

+
{vK ,k}; i ∈ {1, · · · ,K − 1}} occurs during [t0, T + t0] at

least once, with 0 < T < ∞(see Figure 3.6). Furthermore, we specify BM
K as follows:

BM
K,T (j, k) ,

⋃

〈v1,··· ,vK〉∈AM
K (j,k)

BM
K,T (j, k; 〈v1, · · · , vK〉) (3.9)

Note that e+
{vi,vi+1} denotes the (bidirectional) call request between vi and vi+1.

0v .
.
.

.

.

.

j

1v

{ }1,j v
e

k

3v

2v
{ }1 2,v v
e

{ }2 3,v v
e

{ }3 ,v k
e

Figure 3.6: Illustration of BM
3,T (j, k; 〈v1, v2, v3〉)

Also given that by (3.8) the set AM
K (j, k), with K = 0, · · · ,M − 2, is composed of components each of

which is an ordered sequence of K distinct vertices belonging to the set M\{j, k}, with cardinality equal to
M − 2, the cardinality of AM

K (j, k), denoted |AM
K (j, k)|, is given by:

|AM
K (j, k)| = PM−2

K =
(M − 2)!

(M − 2−K)!
=

{
1, in case K = 0∏K−1

i=0 (M − 2− i), in case K > 0
(3.10)
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For notational simplicity in Lemma 3.1 below we consider

AM
K ≡ AM

K (j, k), BM
K,T (v1, · · · , vK) ≡ BM

K,T (j, k; 〈v1, · · · , vK〉), and BM
K,T ≡ BM

K,T (j, k).

It will now be established that as M goes to infinity, the probability of either a direct or indirect connection
between any given pair of agents j and k over any interval [0, T ] with T < 1/(2λ2) goes to zero.

Lemma 3.1 Under assumptions (S1)-(S3),

lim
M→∞

P
( ∪M−2

K=0 BM
K,T

)
= 0, for any T < 1/(2λ2). (3.11)

Remark: We observe that BM
K,T (v1, · · · , vK) does not exclude the occurrence of any other call requests, so (i)

BM
K,T (v1, · · · , vK)∩BM

K,T (v̂1, · · · , v̂K) 6= ∅ for any 〈v1, · · · , vK〉 6= 〈v̂1, · · · , v̂K〉 ∈ AM
K , and (ii) BM

K,T ∩BM
bK,T

6=
∅ for any K 6= K̂, 0 ≤ K, (̂K) < ∞.

Hence, because the individual sets in event ∪M−2
K=0 BM

K,T have so many overlaps, it is a complex task to
calculate exact expressions for its probability. Instead, in the following, we obtain an upper bound on that
probability for any fixed M .

Proof. For any pair of vertices vl and vbl, under assumptions (S2) and (S3), the call request process from
vl to vbl, denoted RM

〈l,bl〉, and the call request process from vbl to vl, denoted RM
〈bl,l〉, are mutually independent

Poisson processes with rates equal to λ2/(M − 1).

Consequently the bidirectional call request process between vl and vbl, denoted RM
{l,bl}, which is the super-

position of RM
〈l,bl〉 and RM

〈bl,l〉, is a Poisson process with rate equal to 2λ2/(M − 1). Hence the probability that

at least one (bidirectional external) call request e+

{l,bl} occurs during [t0, T + t0] is equal to 1 − e−
2λ2T
M−1 . By

the mutual independence property of all of the call request processes given by assumption (S3) we have

P(BM
K,T (v1, · · · , vK)) =

(
1− e−

2λ2T
M−1

)K+1 (3.12)

Furthermore, f(b) := beb − eb + 1 ≥ 0 for any b ≥ 0 since f(0) = 0 and f ′(b) = eb + beb − eb = beb ≥ 0 for
any b ≥ 0. Then for any b ≡ aM ≡ 2λ2T

M−1 > 0 and K ∈ {0, · · · ,M − 2} we have

(
1− e−b

)K+1 ≤ bK+1 (3.13)

Hence by (3.9), (3.12) and (3.13) the following holds:

P(BM
K,T ) =

⋃

〈v1,··· ,vK〉∈AM
K

BM
K,T (v1, · · · , vK) ≤

∑

〈v1,··· ,vK〉∈AM
K

P
(
BM

K,T (v1, · · · , vK)
)

= PM−2
K

(
1− e−

2λ2T
M−1

)K+1 ≤ PM−2
K

( 2λ2T

M − 1
)K+1

, (3.14)

with the cardinality of set AM
K is denoted |AM

K | which is specified in (3.10).

Then by (3.14)

P
( ∪M−2

K=0 BM
K,T

) ≤
M−2∑

K=0

P(BM
K,T ) ≤

M−2∑

K=0

{
PM−2

K

( 2λ2T

M − 1
)K+1

}
(3.15)

By the definition of |AM
K | given in (3.10), we have |AM

K | ≤ (M − 1)K for any K ∈ {0, · · · ,M − 2}, then with
2λ2T 6= 1, the following holds

M−2∑

K=0

{
|AM

K |
( 2λ2T

M − 1
)K+1

}
≤ 1

M − 1

M−2∑

K=0

(
2λ2T

)K+1 =
1

M − 1

(1− (
2λ2T

)M

1− (
2λ2T

) − 1
)

(3.16)
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In case T < 1/(2λ2) by (3.15) and (3.16),

lim
M→∞

P
( ∪M−2

K=0 BM
K,T

) ≤ lim
M→∞

1
M − 1

(1− (
2λ2T

)M

1− (
2λ2T

) − 1
)

= 0, (3.17)

which implies that limM→∞ P
( ∪M−2

K=0 BM
K,T

)
= 0. ¤

Theorem 3.1 Under assumptions (S1)-(S3), given hypotheses H(t0), and subject to a collection of uniform
local control laws {uj ; 1 ≤ j ≤ M}, the set of local processes {nM

j (.); 1 ≤ j ≤ M} is asymptotically i.i.d as
M goes to infinity.

Proof. For simplicity of presentation, we establish the property for pairs of agent networks; it is readily
verified that the proof method extends to any finite group of agent networks.

