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Abstract

The population value of coefficients of correlation based on ranks depends only on the copula under-
lying the true distribution. We consider data sets that share the same dependence structure, but present
different margins. For instance, data may be expressed in different currencies or measured by indices
that cannot be compared across populations. A mixture of empirical copulas is built, yielding weighted
coefficients of correlation. The consistency of the estimates and their asymptotic distributions are derived
for scalar weights. We also consider the case where data-based weights detect adaptively the similarities
between the copulas underlying each population, with the idea of making a compromise between bias and
variance. Simulations are used to explore the finite sample behavior of these weighted methods.

Résumé

En tant que paramètre de population, les cœfficients de corrélation basés sur les rangs dépendent
seulement de la copule sous-jacente à la distribution des données. Nous considérons le paradigme où des
échantillons proviennent de populations partageant une même structure de dépendance, mais affublées
de lois marginales univariées différentes. Par exemple, les données pourraient être mesurées en devises
différentes, ou à l’aide d’indices qui ne peuvent être comparés d’un échantillon à l’autre. Un mélange de
copules empiriques est construit et des cœfficients de corrélation pondérés sont développés. La convergence
et la distribution asymptotique de ces estimateurs sont déterminées sous l’hypothèse d’une pondération
scalaire. Nous étudions aussi des poids utilisant les données pour s’adapter aux ressemblances entre les
copules de chaque échantillon afin d’établir un compromis entre le biais et la variance. Des simulations
sont utilisées pour explorer la performance de ces méthodes pondérées avec des échantillons de taille finie.
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for his guidance and support in discovering the weighted likelihood and in developing these results. For
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1 Introduction

To make meaningful comparisons comparable scales are needed. When the dependence structure is of prime
interest, comparable scales are synonym of common marginal distributions. A natural yet arbitrary choice

consists in turning all the margins into uniform distributions, yielding what we call a copula.

Let X ∈ IR
p be multivariate random vectors whose distribution follows the cumulative distribution func-

tion F (x) with univariate margins Gi(xi), i = 1, . . . , p. For simplicity, we assume that F and its margins are

continuous. The Sklar (1959) theorem shows that there exist a unique function C(u) : [0, 1]p → [0, 1], called
copula, such that

F (x) = C{G1(x1), . . . , Gp(xp)}.
The function C(u), a multivariate cumulative distribution function (CDF) with uniform univariate margins,

contains all the information about the dependence structure of F .

Empirically, ranks allow to estimate a copula without modeling the marginal distributions of the data. For
bivariate data (Xi1, Xi2), the rank of Xi1 within the list of X•1 is denoted Ri1 and similarly for Ri2, forming

the vectors of ranks Ri = [Ri1, Ri2]
T. The empirical copula introduced by Deheuvels (1979) allocates equal

weights to rescaled vectors of ranks, e.g. Yi = Ri/n. The asymptotic normality of the empirical copula was

recently derived independently by different authors including Fermanian et al. (2004) and Tsukahara (2005).

Coefficients of correlation such as Spearman’s ρ and Kendall’s τ are based on ranks. Their population
values depend only on the copula underlying the distribution of the data (see Table 1 for examples).

Samples of data may share the same dependence structure, but feature different marginal distributions.

Consider for instance the following scenarios:

1. the dependence between skills in English and Mathematics is of interest, but grades are normalized

within groups;

2. the measurements of interest come from different sources (e.g. labs) and are not calibrated to make

them comparable across studies;

3. the measurements are made using different units that cannot be transformed easily (e.g. different
currencies or scales);

4. only ranks are available from the data sets.

We develop weighted methods that can handle such data. Suppose that we have samples from m sources

of data where ranks are computed only within each sample, yielding m empirical copulas or m coefficients
of correlations. We define weighted mixtures of these objects. We first propose scalar weights for the cases

where all data are assumed to share the same copula. In the case where copulas may differ, data-based

weights allow to use all the data, making a compromise between bias and precision.

Background definitions and notation are presented in Section 2. Weighted empirical copulas are introduced

in Section 3. Weighted versions of the coefficients of correlations based on ranks are presented in Section 4.
Finally, Section 5 presents simulation results to illustrate the use of these weighted methods and explore their

performance on finite samples.

2 Background and Notation

Suppose that p-dimensional data are available from m different populations believed to have similar de-

pendence structures (i.e. similar copulas). For any fixed k ∈ IN, we observe nik data points from Popula-
tion i ∈ {1, . . . , m}. The index k is used to monitor increasing sample sizes when studying asymptotic results.

Explicitly,

Xi1, . . . ,Xinik

iid∼ Fi

are observed, hence a total of Nk =
∑m

i=1 nik data, where Xij = [Xij1, . . . , Xijp]T is a vector in p dimensions

and Fi are continuous. The sample sizes nik are assumed to be non-decreasing with k. By Sklar’s (1959)
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Theorem, there exists a unique copula underlying the distribution Fi; we denote it by Ci(u), where u =

[u1, . . . , up]
T is a vector in [0, 1]p. That unique copula is a cumulative distribution function with uniform

margins such that Fi(x) = Ci {Gi1(x1), . . . , Gip(xp)} where Gi1, . . . , Gip are the marginal distributions of Fi.

Let Rk
ij = [Rk

ij1, . . . , R
k
ijp]T be the ranks associated with the vectors Xij , j = 1, . . . , nik. For fixed i and

ℓ, the list of values Xi1ℓ, . . . , Xinikℓ is sorted and Rk
ijℓ is the rank of Xijℓ in that list. Since Fi are continuous,

ties cannot occur with probability 1.

