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Abstract

In this paper, we generalize the Asymmetric Representatives Formulation, which was first introduced
by Campêlo et al. (2008) for the Node Coloring Problem. The main idea from this formulation can be
used to model a variety of Binary Clustering Problems. The new asymmetric decision variables indicate
if an object belongs to a specific cluster, but the cluster is identified by the lowest indexed object. The
advantage of this formulation is that it eliminates the symmetry between the clusters which exists in
the classical formulation. We prove that the LP relaxation bound of the Asymmetric Representatives
Formulation is at least as good as the one from the classical Symmetric Formulation. We further show
that applying Dantzig-Wolfe decomposition to the classical Symmetric Formulation or to the Asymmet-
ric Representatives Formulation leads to the same symmetry-breaking model, and hence the same LP
bound that can be much stronger. Finally, we show that in specific cases, the LP relaxation bound of the
Asymmetric Representatives Formulation depends on the order of the input data.

Key Words: Integer Programming; Binary Clustering Problems; Dantzig-Wolfe Decomposition;
Symmetry-Breaking Formulations.

Résumé

Dans cet article, nous généralisons aux problèmes de regroupement binaire la formulation des représen-
tants asymétriques ARF qui a d’abord été introduite par Campêlo et al. (2008) pour le problème du
coloriage des nœuds sur un graphe. Les nouvelles variables asymétriques binaires indiquent si un objet
appartient ou non à un groupe donné, et ce groupe est identifié par l’objet de plus petit indice. L’avantage
de cette formulation est qu’elle élimine la symétrie entre les groupes que l’on rencontre dans la formula-
tion classique SF. Nous démontrons que la borne obtenue par la relaxation linéaire d’ARF est au moins
aussi bonne que celle de la relaxation linéaire de SF. Nous montrons également que l’application de la
décomposition Dantzig-Wolfe à SF ou ARF donne en fait le même modèle non-symétrique, d’où la même
borne qui, en pratique, est bien meilleure. Finalement, nous montrons par un exemple que la borne
linéaire d’ARF dépend de l’ordonnancement initial des groupes.

Mots clés : Programmation en nombres entiers; décomposition Dantzig-Wolfe; problèmes de regroupe-
ment binaire; formulations asymétriques.
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1 Introduction

Many Integer Programming (IP) formulations suffer from symmetry in their solution space. Due to the
possible permutation of the variable values, alternative solutions exist at the same cost and need to be checked

during the exploration of a branch-and-bound tree. Consequently, the search is unnecessarily duplicated and

computation times can increase drastically.

A well known example is the Node Coloring Problem (also known as the Graph or Vertex Coloring Problem).
Given is a set of K = {1, . . . , m} colors and a graph G = (N, E), where N = {1, . . . , n} is the set of nodes

and E the set of arcs. The aim is to assign a color to each node, using the minimum number of colors, so

that both nodes of each arc have a different color. In the classical Symmetric Formulation (SF), see e.g.

Méndez-Dı́az and Zabala (2006) or Kaibel and Pfetsch (2008), we have the following two types of binary
variables: xk

i = 1 if node i ∈ N has color k ∈ K, 0 otherwise, and xk
0 = 1 if color k ∈ K is used, 0 otherwise:

Min
∑

k∈K

xk
0 (1.1)

s.t.
∑

k∈K

xk
i = 1 ∀i ∈ N (1.2)

xk
i + xk

j ≤ xk
0 ∀(i, j) ∈ E : i < j,∀k ∈ K (1.3)

xk
i ∈ {0, 1} ∀i ∈ N ∪ {0}, ∀k ∈ K (1.4)

In the objective function (1.1), we minimize the number of colors used. Each node has exactly one assigned
color (1.2). The endpoints of an arc cannot have the same color (1.3). The symmetry in this formulation

stems from the fact that the colors can be arbitrarily permuted. Symmetry, however, is a property of a

formulation and not of the problem itself. Other formulations for this problem do not exhibit this symmetry

between colors. Mehrotra and Trick (1996) propose the Independent Set Formulation, which can be obtained

by applying a Dantzig-Wolfe reformulation (Dantzig-Wolfe 1960) to (1.1)–(1.4). In their formulation, a binary
variable is associated with each maximal independent set of nodes. The objective function minimizes the

number of sets used subject to the constraints that each node is contained in at least one set or cluster. This

formulation avoids the symmetry induced by numbering the clusters in the symmetric formulation.

Proposed by Campêlo et al. (2008) and also briefly discussed in Margot (2010), the Asymmetric Represen-
tatives Formulation (ARF) is another formulation that does not exhibit symmetry. The general idea behind

this ARF is to identify a cluster by the node with the lowest index in that cluster using the following binary

variables: vh
i = 1 if node i ∈ N is in cluster h ∈ {1, . . . , i} and node h is the lowest indexed node in that

cluster. The variable vh
h , h ∈ K, indicates whether the cluster with node identifier h is used or not.

An ARF for the Node Coloring is as follows:

Min
∑

h∈N

vh
h (2.1)

s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (2.2)

vh
i ≤ vh

h ∀i ∈ N, ∀h ∈ {1, . . . , i − 1} (2.3)

vh
i + vh

j ≤ vh
h ∀(i, j) ∈ E : i < j,∀h ∈ {1, . . . , i} (2.4)

vh
i ∈ {0, 1} ∀i ∈ N, ∀h ∈ {1, . . . , i} (2.5)

The number of clusters used is minimized in the objective function (2.1). Constraint set (2.2) imposes that

each node must be part of exactly one cluster, and the cluster identifier has to be lower than or equal to the

node number. Constraints (2.3) impose that node i can only be part of the cluster with identifier h if that

cluster is used. The end nodes of each edge must be in different clusters (2.4). Campêlo et al. (2008) show
that applying a Dantzig-Wolfe decomposition on the ARF results in a reformulation that is equivalent to the

Independent Set Formulation proposed by Mehrotra and Trick (1996).
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Figure 1: Feasible assignments in the Asymmetric Representatives Formulation

In this note, we show that the results from Campêlo et al. (2008) for the Node Coloring can be generalized

in two ways. First, although the ARF is a little known, it is very flexible and can be used to model various

Binary Clustering Problems. Second, for Binary Clustering Problems, we show in general that applying a
Dantzig-Wolfe decomposition on the SF and the ARF lead to the same symmetry-breaking model, hence

the same Linear Programming (LP) relaxation lower bound. As a third contribution, we show that the LP

relaxation of the ARF is always at least as good as the LP relaxation of the SF. A fourth contribution of

this note is to show that for some Binary Clustering Problems, the LP relaxation of the ARF depends on

the order of the input data. There are however problems for which this is not the case, like the Bin Packing
Problem.