Consider any pair of agent networks Sj and Sk in the mass system SM. Then, given the initial indepen-
dence hypothesis H(t0), nM

j (s) and nM
k (t) are dependent on the interval [t0, t0 +T ] only if during the interval

[t0, t0 + T ] either (i) there occurs at least one (bidirectional external) call request e+
{j,k}, or (ii) each of the

external call requests in the set of {e+
{j,v1}, e

+
{vi,vi+1}, e

+
{vK ,k}; i ∈ {1, · · · ,K − 1}}, occurs at least once, with

distinct v1, · · · , vK , {1, · · · , k} ⊂ {1, · · · ,M} \ {j, k} for some K ∈ {1, · · · ,M − 2}.
Given the independence of the initial conditions posited in H(t0), we consider below a total probability

theorem statement, wherein we further condition on the complement of the union of the events in (i) and (ii)
above and on the union of (i) and (ii), respectively. Now to establish independence over [t0, t0 + T ], all finite
dimensional distributions of nM

j and nM
k over all possible time instants in the interval should be considered.

Here, however, we make the extreme simplification of only considering the event CM,s,t ≡ {ω;nM
j (s) =

n,nM
k (t) = n̂}, since the general argument follows from this base case.

For notational simplicity we consider DM ≡ {ω;nM(t0) = nM0 }, EM,s,t ≡ Ω \ ∪M−2
K=0 BM

K,t0,max(s,t) and
FM,s,t ≡ ∪M−2

K=0 BM
K,t0,max(s,t); then EM,s,t∪̇FM,s,t = Ω.

lim
M→∞

P(nM
j (s) = n,nM

k (t) = n̂
∣∣ DM )

= lim
M→∞

{
P(nM

j (s) = n
∣∣DM , EM,s,t) P(nM

k (t) = n̂
∣∣DM , EM,s,t) P(EM,s,t

∣∣DM )
}

+ lim
M→∞

{
P(nM

j (s) = n,nM
k (t) = n̂

∣∣DM , FM,s,t) P(FM,s,t

∣∣DM )
}

,

(by the total probability theorem and the initial independence hypothesis H(t0))

= lim
M→∞

{
P(nM

j (s) = n
∣∣DM , EM,s,t) P(nM

k (t) = n̂
∣∣DM , EM,s,t)P(EM,s,t

∣∣DM )
}

= lim
M→∞

P(nM
j (s) = n

∣∣DM ) lim
M→∞

P(nM
k (t) = n̂

∣∣DM ),

for any n, n̂ ∈ N , where the penultimate equality holds by Lemma 3.1, limM→∞ P(FM,s,t) = 0, with s, t ∈
[t0, t0 + T ], T ≤ 1/(2λ2), and the last equality holds since limM→∞ P

(
EM,s,t

)
= 1− limM→∞ P

(
FM,s,t

)
= 1

with s, t ∈ [t0, t0 + T ], T ≤ 1/(2λ2)). Hence, nM
j (s) and nM

k (t) are asymptotically independent under the
initial independence hypothesis H(t0).

The argument above may now be repeated on a sequence of intervals [t0 + T, t0 + 2T ], [t0 + 2T, t0 + 3T ],
and so on, of length less than or equal to 1

2λ2
, to yield the desired result. ¤

Corollary 3.1 Under assumptions (S1)-(S3), hypotheses H(t0), and subject to a collection of uniform local
control laws {uj ; j ≤ M}, the set of filtered call request streams

{
RqM,j

RI , RqM,j
AO ; j ≤ M

}
is asymptotically

mutually independent and each converges in distribution to a Poisson process with rate specified as follows:

λj
RI =λ2 lim

M→∞
1
M

ΣM
1

{
I(uk(t;nM

k (t−), ek,+
O ) = a3)

}
(3.18)

=λ2 lim
M→∞

EP0

{
I(uk(t;nM

k (t−), eM
k (t)) = a3)

∣∣ eM
k (t) = ek,+

O

}
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λj
O =λ2 lim

M→∞
1
M

ΣM
1

{
I(uk(t;nM

k (t−), ek,+
I ) = a2)

}
(3.19)

=λ2 lim
M→∞

EP0

{
I(uk(t;nM

k (t−), eM
k (t)) = a2)

∣∣ eM
k (t) = ek,+

I

}

for any k, where EP0{.| .} displays the (parametric) dependence of EP0{.| .} on P0, the initial distribution of
local connection vectors. ¤

Proof Outline of Corollary 3.1:

(i) Under hypothesis H(t0), based upon the results given in Lemma 3.1 and Theorem 3.1, we can show
that each of the released incoming process RqM,j

RI and accepted outgoing process RqM,j
AO , for all j, is a

superposition of mutually independent sparse point processes. Then by applying Theorem 3.10 in [6],
we can show that RqM,j

RI and RqM,j
AO converge to Poisson processes respectively.

(ii) The claim on the relation of rates and limits above needs no proof since it is self evident from an
appropriate analysis of the firing of acceptances given the input events, subject to the limiting behaviour
of the population. Use SLLN and defination of conditional probabilities and the properties of indicator
functions.
The rate of limit Poisson released incoming process of an agent network is proportional to the statistical
releasing behaviour of the outgoing call request among the rest of the agent network population; and
the rate of limit Poisson accepted outgoing process of an agent network is proportional to the statistical
accepting behaviour of the incoming call request among the rest of the agent network population.

The complete proof of Corollary 3.1 is tedious, see [25] for details.

3.3 Fixed point rate parameters for isolated single Poisson agent systems

We develop the notion of a (generic) isolated single agent network which is essential to the computation of
the probability parameters associated with the particular global network state specified in Definition 3.3.

Definition 3.2 ((Generic) isolated single agent network)

We specify a class of (parameterized generic) isolated single agent networks Sa with (time dependent)
release and acceptance probability parameters (p0

RI(t), p0
AO(t)) and rate parameter vector ξ = (ξ+

1 , ξ+
2 , ξ−1 ,

ξ−2 ), where the state set is the local connection vector set N (see (3.1)) where it is assumed that the local,
released incoming and accepted outgoing (call request) point processes (associated with events e+

1 ≡ ea,+
Loc,

e+
2 ≡ ea,+

RI , e+
3 ≡ ea,+

AO ), denoted Rq+
b , b = 1, 2, 3, respectively, are mutually independent Poisson processes.

Furthermore

(1) The rates of the call request processes Rq+
b , b = 1, 2, 3, at time t are respectively equal to ξ+

1 , p0
RI(t)ξ

+
2

and p0
AO(t)ξ+

2 .
The durations of the b-th class of connections with b = 1, 2, 3, are exponentially distributed with rates
respectively equal to ξ−1 , ξ−2 and ξ−3 , where ξ−3 = ξ−2 by assumption. Let Dp−b (t), b = 1, 2, 3, denote
respectively the associated connection termination counting processes.

