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Montréal (Québec) Canada, H3C 3P8

boudreault.mathieu@uqam.ca
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Abstract

This paper presents a framework where many existing structural credit risk models can be made hybrid
by using a transformation of leverage to define the default intensity. The approach supports stochastic
interest rates as well. As the default trigger is not purely specified by an exogenous barrier, the model
produces endogenous random recovery rates that are negatively correlated to the default probabilities,
which is consistent with the empirical findings. The key contributions of the paper are as follows. First,
default intensity is defined as an increasing and convex transformation of leverage. Second, the recovery
rate model uses leverage at default in a cascade manner to account for different debtholders seniority.
Third, the approach is implemented on a firm-by-firm basis using maximum likelihood and the unscented
Kalman filter (UKF). This accounts for trading noises which are deviations from theoretical prices. Fi-
nally, the non-linearity between default intensity and leverage is investigated empirically on each company
of the CDX NA IG and HY indices using monthly CDS data from January 2004 to May 2008.

Key Words: risk management, credit risk, structural, reduced-form, hybrid, default intensity, recovery
rate, unscented Kalman filter (UKF).

Résumé

Cet article présente une approche permettant d’adapter plusieurs modèles de risque de crédit de type
structurel afin de les rendre hybrides en construisant un processus d’intensité qui est fonction du ratio
d’endettement. Cette approche s’adapte même en présence de taux d’intérêt stochastique. Puisque le
défaut n’est pas entièrement déterminé par une barrière spécifiée de façon exogène, le modèle produit
des taux de recouvrement stochastique corrélés négativement avec la probabilité de défaut, ce qui est
en accord avec les faits empiriques. Les principales contributions de cette recherche sont les suivantes :
premièrement, le processus d’intensité est une fonction croissante et convexe du ratio d’endettement.
Deuxièmement, le taux de recouvrement utilise le ratio d’endettement au moment du défaut tout en in-
corporant un effet de cascade afin de tenir compte de la séniorité de la dette. Troisièmement, la méthode
proposée peut être appliquée firme par firme en utilisant le maximum de vraisemblance et le filtre de
Kalman “unscented” (UKF). Cela permet de prendre en considération les bruits de marché qui créent
des déviations par rapport aux prix théoriques. Finalement, la relation non-linéaire entre le processus
d’intensité et le ratio d’endettement est étudiée empiriquement sur chacune des compagnies des indices
CDX NA IG et HY en utilisant des données mensuelles de CDS de janvier 2004 à mai 2008.
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1 Introduction and review of the literature

Credit risk, which is the potential loss arising from a default of payment by an obligor, mainly comes from two
sources (Madan & Unal (1998)): the uncertainty regarding the timing of default and the amount lost by the

creditor at the moment of default. The literature on the former is very rich and encompasses the structural,

reduced-form (intensity), and more recently, hybrid models. Although many authors have investigated the

empirical behavior of recovery rates, very few of them have integrated observed features of recovery rates

in credit risk models. In this paper, a hybrid credit risk framework that incorporates recovery rate risk is
presented.

Hybrid credit risk models combine features of structural and reduced-form models. One important class

of hybrid models is based upon the fact that there is an important informational gap between managers of

the firm and investors. Only managers can observe the true market value of its assets and liabilities whereas

investors receive imperfect information. For example, in Duffie & Lando (2001), investors receive periodic
financial statements that are a noisy estimate of market values. Jarrow & Protter (2004) argues that the gap

between reduced-form and structural models is given by the amount of information observed by investors.

The latter model is appropriate when the information set of investors and managers is the same so that

default is fully predictable. In the opposite case, default takes investors by surprise. Other models also relax
the complete information assumption, notably, Çetin, Jarrow, Protter & Yildirim (2004), Giesecke (2004)

and Giesecke and Goldberg (2004a, b).

Other contributions integrate both reduced-form and structural models. In Madan & Unal (2000), a

model for the value of assets and liabilities is presented and default occurs when a single and random loss,

occurring at a random time, is larger than the value of the equity. The resulting model is built with an
intensity-based approach. The Chen et al. (2004, 2005) papers introduce a model where the credit state of

the firm (interpreted as either the rating of the company or its distance to default) is a Cox-Ingersoll-Ross

(CIR)-type of affine process with gamma-distributed jumps. A second process, dependent on interest rates

and on the credit state of the firm, is required. Default either occurs as soon as the first process hits a barrier

or when the second process jumps. Thus, default comes from either a predictable or an unpredictable process.
Bakshi, Madan & Zhang’s (2006) model is a reduced-form model based on Vasicek-type state variables. One

of the latter is the leverage of the firm. It should be noted that all models presented in these papers provide

for non-zero short-term credit spreads, something that cannot be found in most structural models.1

Recovery rates have long been considered a constant fraction or a random exogenous random variable

in the literature. However, recovery rates are inversely related to default probabilities and this has been
mainly documented by Edward Altman. For example, in Altman & Kishore (1998), the recovery rate of a

AAA company is 68% whereas a creditor of a CCC company should expect a recovery of 38%. Moreover,

Altman et al. (2004) and Altman (2006) survey the current literature of credit risk models and emphasize

the importance of relating the recovery rate to the probability of default. The very recent literature is slowly
integrating stochastic recovery rates that are inversely related to default probabilities. In Bakshi, Madan &

Zhang (2006b), the recovery rate is obtained as the exponential of minus the default intensity (corrected by

constants). In Das & Hanouna (2009), the authors use several mathematical functions (logit, probit, arctan)

that transform a default intensity (defined on the real line) to a [0,1] value. They obtain decreasing term

structures of recovery rates. Pan & Singleton (2008) discuss the issue of econometric identification between
recovery rate and default intensity. The authors argue that using the recovery of face value assumption is

sufficient to solve this issue. Other significant contributions to stochastic recovery rates are Andersen &

Sidenius (2004), Gaspar & Slinko (2008) and Hocht & Zagst (2009). These authors use a stochastic recovery

rate framework but do not further discuss of this specific issue in empirical studies.

The fact that the market value of assets and liabilities are not observed by investors is mentioned in
the literature at least since Jarrow & Turnbull (2000) and Jarrow & Protter (2004). One way to solve this

issue is to use an estimation technique that uses observed data to infer the true value of assets/liabilities.