Empirical Copula

The empirical copula, uses ranks to estimate Ci:

Ĉik(u) =
1

nik

nik∑

j=1

p∏

ℓ=1

11

(
Rk

ijℓ

nik

≤ uℓ

)

for u = [u1, . . . , up]
T. The indicator variable 11(•) is equal to one if all the elements of its argument are true

and equal to 0 otherwise. The empirical copula puts a weight of 1/nik on the points of the grid

{
1

nik

,
2

nik

, . . . , 1

}
× · · · ×

{
1

nik

,
2

nik

, . . . , 1

}

corresponding to an observed combination of ranks. There is exactly one such point in every (p − 1)-
dimensional slice of the grid (rows and columns in 2 dimensions). Consequently, the univariate margins of

the empirical copula Ĉik are uniformly distributed on the points {1/nik, 2/nik, . . . , 1}.

Deheuvels (1979) shows that

√
nik

log log nik

sup
u∈[0,1]p

|Ĉik(u) − Ci(u)| → 0 (1)

almost surely as k → ∞ (since nik → ∞ then). Fermanian et al. (2004) show that
√

nik{Ĉik(u) − Ci(u)}
converges weakly to a Brownian sheet whose variance depends on Ci and its partial first-order derivatives.

Although they hold for an arbitrary number of dimensions, the results of Fermanian et al. (2004) are presented

for bivariate copulas only. Tsukahara (2005) credits Fermanian et al. (2004) for the discovery and expresses

the same results in p dimensions.

Remark 2.1 Let Ui(u) be a p-dimensional centered Gaussian random field with covariance function Ci(u ∧
v) − Ci(u)Ci(v), where ∧ is the component-wise minimum. Such a random field is called a p-dimensional

pinned Ci-Brownian sheet.

Theorem 2.1 (Tsukahara (2005)) Assume that Ci(u) is differentiable with continuous partial derivatives

∂Ci(u)/∂uℓ for ℓ = 1, . . . , p and let [1, uℓ,1]T represent a vector of ones, except for the ℓth element who is
equal to the ℓth element of u. Then as k → ∞, the random variable

√
nik{Ĉik(u)− Ci(u)} converges weakly

to the random field Ui(u) −∑p

ℓ=1{(∂/∂uℓ)Ci(u)}Ui([1, uℓ,1]T).

Coefficients of Correlation Based on Ranks

For bivariate data, coefficients of correlation based on ranks measure concordance of the data. Table 1

contains some examples of estimates and their population values. A simplified notation is used in the tables
where for a fixed population i and a fixed k, we write n = nik, Ĉ(u1, u2) ≡ Ĉik(u), (Rj , Sj) = Rk

ij and

C(u, v) = Ci([u, v]T). That notation is the most commonly seen in the literature.

More details on Spearman’s ρ, Kendall’s τ , Gini’s γ and Blomqvist’s β can be found in Nelsen (1999).

Blest’s coefficients were first introduced by Blest (2000), then further developed by Genest & Plante (2003).

Pinto da Costa & Soares (2005) studied the same coefficients of correlation and rediscovered independently
some of the results published by Genest & Plante (2003).
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The coefficients in Table 1 are asymptotically Normal (with the possible exception of Gini’s γ whose

asymptotic distribution as a coefficient of correlation seems unknown). This property can be used to build

confidence intervals or to test for independence.

3 Mixtures of Empirical Copulas

Let λk = [λ1k, . . . , λmk]T be nonnegative weights such that
∑m

i=1 λik = 1 for all k ∈ IN and let

Ĉλk
(u) =

m∑

i=1

λikĈik(u)

be a mixture of the empirical copulas based on the m available samples.

3.1 Scalar Weights

We first consider the paradigm where the m populations are known (or assumed) to share a common depen-
dence structure, i.e. Ci(u) ≡ C(u), but their marginal distributions are not comparable.

The choice λik = nik/Nk is of special interest as it will allocate an equal weight to each datum. However,

we consider arbitrary scalar weights, as long as each datum’s contribution tends to 0 as k → ∞, as per

Assumption 3.1.

Assumption 3.1 To ensure that all sample sizes increase at a similar rate, we assume that lim
k

sup
Nk

nik

< ∞

for i = 1, . . . , m. This also implies that Ak =

m∑

i=1

λ2
ikNk

nik

is finite for all k.

The estimate Ĉλk
(u) is consistent, but its rate of convergence is controlled by the smallest of the m

samples.

Theorem 3.1
√

ni′
k
k/ log log ni′

k
k sup

u∈[0,1]p |Ĉλk
(u) − C(u)| → 0 almost surely as k → ∞ where i′k =

argmini=1,...,m nik.

Since each of the Ĉik(u) are defined on independent samples, the asymptotic distribution of Ĉλk
(u) can

easily be derived from Theorem 2.1.

Theorem 3.2 The random variable
√

Nk/Ak

{
Ĉλk

(u) − C(u)
}

converges weakly to the random field U(u)−
∑p

ℓ=1{(∂/∂uℓ)C(u)}U([1, uℓ,1]T) as k → ∞ where U(u) is a random field with covariance structure C(u ∧
v) − C(u)C(v).

Remark 3.1 The choice of weights has an effect on the asymptotic distribution of the copula. Simple calculus

may be used to show that λik = nik/Nk minimizes Ak, hence yielding the least variable estimate of Ĉλk
(u).

This choice corresponds to allocating an equal weight to each datum and yields Ak = 1.

Remark 3.2 Let β̂λk
=
∑m

i=1 λikβ̂ik = 4Ĉλk(1/2, 1/2)−1 be the weighted Blomqvist coefficient. As k → ∞,√
Nk/Ak(β̂λk

−β) converges weakly to a centered Normal variable with variance −β2+{4(d1 − 1)(d2 − 1) − 2}
β +

{
(2d1 − 1)2 + (2d2 − 1)2 + 1

}
where di = (∂/∂ui)C(u1, u2)|u1=u2=

1

2

. Under the assumption of indepen-

dence, β = 0 and the variance is 1.