(2) The stochastic dynamics of Sa (see Figure 3.7) with a randomized local feedback control law ua (see
Section 3.1) are given by the local state transition equation:

ea(t) =





e+
b , in case Rq+

b (t) = Rq+
b (t−) + 1

e−b , in case Dp−b (t) = Dp−b (t−) + 1, b = 1, 2, 3
∅a, otherwise

(3.20)

na(t) = na(t−) + ua(t;na(t−), ea(t)) (3.21)

¤

Theorem 3.2 (Existence of isolated agent rate parameters compatible with any given local feedback control
law)
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Figure 3.7: Poisson call request processes of an isolated single agent network Sa. Filtered call request streams
model the impact of acceptance or release decisions by the mass of distant agent networks on Sa.

For any (parameterized) isolated single agent network Sa, given any initial state distribution P0 and
any local randomized control law ua, there exists a unique two component vector of probabilities p0

t =
(p0

RI(t), p
0
AO(t)) such that

p0
RI(t) = PP0,p0

t
(ua

t = a3 | ea(t) = ea,+
AO ), (3.22)

p0
AO(t) = PP0,p0

t
(ua

t = a2 | ea(t) = ea,+
RI ), (3.23)

with ua
t ≡ ua(t;na(t−), ea(t)), where a2 corresponds to acceptance and a3 to release, PP0,p0

t
(.| .) displays the

(parametric) dependence of P(.| .) on P0 and p0
t , i.e. there exist released incoming and accepted outgoing

Poisson processes, with release and acceptance rate parameters respectively equal to p0
RI(t)ξ

+
2 and p0

AO(t)ξ+
2 ,

such that the fixed point equations (3.22) and (3.23) hold.

Proof. The initial condition PP0,p0
t
(n; t) at the instant t = 0 is equal to the initial occupation probability

PP0(n; 0) = PP0(n; 0); which specifies p0
0 via (3.22) and (3.23).

(i) Imposing the relations (3.22) and (3.23), and by the (conditional) total probability theorem, the fol-
lowing hold:

p0
RI(t) = PP0,p0

t
(ua

t = a3 | ea,+
AO ) =

∑

n∈N
P
(
ua

t = a3 |n, ea,+
AO

)
PP0,p0

t
(n; t), (3.24)

p0
AO(t) = PP0,p0

t
(ua

t = a2 | ea,+
RI ) =

∑

n∈N
P
(
ua

t = a2 |n, ea,+
RI

)
PP0,p0

t
(n; t), (3.25)

where PP0,p0
t
(ua

t = a3 | ea,+
AO ) and PP0,p0

t
(ua

t = a2 | ea,+
RI ) are given by the specification of the feedback

control law ua, and where PP0,p0
t
(n; t) denotes the probability that na(t) is equal to n ∈ N , i.e.

PP0,p0
t
(n; t) = PP0,p0

t

(
ω; na(t, ω) = n

)
.

(ii) Under the specifications of an isolated single agent network Sa given in Definition 3.2, the call request
processes are Poisson processes and each of the active connection durations is exponentially distributed;
then subject to the local randomized control law ua, the local connection vector process na of Sa is a
birth-death Markov process.
As a result, the probability processes PP0,p0

t
(n; .), for any n ∈ N , satisfy the coupled (forward) Kol-

mogorov first order ODE system (3.26), (3.27), together with the feedback equations (3.24) and (3.25):

d

d t
PP0,p0

t
(n; t) = −

( ∑

e∈Ea(n)

λe(n, t;p0
t )

)
PP0,p0

t
(n; t) (3.26)

+
m∈N∑

∃ e∈Ea(m)
s.t. m+u=n

(
λe(m, t;p0

t )E
{
I(ua(t;m, e) = u)

}
PP0,p0

t
(m; t)

)
,
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for any n ∈ N , with an initial distribution P(.; 0), where

λe(n, t;p0
t ) =





ξ+
1

p0
RI(t)ξ

+
2

p0
AO(t)ξ+

2

n1 ξ−1
n2 ξ−2
n3 ξ−2

in case e =





ea,+
Loc

ea,+
RI

ea,+
AO

ea,−
Loc

ea,−
RI

ea,−
AO

, (3.27)

for any (n, t) ∈ N × [0,∞).

To show the existence and uniqueness of the solution to p0 to (3.22) and (3.23), with a given set of
initial conditions, it is sufficient to prove that there exists a unique solution PP0,p0

t
(n; t.), for the given initial

conditions, to the closed loop state space equations (3.26), (3.27), (3.24), (3.25).

However the existence of such a unique solution PP0,p0
t
(n; t.), is proven by verifying the hypotheses of

Caratheodory’s Theorem (see Theorem 4.2 in [8]) as carried out in Appendix A. ¤

In Theorem 3.2: the RHS of (3.22) captures the identical statistical behavior of the mass system to the local
agent network in terms of rate of release of external call requests (by taking action a3) to the agent network
Sj ; while the RHS of (3.23) is its counterpart in terms of rate of acceptance by the mass system (by taking
action a2) of external call requests from Sj . The fact that the RHSs of (3.22) and (3.23) depend upon the
vector p0

t (defined for an isolated agent network Sa) corresponds to the mass-individual symmetry of the
global system’s behaviour under assumptions of (i) radial network symmetry and (ii) uniform randomized
control laws implemented by all agent networks.

3.4 The network decentralized state (NDS)

Definition 3.3 (The network decentralized state (NDS))

Consider the infinite mass system S∞ = {SM; M ≥ 2}, subject to the local transition equations (3.3) -
(3.7) with rate parameters (λ1, λ2, µ1, µ2) . We say that the infinite mass system is in an (asymptotic) network
decentralized state (NDS) with the pair of time dependent probabilities pt = (pRI(.), pAO(.)), if, as M goes to
infinity, (i) the set of filtered call request streams {RqM,j

RI , RqM,j
AO ; j ≤ M} converge to mutually independent

streams of Poisson processes with rates respectively equal to pRI(.)λ2 and pAO(.)λ2, with pRI(.) and pAO(.),
as given in (3.24) and (3.25), and (ii) the set of individual agent states {nM

j , ; j ≤ M} is asymptotically
independent. ¤

Theorem 3.3 (Existence of network decentralized states for uniform control laws)

Subject to a collection of uniform local control laws u ≡ {
uj ; j < ∞}

, and under assumptions (S1)-
(S3) and hypothesis H(t0), the infinite mass system S∞ with random initial network state distribution P0,

is in an NDS state with the unique (u-induced)pair of parametric release and acceptance rate parameters
(p0

RI(.), p0
AO(.)) generated by (3.26), (3.27), (3.24), (3.25).