The paper is organized as follows. In Section 2, we examine various Binary Clustering Problems for which

we give the ARF. For one specific example (a Scene Selection), we provide computational results showing

that the LP value of the ARF is better than the LP value of the SF. This is formally and generally proven
in Section 3 where we also prove that the Dantzig-Wolfe reformulations of both the SF and the ARF always

result in the same model, usually a much stronger one. Our conclusions follow.

2 The ARF for Binary Clustering Problems

Assume a set N = {1, . . . , n} of objects and a set K = {1, . . . , m} of possible cluster identifiers. In the SF,

we define (n + 1)m binary variables, that is xk
i = 1 if object i ∈ N is in cluster k ∈ K, 0 otherwise, and

xk
0 = 1 if cluster k ∈ K is used. Symmetric solutions can be obtained by arbitrarily permuting the cluster

identifiers. In the ARF, let vh
i = 1 if object i ∈ N is in the same cluster as object h ∈ N and object h is

the lowest numbered object in that cluster, 0 otherwise. In the ARF, n(n + 1)/2 binary variables need to be
defined, that is, vh

i , i ∈ N, h ∈ {1, . . . , i}, or equivalently, vh
i , h ∈ N, i ∈ {h, . . . , n} (see Figure 1). Note

that vh
h = 1 indicates that cluster h is selected. With these new variables, the symmetry between clusters

disappears.

The core sets of parameters and constraints in a Binary Clustering Problem are the number of objects and
the number of possible cluster identifiers, the assignment of the objects to clusters exactly once, and the

assignment of objects only in used clusters. In the SF, this becomes:
∑

k∈K

xk
i = 1 ∀i ∈ N = {1, . . . , n} (3.1)

xk
i ≤ xk

0 ∀k ∈ K, ∀i ∈ N (3.2)

xk
i ∈ {0, 1} ∀k ∈ K = {1, . . . , m}, ∀i ∈ N ∪ {0} (3.3)

In the ARF, these parameters and constraints are written as follows:

∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (3.4)

∑

h∈N

vh
h ≤ m (3.5)

vh
i ≤ vh

h ∀h ∈ N, ∀i ∈ {h, . . . , n} (3.6)
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vh
i ∈ {0, 1} ∀h ∈ N, ∀i ∈ {h, . . . , n} (3.7)

Note that the sets of constraints (3.2) and (3.6) are necessary, otherwise an object could be assigned to

a cluster that is not used. However, in several applications, these constraints may be redundant as they

are implicitly imposed by the structural constraints defining the cluster composition and can therefore be

removed. To further show the versatility of the ARF, we next describe how various Binary Clustering

Problems can be formulated using the asymmetric variables.

Note. In constraint sets (3.1)–(3.2), we can reduce the number of variables without losing any optimal
solution. We can start by imposing that the first object is assigned to the first cluster as clusters can always

be renumbered to satisfy this condition. For the second object, we can impose that if it does not belong to

cluster one, it must belong to cluster two. The third object should belong to one of the first three clusters.

We can continue this reasoning for the first m − 1 objects. The remainder of the objects, from m to n, can

be assigned to any of the m clusters. We further refer to this technique as Variable Reduction (VR). Note
that this SF+VR, i.e. the formulation resulting from applying the VR technique to the SF formulation, is

not equivalent to the ARF. Computational experiments on a Scene Selection Problem in Section 2.3 indicate

that these two types of formulations can indeed have different LP values.

2.1 Bin Packing / Binary Cutting Stock

In the Bin Packing or Binary Cutting Stock, one has to pack a set N = {1, . . . , n} of objects, with a specific
non-negative weight wi, i ∈ N into a set K = {1, . . . , m} of bins. Each bin has the same capacity W , and

the objective is to minimize the number of bins used. The classical formulation (Kantorovitch 1960) using

the binary variables xk
i = 1 if object i is in bin k, and xk

0 = 1 if bin k is used, suffers from symmetry as one

can arbitrarily permute the bins. In the ARF, let vh
i = 1 if object i ∈ N is in the same bin as object h ∈ N

and object h is the lowest numbered object in that bin, 0 otherwise. A bin is hence identified by its lowest
numbered object. The ARF is as follows:

Min
∑

h∈N

vh
h (4.1)

s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (4.2)

vh
i ≤ vh

h ∀h ∈ N, ∀i ∈ {h, . . . , n} (4.3)
∑

i∈{h,...,n}

wiv
h
i ≤ Wvh

h ∀h ∈ N (4.4)

vh
i ∈ {0, 1} ∀h ∈ N, ∀i ∈ {h, . . . , n} (4.5)

The objective (4.1) minimizes the number of bins used. In (4.2) each object must be assigned to exactly one

bin and an object can only be assigned to a bin if the bin is used (4.3). The capacity of the bin is limited to
W in (4.4). It is well known that the SF provides an LP lower bound value of

∑

i∈N wi/W , the sum of the

object lengths divided by the bin capacity. Elhedhli (2005) ranks LP bounds for various formulations, but

he does not consider the above ARF. Indeed the ARF provides the same LP relaxation bound in most cases,

except in the trivial case when the sum of the weights is less than the capacity of one bin. In the latter case,

the ARF provides a better LP bound than the SF.

Proposition 1 The ARF of the Bin Packing provides an LP value of
∑

i∈N wi/W if this value is greater

than or equal to one, otherwise the LP value is one.

Proof. Let s=
⌊
∑

i∈N wi/W
⌋

≥ 1 and t =
∑

i∈N wi/W − s ≥ 0. Assign one by one objects 1 to s to the first

s bins (vh
h = 1, h ∈ {1, . . . , s}) and a fraction t of object s + 1 to bin s + 1, resulting in a reduced capacity

of Wt for bin s + 1 since vs+1
s+1 = t. Close all other bins, i.e., vh

h = 0, ∀h ∈ {s + 2, . . . , n}. Assign (arbitrarily

and using fractional amounts if necessary) the remaining fraction 1 − t of item s + 1 to the open bins 1 to
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s and all the other items s + 2 to n to the open bins 1 to s + 1, so that the remaining capacity per bin is

not exceeded. By construction, the total available capacity is (s + t)W , which is equal to the total lengths

of all the objects, and the objective value is equal to s + t. Finally observe that if s = 0, then a single bin is
necessary and the LP value of the ARF is equal to one because v1

1 = 1 according to (4.2).