Note that our asymptotic paradigm involves a fixed number of populations whose sample sizes increase

to ∞. The convergence would not hold for an infinite number of small populations. For instance, a mixture
based on infinitely many samples of size 10 will still have Ĉ(1/20, 1/20) = 0.
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3.2 Adaptive Weights

Assuming that the dependence structure underlying the data is identical in all the samples may not always

be appropriate. This does not mean that the samples do not contain relevant information.

In this section, we adopt a paradigm similar to Wang (2001) and Wang & Zidek (2005) in the context of the

weighted likelihood. We suppose that one of the populations (Population 1) is identified as having the target

dependence structure. The other samples are likely to feature a similar structure, but their copula may not

be identical. In this context, we build adaptive weights that use the data to determine the weight allocated

to each sample, trying to compromise between the bias and the reduced variance brought by additional data.

Let Ci(u) be the copula underlying the distribution of Xij . We do not assume that the Ci are identical,

but we do not suppose that they are different either. Let also Mk be a discrete probability measure allocating

a weight of 1/np
1k to each point of the grid Gk = {1/n1k, 2/n1k, . . . , 1} × · · · × {1/n1k, 2/n1k, . . . , 1}. The

results of this section will hold for all adaptive weights µk = [µ1k, . . . , µmk]T that respect Assumption 3.2.

Adaptive weights are denoted µk to avoid confusion with the scalar weights in the previous section. The
adaptively weighted empirical copula is thus written as Cµk

.

Assumption 3.2
∫
{Ĉ1k(u) − Ĉµk

(u)}2 dMk(u) → 0 almost surely as k → ∞.

Theorem 3.3 We have uniform convergence of the adaptively weighted empirical copula:

sup
u∈[0,1]p

∣∣∣Ĉµk
(u) − C1(u)

∣∣∣→ 0

almost surely as k → ∞.

Remark 3.3 Let β̂µk
=
∑m

i=1 µikβ̂ik be the adaptively weighted Blomqvist coefficient. Then, β̂µk
→ β1

almost surely as k → ∞.

Lemma 3.1 If g(u) is a bounded function, then

∫
g(u) dĈµk

(u) = E{g(Uk)} → E{g(U)} =

∫
g(u) dC1(u)

almost surely as k → ∞.

Plante (2007, 2008) clarifies the ties between the weighted likelihood and mixtures of empirical distribu-
tions and suggests a data-based nonparametric criterion to determine the weight that should be allocated

to each population. We extend the so-called Minimum Averaged Mean Square Error (MAMSE) weights to

copulas.

Let us define

Pk(λ) =

∫ [∣∣∣Ĉ1k(u) − Ĉλk
(u)
∣∣∣
2

+

m∑

i=1

λ2
i v̂ar

{
Ĉik(u)

}]
dMk(u). (2)

The variance term in Pk(λ) plays the role of a penalty that fosters using data from all the populations rather

than limiting the inference to the population of interest. Since the asymptotic variance of the empirical

copula (see Theorem 2.1) depends on the true copula Ci(u) and its derivatives, we consider a very rough
estimate thereof given by

v̂ar{Ĉik(u)} ≈ ṽar{Ĉik(u)} =
1

nik

Ĉik(u){1 − Ĉik(u)}, (3)

which corresponds to the only term of the asymptotic variance of an empirical copula that does not involve a

derivative of Ci. The value of λ minimizing the objective function Pk(λ) defined in (2) with the substitution

(3) is called the MAMSE weights.
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Remark 3.4 The MAMSE weights respect Assumption 3.2. Indeed, let λ = [1, 0, . . . , 0]T be a possibly

suboptimal choice of weights for Pk, and µk denote the MAMSE weights, then

∫ {
Ĉ1k(u) − Ĉµk

(u)
}2

dMk(u) ≤ Pk{µk} ≤ Pk(λ) =

∫
ṽar
{
Ĉ1k(u)

}
dMk(u) ≤ 1

4n1k

.

The algorithm for the MAMSE weights proposed by Plante (2008) can be used in the current context

with copulas. Details specific to copulas may be found in Plante (2007).

Note that the data-dependence of the weights causes serious complications for the study of the asymptotic

distribution of Ĉµk
. Although Ĉµk

converges uniformly to the desired target, the weights µk may remain

random for an arbitrarily large k if a mixture of the true C2, . . . , Cm is identical to C1. This behaviour is

observed with the MAMSE weights. A short discussion thereof is found in Plante (2008, 2009). Due to these
complications, the study of the asymptotic distribution of Ĉµk

is left to future work. For the time being,

simulations or resampling methods can be used to determine confidence intervals or proceed with hypothesis

testing.

4 Weighted Coefficients of Correlation

Due to its special formulation, we must treat Kendall’s τ separately from the other coefficients of correlation

who share a common linear form.

4.1 Linear forms

Most of the coefficients in Table 1 take the form

κ̂ik = ank

∫
g(u) dĈik(u) + bnk

(4)

that estimate κi = a
∫

g(u) dCi(u)+b where g(u) is a continuous bounded function on [0, 1]2. The coefficients
ank

→ a and bnk
→ b as nk → ∞ are chosen to ensure that κ̂ik ∈ [−1, 1] for all sample sizes nik. Moreover, the

values ±1 occur only for perfect concordance or discordance, i.e. when the ranks are identical (Rk
ij1 = Rk

ij2)

or antithetic (Rk
ij1 = nik + 1 − Rk

ij2).

Well known results by Ruymgaart, Shorack & van Zwet (1972) and Ruymgaart (1974) specify the asymp-

totic distribution of ρ, ν, ν̄, ξ and ξ̄. See Genest & Plante (2003) for some illustrations.

Remark 4.1 For scalar weights, it is clear that the random variable
√

Nk/Ak(κ̂λk
− κ) converges weakly to

a Normal variate with mean 0 and the same asymptotic variance as
√

nik(κ̂ik − κ) when k → ∞.