Proof. By Theorem 3.1, subject to the collection of uniform local control laws u and under assumptions
(S1)-(S3) and the hypothesis H(t0), the set of local states {nM

j (t); 1 ≤ j ≤ M} = n(t)M is asymptotically
i.i.d. in the population limit as M goes to infinity. Furthermore, by Corollary 3.1, the set of filtered streams
{RqM,j

RI , RqM,j
AO ; 1 ≤ j ≤ M} is asymptotically mutually independent and each converges in distribution to a

Poisson process with parameters at t equal to pRI(t)λ2 and pAO(t)λ2 respectively.

By virtue of the asymptotic (in M )independence of the individual agent states nM
j , ; j ≤ M} and the

asymptotic independence of the asymptotically Poisson filtered streams {RqM,j
RI , RqM,j

AO ; 1 ≤ j ≤ M}, the
defining properties of an NDS state are satisfied with the (u-induced)pair of rate parameters (p0

RI(.), p
0
AO(.))

generated by (3.26), (3.27), (3.24), (3.25) and with the unique common parameters (pRI(.), pAO(.), λ1, λ2, µ1,
µ2) respectively, as expressed in the RHS of the equations in Corollary 3.1. ¤
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Theorem 3.3 is a statement that:

1. There exist released incoming and accepted outgoing Poisson processes with rates equal respectively to
p0

RI(.)λ2 and p0
AO(.)λ2 such that the fixed point equations (3.22) and (3.23) hold;

2. The NDS state specified in Theorem 3.3 is neither necessarily stationary nor asymptotically stationary
as t goes to infinity;

3. The RHS of (3.22) captures the statistical behavior of the infinite mass system S∞ in terms of rate
of release of external call requests (by taking action a3) to agent network Sj ; while the RHS of (3.23)
is its counterpart in terms of rate of acceptance by the infinite mass system (by taking action a2) of
external call requests from Sj . The fact that the RHSs of (3.22) and (3.23) depend upon the vector p0

t

(defined for Sj) corresponds to the mass-individual symmetry of the mass system’s behaviour under
assumptions of (i) radial network symmetry and (ii) uniform randomized control laws for all agent
networks.

4 Decentralized control and the PPNCE principle

In this section we analyse the decentralized optimization of network decentralized states (NDS) for infinite
mass systems S∞ with respect to a given class of local cost functions.

Consider the following performance specifications for an agent network Sj :

(S4) Agent network Sj pays a connection fee equal to αe−βtb2 ((1− α)e−βtb2 respectively), with α ∈ [0, 1],
in case that a call request ej,+

RI (ej,+
AO resp.) is admitted at instant t. Subsequently Sj pays a cost per

unit time equal to αe−βtg2 ((1 − α)e−βtg2 resp.) over the duration of each active external incoming
(outgoing resp.) connection.

(S5) Agent network Sj pays an instantaneous cost equal to

εe−βtP(uj(t;nj
t− , ej

t ) ∈ U+
∣∣ej

t = e), with a fixed ε ∈ [0,∞), (4.28)

upon admission of the call request e ∈ Ej,+ ≡ {ej,+
Loc , e

j,+
RI , ej,+

AO } is admitted at instant t.

The motivation for the introduction of the cost εe−βtP(uj(t;nj
t− , ej

t ) ∈ U+
∣∣e) in (S5) is that it acts as a

regularization device yielding (via a fixed point proof) the existence of a randomized control which results in
a decentralized equilibrium (see the definition of NDE specified in Section 4.3) for the infinite system S∞.

4.1 Optimal control problems for isolated single agent systems

Consider an isolated single agent network Sa as specified in Definition 3.2, with (consolidated) parameter
ρ(t) ≡ (pRI(t), pAO(t), ξ+

1 , ξ+
2 , ξ−1 , ξ−2 ) ∈ R6

+, t ∈ [0,∞) satisfying assumptions (S4) and (S5), with parameters
(α, ε), and subject to a local randomized control law ua, where we note that ρ(.) for the agent Sa does not
in general satisfy the fixed point equations of 3.2. Then the cost function for Sa is given by:

Ja
(ρ,α,ε)(t,n; ua) = E|(s,n)

{ ∫ ∞

t

e−βtG(na
s)ds (4.29)

+
∞∑

k=1

e−βtk
(
B(ea

tk
) + εP(ua

tk
∈ U+)

)
I(ua

tk
∈ U+)

}
,

where, corresponding to assumptions (S4),(S5),

G(n) = g1n1 + αg2n2 + (1− α)g2n3, and B(e) =





b1, in case e = ea,+
Loc

αb2, in case e = ej,+
RI

(1− α)b2, in case e = ej,+
AO

0, otherwise

.
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A local optimal stochastic control (OSC) problem (for the local agent agent Sa with parameter ρ), with local
cost function (4.29), is specified by the infimization problem:

V a
(ρ,α,ε)(t,n

a) = inf
ua∈Ua[t,∞)

Ja
(ρ,α,ε)(t,n

a; ua), (4.30)

with value function V a
(ρ,α,ε) : [t,∞)×N → R, s withN defined in (3.1). An infimizing function ua,∗ ∈ Ua[t,∞),

ua,∗ shall be called an optimal control law for the given isolated single agent OSC problem.

The following lemma is then obtained directly from Corollary 3.3, [24].

Lemma 4.1 The HJB equation for the OSC problem of an isolated single agent network. Sa with time
invariant probability rate parameters (pRI(t), pAO(t)) = (pRI, pAO) and hence time invariant consolidated
parameter (ρ, α, ε), is given by the set of coupled piecewise linear equations:

βV a
n = G(n) +

3∑

b=1

λ−b (n)
(
V a
n−ab

− V a
n

)
+

3∑

b=1

λ+
b inf

ua∈Ua

{
ε
(
P(ua = ab|n, e+

b )
)2

+
(
B(e+

b ) + V a
n+ab

− V a
n

)
P(ua = ab|n, e+

b )
}

, (4.31)

for any n ∈ N , with V a ≡ V a(ρ, α, ε), where λ−b , with b = 1, 2, 3, denotes the rate of the counting processes
Dpa

Loc, Dpa
RI and Dpa

AO respectively, and λ+
b , with b = 1, 2, 3, denotes the rate of the counting processes Rqa

Loc,
Rqa

RI and Rqa
AO respectively. ¤

4.2 Fixed points of isolated single agent optimal stochastic control problems

Before establishing Theorem 4.1, we give the technical results in Lemmas 4.2 and 4.3 below.

Lemma 4.2 The value function V a
(ρ,α,ε)(t,n) is continuous in the parameter ρ for fixed (α, ε; t,n), with ε > 0.