A variant of this problem is the Maximum Cardinality Bin Packing (Labbé, Laporte and Martello 2003,

Peeters and Degraeve 2006) in which we must pack as many of the n objects as possible into m bins. The

ARF is as follows, the meaning of the relations following the lines of the Bin Packing:

Max
∑

h∈N

∑

i∈{h,...,n}

vh
i (5.1)

s.t.
∑

h∈{1,...,i}

vh
i ≤ 1 ∀i ∈ N (5.2)

∑

h∈N

vh
h = m (5.3)

vh
i ≤ vh

h ∀h ∈ N, ∀i ∈ {h, . . . , n} (5.4)
∑

i∈{h,...,n}

wiv
h
i ≤ Wvh

h ∀h ∈ N (5.5)

vh
i ∈ {0, 1} ∀h ∈ N, ∀i ∈ {h, . . . , n} (5.6)

A second variant is the Dual Bin Packing (Labbé, Laporte and Martello 1995, Peeters and Degraeve 2006)
where the objective is to assign the n items to as many identical bins as possible, provided that the total

weight assigned to each open bin is at least equal to a minimum value W . The ARF is as follows:

Max
∑

k∈N

vk
k (6.1)

s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (6.2)

vh
i ≤ vh

h ∀h ∈ N, ∀i ∈ {h, . . . , n} (6.4)
∑

i∈{h,...,n}

wiv
h
i ≥ Wvh

h ∀h ∈ N (6.5)

vh
i ∈ {0, 1} ∀h ∈ N, ∀i ∈ {h, . . . , n} (6.6)

2.2 Node Capacitated Graph Partitioning

Assume a graph G = (N, E) where N = {1, . . . , n} is the set of nodes and E is the set of edges. There is

a non-negative weight wi associated with each node and a cost cij for each edge (i, j) ∈ E. In the Node

Capacitated Graph Partitioning, we assign the n nodes in G to at most m disjoint clusters so that the total

cost of the edges between clusters is minimized or the total cost of the edges within a cluster is maximized.
The total node weight within a cluster is restricted to the capacity W . A standard SF is described by Ferreira

et al. (1996), for the case with non-negative edge costs. However, we can also provide an alternative ARF to

this problem. In addition to the previously defined vh
i variables, let wh

ij = 1 if edge (i, j) lies within cluster

h, i.e., the cluster in which h is the smallest numbered node, 0 otherwise. The ARF is then as follows:

Max
∑

h∈N

∑

(i,j)∈E|h≤i<j

cijw
h
ij (7.1)

s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (7.2)

∑

h∈N

vh
h ≤ m (7.3)
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vh
i ≤ vh

h ∀h ∈ N, ∀i ∈ {h, . . . , n} (7.4)
∑

i∈{h,...,n}

wiv
h
i ≤ Wvh

h ∀h ∈ N (7.5)

wh
ij ≤ vh

i ∀h ∈ N, ∀(i, j) ∈ E : h ≤ i < j (7.6)

wh
ij ≤ vh

j ∀h ∈ N, ∀(i, j) ∈ E : h ≤ i < j (7.7)

wh
ij ∈ {0, 1} ∀h ∈ N, ∀(i, j) ∈ E : h ≤ i < j (7.8)

vh
i ∈ {0, 1} ∀h ∈ N, ∀i ∈ {h, . . . , n} (7.9)

The objective function (7.1) maximizes the sum of the total cost of the edges within a cluster. In (7.2) each

node is assigned exactly once to a cluster and in (7.3) at most m clusters are allowed. In constraint set (7.4),

a node can only be assigned to a cluster that is chosen. The capacity of each cluster is limited to W in (7.5).
Finally, (7.6)–(7.7) impose that an edge can only be within cluster h if both endpoints are assigned to that

cluster h.

2.3 A Scene Selection Problem

The following Scene Selection Problem is taken from Van Hentenreyck (2002). In this problem, a movie

producer has to decide which scenes should be shot on which days. In total, n = 19 scenes (set N of objects)
have to be shot during at most m = 5 days (set K of clusters). It is not possible to shoot more than W = 5

scenes in a day. In total, 11 actors (set A of actors) are needed to make the movie. Each scene requires the

presence of a specific set of actors: parameter aij = 1 if actor j ∈ A is needed for scene i ∈ N , 0 otherwise.

The actors are paid for each day they are required to be present, regardless of the number of scenes in which

they appear on that day. The daily pay pj, j ∈ A varies per actor, but not per day. The objective is to
minimize the total cost. Let the decision variables be defined as follows: xk

i = 1 if scene i ∈ N is shot on day

k ∈ K, 0 otherwise; yk
j = 1 if actor j ∈ A is present on day k ∈ K, 0 otherwise. This optimization problem

can then be expressed as follows:

Min
∑

k∈K

∑

j∈A

pjy
k
j (8.1)

s.t.
∑

k∈K

xk
i = 1 ∀i ∈ N (8.2)

∑

i∈N

xk
i ≤ W ∀k ∈ K (8.3)

aijx
k
i ≤ yk

j ∀k ∈ K, ∀i ∈ N, ∀j ∈ A (8.4)

yk
j ∈ {0, 1} ∀k ∈ K, ∀j ∈ A (8.5)

xk
i ∈ {0, 1} ∀k ∈ K, ∀i ∈ N (8.6)

The objective function (8.1) minimizes the total salary cost. Each scene is shot on exactly one day (8.2). The

capacity constraints (8.3) require that at most W scenes are shot on each day. If a scene is shot on a specific
day, then the required actors must be present (8.4). Both the xk

i and yk
j variables are binary, although it is

technically sufficient to impose the binary restrictions only on the xk
i variables.

Proposition 2 The LP value of the Scene Selection Problem (8.1)–(8.6) is
∑

j∈A pj.

Proof. Assume n scenes, m days and a maximum of W scenes per day. Consider the following solution:

xk
i = 1/m, ∀i ∈ N, ∀k ∈ K and yk

j = 1/m, ∀j ∈ A, ∀k ∈ K. We first proof that this is a feasible solution.