Coefficients of correlation are often used as a test of independence. Suppose that the alternative hypothesis

is expressed through a parameter θ for which θ = 0 yields independence. The asymptotic relative efficiency

(ARE) of the two tests represent the ratio of the sample sizes needed by both tests to achieve the same

power. We find from Lehmann (1998), page 375, that

ARE(Tκ, Tκ∗) =
nκ∗

nκ

=
σ2

κ∗

σ2
κ

(
κ′

0

κ∗
0
′

)2

where Tκ is the independence test based on κ, σ2
κ the asymptotic variance of κ̂, κ′

0 = (∂/∂θ)κ(θ)|θ=0 and

similarly for κ∗.

Remark 4.2 We have ARE(Tκ̂1k
, Tκ̂λk

) = Akn1k/Nk. If the margins were comparable, we could pool the Nk

data together, calculate κPk and then ARE(Tκ̂Pk
, Tκ̂λk

) = Ak. Recall that we have Ak = 1 when λi = nik/Nk,
which means that there is no loss of power asymptotically in that case as far as the ARE is concerned.

Replacing the copula by its empirical estimate in Table 1 yields an estimate of the corresponding coefficient.

The expressions thus obtained typically differ slightly from the usual estimates based on ranks by an amount
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that converges to 0 as the sample size goes to infinity. In particular, the bounds may not be exactly ±1

for fixed sample sizes, but always converge to these limits. The coefficient thus obtained is asymptotically

equivalent to its corresponding usual estimate. This combined with Theorem 3.1 implies Theorem 4.1.

Theorem 4.1 Let κ represent any of ρ, γ, ν, ν̄, ξ or ξ̄ and κ̂µk
=
∑m

i=1 µikκ̂ik. Then, κ̂µk
→ κ1 almost

surely as k → ∞.

4.2 Kendall’s τ

Let us first consider the estimate τ̂λk
=
∑m

i=1 λiτ̂ik. Since τ̂ik is a U -statistics,
√

nik(τ̂ik −τ) is asymptotically

distributed as a centered Normal variable, hence
√

Nk/Ak(τ̂λk
− τ) converges weakly to a Normal when the

samples share a common copula and scalar weights are used.

Adaptive weights, however, are used when the underlying copula may differ between samples. As a

consequence of the lack of linearity of τ , τ̂µk
may not be consistent.

Remark 4.3 Consider the Fréchet family of copula from Example 5.3 in Nelsen (1999), page 129. C1 =

Cα,β = αM + (1 − α − β)Π + βW where M = C2, Π = C3 and W = C4 represent respectively the Fréchet

bounds of perfect concordance, independence and perfect discordance. In this situation, the adaptive weights

will find µk such that Cµk
→ C1, but the share of C1 compared to C2, C3 and C4 may remain random even

for large k. Unfortunately, τ1 = (α − β)(α + β + 2)/3 is not equal to ατM + (1 − α − β)τΠ + βτW = α − β,

meaning that τ̂µk
will not be consistent.

We therefore construct an nonlinear definition for the weighted Kendall’s τ that will be consistent. The

empirical version of Kendall’s τ in Table 1 can be rewritten

τ̂ik =
4n

n − 1

∫
Ĉik(u) dĈik(u) −

(
1 +

4

n − 1

)
, (5)

which shows that Kendall’s τ is asymptotically equivalent to replacing the copula by its empirical counterpart

in the population value of τ . The functional form of τ is based on
∫

C(u) dC(u), hence the lack of linearity.

If we estimate the copula by a weighted mixture of empirical copulas, we get

τ̂ ′
λk

∆
= 4

∫
Ĉλk

(u) dĈλk(u) − 1 =

m∑

i=1

m∑

j=1

λikλjk

{
4

∫
Ĉik(u) dĈjk(u) − 1

}
= λT

k T̂ ′
kλk

where T̂ ′
k is a m × m matrix with [T̂ ′

k ]ij = 4
∫

Ĉik(u) dĈjk(u) − 1.

To facilitate their interpretation, coefficients of correlation are usually built to have a null expectation

under the hypothesis of independence. In addition, under perfect negative or positive dependence, the
coefficients take values -1 and 1 respectively. To preserve this property as best as possible, let us define the

asymptotically equivalent expression

[T̂ ∗
k ]ij =

1

Nijk

nik∑

s=1

njk∑

t=1

sign

(
Rk

is

nik

−
Rk

jt

njk

)
sign

(
Sk

is

nik

−
Sk

jt

njk

)

= 4
niknjk

Nijk

∫
Ĉjk(u) dĈik(u) + O(nik) + O(njk)

+
niknjk

Nijk

[
1 − 2

∫ {
Ĉjk(u, 1) + Ĉjk(1, v)

}
dĈik(u, v)

]

where

Nijk =

nik∑

s=1

njk∑

t=1

11

(
Rk

is

nik

6=
Rk

jt

njk

)
11

(
Sk

is

nik

6=
Sk

jt

njk

)

is such that niknjk −min(nik, njk) ≤ Nijk ≤ niknjk, hence the ratio niknjk/Nijk is asymptotically equivalent

to 1. The definition above is chosen so that [T̂ ∗
k ]ii = τ̂ik.
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We look at the values of [T̂ ∗
k ]ij in some special cases. Under the assumption of independence, E([T̂ ∗

k ]ij) =

(niknjk/Nijk)(1/njk − 1/nik)2. When the ranks are in perfect positive dependence, [T̂ ∗
k ]ij = 1. When the

ranks are antithetic, we rather get

−1 +
2

Nijk

nik∑

s=1

njk∑

t=1

11

{
snjk

nik

< t <
(s + 1)njk

nik

− 1

}
+ 11

{
(s + 1)njk

nik

− 1 < t <
snjk

nik

}
.

These three values depend only on the values of nik and njk. If nik = njk, we get the usual -1, 0, 1 values.
Unfortunately however, E([T̂ ∗

k ]ij) is not in general the mid-point of the values of T̂ ∗
k under perfect dependence.