This is in line with the maximum likelihood estimation (MLE) approach of Duan (1994, 2000) and Duan et

al. (2003) in which the equity price is treated as a one-to-one transformation of the assets. This method

1Zhou (2001) is a notable exception since the latter is a structural model where the assets have a jump component.
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applied to structural models provides unbiased estimates of the asset volatility, given that the equity model

is appropriate. Because observed equity prices may contain randomness unrelated to their true theoretical

value, it has been shown by Duan & Fulop (2009) that asset volatility estimates obtained by the MLE
technique of Duan (1994) may overstate the true asset volatility. To account for possible trading noises in

equity prices, Duan & Fulop (2009) propose a clever adaptation of the Auxiliary Particle Filter of Pitt &

Shephard (1999) to the context of Merton (1974). The result is a simulated-MLE extension of Duan (1994)

which only works with equity prices and the Merton (1974) model.

This paper presents a framework where many structural credit risk models can be made hybrid by using a
transformation of leverage to define default intensity. This transformation should obey two simple properties.

First, default probability should increase with leverage. Second, a shock on leverage should have a greater

impact on the default probability when the leverage of the company is high than if it were low. As a result,

the greater (smaller) the convexity of the transformation, the closer the model is to a structural (reduced-

form) credit risk model. Once dynamics for assets and liabilities are determined, the framework can be used
to model the two sources of credit risk, i.e. the moment of default and the amount of loss at default. The

consequences of the approach are that short-term credit spreads are significantly different from zero and

more importantly, time-varying stochastic recovery rates can be directly derived from the value of assets

and liabilities at the moment of default. These recovery rates are consistent with the empirical findings that
the default probability and loss given default are proportional. Notably, the stochastic recovery rate model

presented gives rise to a term structure of recovery rates that is either increasing, decreasing or hump-shaped.

The rationale behind the term structure of expected recovery rates is simple and can be interpreted with

similar arguments as credit spread curves. For highly-rated firms, the major risk is a downgrade to which

is associated a smaller recovery rate. Consequently, the term structure of expected recovery rates is usually
downward sloping. For a risky firm, if it survives, its rating should improve, leading to a larger recovery rate.

For such a firm, the term structure is usually upward sloping.

The key contributions of the paper are as follows. First, default intensity is defined as an increasing and

convex transformation of leverage. This is different from Bakshi, Madan & Zhang (2006a) since their default

intensity is a constant times leverage, which is a linear transformation. Moreover, Bharath and Shumway
(2006) and Duffie, Saita, Wang (2007) use a Cox proportional hazards model to define a default intensity.

Although this is a non-linear function of leverage, they use this approach to find possible determinants

of default, bankruptcies, merger, etc. This is a regression-based analysis estimated on the whole set of

companies at once, whereas the model in this paper is estimated on a firm-by-firm basis. The second
important contribution is that the value of assets and liabilities at default can be used in a cascade structure

to account for different debtholders seniority. Thus, the proposed model replicates recovery rates inversely

proportional to default probabilities without using an arbitrary mathematical function that do not have any

economic or financial foundation. Third, the approach is implemented on a firm-by-firm basis using maximum

likelihood and the unscented Kalman filter (UKF).2 This technique allows estimation of the parameters of
the model (structural and reduced-form component) using multiple sources of information and accounting

for possible trading noise. The aforementioned papers use a single source of observations (a single time

series of equity price, bond price or CDS premium) whereas the technique is capable of using the whole

term structure of CDS premiums for example. Finally, possible uses of the model range from pricing credit
sensitive instruments to risk management applications (credit VaR, risk-based capital, etc.).

The non-linearity between default intensity and leverage is investigated empirically. To do so, the term

structure of CDS premiums is used to estimate the parameters of each company in the sample of 225 firms of

the CDX NA IG and CDX NA HY indices. The dataset comprises the evolution of monthly CDS premiums

between January 2004 and May 2008 for various companies in many sectors and credit ratings. It was found
that for non-investment grade companies, default intensity is much more sensitive to changes in leverage

than for investment-grade firms. The critical level of leverage over which default becomes more likely is lower

for the former firms than the latter. This means that investors tolerate a lower level of leverage for risky

companies and that changes in their leverage have a greater impact on default probabilities. As a result of

2Although the use of these filters in this setting is original (to the best of the authors’ knowledge), their application in finance
is not new and they have been applied successfully with equity options (see Carr & Wu (2007) and Bakshi, Carr & Wu (2008))
and affine term structure models (see Christoffersen, Jacobs, Karoui, Mimouni (2009)).
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the credit crisis, default intensities became less sensitive to leverage in 2006–2008 than in 2004–2006. Finally,

a decreasing term structure of expected recovery rates is observed for most companies but the structure is

increasing for CCC companies. Between 2004–2006 and 2006–2008, recovery rates dropped severely and the
curves became steeper.

The paper is structured as follows. In the next section, the general modeling approach is presented. In

Section 3, the pricing of defaultable zero-coupon bonds and CDS in the context of the framework is discussed.

A family of transformations is also introduced. Section 4 presents different capital structures that can be used

with the model. It is important to note that the framework is not limited to these dynamics of assets and
liabilities. Section 5 shows how to use non-linear filtering techniques in conjunction with the model. Section 6

presents the empirical study. Section 7 presents the conclusions, while the most important proofs are left in

the appendix. Other proofs and a detailed description of the numerical techniques used are included in a

technical report available upon request to the authors.

2 Model

It is widely agreed and supported empirically that the main determinants of default are the leverage, its

volatility and the interest rate (see for example Ericsson, Jacobs & Oviedo (2009) and references therein).

This is also supported theoretically by structural models of default. However, a large portion of the spreads

remains unexplained even when accounting for these three variables combined. In addition, structural models

in general have failed to appropriately represent the short-term level of credit spreads, mainly because default
is a predictable process. To solve these issues, the literature has turned to structural models with incomplete

information or reduced-form models. The common feature of these classes of models is the presence of a

surprise element that adds randomness to the default trigger.

The approach that is proposed in this paper falls into the hybrid credit risk model category. The main

idea is that the sensitivity of the credit risk of the firm to its debt ratio determines how a default occurs.
The result is a hybrid between a pure reduced-form and a structural model. The model is then used to build

a recovery rate distribution that is tied to the time-varying solvency of the firm.

2.1 Structural framework

As a starting point of the model, assume that the total value of the assets of the firm are represented by the

continuous-time stochastic process {At : t ≥ 0}. The obligations of the company toward their creditors are
defined by the liabilities process, {Lt : t ≥ 0}, which may also be interpreted as the default threshold. The

risk-free spot interest rate is denoted by {rt : t ≥ 0} . Formally, the filtration {Gt : t ≥ 0} is generated by r, A

and L (with the usual regularity conditions). Different dynamics for the assets and liabilities of the firm can

be considered. Examples are presented in Section 4 but the model is not limited to those capital structures.