As the set K contains m days, it holds that
∑

k∈K xk
i = 1, ∀i ∈ N . To have a feasible problem, we need at

least ⌈n/W ⌉ days, hence m ≥ n/W . Therefore
∑

i∈N xk
i = n(1/m) ≤ n(W/n) = W , and constraint (8.3) is

satisfied. Constraints in set (8.4) are obviously satisfied. For this solution the objective value is
∑

j∈A pj .
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This is also the minimum value for the objective. For each actor j, there is at least one scene i for which

aij = 1, so that summing both sides of (8.4) over the possible clusters gives:
∑

k∈K aijx
k
i
≤
∑

k∈K yk
j . The

left hand side is equal to 1 due to constraint (8.2) and aij = 1, hence
∑

j∈A pj(
∑

k∈K yk
j ) ≥

∑

j∈A pj .

Formulation (8.1)–(8.6) contains a lot of symmetry. For any feasible solution, optimal or non-optimal, we

can obtain an equivalent solution by permuting the numbering of the days, i.e., assigning a different day
to the given clusters of scenes. We can decrease the symmetry using the VR technique. Take one scene at

random, say scene one, and impose that it is shot on day one (days can always be renumbered to satisfy this

condition). For scene two, we can impose that if it is not shot on the same day as scene one, it will be shot

on day two, thereby imposing x3
2 = x4

2 = x5
2 = 0, and constraint (8.2) for scene 2 becomes: x1

2 + x2
2 = 1. We

can continue this reasoning for scenes 3 and 4. The remainder of the scenes can be shot on any day; hence

for scene 5 and the following ones, we cannot reduce the variables.

We can also provide an ARF for this problem. Let vh
i = 1 if scene i is shot on the same day as scene h

and scene h is the lowest index scene shot that day, 0 otherwise. The variable yh
j now indicates if actor j is

present in the cluster identified by scene h, i.e., the cluster in which h is the smallest indexed scene.

Min
∑

h∈N

∑

j∈A

pjy
h
j (9.1)

s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (9.2)

∑

h∈N

vh
h ≤ m (9.3)

vh
i ≤ vh

h ∀h ∈ N, ∀i ∈ {h, . . . , n} (9.4)
∑

i∈{h,...,n}

vh
i ≤ Wvh

h ∀h ∈ N (9.5)

aijv
h
i ≤ yh

j ∀h ∈ N, ∀i ∈ N, ∀j ∈ A (9.6)

yh
j ∈ {0, 1} ∀h ∈ N, ∀j ∈ A (9.7)

vh
i ∈ {0, 1} ∀h ∈ N, ∀i ∈ N (9.8)

The objective function (9.1) minimizes the total salary cost. Constraint set (9.2) imposes that each scene is

allocated to exactly one cluster and (9.3) indicates that we cannot use more than m clusters. In (9.4) we
can only assign a scene to a cluster if that cluster is used. Further, if a cluster is used, it cannot have more

than W scenes in it (9.5). Note that constraints (9.4) are implied by constraints (9.5). Finally constraint set

(9.6) imposes that if scene i is in the cluster identified by scene h, then the actors required for scene i must

be present in that cluster.

We now present some limited computational experiments conducted using the data provided in Van Hen-

tenreyck (2002). We modeled the various formulations using ILOG OPL Development Studio 6.1 and the

problems were solved using CPLEX 11.2 on a 2.4 GHz computer with 3GB RAM. We tested the follow-

ing formulations identified in Table 1: the Symmetric Formulation (SF); the SF with variable reduction
(SF+VR), and the Asymmetric Representatives Formulation (ARF) without the redundant constraint (9.4).

Furthermore, we tested SF and SF+VR using three different orders for the input data. For the first arrange-

ment called Random, we kept the numbering of the scenes as provided in Van Hentenreyck (2002). Next,

we calculated for each scene the total cost for the actors needed in that particular scene. In the second
arrangement (LowHigh), we ordered the scenes starting with the lowest total cost to the highest and in the

third arrangement we inversed this (HighLow). Finally, as a preview of the Section 3, we also present the LP

value provided by the Dantzig-Wolfe reformulation of both SF and ARF identified by DWSF and DWARF,

respectively.

CPLEX 11.2 contains a feature which is Default Symmetry Breaking. This specific setting can be found

under: Settings: Mathematical Programming – Preprocessing – Symmetry. The manual does, however, not
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Table 1: Scene Selection Problem: CPU times in seconds, LP value and IP Gap

Default SB No SB LP IP
LP (sec) LP (sec) value Gap

SF 4.00 14.00 137 739.00 58.8%
SF + VR (Random) 5.79 5.79 177 075.57 47.0%
SF + VR (LowHigh) 8.53 8.50 157 388.55 52.9%
SF + VR (HighLow) 2.75 2.73 219 013.83 34.5%
ARF (Random) 6.95 6.96 228 764.46 31.5%
ARF (LowHigh) 35.70 35.40 187 083.07 44.0%
ARF (HighLow) 0.78 0.79 317 201.97 5.1%
DWSF 1.34 1.34 330 405.41 1.1%
DWARF 1.13 1.12 330 405.41 1.1%

0%
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20%

30%

40%

50%

60%

70%

Scene Selec!on Formula!ons: IP Gap

Figure 2: Scene Selection Formulations: IP Gap

give any further information on the way this is done. In Table 1, we provide the CPU time in seconds to
calculate the LP value for both the default setting for symmetry breaking (Default SB LP (sec)) and the

setting where this feature is turned off (No SB LP (sec)). Note that this symmetry breaking feature only has

a significant effect for the SF. In the last two columns of Table 1, we provide the LP value and the IP Gap

in percentage compared to the optimal integer value 334 144. The IP Gap is illustrated in Figure 1.

The computational results indicate two important issues. First, this is an example of a formulation where
the various LP values of ARF (from 187 083.07 to 317 201.97) improve on the LP value provided by SF

(137 739.00). The IP gap improved from 58.8% to 5.1% for ARF (HighLow). Second, we observe that the LP

values of SF+VR and ARF depend on the order of the input data. This can partially be explained as follows.