As a consequence, even a linear transformation cannot make τ̂∗
λk

= λT
k T̂ ∗

k λk fit the magical values of -1, 0

and 1 appropriately, contrarily to the inconsistent τ̂λk
who preserves this property.

Theorem 4.2 τ̂∗
λk

→ τ and τ̂∗
µk

→ τ1 almost surely as k → ∞.

The asymptotic normality of Kendall’s τ can be derived from the theory on U -statistics. Unfortunately

τ∗
λk

does not fall within this paradigm and its asymptotic distribution remains to be derived.

5 Simulations

Simulations are used to explore the finite-sample performances of the weighted methods we propose under

different scenarios. Scalar weights that are proportional to the sample sizes are considered as well as the
adaptive MAMSE weights. Note that a function to compute the MAMSE weights is available in the library

MAMSE available from the Comprehensive R Archive Network.

For each table, a small bootstrap study is used to evaluate the error due to simulation. Unless it is

otherwise stated, the standard deviation of that error is less than the last significant digit shown in the
tables.

5.1 Common copula

We first consider a scenario where data comes from a common bivariate copula: a Clayton distribution (see
Clayton (1978) or Nelsen (1999)) whose parameter is set to yield a Spearman correlation of ρ ∈ {0.1, 0.5, 0.9}.

A total of 5n data points are available as samples of equal sizes from 5 populations. It is assumed that

their marginal distributions are not comparable, hence the data cannot be pooled. The weighted methods

allow using all of the data, rather than relying only on one sample of size n. For each value of ρ and
n ∈ {10, 20, 50}, 10000 sets of samples are simulated.

To evaluate the precision of the weighted empirical copula Ĉ∗, Table 2 shows the ratio 100
∫
|Ĉ1(u) −

C(u)| du/
∫
|Ĉ∗(u) − C(u)| du for both the scalar and the MAMSE weights. Values over 100 favor the

weighted method. The empirical copula based on one population of size n serves as the basis of comparison

and is denoted Ĉ1(u). In practice, pooling the data would not be possible, but in a simulation framework,

these results are shown for comparison purposes. Note that the standard error due to simulation can reach

1.3 units in Table 2

The pooled estimate provides estimates about 2.25 times more accurate than using a single of the five

populations. This number corresponds approximately to
√

5, the value that would be expected theoretically.

Using scalar weights yields exactly the same performance, hence when the data cannot be pooled, using

Ĉλ(u) allows to use all of the data with virtually no loss. Not surprisingly, the MAMSE weights perform
slightly worse: estimating weights from the data has a cost. The magnitude of the difference is however

rather small.

Weighted coefficients of correlation are calculated on the same samples described above. Their perfor-

mance is measured by ratios such as 100MSE(ρ̂1)/MSE(ρ̂λ). The results appear in Table 3; values above 100
favor the weighted methods. For the pooled estimates, the standard deviation of the error due to simulation

can reach 30, for all other cases, it is less than 10, hence the rounding.
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Table 2: Performance of the weighted methods as measured by 100
∫
|Ĉ1(u)−C(u)| du/

∫
|Ĉ∗(u)−C(u)| du.

Five samples of size n are simulated from a Clayton distribution with Spearman’s correlation ρ. Each scenario
is repeated 10000 times.

ρ = 0.1 ρ = 0.5 ρ = 0.9
n = 10 20 50 n = 10 20 50 n = 10 20 50

Pooled 227 225 224 228 224 224 226 226 224
Scalar weights 227 225 224 228 224 224 226 226 224

MAMSE weights 210 209 208 214 212 212 223 223 222

Table 3: Performance of different weighted coefficients of correlation as measured by a ratio of the kind
100 MSE(ρ̂1)/MSE(ρ̂λ). Five samples of size n are simulated from a Clayton distribution with Spearman’s
correlation ρ. Each scenario is repeated 10000 times.

ρ = 0.1 ρ = 0.5 ρ = 0.9
n = 10 20 50 n = 10 20 50 n = 10 20 50

ρ pooled 540 510 490 600 550 510 910 750 580
ρ̂λ 500 480 480 470 480 480 320 360 400
ρ̂µ 320 330 330 320 350 370 300 350 390

τ pooled 630 560 510 670 580 520 750 650 550
τ̂λ 500 480 490 510 500 500 490 500 490
τ̂µ 330 330 330 360 370 380 460 480 480
τ̂∗
λ 430 450 470 420 450 470 300 340 400

τ̂∗
µ 290 310 320 310 340 370 290 330 390

The pooled methods should theoretically yield a mean squared error five times smaller than using one

population. The deviance from that number may be explained in part by the larger simulation error, but

also by the structure implied by the use of ranks. As a matter of fact, the improvement is closer to 500 for

larger sample size where the effect of the ranks start fading.

Using scalar weights allows to use the information from all the samples when their margins are not

comparable. In most cases, the improvement is by a factor of 5. A notable exception arises for ρ̂λ when

ρ = 0.9 and could be caused by the collapsing of the data points to a line as we approach the limit case of

ρ = 1: n points may not align as nicely as 5n points. The quadratic form τ̂∗
λ does not perform as well as

expected. The complexity of its estimation which involves estimating many terms of the type
∫

Ĉi dĈj may
have an impact.

The coefficients that use the MAMSE weights feature a mean squared error about three times smaller

than that obtained when using only one sample of size n. The cost of estimating the weights seems more

important compared to the results obtained in Table 2, but the improvement is still substantial.

Overall, all weighted methods perform very well, allowing to recover information that would otherwise be
lost.

5.2 Different correlations

We now turn to a situation where the hypothesis on the similarities between the copulas fails. We pro-

pose two scenarios where copulas from a same family have different correlations. Equal samples of size

n ∈ {20, 50, 100, 250} are drawn from each.