Structural models usually define the moment of default τ as the first moment that the assets cross the
value of the liabilities, i.e. τ ≡ inf {t > 0 : At < Lt}. This results that τ is G-predictable. Default in the

proposed model is rather defined using a reduced-form default trigger, that is highly correlated with the debt

ratio of the firm. This is discussed next.

2.2 Reduced-form framework

The default trigger of reduced-form models is mostly based upon Lando (1998), that is, it represents the first
jump of a Cox process. In that case, the default time satisfies

τ ≡ inf

{
t > 0 :

∫ t

0

Hudu > E1

}
(1)

where E1 is an exponential random variable with mean 1, which is independent of {Gt : t ≥ 0} and {Ht : t ≥ 0}
is the default intensity process.
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Define the debt ratio Xt ≡ Lt/At so that {Xt, t ≥ 0} results in a G−adapted continuous-time stochastic

process. It is assumed that Hu is a function of the debt ratio Xu i.e. Hu = h (Xu) where h : R → [0,∞[ is a

firm-specific deterministic transformation, known as the sensitivity function.

It is required that h is an increasing function since default probabilities should increase with the debt

ratio. As a consequence, the firm will not necessarily default as soon as its debt ratio approaches some

critical threshold but it simply means that its default likelihood increases. The firm may very well survive
and improve its financial status. The inverse is also true, that is, a company with a low debt ratio may have

a significant default probability, depending on the importance of the capital structure on the ultimate default

probability.

A typical structural model (with a default threshold at 100%) can be found from the proposed model

when

h (x) =

{
0, x < 1
∞, x ≥ 1.

(2)

2.3 Intensity process

The firm-specific sensitivity function h plays a major role in the model: it gauges how the debt ratio affects

the default probability. Figure 1 shows the impact of the function h on the one-year default probability, for

different h functions, assuming the debt ratio remains constant throughout the year.

Figure 1: One-year default probability as a function of the debt ratio. The functions used are 0.05 (constant),
0.05x2 (increasing) and 0.05x10 (fast increasing).
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For example, if h (x) = 0.05 (a constant), then default takes everyone by surprise and occurs independently
of the debt ratio. When it increases very rapidly, say h (x) = 0.05x10, then the one-year default probability

is very low when the debt ratio is below 100% or even close to 100%, but increases rapidly afterwards. Thus,

when the debt ratio approaches 100%, it does not mean the company defaults but the likelihood of such an

event is very high. When the function h increases more slowly, say h (x) = 0.05x2, it is much more likely for

the firm to default with debt ratios lower than 100%, thus increasing the default probability. It illustrates
that the model is capable of generating a default even if the company has a solid financial status, in terms

of debt ratio.

The most simple interpretation of h is that it represents the sensitivity of the credit risk of the firm to
its debt ratio. Two companies with similar capital structures may have different default probabilities since

they may operate in different industries or that one firm may be more exposed to liquidity crises or simply
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because investors do not necessarily trust the financial statements of one firm. Since an increase of ∆x of

the debt ratio should have more impact on the default probability if the debt ratio is already important, h

should be a convex function,3 that is

h (x1 + ∆x) − h (x1) < h (x2 + ∆x) − h (x2)

for x1 < x2. The steeper (in the sense of the second derivative of h) the sensitivity function is, the more

important is leverage in the determination of the default probability.

2.4 Recovery rate model

The vast majority of credit risk models require an exogenous specification of the recovery rate R, i.e. in-

dependent of the capital structure of the firm upon default. Most of the time, it is set as a constant often
estimated from the seniority of the bond or chosen exogenously based on empirical researches such as Carty &

Lieberman (1996) and Altman & Kishore (1996). In CreditMetrics (1997), a beta distributed random recov-

ery rate, independent of the default process, is used. However, Altman et al. (2004) and Altman (2006) both

argue the importance of having a recovery rate structure that is inversely related to the default probability.

Instead of an exogenous random recovery rate, one can use a structural model and build a proxy of R
from the value of the assets and liabilities at the moment of default. However, most of these models will

fail to provide interesting recovery rates. For example, in Black & Cox (1976), default occurs as soon as the

assets cross the liabilities. Thus, the ratio of assets over liabilities at default is 100% and there is no room

for lower recovery rates. In Longstaff & Schwartz (1995) and other similar models (see Collin-Dufresne and
Goldstein (2001)), default occurs at the first passage of assets to some arbitrary threshold so that recovery

is deterministic or determined arbitrarily by the threshold. Merton (1974) has random recovery, but default

can only occur at the maturity of the zero-coupon debt. In summary, taking the value of assets and liabilities

at the moment of default is rarely sufficient to obtain interesting recovery rates with pure structural models.

An exogenous random variable, function or not of the capital structure, has to be defined.

A significant contribution of the proposed model is that the state variable may be used to construct the

random recovery rate. Since default comprises an element of surprise, the assets at default will very likely

be lower than the value of the liabilities and taking the ratio of the two at default is indeed a way to obtain

realistic recovery rates that depend on the capital structure of the firm. Moreover, legal fees, liquidation costs

and different seniority can be accounted for to obtain a recovery rate distribution that is closer to reality.

Importantly, this approach is not designed to be an exact valuation of the amount of money to be received

by the specific debtholders (junior and senior) and equityholders upon default. The following model should

be seen as an approach where the time-varying solvency of the firm will have an impact on the recovery rate

distribution. The financial situation of a firm may deteriorate (improve) so that its mean recovery rate (given

default) may decrease (increase) accordingly. Morever, surprise elements, through the sensitivity function,
will also determine the distribution of the recovery rate given default. The recovery rate model presented is

described as being endogenous since it comes from the value of the assets and liabilities at the moment of

default.

Assume that the liquidation and legal fees represent a fraction κ of the market value of assets at default.

The approximated value of the assets available to debtholders at default time is A∗
τ = min ((1 − κ)Aτ ; Lτ ) .