In the ARF, we fix the first variable: v1
1 = 1. This also happens in the LP relaxation, and it forces that the

actors needed for that first scene must be present via constraint (9.6). Hence in the LP relaxation, we are

fully charged for the cost of the first scene. For the second scene, there are only two possibilities: either it is

in the first cluster or in the second, so we induce less fractional values for the decision variables. A similar

behavior occurs in SF+VR. From Table 1, we see indeed that the order HighLow performs substantially

better in terms of LP value compared to the order LowHigh, for both SF+VR and ARF. For SF and the
decomposition formulations, the order of the input data has no impact on the LP value, so we only report

the results for the Random order.
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2.4 The Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is defined on a directed graph with node set

N ∪ {0, n + 1} and arc set A. It can be described as finding least cost routes for a set K = {1, . . . , m}
of identical vehicles to be routed and scheduled originating from a single depot (split into two for modeling

reasons with start at node 0 and end at node n + 1) such that the set N = {1, . . . , n} of customers is visited

exactly once and the demand di, i ∈ N is met. Furthermore, each node i ∈ N must be visited within a time

window [ei, li] and the load of a vehicle must not exceed its capacity D. The cost and travel time (including
service time at one end node) for traversing the arc (i, j) ∈ A are given as cij and tij , respectively.

The mathematical programming formulation (adapted from Desaulniers et al. 1998) involves two types of

structural variables: binary flow variables Xk
ij equal to one if arc (i, j) ∈ A is used by vehicle k ∈ K, 0

otherwise; and time variables T k
i specifying the arrival time at node i ∈ N ∪ {0, n + 1} of vehicle k. The

SF also uses the binary assignment variables xk
i =

∑

j|(j,i)∈A Xk
ji, for k ∈ K and i ∈ N ∪ {0}. For the ease

of the presentation, for k ∈ K, let zk =
∑

(i,j)∈A cijX
k
ij , XXXk = (Xk

ij)(i,j)∈A,TTTk = (T k
i )i∈N∪{0, n+1}, and

xxxk = (xk
i )i∈N .

The SF for finding the minimum cost set of routes can be given as:

Min
∑

k∈K

zk (10.1)

s.t.
∑

k∈K

xk
i = 1 ∀i ∈ N (10.2)

(XXXk,TTT k,xxxk, zk) ∈ S(xk
0) ∀k ∈ K (10.4)

xk
0 binary ∀k ∈ K (10.4)

where the generic solution space S (x0), which is identical for all k ∈ K, is defined as:

S(x0) =
{

XXX = (Xij)(i,j)∈A,TTT = (Ti)i∈N∪{0,n+1},aaa = (ai)i∈N , c
}

such that:

∑

j|(i,j)∈A

Xij −
∑

j|(j,i)∈A

Xji =







x0

0
−x0

i = 0
∀i ∈ N
i = n + 1

(11.1)

ai =
∑

j|(j,i)∈A

Xji ∀i ∈ N (11.2)

c =
∑

(i,j)∈A

cijXij (11.3)

∑

i∈N

diai ≤ Dx0 (11.4)

Xij(Ti + tij − Tj) ≤ 0 ∀(i, j) ∈ A (11.5)

T0 = 0 (11.6)

eiai ≤ Ti ≤ liai ∀i ∈ N (11.7)

Xij ∈ {0, 1} ∀(i, j) ∈ A (11.8)

If x0 = 1, S(x0) provides XXX and TTT , the structural flow and time variables describing an elementary path (if

it exits) from 0 to n + 1 satisfying time window and capacity constraints, vector aaa = (ai)i∈N identifies the

customers visited while c gives the cost of the path; otherwise all flow, time and cost variables vanish. Note

that in (10.1)–(10.4), constraint sets xk
i ∈ {0, 1} and xk

i ≤ xk
0 , for k ∈ K, i ∈ N need not be present as they

are imposed by the solution space S (x0) , x0 binary.

The ARF rather uses the binary assignment variables vh
i , for h ∈ N and i ∈ {h, . . . , n}. Specifically, vh

i = 1

if client i is visited by the same vehicle as client h, and client h is the lowest indexed client in the cluster.
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The solution space is now specific for every h ∈ N and it is given by:

AS1
(

v1
0

)

=
{

(XXX,TTT ,aaa, c) ∈ S(v1
0)|a1 = v1

0

}

ASh
(

vh
0

)

=
{

(XXX,TTT ,aaa, c) ∈ S(vh
0 )|ah = vh

0 ai = 0, ∀i ∈ {1, . . . , h − 1}
}

, for h ∈ N\{1}.

The ARF for the VRPTW can be expressed as:

Min
∑

h∈N

wh (12.1)

s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ N (12.2)

∑

h∈N

vh
0 ≤ m (12.3)

(XXXh,TTTh, vvvh, wh) ∈ ASh(vh
0 ) ∀h ∈ N (12.4)

vh
0 binary ∀h ∈ N (12.5)

If vh
0 = 1, ASh(vh

0 ) provides an elementary path from 0 to n + 1 satisfying time window and capacity

constraints visiting customer h but none of the lower numbered customers; otherwise all flow, time and cost

variables vanish. Constraint sets vh
i ∈ {0, 1} and vh

i ≤ vh
0 , for h ∈ N, i ∈ {h, . . . , n} need not be present in

(12.1)–(12.5) as they are imposed in the definition of the solution space.

2.5 Discussion

As the previous examples have shown, the ARF (as well as SF) is very versatile and can be used to model

side constraints that are found in Binary Clustering Problems. The side constraints include: bound on

the maximum number of clusters (Node Coloring, Node Capacitated Graph Partitioning); upper and lower

bounds on the number of objects in a cluster (Scene Selection); capacity constraints (Bin Packing, Node

Capacitated Graph Partitioning, VRPTW); two objects not allowed in the same cluster (Node Coloring).

Another possible side constraint not present in the above examples is the requirement that two objects i and j,

with i < j, are forced to be in the same cluster. In the ARF, this can be modeled as vh
i = vh

j , ∀h ∈ {1, . . . , i}.

A typical objective function is to minimize the number of clusters used (Node Coloring, Bin Packing), but

more complex objective functions requiring structural variables can be modeled as well (Node Capacitated

Graph Partitioning, Scene Selection, VRPTW). The structural constraint set S (x0) , x0 binary, in the
VRPTW is formulated using non-linear constraints and the cost function can also be non-linear, e.g., a

function of the traveling time, of the arrival time at the nodes, or of the vehicle load (see Desaulniers et al.

1998).

3 Dantzig-Wolfe Reformulations of SF and ARF

In this section, we first give generic models for both the SF and the ARF. Next, we prove that the LP
relaxation of the ARF is at least as good as the LP relaxation of the SF. Moreover, we also prove that the

Dantzig-Wolfe reformulation of both the SF and the ARF results in the same model, hence the same linear

relaxation bound.