Scenario A: ρ = 0 .35 , 0.25, 0.30, 0.40 and 0.45 respectively

Scenario B: ρ = 0 .25 , 0.30, 0.35, 0.40 and 0.45 respectively
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Table 4: Performance of the weighted Spearman’s ρ with scalar or adaptive weights as measured by a ratio of
the kind 100 MSE(ρ̂1)/MSE(ρ̂λ). Five samples of size n are simulated from a Clayton, a Gumbel-Hougaard,
a Frank or a Normal distribution. Their true correlations correspond to one of two scenarios. Averages over
obtained from 10000 repetitions.

Scalar Weights MAMSE Weights
Family n =20 50 100 250 n =20 50 100 250
Normal 530 490 500 490 330 330 310 270
Clayton 530 490 500 490 330 330 310 270

Scenario A
Frank 500 500 500 500 340 330 310 270

Gumbel 490 510 510 500 330 330 310 270
Normal 310 160 80 30 280 200 130 70
Clayton 310 150 80 40 280 200 130 80

Scenario B
Frank 310 150 80 30 280 200 130 80

Gumbel 310 160 80 30 290 200 140 80

Population 1 (whose true correlation is in italic above) is deemed of prime interest. Different families

of copula are used: Clayton, Gumbel-Hougaard, Frank and Normal. In each case, 10000 repetitions are
produced. Table 4 displays the ratio of the mean squared error for estimating the correlation of Population 1.

Under Scenario A, the correlation of the population of interest sits squarely within the range of correla-

tions. It is thus not surprising to see improvements of a magnitude similar to that of Section 5.1.

Scenario B represents a case where intuition suggests to use adaptive weights rather than scalar weights.

While the scalar weights perform 10% better than the MAMSE weights for n = 20, the MAMSE weights are
to be favored for all other sample sizes. Note however that for n = 250, the weighted methods perform worse

than the estimate based only on the population of interest. Under that scenario, the improved variance does

not compensate for the bias caused by using populations with the wrong correlation.

Overall, the use of a weighted method allows to use information which would otherwise be discarded,

yielding once more appreciable gains under different circumstances.

5.3 Tests of independence

Finally, we use the weighted coefficients of correlation as statistics to test independence and study the power

of such tests.

Five populations of equal size n ∈ {10, 20, 50} are simulated from a Clayton copula. Different values of ρ

are used to produce smooth power plots. For each such values, 5000 repetitions are produced.

Some coefficients are asymptotically Normal. Their test of independence is then based on that approxi-

mation since this is the approach that would likely be used in practice. More specifically, with a sample of
size n, Spearman’s ρ is compared to a centered Normal with variance 1/(n−1) and Kendall’s τ to a centered

Normal with variance (4n + 10)/{9n(n − 1)}. For a weighted coefficient based on five populations of equal

sizes n, the variances above are simply divided by 5.

The asymptotic distribution of the MAMSE weighted coefficients of correlation are not known. That of

τ̂∗
λ remains to be determined as well. In these cases, a simulation study based on 100000 repetitions was

used to determine the sampling distributions under the hypothesis of independence. Critical values appear

in Table 5: the hypothesis of independence is rejected at the 5% level when an estimated coefficient does not

belong to the interval [LB, UL].

Figure 1 shows the power of a test of independence based on different coefficients of correlation. The

dashed line shows the power of a test based only on one population of size n. Even though such an operation
would not be possible in practice, the coefficients are also calculated on the pooled data and drawn as a plain

line. The dotted line shows the power of a test based on a coefficient with scalar weights proportional to the
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Table 5: Critical values for a 5% level test of independence using different weighted coefficients of correlation
whose asymptotic distribution is unknown. These values are based on a large simulation with 100000 repeti-
tions and are valid when 5 samples of equal size n are used. Other situations can be simulated easily in the
same fashion.

n = 10 n = 20 n = 50
Coefficient LB UB LB UB LB UB

τ̂∗
λ -0.233 0.233 -0.147 0.147 -0.087 0.087

ρ̂µ -0.384 0.336 -0.262 0.235 -0.160 0.150
τ̂∗
µ -0.304 0.268 -0.191 0.171 -0.110 0.104

τ̂µ -0.286 0.251 -0.186 0.165 -0.109 0.102

sample sizes. The mixed (dashes and dots) line gives the power of a test based on the MAMSE-weighted

coefficients.

In all cases, the weighted methods offer an appreciable improvement over the use of only one sample of

size n. The scalar weights offer performances very close to the pooled data, which is expected since their

ARE is 1. Very little information is lost. The MAMSE weighted coefficient offers a slightly less powerful test
which is nonetheless clearly superior to the option of using only n data.

Let us now consider two scenario where the copulas underlying each distribution differ. Samples of size

20 come from 5 populations. The x-axis of the power graphs below correspond to Spearman’s correlation in

Population 1. Under Scenario A, the other four populations have a correlation of 0.1. Under Scenario B,

Population 2 has a correlation of 0.1, but the other 3 are independent (ρ = 0). The power plots are shown
in the last two rows of Figure 1.

Scenarios A and B suppose that we use data that does not follow the same distribution as the target.

The tests based on pooled data or on scalar weights do not behave well under such situations, displaying

very low power. On the other hand, the test based on the MAMSE weights adapts to the discrepancies and

features a power similar to a test based on Population 1 only. It thus offers a robust alternative akin to the
best available choice, even though we do not know what that choice is in a given situation.

6 Conclusion

Suppose that data comes from m populations whose distributions share a common copula. Statistics based

on ranks can be calculated on each sample even if they have different margins. Mixing the samples with

scalar weights yields empirical estimates of the copula and weighted coefficients of correlation that were shown
consistent and asymptotically Normal.

In the case where copulas may differ from a population to another, we propose adaptive weights, such as

the MAMSE weights, that use the data to evaluate the discrepancies between the populations. The weighted

empirical copula and weighted coefficients of correlation based on adaptive weights are consistent, but we

do not know their limiting distribution. The MAMSE weights are not optimized for performance, but they
prove that it is possible to weight copulas adaptively to obtain consistent estimates that offer improved

performance.