Proof sketch. First, using the argument in the proof of the continuity of the cost function in Proposition
3.1, [22] (wrt the system age parameter ζ), we establish that subject to a randomized local control law ua,

and for fixed (α, ε) ∈ [0, 1] × (0,∞), the function Ja
(ρ,α,ε)(t,n; ua), is continuous in ρ. (We note that the

fact that the controls here are randomized, while those in [22] are deterministic merely adds an additional
expectation operator in the present case.)

Second, since the estimate
∣∣V a

ρ+δ(t,n)− V a
ρ (t,n)

∣∣ ≤ sup
ua∈Ua[t,∞)

∣∣Ja
(ρ+δ,α,ε)(t,n;ua)− Ja

(ρ,α,ε)(t,n; ua)
∣∣ (4.32)

holds for any pair (t,n) and δ, and since,n) and δ, the continuity of Ja
(ρ,α,ε)(t,n;ua) is continuous in ρ

UNIFORMLY IN ua ∈ Ua[t,∞) the conclusion follows.

The indicated issue above concerning uniformity needs to be explicitly checked. ¤

Lemma 4.3 Denote by ua,∗
(ρ,α,ε) the local optimal randomized control law for the local optimal stochastic

control problem for a generic agent system with time invariant parameters (ρ, α, ε), then for any (n, e+
b ) ∈

N × Ea,

P|(n,e+
b )(u

a,∗
(ρ,α,ε)(n

a
t− , ea

t ) = ab) is continuous on ρ, for a fixed (α, ε), with ε > 0.

Proof ¡¡ TO GO IN APPENDIX¿¿. To analyse the properties of the local randomized optimal control law
ua,∗(ρ, α, ε) with respect to time invariant parameters (ρ, α, ε), we need to analyze the inf operator in the
hybrid HJB equation (4.31), subject to a ua ∈ Ua[0,∞), that is to say

ε
(
P|(n,e+

b )(u
a,∗
(ρ,α,ε) = ab)

)2 − y(n,e+
b )(ρ, α, ε)P|(n,e+

b )(u
a,∗
(ρ,α,ε) = ab)

= ε
(
P|(n,e+

b )(u
a,∗
(ρ,α,ε) = ab)−

y(n,e+
b )(ρ, α, ε)

2ε

)2

− y2

4ε
, (4.33)
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for any b ∈ {1, 2, 3}, with y(n,e+
b )(ρ, α, ε) ≡ −B(e+

b )− V a
(ρ,α,ε)(n + ab) + V a

(ρ,α,ε)(n).

Then by (4.33) together with the HJB equation (4.31), it is clear that that the optimal randomized control
law with respect to (ρ, α, ε), denoted ua,∗

(ρ,α,ε), satisfies

P|(n,e+
b )(u

a,∗
(ρ,α,ε) = ab) =





1, in case y/(2ε) > 1
y/(2ε), in case 0 ≤ y/(2ε) ≤ 1
0, otherwise

, (4.34)

i.e. P|(n,e+
b )(u

a,∗
(ρ,α,ε) = ab) is continuous in y/(2ε), (see Figure 4.8).

0 1

1

2
y

ε

( )
b

a,*

( , , ) b|(n,e )
P u aρ α ε

Figure 4.8: Continuity property of P|(n,e+
b )(u

a,∗
(ρ,α,ε) = ab) with respect to y/(2ε)

Since, by Lemma 4.2, for any (α, ε;n), the value function V a
(ρ,α,ε)(n) is continuous in ρ, SO we obtain the

continuity of y(n,e+
b )(ρ, α, ε) in ρ for any (α, ε;n, e+

b ).

Hence by (4.34) and Lemma 4.2, we immediately obtain that P|(n,e+
b )(u

a,∗
(ρ,α,ε) = ab) is continuous in ρ for

any (α, ε;n, e+
b ). ¤

We now specify:

Hs: Subject to a local (time invariant) optimal randomized control law ua,∗ ∈ Ua for the OSC problem of
an isolated agent network Sa with time invariant parameters (ρ, α, ε), there exists a stationary state
distribution P (n; ua,∗

(ρ,α,ε)) which is continuous in the parameters (ρ, α, ε). ¤

Theorem 4.1 (Existence of NDE parameters compatible with local optimal feedback randomized control
laws)

Under hypothesis Hs and considering the local OSC problem given in (4.29) for an isolated single agent
network specified in Definition 3.2, there exists a fixed point pair of time invariant p∗ = (p∗RI, p

∗
AO), such that

p∗RI = Pρ∗(u
a,∗
(ρ∗,α,ε) = a3 | ea(t) = ea,+

AO ), (4.35)

p∗AO = Pρ∗(u
a,∗
(ρ∗,α,ε) = a2 | ea(t) = ea,+

RI ), (4.36)

where (i) ρ∗ ≡ (p∗RI, p
∗
AO, ξ+

1 , ξ+
1 , ξ−2 , ξ−2 ) ∈ R+

6 , (ii) ua,∗
(ρ∗,α,ε) denotes the local optimal randomized control law

for the local OSC problems with time invariant parameters (ρ∗, α, ε); (iii) Pρ∗(.| .) displays the (parametric)
dependence of P(.| .) on ρ∗.

Proof. By the (conditional) total probability theorem we have

P(ua,∗
(ρ,α,ε) = a3 | ea,+

AO ) =
∑

n∈N
P
(
ua,∗

(ρ,α,ε) = a3 |n, ea,+
AO

)
P (n; ua,∗

(ρ,α,ε)) (4.37)

P(ua,∗
(ρ,α,ε) = a2 | ea,+

RI ) =
∑

n∈N
P
(
ua,∗

(ρ,α,ε) = a2 |n, ea,+
RI

)
P (n; ua,∗

(ρ,α,ε)) (4.38)
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where P(.;ua,∗
(ρ,α,ε)) denotes the stationary probability of na

t subject to the randomized control law ua,∗
(ρ,α,ε)

which exists by the hypothesis Hs.

Hence to show the existence of a fixed point pair of stationary probabilities p∗ = (p∗RI, p
∗
AO), satisfying (4.37)

and (4.38) it is sufficient to show that there exists a solution to the vector valued equation p∗ = h(p∗) where
the first and second components of the function h are given by the RHS of (4.37) and (4.38) respectively.

By Lemma 4.3 together with the continuity property of P (n;ua,∗
(ρ,α,ε)) with respect to ρ for any given

parameters (α, ε), we obtain that h is continuous in its argument p (a subset of the components of ρ) on the
unit simplex in R2, which is evidently a compact set.