We impose the following general restriction on the binary clustering problems: the structural constraints are

identical for each cluster, otherwise one could not obtain symmetrical solutions by the permutation of the
cluster numbers. Additionally we also impose that the cost of a cluster is independent of the other clusters.

In most of the practical situations this is true but not for all. For example, this assumption is not satisfied

if the cost of a Cutting Stock cluster depends on the repositioning of the knives from the previously used

cluster.
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3.1 The SF vs. ARF

The SF uses the following notation:

• xxxk = (xk
i )i∈{1,...,n} where xk

i = 1 if object i is in cluster k ∈ {1, . . . , m}, 0 otherwise;

• xk
0 = 1 indicating if cluster k ∈ {1, . . . , m} is used, 0 otherwise;

• zk ∈ R providing the cost of cluster k ∈ {1, . . . , m};

• yyyk
SF ∈ C

(

xk
o

)

, k ∈ {1, . . . , m} expressing the cluster rules.

The generic solution space is the same for all clusters, and therefore we omit the cluster index k. It is given

as:

S (x0) = {yyy ∈ C (x0) ,aaa = aaa (yyy) ∈ {0, 1}n
, c = c (yyy) ∈ R | ai(yyy) ≤ x0, ∀i ∈ {1, . . . , n}}.

C (x0) expresses all the cluster rules in terms of the structural variable vector yyy; aaa(yyy) is an n-dimensional
function that sets to 1 variables in aaa = (a1(yyy) , . . . , an(yyy)) corresponding to the objects assigned to the

cluster; c(yyy) computes the cost c of the cluster (we assume that if the cluster is not used then c (000) = 0).

Since ai (yyy) ≤ x0, ∀i ∈ {1, . . . , n}, no objects can be assigned to a cluster that is not used. There are at most

2n−1 different non-empty assignment sets represented by aaa ∈ {0, 1} n
. An SF for finding the minimum cost

of a binary clustering problem is given by:

Min
∑

k∈{1,...,m}

zk (13.1)

s.t.
∑

k∈{1,...,m}

xk
i = 1 ∀i ∈ {1, . . . , n} (13.2)

(yyyk
SF ,xxxk, zk) ∈ S(xk

0) ∀k ∈ {1, . . . , m} (13.3)

xk
0 binary ∀k ∈ {1, . . . , m} (13.4)

The ARF uses a similar notation:

• vvvh = (vh
i )i∈{1,...,n} where vh

i = 1 if object i ∈ {h, . . . , n} is in cluster h ∈ {1, . . . , n}, 0 otherwise (the
cluster identifier is the lowest numbered object in it);

• vh
0 = 1, h ∈ {1, . . . , n} indicating if cluster h is used, 0 otherwise;

• wh ∈ R providing the cost of cluster h ∈ {1, . . . , n};

• yyyh
ARF ∈ C

(

vh
o

)

, h ∈ {1, . . . , n}, expressing the cluster rules.

The solution spaces for the structural variables are now specialized for every cluster. The ARF variables
(

yyyh
ARF , vvvh, wh

)

∈ ASh
(

vh
o

)

are defined in terms of S
(

vh
o

)

but are different for every h ∈ {1, . . . , n}. They

are given as:
AS1

(

v1
o

)

=
{

(yyy,aaa, c) ∈ S
(

v1
o

)

| a1 = v1
o

}

;

ASh
(

vh
o

)

=
{

(yyy,aaa, c) ∈ S
(

vh
o

)

| ah = vh
o ; ; ai = 0, ∀i ∈ {1, . . . , h − 1}

}

, for h ∈ {2, . . . , n}.

For h ∈ {1, . . . , n}, if ASh(1) 6= ∅, assignment and cost variables are defined as in S(1), except that cluster h

contains object h (ah = 1) but no objects (if any) with a smaller index number (ai = 0, ∀i ∈ {1, . . . , h− 1}).
An alternative way to say it is that object i ∈ {1, . . . , n} can only be assigned to clusters up to index number

i, i.e., clusters numbered h ∈ {1, . . . , i}. Given the solution space ASh
(

vh
o

)

, vector vvvh ∈ {0, 1}n
, i.e., the

assignment variables vh
i are defined for i, h ∈ {1, . . . , n}. Additionally vh

h = vh
0 , h ∈ {1, . . . , n}, and vh

h can be

used to identify the lowest index object in cluster h and to count the number of clusters used. An ARF for

finding the minimum cost of a binary clustering problem is expressed as:

Min
∑

h∈{1,...,n}

wh (14.1)
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s.t.
∑

h∈{1,...,i}

vh
i = 1 ∀i ∈ {1, . . . , n} (14.2)

∑

h∈{1,...,n}

vh
0 ≤ m (14.3)

(yyyh
ARF , vvvh, wh) ∈ ASh(vh

0 ) ∀h ∈ {1, . . . , n} (14.4)

vh
0 binary ∀h ∈ {1, . . . , n} (14.5)

In the above ARF, note that the first constraint in the assignment set (14.2) imposes that v1
1 = 1. No such

result can be derived from the SF. In Proposition 1, we showed that for the Bin Packing/Binary Cutting
Stock, the LP relaxation value is the same for the SF and the ARF except when the sum of the item lengths

is less than the bin capacity for which the ARF LP bound is larger. In the Scene Selection Problem, the LP

values of various ARF were better than that of the SF. In the next proposition, we clarify the relationship

between the LP values of the SF and the ARF.

Proposition 3 For the Binary Clustering Problem, the LP value of ARF is at least as good as the LP value

of SF.

Proof. Consider the LP relaxations of SF and ARF. yyy ∈ C (x0) , aaa = aaa (yyy) , c = c (yyy) need to be replaced by

linear systems of equations: ByByBy = bbbx0, aaa = AyAyAy, and c = cccTyyy, respectively. ByByBy = bbbx0 provides the structural

constraints. The assignment matrix AAA has n rows (given as AAAi, i ∈ {1, . . . , n}) and the appropriate number of

columns according to the dimension of yyy. Finally, ccc is the cost vector of the structural variables yyy. Therefore

both SF and ARF can be written in terms of yyy, the SF with yyyk
SF , k ∈ {1, . . . , m} and the ARF with

yyyh
ARF , h ∈ {1, . . . , n}.