Suppose there are two classes of bondholders: junior and senior. The senior bondholders represent 100ω%

of the liabilities and the junior debtholders, 100 (1 − ω)%. Thus, in case of default, senior investors have a

right on the first 100ω% of the assets and the juniors take what remains. One can represent the recovery

rate (with respect to the market value) for both senior and junior debtholders as

R(S)
τ =

min (A∗
τ ; ωLτ )

ωLτ

and R(J)
τ =

A∗
τ − min (A∗

τ ; ωLτ )

(1 − ω)Lτ

. (3)

3Other authors have proposed transformations of leverage for their intensity functions. For example, Bakshi et al. (2006)
consider the case h (x) = θx, which is linear.
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Note that these recovery rates do not represent a fraction of the face value but a fraction of the market value

of the liabilities at default. With one class of investors, Rτ becomes

Rτ =
A∗

τ

Lτ

= min

(
(1 − κ)

Aτ

Lτ

; 1

)
. (4)

Because the recovery rate is a random variable endogenously derived from the assets and liabilities, it
serves both risk management and pricing purposes. When it is used for pricing credit derivatives, it should

be used with the risk-neutral measure Q. Therefore, comparison of average recovery rates with the existing

empirical literature is only appropriate under the objective probability measure P.

3 Pricing credit-sensitive assets

This section is devoted to the computation of the survival probability, the pricing of defaultable zero-coupon
bonds and CDS. The framework can be used to price other credit-sensitive securities, such as coupon bonds.

3.1 Survival probability

Throughout this paper, it is assumed that Ht = σ
{
I{τ≤s}, s ≤ t

}
is the σ-algebra that contains the informa-

tion regarding the survival of the firm and Ft = σ (Gt ∪Ht) is the σ-algebra that contains all information.

The indicator of default I{τ≤s} takes the value 1 if default occurred before s and 0 otherwise (survival). Thus,

the conditional survival probability at time T , knowing the information available at time t is4

St (T ) = Pr (τ > T | Ft) = I{τ>t}E

[
exp

(
−
∫ T

t

Hudu

)∣∣∣∣∣Gt

]
. (5)

This survival probability may be computed under the objective measure P as well as under the risk neutral

measure Q or the T−forward measure QT . To emphasize the dependence upon the chosen probability

measure, the notation SP
t (T ), SQ

t (T ) and SQT

t (T ) will be used.

Assume that the dynamics of the debt ratio are

dXt = µ
(X)
t Xtdt + σ

(X)
t XtdBt

where {Bt : t ≥ 0} is a Brownian motion, σ
(X)
t is a deterministic function of time and

{
µ

(X)
t : t ≥ 0

}
is a

predictable process. In Section 4, different capital structures are presented under which this assumption

holds.

Throughout this paper, the intensity process is built upon the transformation h given by

h (x) =
α

θ

(x

θ

)α−1

, α > 0, θ > 0 (6)

which is the hazard rate function of a Weibull distribution with shape parameter α and scale parameter θ.

A value of α > 1 is required for the transformation to be increasing with x. When α > 2, the function h
is convex, meaning that a small increase in the debt ratio has a greater impact when the firm already has

a large debt ratio. The parameters α and θ are responsible for the sensitivity of the survival of the firm

toward its debt ratio. θ is known as the critical level of leverage or the default threshold because the default

intensity is large when leverage is greater than θ and small otherwise. The rate at which default intensity

will converge to either 0 or infinity is guided by α.

Applying Itô’s lemma to the particular shape of the intensity function implies that the dynamics of the

default intensity {Ht : t ≥ 0} are

dHt = µ
(H)
t Htdt + σ

(H)
t HtdBt (7)

4See Lando (2004), p.115.
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where H0 = h (X0) ,

µ
(H)
t = (α − 1)µ

(X)
t +

1

2
(α − 1) (α − 2)

(
σ

(X)
t

)2

and σ
(H)
t = (α − 1)σ

(X)
t .

Although θ does not appear in equation (7), it affects the level of the initial default intensity H0.

It is shown in Appendix A.1 that if µ
(H)
t and σ

(H)
t are not stochastic, then the survival probability

St (T ) = S∗
(
T − t∗, H∗

T−t∗ ; T
)

where t∗ = T − t is the time-to-maturity, H∗
t∗ = HT−t∗ is the intensity

process expressed as a function of time-to-maturity, and the function S∗ (t∗, H∗
t∗ ; T ) satisfies the partial

differential equation (PDE)

− ∂S∗

∂t∗
+ µ

(H)
T−t∗H

∗
t∗

∂S∗

∂H∗
+

1

2

(
σ

(H)
T−t∗H∗

t∗

)2 ∂2S∗

∂ (H∗)2
= H∗

t∗S
∗ (8)

with the boundary conditions

S∗ (0, H∗
t∗ ; T ) = 1

lim
H∗

t∗
→∞

S∗ (t∗, H∗
t∗ ; T ) = 0

lim
H∗

t∗
→0

S∗ (t∗, H∗
t∗ ; T ) = 1.

Whenever µ
(H)
t = µH and σ

(H)
t = σH are constant functions of time, Dothan (1978)’s quasi-closed form

solution of (8) can be used directly. Thus, the survival probability is S0 (t∗) = S∗ (0, H∗
0 ; t∗) where

S∗ (0, H∗
0 ; t∗) =

1

π2
wp

∫ ∞

0

∫ ∞

0

g (x, y) dxdy +
2

Γ (2p)
wpK2p

(
2
√

w
)
, (9)

w =
2H∗

0

σ2
H

and p = 1
2 − µH

σ2
H

. Moreover,

g (x, y) = sin
(
2
√

w sinh y
)
exp

(
−σ2

H

4p2 + x2

8
t∗
)

x cosh
(πx

2

)
R

(
Γ
(
−p + i

x

2

))2

,

where i is the imaginary unit, R is the real part of a complex number, Γ (•) is the gamma function and Kn (x)

is the modified Bessel function of the second kind of order n.

Under stochastic interest rates, Dothan’s solution no longer works, so that numerical methods should

be used to solve the PDE in (8). One can use an explicit finite difference method to compute the survival

probability. For more complex cases, where the value of the assets and liabilities need to be tracked in order
to compute an endogenous recovery rate, a tree method such as Schönbucher (2002) is recommended.

3.2 Bond prices

3.2.1 Without recovery assumptions

The unrealistic zero-recovery zero-coupon bond is first considered since it is used as a building block for other

credit-sensitive instruments. Given that the discount bond has a maturity of T years, the payoff of the bond

is given by I{τ>T} and the price is

V0 (t, T ) = EQ

[
exp

(
−
∫ T

t

rudu

)
I{τ>T}

∣∣∣∣∣Ft

]
I{τ>t} = EQ

[
exp

(
−
∫ T

t

(ru + Hu) du

)∣∣∣∣∣Gt

]
.