Then by Brouwer’s fixed point theorem there exists a fixed point p∗ for the continuous function h which
consequently satisfies p∗ = h(p∗). ¤

4.3 The network decentralized equilibrium (NDE)

Definition 4.1 Consider the infinite mass system S∞ = {SM; M ≥ 2}, with the transition equations (3.3)
and (3.7) and the local cost function (4.29), subject to a collection of uniform local randomized control laws
u∗ ≡ {uj,∗; j ≤ M}.

We say the infinite system S∞ is in a (stationary) network decentralized equilibrium (NDE) with a pair
of time invariant parameters (p∗RI, p

∗
AO) if: (i) the system S∞ is in an NDS state with time invariant pa-

rameters (p∗RI, p
∗
AO); and (ii) u∗ is a collection of optimal control laws for the local OSC problems of the

set of agent networks, each with cost functions of the form (4.29) and the time invariant rate parameters
(p∗RI, p

∗
AO, λ1, λ1, µ2, µ2; α, ε). ¤

Theorem 4.2 (Existence of NDE states generated by local feedback controls)

Under the hypotheses H(t0) and Hs, there exists a collection of uniform local randomized control laws
u∗ ≡ {

uj,∗; j < ∞}
and a pair of associated time invariant parameters (p∗RI, p

∗
AO), such that the infinite mass

system S∞ is in an NDE state with the time invariant parameters (p∗RI, p
∗
AO).

Proof. By Theorem 4.1, for an isolated single agent network Sa as given in Definition 3.2, there exists a
local randomized control law ua,∗

(ρ∗,α,ε) and a pair of time invariant parameters (p∗RI, p
∗
AO) satisfying:

p∗RI = Pρ∗(u
a,∗
(ρ∗,α,ε) = a3 | ea,+

AO ), (4.39)

p∗AO = Pρ∗(u
a,∗
(ρ∗,α,ε) = a2 | ea,+

RI ), (4.40)

where ua,∗
(ρ∗,α,ε) is a (time invariant) local optimal randomized control law for the local OSC problem with

time invariant parameter (ρ∗, α, ε), ρ∗ = (p∗RI, p∗AO, λ1, λ2, µ1, µ2).

Under the hypothesis Hs, when each single agent network is subject to the optimal randomized control
law ua,∗ ∈ Ua, there exists a stationary state distribution P (n; ua,∗

(ρ,α,ε)).

Now consider the infinite mass system S∞; for each member of the family {SM; M ≥ 2} let the initial
state distribution for each single agent network be taken to be equal to P (n; ua,∗

(ρ,α,ε)). Then by Theorem 3.3,
the infinite mass system S∞ is in an NDS state and is such that the parameters (p∗RI, p

∗
AO) are time invariant.

¤

Corollary 4.1 (Nash property of an NDE state)

Consider the infinite mass system S∞, with uniform exogenous network and parameters λ1, λ2, µ1, µ2),
for which the agent networks Sj , k < ∞, have uniform cost parameters (α, ε).

Assume S∞ is in an NDE state where the uniform time invariant rate parameters for each agent network
(p∗RI, p

∗
AO) result from the collection of uniform local control laws u∗ ≡ {

uj,∗; 1 ≤ j < ∞}
.

Then S∞ is in a Nash equilibrium NDE state subject to the control laws u∗.
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Proof. By definition, an NDE state is a stationary NDS state such that (i) the reciprocity require-
ments (3.22) and (3.23) hold, and (ii) the local optimality property with respect to the mass behaviour holds,
(see Figure 4.9).

NDS
Stationary NDS

NDE

Figure 4.9: Network decentralized states and network decentralized equilibria

Suppose that under a collection of uniform local control laws u∗ ≡ {
uj,∗; j < ∞}

, the infinite system S∞

is in an NDE state with an associated time invariant parameter (p∗RI, p
∗
AO).

Consider the case where all agent networks except the agent network Sj implement the collection of
control laws u−j,∗ ≡ {

uk,∗; k 6= j, k < ∞}
, while the agent network Sj implements a local randomized

control law uj ∈ U j . In the population limit, as M goes to infinity, under the collection of (nonuniform) local
control laws {uj ,u−j,∗}, the infinite system S∞[j] is in a stationary NDS state with the parameter (p∗RI, p

∗
AO).

Then consider the control problem for the agent network Sj with the parameter (ρ∗, α, ε), where ρ∗ =
(p∗RI, p

∗
AO, λ1, λ2, µ1, µ2). By the optimality property of uj,∗ with respect to the parameter (ρ∗, α, ε), with any

uj ∈ U j , it is the case that

Jj
(ρ∗,α,ε)(s,n;uj,∗;u−j,∗) ≤ Jj

(ρ∗,α,ε)(s,n;uj ;u−j,∗), (4.41)

which establishes the Nash equilibrium property with respect to the collection of local randomized control
laws u∗. ¤

Hence by Theorem 4.1 we may claim that:

(i) If the system is started along an NDE state then it necessarily remains on that state (by the definition
of optimizing agents and the existence of the solution);

(ii) Possible convergence to such an NDE state from initially non-Nash local control laws for all agents
is not studied in this paper but in this connection we observe that a finite number of deviant (i.e.
non-Nash) players will asymptotically (in population size) not disturb the equilibrium. Furthermore,
in the NCE framework initial results on adaptive convergence have been obtained in [12].

In summary, we have formulated call admission problems for global radial network systems as decentralized
suboptimal control problems in Sections 3 and 4. This methodology whereby one aims at simulating mass
effects on an individual through independent filtered processes of statistical characteristics assumed to be
known, has been called the Mean Field (MF) (or Nash certainty equivalence (NCE)) principle, in the context
of linear quadratic regulator large scale games [15]. We shall call it here the point process MF (PPMF)
principle.

This is an extension to the network point process context of the NCE Principle originally formulated in
the LQG framework by M. Huang et al., [13], [16] and [15].

5 Computation of the NDE parameters and the system performance

In this section we present a conceptual algorithm for the computation of the pair of time invariant NDE
parameters (p∗RI, p

∗
AO) for a given system and give an example illustrating its implementation.
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(1) Initialization The algorithm is initialized with the uniform exogenous network and cost parameters
λ1, λ2, µ1, µ2), and (α, ε), respectively , and the time invariant nominal initial rate parameters (pRI, pAO)
∈ [0, 1]2; these isolated agent network quantities parameterize the incoming and outgoing filtered
streams which are assumed to be Poisson processes with rates equal to pRIλ2 and pAOλ2 respectively,
(see Figure 5.10). A δ norm tolerance level is also specified.

av 0v
AO 2p λ

RI 2p λ

Generic agent network a
S

Figure 5.10: Poisson external call request streams of generic agent network Sa

(2) Computation of optimal control ua,∗(pRI, pAO) applying policy iteration [4], to the HJB equations (4.31),
the optimal stationary local randomized control law ua,∗(pRI, pAO) is computed for an isolated single
agent network with exogenous parameters λ1, λ2, µ1, µ2), cost parameters (α, ε), respectively , and
nominal or most recently computed time invariant rate parameters (pRI, pAO) ∈ [0, 1]2; (pRI, pAO).