On the one hand, the LP relaxation of the SF reads as:

Min
∑

k∈{1,...,m}

cT yk
SF (15.1)

s.t.
∑

k∈{1,...,m}

Aiy
k
SF = 1 ∀i ∈ {1, . . . , n} (15.2)

ByByByk
SF = bbbxk

0 ∀k ∈ {1, . . . , m} (15.3)

0 ≤ AAAiyyy
k
SF ≤ 1 ∀k ∈ {1, . . . , m}, ∀i ∈ {1, . . . , n} (15.4)

0 ≤ xk
0 ≤ 1 ∀k ∈ {1, . . . , m} (15.5)

Constraints (15.2) are the assignment constraints. Constraints (15.3) define the structure of the clusters.

Constraints (15.4) are the relaxed conditions on the binary assignment variables and (15.5) are the relaxed

conditions on the binary use of each cluster.

On the other hand, using the same kind of linearization, the LP relaxation of the ARF reads as:

Min
∑

h∈{1,...,n}

cccTyyyh
ARF (16.1)

s.t.
∑

h∈{1,...,i}

AAAiyyy
h
ARF = 1 ∀i ∈ {1, . . . , n} (16.2)

∑

h∈{1,...,n}

vh
0 ≤ m (16.3)

ByByByh
ARF = bbbvh

0 ∀h ∈ {1, . . . , n} (16.4)

AAA1yyy
1
ARF = v1

0

AAAhyyyh
ARF = vh

0 , AAAiyyy
h
ARF = 0

∀h ∈ {2, . . . , n}, i ∈ {1, . . . , h − 1} (16.5)
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0 ≤ AAAiyyy
h
ARF ≤ 1 ∀h ∈ {1, . . . , n}, ∀i ∈ {1, . . . , n} (16.6)

0 ≤ vh
0 ≤ 1 ∀h ∈ {1, . . . , n} (16.7)

To prove that the LP value of the ARF is at least as good as the LP value of the SF, we have to show
that any LP solution (vh

0 , yyyh
ARF , h ∈ {1, . . . , n} to ARF is also feasible for the LP relaxation of SF. Since

∑

h∈{1,...,n} vh
0 ≤ m, it is easy to verify that

xk
0 =

∑

h∈{1,...,n} vh
0

m
,yyyk

SF =

∑

h∈{1,...,n} yyyh
ARF

m
, ∀k ∈ {1, . . . , m}

satisfy the three constraint sets of the LP relaxation of the SF. Indeed, all clusters in SF are identical.

Obviously 0 ≤ xk
0 ≤ 1, ∀k ∈ {1, . . . , m}. The structural constraints of SF are satisfied by simply summing

up the structural constraints of ARF and dividing by m:

BBB

(
∑

h∈{1,...,n} yyyh
ARF

m

)

= bbb

(
∑

h∈{1,...,n} vh
0

m

)

=⇒ BBByyyk
SF = bbbxk

0 , ∀k ∈ {1, . . . , m}.

The assignment constraints (15.2) of SF are satisfied because, ∀i ∈ {1, . . . , n}:

∑

k∈{1,...,m}

AAAiyyy
k
SF =

∑

k∈{1,...,m}

AAAi

(
∑

h∈{1,...,n} yyyh
ARF

m

)

=
1

m

∑

k∈{1,...,m}





∑

h∈{1,...,i}

AAAiyyy
h
ARF +

∑

h∈{i+1,...,n}

AAAiyyy
h
ARF





=
1

m

∑

k∈{1,...,m}

(1 + 0) = 1,

where, in the last equation, the first term is equal to one because of (16.2) while the second is zero because
of (16.5). To complete the proof, we need only to note that both objective functions are in fact the same:

∑

h∈{1,...,n}

cccTyyyh
ARF =

∑

k∈{1,...,m}

(
1

m

∑

h∈{1,...,n}

cccTyyyh
ARF ) =

∑

k∈{1,...,m}

(cccT
∑

h∈{1,...,n}

yyyh
ARF

m
) =

∑

k∈{1,...,m}

cccTyyyk
SF .

Note. In some applications, authors do not use the total set of the structural constraints but a relaxation

of it. In the VRPTW for example, many authors replace the elementary paths by paths from the origin

depot to the destination depot, allowing for multiple visits at the same customer, and enforcing feasibility of
the solution in a branch-and-bound search tree. In that case, the above result is still valid as long as both

SF and the ARF use the same set of structural constraints.

3.2 Dantzig-Wolfe Reformulations

Both the SF and the ARF have a block angular structure over the cluster indices, SF with m blocks and ARF

with n blocks. These formulations are well suited for the application of the Dantzig-Wolfe decomposition
principle.

We start with the reformulation of the SF, keeping the objective function (13.1) and the set of the assignment

constraints (13.2) in the master problem and the m cluster blocks (13.3)–(13.4) in the subproblems. Let

000 6= yyyppp, p ∈ P be the finite set of non-null cluster solutions to C (1) and let yyy0 = 000 be the null vector solution

to C (0). Define P0 = P ∪ {0} the set of indices. Let aaap = aaa
(

yyyp

)

, p ∈ P be the assignment vector and
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cp = c(yyyp) its cost. Any SF solution vector
(

xxxk, zk
)

, k ∈ {1, . . . , m}, can be expressed as a binary convex

combination of vectors (aaap, cp) , p ∈ P0, such that:

xxxk =
∑

p∈P0

aaapθ
k
p ,
∑

p∈P0

θk
p = 1, θk

p ∈ {0, 1} , p ∈ P0, and zk =
∑

p∈P0

cpθ
k
p .

This is the discrete version of the Dantzig-Wolfe decomposition in terms of the vector points (aaap, cp) , p ∈ P0,

see Lübbecke and Desrosiers (2005). Because binary and possibly continuous variables are present in the

subproblem but only binary variables appear in the master problem, we can impose the binary conditions

directly on the new θk
p variables (Jans 2010). The substitution in the SF provides the following SFDW

reformulation:

Min
∑

k∈{1,...,m}

∑

p∈P0

cpθ
k
p

s.t.
∑

k∈{1,...,m}

∑

p∈P0

aipθ
k
p = 1 ∀i ∈ {1, . . . , n}

∑

p∈P0

θk
p = 1 ∀k ∈ {1, . . . , m}

θk
p binary ∀k ∈ {1, . . . , m}, p ∈ P0

Because c0 = 0 and ai0 = 0, ∀i ∈ {1, . . . , n}, the null index variables can be removed and the convexity
constraints written as inequalities. Define variables θp =