In the particular case of constant interest rate, the last expression becomes V0 (t, T ) = e−r(T−t)SQ
t (T ). With

stochastic interest rate, the usual change of numéraire allows the expression of the bond price as the product
of the riskless zero-coupon bond value pt (T ) paying one dollar at time T and the survival probability under

the T−forward martingale measure QT :

V0 (t, T ) = pt (T )SQT

t (T ) . (10)
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3.2.2 With endogenous recovery assumptions

To price credit derivatives or coupon bonds on a single company, recovery specifications are crucial. As a

first step, the amount of money that will be paid to the security holder upon default needs to be determined

as well as the moment when it will be paid. Most recovery assumptions are defined around the following

three hypotheses (for an overview of the recovery specification and the valuation of bonds, see Duffie &
Singleton (1999)): (1) a fraction R of the face value of the bond payable at its maturity (RFV) (ex.: Lando

(1998)); (2) a fraction R of an equivalent risk-free zero-coupon bond payable upon default (RT) (ex.: Jarrow

& Turnbull (1995)); (3) a fraction R of the market value of an equivalent defaultable bond (RMV) (ex.:

Duffie & Singleton (1999), Bakshi, Madan & Zhang (2006));

Although the amount payable and its exact timing are defined in the clauses of the contract, the fraction

R to be used in the valuation must still be appropriately estimated. Ideally, it should be consistent with the

default generating process used to value the assets and liabilities. Thus, when pricing a credit-sensitive asset,
an assumption must be made on R and on the type of payment upon default.

Following the discussion of Section 2.4, it is assumed throughout the paper that the recovery rate used

is defined as in equations (3) and (4). With the RMV assumption, Duffie & Singleton (1999) note that it is

necessary to define the loss process for their assumption to work. Obviously, 1−Rτ (or 1−R
(S)
τ or 1−R

(J)
τ )

defined in equations (3) and (4) is a natural choice for their approach.

Assume that the investor recovers a fraction Rτ of an equivalent Treasury bond at default time τ . Then,
the time t value of a risky zero-coupon bond5 is

VR (t, T ) Ê = EQ

[
exp

(
−
∫ T

t

rudu

)
I{τ>T} + exp

(
−
∫ τ

t

rudu

)
Rτpτ (T ) I{τ≤T}

∣∣∣∣∣Ft

]
I{τ>t}

= EQ

[
exp

(
−
∫ T

t

(ru + Hu) du

)∣∣∣∣∣Gt

]

+EQ

[
exp

(
−
∫ T

t

rudu

)∫ T

t

RsHs exp

(
−
∫ s

t

Hudu

)
ds

∣∣∣∣∣Gt

]
.

Since ru, Rs and Hs are dependent random variables, it is difficult to obtain a neat closed-form expression

as with (10). Numerical methods such as Schönbucher (2002) or simulations are required to evaluate such

an expression.

3.3 Credit default swap

A credit default swap (CDS) is a credit derivative intended to provide protection against a default, within a

predetermined period of time. In the most basic type of CDS (settled in cash), the protection seller provides

for a payment of par minus recovery upon default, which covers the loss in case of default6. In exchange,
the protection buyer pays a periodic premium, usually four times a year, that ceases if there is a default.

This spread is usually fixed such that the expected present value (PV) of losses equals the expected PV of

premiums.

Given that the CDS matures at T , the expected PV of losses is

EQ

[
exp

(
−
∫ τ

t

rudu

)
LGD (τ) I{τ≤T}

∣∣∣∣Ft

]
(11)

where LGD (τ) is the loss given default random variable. With the RT assumption, the loss given default

can be computed as LGD (τ) = 1 − Rτpτ (T ). The expected PV of losses becomes

EQ

[∫ T

t

LGD (s)Hs exp

(
−
∫ s

t

(ru + Hu) du

)
ds

∣∣∣∣∣Gt

]
.

5See Lando (2004), equation (5.6), p.117.
6We refer to Hull (2009) for more details on the cash flows and dynamics of CDS.
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To simplify the presentation, assume that a premium of 1 is paid at times ti < T. In this case, the expected

PV of premiums is given by

EQ

[
∑

ti

exp

(
−
∫ ti

t

rudu

)
I{t≤ti<τ}

∣∣∣∣∣Ft

]
I{τt}. (12)

Then, the periodic premium is the ratio of (11) over (12).

As with defaultable bonds, ru, Hu and LGD (u) are dependent random variables, so it is not possible

to obtain a closed-form expression for the expected default payoff and premiums. Again, the application of

numerical methods such as Schönbucher (2002) are required.

4 Capital structures

In this section, examples of classical capital structures illustrate how it can be used along with the intensity

approach presented herein. However, the framework is not restricted to those models.

Unless stated otherwise, it is assumed throughout this section that under the real-world measure P, the

dynamics of the assets are characterized by the SDE (stochastic differential equation)

dAt = µA (t)Atdt + σAAtdBP
t

where
{
BP

t : t ≥ 0
}

is a standard P−Brownian motion, µA (t) is a predictable process and σA is a diffusion

coefficient. To proceed with the risk neutralization, it is supposed that the assets of the firm are traded, that

is, the market is composed of at least a risk-free asset and the assets of the firm themselves. Finally, the

function h is given by equation (6).

Three different debt structures are presented: under constant risk-free rate, the debt either grows at a
(1) constant rate or is (2) stochastic and correlated with the assets; under stochastic interest rates, the debt

is a (3) risk-free zero coupon bond.

4.1 Constant risk-free rate

Throughout this section, the risk-free asset is assumed to grow at a constant rate r.

4.1.1 Deterministic debt growth

The first model to be considered is a very basic one in which the capital structure of the firm is similar to

what has been proposed by Merton (1974) with µA (t) = µA. The debt of the firm grows at rate β ≥ r since

risky firms do not finance themselves at the risk free rate. The ordinary differential equation of the debt
value is dLt = βLtdt. The debt ratio is

Xt =
Lt

At

=
L0e

βt

At

.

Applying Itô’s lemma, one can show that

dXt = Xt

(
β − µA + σ2

A

)
dt − XtσAdBP

t ,

which is a geometric Brownian motion (GBM). Applying the h transformation onto the debt ratio and using

Itô’s lemma, one can show that

dHt = µP
HHtdt − σP

HHtdBP
t (13)

where H0 = h (X0),

µP
H = (α − 1)

(
β − µA + σ2

A

)
+

1

2
σ2

A (α − 1) (α − 2) and σP
H = (α − 1)σA. (14)



10 G–2010–40 Les Cahiers du GERAD

Applying the risk neutralization to the asset process {At : t ≥ 0}, the default intensity, under the martingale

measure Q is a GBM, with drift

µQ
H = (α − 1)

(
β − r + σ2

A

)
+

1

2
σ2

A (α − 1) (α − 2)

and diffusion σQ
H = (α − 1)σA. Note that, letting β = r and L0 = Fe−rT , the debt becomes a risk-free zero-

coupon bond with face value F and maturity T . This basic model can be seen as an extension of Merton’s

(1974) model to accommodate for default prior to the debt maturity.