(3) Computation of the stationary distribution under the control law ua,∗(pRI, pAO)
The stationary state distribution denoted P (n), n ∈ N , is computed for the agent system is under
the optimal control law ua,∗(pRI, pAO) by solving the stationary form of the forward Kolmogorov equa-
tions (3.26) with respect to the time invariant parameters nominal or most recently computed time
invariant rate parameters (pRI, pAO) ∈ [0, 1]2; (pRI, pAO) and the time invariant exogenous parameters.
The updated ua,∗ feedback induced parameters denoted (p̂RI, p̂AO) are given by the formula (3.24)
and (3.25).

(4) Stopping rule In case the current computed value of (pRI, pAO) is within the given δ norm tolerance of
the previously computed value. (p̂RI, p̂AO), (pRI, pAO) is a pair of NDE parameters for the underlying
decentralized OSC problems; otherwise set the feedback induced parameters (p̂RI, p̂AO), stop, else return
to 2.

¤

Example 5.1 We consider the decentralized control problem for the radial network whose uniform exogenous
network parameters λ1, λ2, µ1, µ2), (see (S1)-(S5)), capacity c, and cost parameter ε are specified in Table 5.1.
For simplicity we suppose there does not exist an internal call request process for any of the agent networks,
i.e. λ1 = 0.

Table 5.1: Parameters for decentralized control of a radial network
c λ1 λ2 µ1 µ2 β g2 b2 ε
15 0 10 1 1 0.3 -1 -2 0.3

In the case under consideration, the cardinality |N | of the discrete state set of the system is of the order
of 100. The resulting state dependent control ua is consequently a vector of 100 probabilities.

An implementation of the conceptual algorithm (1)-(4) above yields a sequence of iterates converging to
the limiting Nash NDE parameter values (p∗RI, p

∗
AO); Figure 5.11 displays such converging sequences in the

cases where α takes the values 0.4 and 0.5 where α is the relative cost of outgoing to incoming accepted calls
(see Section 3.1).
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Figure 5.11: Computation of the NDE parameters (p∗RI, p
∗
AO)

Furthermore, the simulations reveal the dependence of the NDE rate parameters
[
p∗RI

p∗AO

]
, (see Figure 5.12),

and the vector of performance indices
[
p∗RIp

∗
AO

V

]
, (see Figure 5.13), at the Nash equilibrium with the pair of

parameters µ2 and α) varying over [0.5, 5.5] and [0, 1], respectively.
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Figure 5.12: Dependence of the NDE parameters (p∗RI, p
∗
AO) on (µ2, α)

More specifically, in Figure 5.14, we illustrate the system performance in detail with µ2 = 1 and α varying
over [0, 1]. Concerning this figure we make the following observations:

(i) Consider the case α > 0.5, implying that incoming call requests are more lucrative than outgoing ones.
Then, as shown in the right half region of the left diagram in Figure 5.14, p∗RI ≤ p∗AO corresponding to
the intuitively plausible result that at the Nash equilibrium each each agent’s control law is such that
the probability of admitting an incoming call request is greater than that of releasing an outgoing one.

(ii) With α < 0.5, by the symmetry property of the mass systems, we have an analysis exactly corresponding
to that for α > 0.5 in (i) above (see the left hand diagram in Figure 5.11 with α = 0.4).

(iii) The case of α = 0.5 corresponds to the equality of the rewards for the acceptance of incoming and
outgoing call requests, hence by the symmetry of the components of the NDE state with α = 0.5 one
obtains p∗RI = p∗AO; the numerical results obtained are consistent with this fact as is shown in the right
hand diagram in Figure 5.11 and the corresponding intersection point of p∗RI(.) and p∗AO(.) curves at
α = 0.5 in the left hand diagram in Figure 5.14.

(iv) The p∗RI(α)p∗AO(α) curve in the left hand diagram in Figure 5.14 depicts the variation of the product
of p∗RI(.) and p∗AO(.) with respect to α, where 2p∗RI(.)p

∗
AO(.) is the average number of active external
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Figure 5.14: Dependence of the NDE parameters and the value function on µ2 = 1 and α ∈ [0, 1]

connection in each agent network, while the right hand diagram in Figure 5.14 displays the dependence
on α of the value function V (α) ≡ V a

(p∗RI,p
∗
AO,α), associated with the NDE parameters (p∗RI, p

∗
AO). These

curves clearly reveal the symmetry of the system behaviour with respect to values of α symmetrically
distributed around α = 0.5, and, moreover, the optimality of the value of the Nash equilibrium at
α = 0.5. ¤

5.1 Summary

(1) Mass (radial) network systems Consider a class of call admission control problems of large loss
network systems specified in Section 2 where each pair of agent networks (see Definition 3.1) are weakly
coupled with each other under assumptions (S1)-(S3), (see Figure 2.1).

(2) Derivation of the network decentralized states (NDSs) Subject to a collection of uniform local
randomized control laws u ≡ {

uj ; j < ∞}
, by Theorem 3.3 the infinite system S∞ is in an NDS with a

unique pair of parameters (p0
RI, p

0
AO) equal to:

( ∑

n∈N
Pn(t)P(ua = a3

∣∣n, ea,+
AO ),

∑

n∈N
Pn(t)P(ua = a2

∣∣n, ea,+
RI )

)
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where Pn(t), denoting the probability that na
t− is equal to n, is the unique absolutely continuous solution to

the following collection of quadratic differential equations:

dPn(t)
dt

= fn(P (t), t), with P (t) ≡ (
P1(t); · · · ; P|N |(t)

)
,

for any n ∈ N , with the quadratic form function fn specified in (A.44).