Simulations shown that when the true underlying copula is the same in all populations, using scalar

weights yields performances nearly as good as pooling the data. The MAMSE weights are slightly worse,

but feature nonetheless an appreciable improvement compared to the dismissing of some data. When the
true copula in the m populations differ, the scalar weights can fail badly while the adaptive MAMSE weights

perform similarly to using the only reliable sample. The adaptive weights thus offer improved performance

as well as robustness to discrepancies between populations.
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Now that the concept is shown to work well, optimizing the performance of MAMSE-like weights could

lead to better estimates. We leave this to future research and are indeed looking forward to applications of

the weighted methods in case studies and its development in a time series context.

Figure 1: Power of a test of independence based on different coefficient of correlations. The three columns
of plots are respectively for ρ, τ and τ∗. Equal samples of size n are drawn from 5 populations distributed
as a Clayton distribution with correlation ρ. For the last two rows, Equal samples of size n = 20 are drawn
from 5 populations distributed as a Clayton distribution with correlations based on two different scenarios.



Les Cahiers du GERAD G–2010–41 13

Appendix

Mathematical proofs are presented below. Different Lemmas appear in the Appendix as well to make the
more technical proofs more readable. Proofs of trivial results are not provided.

Lemma 6.1 Let u,v ∈ [0, 1]p be such that vℓ ≤ uℓ for ℓ = 1, . . . , p. Then

0 ≤ Ĉik(u) − Ĉik(v) ≤
p∑

ℓ=1

⌈nik(uℓ − vℓ)⌉
nik

where ⌈x⌉ denotes the smallest integer greater or equal to x.

Proof of Lemma 6.1. The lower bound is a consequence of the monotone properties of distribution func-

tions. The upper bound can be derived from developing the probability represented by Ĉik(u)− Ĉik(v) and
using the uniformity of the margins on the points of the form {a/nik : a = 1, . . . , nik}. �

Let G∗
k be an extended grid that includes the axes:

G∗
k =

{
0,

1

n1k

,
2

n1k

, . . . , 1

}
× · · · ×

{
0,

1

n1k

,
2

n1k

, . . . , 1

}
.

Lemma 6.2

sup
u∈[0,1]p

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣ ≤ p

n1k

+ sup
u∈G∗

k

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣ .

Proof of Lemma 6.2. For a fixed k, |Ĉ1k(u) − Ĉµk
(u)| is a bounded function on the compact set [0, 1]p

and hence its maximum is attained. Let v ∈ [0, 1]p be a point where that maximum is achieved. We treat
two cases.

Case 1: Ĉ1k(v) ≥ Ĉµk
(v).

Let v∗ = [v∗1 , . . . , v∗p]T be defined by v∗ℓ = ⌊n1kvℓ⌋/n1k, where ⌊x⌋ denotes the largest integer smaller or equal

to x. Then v∗ ∈ G∗
k is on the same “plateau” of the multivariate step function Ĉ1k(u) as v, meaning that

Ĉ1k(v∗) = Ĉ1k(v) and Ĉµk
(v∗) ≤ Ĉµk

(v).

Recalling that v is the point where the difference between Ĉµk
(u) and Ĉ1k(u) is maximized, we can write

|Ĉ1k(v) − Ĉµk
(v)| = Ĉ1k(v) − Ĉµk

(v) ≤ Ĉ1k(v∗) − Ĉµk
(v∗)

≤ sup
u∈G∗

k

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣ ≤ p

n1k

+ sup
u∈G∗

k

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣ ,

meaning that the maximum occurs at a point of the grid G∗
k .

Case 2: Ĉ1k(v) ≤ Ĉµk
(v).

Let v∗ = [v∗1 , . . . , v∗p]T be defined by v∗ℓ = ⌈n1kvℓ⌉/n1k, where ⌈x⌉ denotes the smallest integer greater or

equal to x. Then, v∗ ∈ G∗
k and Ĉµk

(v∗) ≥ Ĉµk
(v) since Cµk

(u) is a nondecreasing function and v∗ ≥ v.

By Lemma 6.1, Ĉ1k(v∗) − Ĉ1k(v) ≤ p/n1k. Recalling that v maximizes the difference between Ĉ1k(u) and

Cµk
(u), we can write

|Ĉ1k(v) − Ĉµk
(v)| = Ĉµk

(v) − Ĉ1k(v) ≤ Ĉµk
(v∗) − Ĉ1k(v∗) +

p

n1k

≤ p

n1k

+ sup
u∈G∗

k

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣ .

Combining Cases 1 and 2 yields the desired result. �

Lemma 6.3 We have sup
u∈G∗

k

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣→ 0 almost surely as k → ∞.



14 G–2010–41 Les Cahiers du GERAD

Proof of Lemma 6.3. Let ǫ > 0. For any given k ∈ IN, let uk = [uk1, . . . , ukp]
T be the point of the grid G∗

k

where |Ĉ1k(u) − Ĉµk
(u)| is maximized. Consider the events

Ak =
{

Ĉ1k(uk) − Ĉµk
(uk) > ǫ

}
,

Bk =
{

Ĉµk
(uk) − Ĉ1k(uk) > ǫ

}
,

Ck =
{
uk ∈

[ ǫ

2
, 1
]p}

.

The negation of Lemma 6.3 is {Ak ∪Bk} i.o. which will happen if and only if {
(
Ak ∪ Bk ∩ CC

k

)
∪ (Ak ∪Bk∩

Ck)}i.o. We will show that neither of the two events in this decomposition can occur infinitely often.

Case 1: Ak ∪ Bk ∩ CC
k .

We have
∣∣∣Ĉ1k(uk) − Ĉµk

(uk)
∣∣∣ ≤

∣∣∣Ĉ1k(uk)
∣∣∣+
∣∣∣Ĉµk

(uk)
∣∣∣

= Ĉ1k(uk) +

m∑

i=1

µikĈik(uk) ≤ 2 min
ℓ∈{1,...,p}

ukℓ ≤ ǫ

because Ĉik(uk) > minℓ∈{1,...,p} ukℓ is incompatible with uniform univariate margins and the MAMSE weights
sum to 1. Consequently, Ak ∪ Bk ∩ CC

k = ∅ for all k.