Since the drift of the default intensity decreases when r increases, one can deduce that such a capital

structure will provide credit spreads negatively related to the interest rates. The parameter β needs to be

exogenously specified or estimated.

4.1.2 Stochastic growth rate

Instead of holding a single zero-coupon bond debt, a company may have a set of financial commitments that
each have a specific behavior. Because modeling the behavior of each single debt issue would be difficult (and

hard to infer from balance sheet data), it is possible to aggregate the value of each issue and assume, as an

approximation, that the total amount of the debt follows a GBM. This is similar to assuming that the total

value of all the assets held on the balance sheet follows a GBM. Consequently, the solvency of the company
would rely on the volatility of the liabilities and the extent to which the total assets hedge the total liabilities.

Assume the debt behaves as a GBM correlated with the assets, that is,

dLt = µLLtdt + σLLt

(
ρdBP

t +
√

1 − ρ2dB̃P
t

)

where the standard P−Brownian motions
{
BP

t : t ≥ 0
}

and
{
B̃P

t : t ≥ 0
}

are independent. The correlation

parameter ρ can be interpreted as an (ex post) measure of hedging. Indeed, a company that has an appropriate

risk management policy will invest in assets that behave closely to its liabilities. In addition to having similar

asset and liability drifts and diffusions, a high level of dependence should also be seen between variations in

assets and liabilities. This is approximated by the correlation parameter ρ. Thus, a poor hedge would be
observed if the assets move almost independently from the liabilities, increasing the default risk of the firm.

The converse also applies since a better hedge, measured by a very high correlation between the assets and

the debt, would lower the range of possible outcomes of the debt ratio.

The dynamics of the debt ratio Xt under this capital structure becomes

dXt = µP
XXtdt + σXXtdBP

t + σ̃XXtdB̃P
t (15)

where

µP
X = µL − µA + σ2

A − ρσAσL, σX = ρσL − σA, and σ̃X =
√

1 − ρ2σL.

Applying Itô’s lemma, one obtains that {Ht : t ≥ 0} is a GBM with drift and diffusion parameters satisfying

µP
H = (α − 1)

(
µL − µA + σ2

A

)
+

1

2
(α − 1) (α − 2)

(
σ2

A + σ2
L

)
− ρσAσL (α − 1)

2

and σP
H = (α − 1)

√
σ2

A + σ2
L − 2ρσLσA.

Note that as ρ increases, the drift and diffusion coefficients of the intensity process decrease.

For the risk neutralization, it is assumed that the liabilities of the firm, in addition to its assets and the

risk-free asset, are traded. The tradeability of Lt can be justified when it is interpreted as an aggregate

financial product, that is, one that approximates the total value of a large sum of tradeable assets. In this
case, under the martingale measure Q, the drift and diffusion parameters of the default intensity are

µQ
H = σ2

A (α − 1) +
1

2
(α − 1) (α − 2)

(
σ2

A + σ2
L

)
− (ρσAσL) (α − 1)

2
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and σQ
H = σP

H .

At this point, it is important to insist that the dynamics of the previous and upcoming capital structures
are very different. Consequently, the effect of the transformation of the debt ratio might be different and

the behavior of the default intensity may change as well. This further complicates empirical comparisons

between capital structures.

4.2 Stochastic risk-free rate

Consider a more realistic framework where the risk-free rate can evolve stochastically, possibly in conjunction
with the assets of the firm. In the finance literature, incorporation of random interest rates in credit risk

models mainly depend on the type of model. With many reduced-form models (see for example Duffee

(1999) and Bakshi et al. (2006)), the default intensity and the random interest rates are part of a multi-

factor interest rate model. With structural models, many authors (see for example Longstaff & Schwartz
(1995), Collin-Dufresne & Goldstein (2001), etc.) have modeled the assets and the short rate process as two

dependent processes.

The approach presented here is somewhat similar to the one used in many structural models. The main

difference resides in the definition of the interest rate process: the dynamics of the forward rate curve is
modeled rather than the short rate, in a way consistent with Heath, Jarrow and Morton (1992). This

approach will encompass the Hull & White (1990b) extended Vasicek model and the Ho & Lee (1986) model.

Assume that the market is composed of K risk-free zero-coupon bonds with maturities T1, . . . , TK and a
risky asset At. Thus, the instantaneous forward rate process under the measure P is defined by

dft (T ) =
(
σ

(f)
t (T )

)⊤
(λt − Σt (T )) dt +

(
σ

(f)
t (T )

)⊤
dBP

t

where ft (T ) is the instantaneous forward rate determined at t for maturity T , σ
(f)
t (T ) is a K + 1 vector of

deterministic functions of time7, Σt (T ) = −
∫ T

t
σ

(f)
t (s) ds,

{
BP

t : t ≥ 0
}

is a vector of K + 1 independent

P−Brownian motions, and λt is a vector that contains the risk premium associated to each Brownian motion,

that will be determined according to the risk-free bond prices, as in Heath, Jarrow and Morton (HJM) (1992).

If λ is not stochastic, the forward rates have a Gaussian distribution, leading to potentially negative rates.

The risky asset {At : t ≥ 0} dynamic is

dAt =
(
rt + λ⊤

t σ
(A)
t

)
Atdt +

(
σ

(A)
t

)⊤
AtdB

P
t (16)

where σ
(A)
t is a K + 1 vector of deterministic functions of time. Furthermore, the price pt (T ) at time t of a

risk-free zero-coupon bond with maturity T satisfies8

dpt (T ) = mt (T ) pt (T )dt + Σ⊤
t (T ) pt (T )dBP

t , 0 ≤ t ≤ T

where mt (T ) = rt + λ⊤
t Σt (T ) .

If the company has a risk-free zero-coupon debt with maturity T , then the value of its debt Lt is equal to

Fpt

(
T
)
. Thus, the debt ratio Xt is obtained from Xt = Fpt

(
T
)
A−1

t where F is the face value of the debt.

The process followed by the debt ratio is derived using Itô’s lemma:

dXt = Xt

(
mt

(
T
)
− rt − λ⊤

t σ
(A)
t + σ

⊤(A)
t σ

(A)
t − Σ⊤

t

(
T
)
σ

(A)
t

)
dt + Xt

(
Σt

(
T
)
− σ

(A)
t

)⊤
dBP

t

with X0 = Fp0

(
T
)
/A0. The details are presented in Appendix A.2. It is no longer the case that the debt

ratio is a P−GBM since it evolves with the short rate, which is random. However, the debt ratio has a

lognormal distribution under the martingale measure Q.