(3) Derivation of stationary network decentralized equilibrium (NDE) Consider the local cost func-
tion of isolated single agent network Sa with a time invariant parameter (ρ, α, ε) where ρ = (pRI(t), pAO(t), λ1,

λ2, µ1, µ2):

Ja
(ρ,α,ε)(s,n;ua) = E|(s,n)

{ ∫ ∞

s

e−βtG(na
t )dt +

∞∑

k=1

e−βtk
(
B(ea

tk
) + εP(ua

tk
∈ U+)

)
I(ua

tk
∈ U+)

}

Then by Theorem 4.2 the infinite system S∞ is in a stationary NDE with some pair of time invariant
parameters p∗ ≡ (p∗RI; p∗AO) which is a time invariant fixed point of the following pair of equations:

p∗RI =
∑

n∈N
P ∗nP(ua,∗

ρ∗ = a3

∣∣n, ea,+
AO ),

p∗AO =
∑

n∈N
P ∗nP(ua,∗

ρ∗ = a2

∣∣n, ea,+
RI ),

where (i) ρ∗ ≡ (p∗RI, p
∗
AO, λ1, λ2, µ1, µ2), (ii) ua,∗

ρ∗ ≡ ua,∗(ρ∗;na
t− , ea

t ) is a stationary local optimal randomized
control law with respect to parameters ρ∗, and (iii) P (.;ua,∗

ρ∗ ) denotes the stationary probability of local
connection vector process na

t subject to ua,∗
ρ∗ .

6 Conclusion and Future Work

This paper has presented an analysis of distributed call admission control problems for a class of global loss
networks each of which is composed of a group of weakly coupled individual systems. Asymptotically, under
an initial independence of states hypothesis, and for uniform local control laws, agent network state processes
and their boundary filtered call request processes (accepted outgoing and released incoming call requests)
remain mutually independent. Furthermore, moving from centralized OSC problems to a distributed OSC
paradigm whereby agents apply local control laws to optimize their individual costs, it is shown that there
exist boundary filtered call request processes and uniform randomized local control law pairs such that the
local control laws are optimal with respect to the very boundary processes they collectively induce. In other
words, the Nash certainty equivalence principle holds and in this context we call it the point process NCE
(PPNCE) principle. Future work will include the study of the simultaneous solution of the problems of call
admission and routing control within the NCE framework, and the introduction of non uniform randomized
topologies of local networks. Note that a solution to the centralized optimal control problem is given in [24].

7 Appendices

A Verification of the hypotheses of Caratheodory’s theorem

For notational simplicity, PP0,p0
t
(n, t) in (3.26) is written Pn(t). By (3.26) and (3.27),

dP (t)
dt

= f(P (t), t), with P (t) =
(
Pn1(t); · · · ;Pn|N|(t)

) ∈ [0, 1]|N |, (A.42)

where f : [0, 1]|N | × [0,∞) → R|N |, such that for any t ∈ [0,∞)

fn(P (t), t) = −
( ∑

e∈E(n)

λe(n, t)
)
Pn(t) +

m∈N∑

e∈E(m)
m+u=n

(
λe(m, t)P|m,e

(
ua(t) = u

)
Pm(t)

)
, (A.43)
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with λe(n, t) specified in (3.27).

Then by (3.24), (3.25), (3.27) and (A.43), the function fn has a quadratic form with respect to P as the
follows, such that for any t ∈ [0,∞) and P ∈ [0, 1]|N |,

fn(P, t) = −ξ+
2

∑

m∈N
P|m,ea,+

AO

(
ua(t) = a3

)
P|n,ea,+

RI

(
ua(t) = a2

)
PmPn

− ξ+
2

∑

m∈N
P|m,ea,+

RI

(
ua(t) = a2

)
P|n,ea,+

AO

(
ua(t) = a3

)
PmPn

− ξ+
1 P|n,ea,+

Loc

(
ua(t) = a1

)
Pn

− ( 3∑

b=1

nbξ
−
b

)
Pn (A.44)

+ ξ+
2

∑

m∈N
P|m,ea,+

AO

(
ua(t) = a3

)
P|n,ea,+

RI

(
ua(t) = a2

)
PmPn−a2

+ ξ+
2

∑

m∈N
P|m,ea,+

RI

(
ua(t) = a2

)
P|n,ea,+

AO

(
ua(t) = a3

)
PmPn−a3

+ ξ+
1 P|m,ea,+

Loc

(
ua(t) = a1

)
Pm−a1

+
3∑

b=1

(nb + 1)ξ−b Pn+ab

By (A.44) and P|n,e(ua(t) = u) ∈ [0, 1], we have, for any P, P̂ ∈ [0, 1]|N |

|fn(P, t)− fn(P̂ , t)| ≤ 2ξ+
2

∑

m∈N
|PmPn − P̂mP̂n|

+ (ξ+
1 +

3∑

b=1

nbξ
−
b )|Pn − P̂n|

+ ξ+
2

3∑

b=2

∑

m∈N
|PmPn−ab

− P̂mP̂n−ab
| (A.45)

+ ξ+
1 |Pn−a1 − P̂n−a1 |

+
3∑

b=1

(nb + 1)ξ−b |Pn+ab
− P̂n+ab

|

Furthermore, we suppose that P = P̂ + ε, then by the fact of P, P̂ ∈ [0, 1]|N |, we have |εn| ∈ [0, 1], for any
n ∈ N . Hence

|PmPn − P̂mP̂n| = |εmP̂n + εnP̂m + εmεn|
≤ 3max

bn∈N
|εbn| ≡ 3max

bn∈N
|(P − P̂ )bn| ≤ 3|P − P̂ | (A.46)

By (A.45) and (A.46), for any (P, P̂ , t) ∈ [0, 1]|N |×[0, 1]|N |×[0,∞), there exists a finite valued k1 ∈ [0,∞),
such that

|f(P, t)− f(P̂ , t)| < k1|P − P̂ |, (A.47)

i.e. f is uniformly Lipschitz continuous with respect to P .

Furthermore, for any n ∈ N , by (A.44), we have, there exists some finite valued k2 ∈ [0,∞), such that

|fn(P j , t)| ≤ 2 ξ+
2 |N |+

(
ξ+
1 +

3∑

b=1

nbξ
−
b

)
+ 2ξ+

2 |N |+ ξ+
1 +

3∑

b=1

(nb + 1)ξ−b < k2, (A.48)

i.e. f is bounded with respect to t for any fixed P ∈ [0, 1]|N |.

This completes the verification of the hypotheses of Caratheodory’s Theorem for Theorem 3.2.
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[11] M. Huang, P.E. Caines, and R.P. Malhamé. Individual and mass behaviour in large population stochastic
wireless power control problems: centralized and nash equilibrium solutions. In 42th IEEE Int. Conf. Decision
and Control, pages 98–103, Maui, Hawaii, Dec. 2003.
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[20] J.-M. Lasry and P.-L. Lions. Jeux à champ moyen. I – le cas stationnaire. C. R. Acad. Sci. Paris, Ser. I,
343:619–625, 2006.

[21] J.-M. Lasry and P.-L. Lions. Mean field games. Japan. J. Math., (2):229–260, 2007.
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