∑

k∈{1,...,m} θk
p . Summing the convexity constraints

over k ∈ {1, . . . , m}, we have
∑

k∈{1,...,m}

∑

p∈P θk
p ≤ m ⇔

∑

p∈P θp ≤ m. The SFDW reformulation
becomes:

Min
∑

p∈P

cpθp (17.1)

s.t.
∑

p∈P

aipθp = 1 ∀i ∈ {1, . . . , n} (17.2)

∑

p∈P

θp ≤ m (17.3)

θp binary p ∈ P (17.4)

Consider now the Dantzig-Wolfe reformulation of the ARF. Observe first that the sets ASh (1) , h ∈ {1, . . . , n}
form a partition of S (1). Note also that the null solution (000,000, 0) is the only solution to S (0) and ASh (0) , h ∈
{1, . . . , n}. For h ∈ {1, . . . , n}, let

(

yyyp,aaap, cp

)

∈ S (1) , p ∈ P h be the set of non-empty solution points to

ASh (1). Note that P h, h ∈ {1, . . . , n} is a partition of the index set P , and therefore we have that
P = ∪hP h. As a consequence, the index sets are defined as follows:

P 1 =
{

1, 2, . . . ,
∣

∣P 1
∣

∣

}

, P 2 =
{∣

∣P 1
∣

∣+ 1,
∣

∣P 1
∣

∣+ 2, . . . ,
∣

∣P 1
∣

∣+
∣

∣P 2
∣

∣

}

, . . .

Define P h
0 = P h ∪ {0} to be the augmented index set. As before, any ARF solution vector

(

vvvh, wh
)

, h ∈
{1, . . . , n}, can be expressed as a binary convex combination of the vectors (aaap, cp) , p ∈ P h

0 such that:

vvvh =
∑

p∈P h

0

aaapθp,
∑

p∈P h

0

θp = 1. θp ∈ {0, 1} , p ∈ P h
0 , and wh =

∑

p∈P h

0

cpθp.

This is again the discrete version of the Dantzig-Wolfe decomposition, this time in terms of the vector points

(aaap, cp) , p ∈ P h
0 , h ∈ {1, . . . , n}. Making the substitution in (14.1)–(14.3) of the ARF, we obtain the

following ARFDW reformulation:

Min
∑

h∈{1,...,n}

∑

p∈P h

0

cpθp
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s.t.
∑

h∈{1,...,i}

∑

p∈P h

0

aipθp = 1 ∀i ∈ {1, . . . , n}

∑

h∈{1,...,n}

∑

p∈P h

0

ahpθp ≤ m

∑

p∈P h

0

θp = 1 ∀h ∈ {1, . . . , n}

θp binary ∀h ∈ {1, . . . , n}, p ∈ P h
0

Because c0 = 0 and ai0 = 0, i ∈ {1, . . . , n}, we can discard the null index variables in the objective function
and in the first two sets of constraints. We can also do it in the convexity constraints and replace them by

inequalities. However these inequality constraints are redundant because of the assignment constraints and

can simply be removed. Indeed, for all i ∈ {1, . . . , n}, we have

∑

h∈{1,...,i}

∑

p∈P h

aipθp =
∑

p∈P i

aipθp +
∑

h∈{1,...,i−1}

∑

p∈P h

aipθp

=
∑

p∈P i

θp +
∑

h∈{1,...,i−1}

∑

p∈P h

aipθp = 1 ⇒
∑

p∈P i

θp ≤ 1.

In the above relations, aip = 1, ∀p ∈ P i, i ∈ N , that is, object i ∈ N is by definition in the cluster identified

by its index number (see Figure 1). Using the same argument, we can simplify the constraint on the number
of clusters and the ARFDW reformulation becomes:

Min
∑

h∈{1,...,n}

∑

p∈P h

cpθp (18.1)

s.t.
∑

h∈{1,...,i}

∑

p∈P h

aipθp = 1 ∀i ∈ {1, . . . , n} (18.2)

∑

h∈{1,...,n}

∑

p∈P h

θp ≤ m (18.3)

θp binary ∀h ∈ {1, . . . , n} , p ∈ P h (18.4)

Proposition 4 For Binary Clustering Problems, the Dantzig-Wolfe reformulations SFDW and ARFDW of

both the SF and the ARF result in the same model.

Proof. Since P h, h ∈ {1, . . . , n} is a partition of the index set P , we have that P = ∪hP h and therefore,

(17.1), (17.3) and (17.4) can directly be written as (18.1), (18.3) and (18.4), respectively. To complete the

proof, we have to show the equivalence of the assignment constraints. Indeed, in (17.2), ∀i ∈ N ,

1 =
∑

p∈P

aipθp =
∑

h∈{1,...,i}

∑

p∈P h

aipθp +
∑

h∈{i+1,...,n}

∑

p∈P h

aipθp

where aip = 0, ∀p ∈ P h, h > i (see Figure 1). The second part of the right-hand side can be removed and

hence, both formulations result in the same model.

4 Conclusion

In this paper, we show that the main idea of the Asymmetric Representatives Formulation, as proposed by

Campêlo et al. (2008) for the Node Coloring Problem, can be applied to obtain symmetry-breaking formula-
tions for a large class of problems, namely the Binary Clustering Problems. Many well-known problems such

as bin packing, graph coloring, graph partitioning, vehicle routing with time windows, and min-cut clustering
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fall into this general class of Binary Clustering Problems. The LP relaxation of the ARF is always as least

as good as the LP relaxation of the Symmetric Formulation.

The main contribution of this paper is that both the Symmetric and Asymmetric formulations for Binary Clus-

tering problems result in the same symmetry-breaking model when we apply Dantzig-Wolfe decomposition.
This opens up avenues for better branch-and-price algorithms. Even though for binary integer programming

problems, the binary conditions can be imposed on the new variables in a decomposed reformulation, in

practice the branching is done on the original variables (see e.g. Barnhart et al 1998). When branching on

the original variables in the ARF, we avoid the symmetry difficulties during the branch-and-price algorithm,
whereas the symmetry is still present when branching on the original variables in the SF. Specifically, it will

be worthwhile to investigate whether ARF performs much better than the SF in a practical implementation

of a branch-and-price algorithm based on the decomposition.

Another research avenue is related to the observation that the input order can affect the LP value for the

ARF. Even though ARFDW is a stronger formulation than ARF, it would be interesting to investigate if
and how we can exploit and optimize the input order.

Finally we could investigate if these results can be generalized to a larger class of problems, namely the

Integer Clustering Problems.
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