7The last element of σ
(f)
t (T ) should be zero so that the asset process will depend on an extra source of noise.

8See for example in Björk (1998) for a detailed proof.
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In order to price bonds and any other credit-sensitive assets, it was discussed in Section 3.2.1 that the

behavior of the debt ratio under the T -year forward risk neutral measure QT has to be determined. It is

shown in Appendix A.2 that

d

(
At

pt (T )

)
=

At

pt (T )

(
σ

(A)
t − Σt (T )

)⊤
dBQT

t .

However, the maturity of the debt is T , not T , so one needs to determine the SDE followed by pt

(
T
)
/At

under QT . It is shown in Appendix A.2 that the drift and diffusion of the debt ratio under QT are

µ
(X)
t

(
T, T

)
= Σ⊤

t

(
T
)
Σt (T ) − Σ⊤

t (T )σ
(A)
t +

(
σ

(A)
t

)⊤
σ

(A)
t − Σ⊤

t

(
T
)
σ

(A)
t

and σ
(X)
t

(
T, T

)
= Σt

(
T
)
− σ

(A)
t .

Finally, the drift and diffusion of the default intensity, under the QT measure, are

µ
(H)
t

(
T, T

)
= µ

(X)
t

(
T, T

)
(α − 1) +

1

2
(α − 1) (α − 2)

(
σ

(X)
t

(
T, T

))⊤
σ

(X)
t

(
T, T

)

and σ
(H)
t

(
T, T

)
= (α − 1)σ

(X)
t

(
T, T

)
.

Since the drift and diffusion of the default intensity process are time-varying and deterministic, Dothan
(1978)’s result no longer applies in this case. Thus, numerical methods should be used, as it was noted in

Section 3.1.

5 Estimation with filtering techniques

5.1 Introduction

A filtering technique is a statistical and recursive algorithm that filters noisy observations (measurements)

over time to obtain the best estimate of the evolution of some unobserved phenomenon (state). Filtering

algorithms are very popular for signal processing applications in electronics, music and picture processing.
The most widely known filtering algorithm is the Kalman filter which is used when the relation between the

observations and the unobserved variable is linear. When the state variable is a Gaussian time series and

the noise between the state variables and observations is also Gaussian, the Kalman filter provides the best

estimate (in the sense of minimum mean square error (MSE)) of the state. In the setting of this paper, the

state (unobserved) variable is the market value of assets and the measurements are the derivatives prices
which are obtained from noisy observations (trading noise) of their theoretical prices.

In many applications, the relation between observations and the state is not necessarily linear so that the

Kalman filter is suboptimal. For example, the equity price is a non-linear transformation of the asset value

in the Black-Scholes’ setting, so that estimation of the Merton (1974) model with trading noise cannot be

accomplished with a Kalman filter. Adjustments have to be added to account for such non-linearities.

Non-linear filtering techniques are numerous and can be classified into two classes: non-linear Kalman

filters and particle filters. Non-linear Kalman filters are algorithms that adapt the Kalman filter for non-

linearities. Those are the extended Kalman filter (EKF) and the unscented Kalman filter (UKF).

All filters are designed to provide best estimates of the state variable, given that the parameters are

known. In all cases, the likelihood function (or quasi-likelihood function) can be built and optimized to
recover the parameters of the model. This is usually done in two steps repeatedly until convergence: filtering

and likelihood maximization. The advantage of using these techniques in the estimation of credit risk models

is that they account for trading noise without having to numerically invert the pricing function, as in Duan

(1994) (without trading noise) or Duan & Fulop (2009) (with trading noise).
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5.2 State-space representation

In the credit risk model to be estimated, the unobserved variable9, which is the market debt ratio (see

Section 4.1) evolves in continuous-time as a geometric Brownian motion i.e.

dXt = µXtdt + σXtdWt

with strong solution

Xt+∆t = Xt exp

((
µ − 1

2
σ2

)
∆t + σ (Wt+∆t − Wt)

)
.

The filtering techniques presented only work in discrete-time so a discretization scheme is applied. Assume

the time interval [0, T ] is split into n smaller time intervals so that ∆t = T/n and tk = k∆t, k = 0, 1, . . . , n.

Defining xk ≡ lnXtk
, one obtains

xk = xk−1 +

(
µ − 1

2
σ2

)
∆t + σ

√
∆tεk, k = 1, 2, . . . , n (17)

where ε1, ε2, . . . , εn are i.i.d. (independent and identically distributed) standard normal random variables

(r.v.). equation (17) represents the state equation in a state-space model.

Define the random variable Y
(i)
k as the price at time tk of some derivative i (i = 1, 2, . . . , N) de-

pendent on the credit risk of a given company (equity, CDS, corporate bonds) and the column vector

Y⊤
k ≡

[
Y

(1)
k , . . . , Y

(N)
k

]
as the set of these prices. For example, with N = 10, one can use the whole

term structure of CDS prices (maturities of 1–10 years) to infer the dynamics of the debt ratio (or assets

in other structural models). One can also combine equity with CDS and bonds prices, as long as they rely

on the same state variable. The relation between the derivative price and the state variable is given by the
observation equation

Y
(i)
k = g(i) (Xk) exp

(
ν

(i)
k

)

where the trading noise or pricing error is multiplicative. Moreover, g(i) (.) is the i-th derivative price function

(which is non-linear), ν
(i)
k is the trading noise on the i-th derivative with variance

(
δ(i)
)2

i.e. ν
(i)
k ∼ N

(
0, δ(i)

)
.

It is important to note that each ν
(i)
k is i.i.d. over time, independent from εk but may be dependent across

derivatives. Thus, ν⊤
k ≡

[
ν

(1)
k , . . . , ν

(N)
k

]
has a multivariate normal distribution (i.i.d. over time), with mean

0 and variance R where

R = diag (δ) ρ diag (δ)

δ⊤ ≡
[
δ(1), . . . , δ(N)

]
.

Note that ρ is some correlation matrix that determines the dependence in the pricing errors across derivatives.
Furthermore, diag(δ) is the operator that creates a square matrix with diagonal elements corresponding to

δ. In summary, R is the covariance matrix of the trading noise.