Case 2: Ak ∪ Bk ∩ Ck.

Let v be a vector of integers such that v/n1k = uk; we temporarily omit the index k for notational simplicity.

Let also w = [w1, . . . , wp]
T be a point from the set

W =

{
0, 1, . . . ,

⌊
n1k

2p
ǫ

⌋}
× · · · ×

{
0, 1, . . . ,

⌊
n1k

2p
ǫ

⌋}
.

The points (v − w)/n1k belong to Gk since uk ∈ [ǫ/2, 1]p. Next, we show that

∣∣∣∣Ĉµk

(
v − w

n1k

)
− Ĉ1k

(
v − w

n1k

)∣∣∣∣ ≥
ǫ

2
−
∑p

ℓ=1 wℓ

n1k

≥ 0

by treating two subcases. Note that the last inequality holds because

1

n1k

p∑

ℓ=1

wℓ ≤
p

n1k

⌊
n1k

2p
ǫ

⌋
≤ ǫ

2
.

Subcase A: Ak ∩ Ck.

From the fact monotonicity of copulas and Lemma 6.1, we have

Ĉ1k

(
v − w

n1k

)
− Ĉµk

(
v − w

n1k

)
≥ Ĉ1k(uk) − Ĉµk

(uk) −
∑p

ℓ=1 wℓ

n1k

≥ ǫ

2
−
∑p

ℓ=1 wℓ

n1k

≥ 0.

Subcase B: Bk ∩ Ck.

By Lemma 6.1, we have

Ĉµk

(
v

n1k

)
− Ĉµk

(
v − w

n1k

)
=

m∑

i=1

µik

{
Ĉik

(
v

n1k

)
− Ĉik

(
v − w

n1k

)}
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≤
m∑

i=1

1

nik

p∑

ℓ=1

⌈
nikwℓ

n1k

⌉
≤

m∑

i=1

1

nik

p∑

ℓ=1

(
nikwℓ

n1k

+ 1

)
=

∑p

ℓ=1 wℓ

n1k

+

m∑

i=1

p

nik

.

Hence,

Ĉµk

(
v − w

n1k

)
≥ Ĉµk

(
v

n1k

)
−
∑p

ℓ=1 wℓ

n1k

−
m∑

i=1

p

nik

= Ĉµk
(uk) −

∑p

ℓ=1 wℓ

n1k

−
m∑

i=1

p

nik

.

Let us consider only k that are large enough to make
∑m

i=1 p/nik < ǫ/2. From the previous inequality and
the monotonicity of Ĉ1k(u), we obtain

Ĉµk

(
v − w

n1k

)
− Ĉ1k

(
v − w

n1k

)
≥ Ĉµk

(uk) − Ĉ1k(uk) −
∑p

ℓ=1 wℓ

n1k

−
m∑

i=1

p

nik

≥ ǫ −
∑p

ℓ=1 wℓ

n1k

−
m∑

i=1

p

nik

≥ ǫ

2
−
∑p

ℓ=1 wℓ

n1k

≥ 0.

Combining subcases A and B yields

Pk(µk) ≥
∫
{Ĉµk

(u) − Ĉ1k(u)}2 dMk(u) ≥ 1

np
1k

∑

w∈W

(
ǫ

2
−
∑p

ℓ=1 wℓ

n1k

)2

.

The sum above corresponds to a Riemann sum for the multiple integral

∫ ǫ
2p

0

· · ·
∫ ǫ

2p

0

(
ǫ

2
−

p∑

ℓ=1

yℓ

)2

dy1 · · · dyp = Kp.

The number Kp is a fixed positive constant for any fixed p.

As a consequence, there exists a k0 such that for all k ≥ k0, Pk(µk) > Kp/2 > 0, a contradiction with

Assumption 3.2. We must thus conclude that Ak ∪ Bk ∩ Ck occurs at most a finite number of times.

Hence, Ak ∪ Bk occurs at most a finite number of times and sup
u∈G∗

k

∣∣∣Ĉ1k(u) − Ĉµk
(u)
∣∣∣ → 0 almost surely

as k → ∞. �

Proof of Theorem 3.3. Consider the decomposition

sup
u∈[0,1]p

∣∣∣Ĉµk
(u) − C1(u)

∣∣∣ ≤ sup
u∈[0,1]p

∣∣∣Ĉµk
(u) − Ĉ1k(u)

∣∣∣+ sup
u∈[0,1]p

∣∣∣Ĉ1k(u) − C1(u)
∣∣∣ .

The first term on the right-hand side goes to 0 almost surely by Lemma 6.2 and Lemma 6.3, the second term

does likewise by Equation 1. �

Proof of Lemma 3.1. The uniform convergence in Theorem 3.1 implies that a sequence of random vectors
with distributions Ĉλk

(u) will converge weakly to a random vector with distribution C(u). As a consequence,

expectations of continuous bounded functions of these variables converge almost surely. �

Proof of Theorem 4.2. It is sufficient to show that |
∫

Ĉλk
(u) dĈλk

(u)−
∫

C(u) dC(u)| → 0 almost surely
as k → ∞ and similarly with µk. This expression is bounded by

∣∣∣∣
∫

Ĉλk
(u) dĈλk

(u) −
∫

C(u) dĈλk
(u)

∣∣∣∣+
∣∣∣∣
∫

C(u) dĈλk
(u) −

∫
C(u) dC(u)

∣∣∣∣ .

The first term is bounded by sup
u∈[0,1]p |Ĉλk

(u)−C(u)| which converges to 0 almost surely by Theorem 3.1
or Theorem 3.3. The second converges to zero by the argument of Lemma 3.1. �
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