Defining y
(i)
k ≡ ln

(
Y

(i)
k

)
, y⊤

k ≡
[
y
(1)
k , . . . , y

(N)
k

]
and f (i) (xk) ≡ ln

(
g(i) (exp (xk))

)
, one gets that the

observation equation can be written as

y
(i)
k = f (i) (xk) + ν

(i)
k . (18)

In matrix notation, the observation equation rewrites as

yk = f (xk) + νk

where f (xk) ≡
[
f (1) (xk) , . . . , f (N) (xk)

]⊤
.

For a detailed description of the filtering and estimation equations, the reader is referred to Hamilton

(1994), Anderson & Moore (1979), Julier & Uhlmann (1997, 2002) and references therein.

9In Merton (1974) and Black & Cox (1976), the unobserved variable is the market value of assets.
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6 Empirical study

6.1 Data and assumptions

The companies on which investigation is performed are the 225 firms of the CDX North American Investment

Grade and High Yield indices (CDX.NA.IG.10 and CDX.NA.HY.10) provided by Markit as of June 18th,
2008. The selection of 225 firms spans multiple credit ratings and industrial sectors as well. The constituents

of the portfolios are listed in Table 1.

The monthly term structure of CDS prices from January 2004 to June 2008 is provided by DATASTREAM

(95334 observations). Prices for maturities of one year through 10 years are available for most companies.

However, only maturities of one to five years are used in the estimation process since CDS prices are computed
using Schönbucher (2002) trees which considerably slows down estimation for large maturities. To illustrate

how CDS premiums move over time, Figure 2 shows the evolution of the mean (taken across firms) CDS

premium for maturities of five years, for both IG and HY portfolios.

In all experiments and unless stated otherwise, a constant risk-free rate of 4% has been assumed. This

rate is consistent with the rounded average daily rates of one and three-months constant maturity Treasury

Table 1: List of the companies listed in the CDX NA IG (.10) and CDX NA HY (.10) portfolios as of June
13th, 2008 and obtained from Markit

CDX NA IG CDX NA HY

ACE Ltd Intl Paper Co Abitibi Consol Inc Mirant North America LLC
Aetna Inc. Istar Finl Inc Advanced Micro Devices Inc Mosaic Co
Alcoa Inc. J C Penney Co Inc The AES Corp NALCO Co

Allstate Corp Kohls Corp AK Stl Corp Neiman Marcus Gp Inc
Altria Gp Inc Kraft Foods Inc Allegheny Engy Supp Co LLC Nortel Networks Corp

Amern Elec Pwr Co Inc The Kroger Co. Allied Waste North Amer Inc NOVA Chems Corp
Amern Express Co Ltd Brands Inc ALLTEL Corp NRG Energy Inc
Amern Intl Gp Inc Liz Claiborne Inc Amern Axle Mfg Inc Owens IL Inc

Amgen Inc. Lockheed Martin Corp Amkor Tech Inc Polyone Corp
Anadarko Pete Corp Loews Corp AMR Corp Pride Intl Inc

Arrow Electrs Inc M D C Hldgs Inc ARAMARK Corp Qwest Cap Fdg Inc
AT&T Inc Macy’s Inc ArvinMeritor Inc RH DONNELLEY Corp

AT&T Mobility LLC Marriott Intl Inc AVIS BUDGET CAR Rent LLC RadioShack Corp
Autozone Inc Marsh Mclennan Cos Inc Beazer Homes USA Inc Realogy Corp

Baxter Intl Inc Masco Corp Bombardier Inc Reliant Energy Inc
Black Decker Corp MBIA Ins Corp Celestica Inc Residential Cap LLC
Boeing Cap Corp McDonalds Corp Charter Comms Hldgs LLC Rite Aid Corp

Bristol Myers Squibb Co McKesson Corp Chemtura Corp Royal Caribbean Cruises Ltd
Brunswick Corp MeadWestvaco Corp Chesapeake Engy Corp Sabre Hldgs Corp

Burlington Nthn Santa Fe Corp MetLife Inc Ctzns Comms Co Saks Inc
Campbell Soup Co Motorola Inc Clear Channel Comms Inc Sanmina SCI Corp

Cap One Bk Natl Rural Utils Coop Fin Corp CMS Engy Corp Six Flags Inc
Cardinal Health Inc NY Times Co Cmnty Health Sys Inc Smithfield Foods Inc

Carnival Corp Newell Rubbermaid Inc Constellation Brands Inc Smurfit Stone Container Entp Inc
Caterpillar Inc News America Inc Cooper Tire Rubr Co Std Pac Corp

CBS Corp Nordstrom Inc CSC Hldgs Inc Sta Casinos Inc
CenturyTel Inc Norfolk Sthn Corp Dillards Inc SUNGARD DATA Sys INC

Chubb Corp Northrop Grumman Corp DIRECTV Hldgs LLC Tenet Healthcare Corp
Cigna Corp Omnicom Gp Inc Dole Food Co Inc Tesoro Corp
CIT Gp Inc Progress Engy Inc Domtar Corp Toys R Us Inc

Comcast Corp Quest Diagnostics Inc Dynegy Hldgs Inc Tribune Co
Computer Sciences Corp R R Donnelley Sons Co Eastman Kodak Co TRW Automotive Inc

ConAgra Foods Inc Radian Gp Inc EchoStar DBS Corp Unisys Corp
ConocoPhillips Raytheon Co El Paso Corp Utd Rents North Amer Inc

Constellation Engy Gp Inc Rio Tinto Alcan Inc Energy Future Hldgs Corp Univision Comms Inc
Cox Comms Inc Rohm Haas Co Fairfax Finl Hldgs Ltd Visteon Corp

CSX Corp Safeway Inc 1st Data Corp Windstream Corp
CVS Caremark Corp Sara Lee Corp Flextronics Intl Ltd

Darden Restaurants Inc Sempra Engy Ford Mtr Co
Deere Co Sherwin Williams Co Fst Oil Corp

Devon Engy Corp Simon Ppty Gp L P Freeport McMoran Cop. Gold Inc
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Figure 2: Evolution of the mean five-year CDS premium (across firms) for both CDX.NA.IG (left axis) and
CDX.NA.HY (right axis) portfolios, between January 2004 and May 2008

rates over the period of 2006–2008. The interest rates data are provided by the Federal Reserve of St. Louis’

website via FRED (Federal Reserve Economic Data).

6.2 Estimation

This subsection discusses how non-linear filtering techniques have been applied in the specific context of the

model. Descriptive statistics on the results of the latter estimation method are presented next.

6.2.1 Method

The UKF10 filtering and estimation procedures have been applied on the whole sample of observations of CDS

prices to the model. Following Section 4.1 and the constant interest rate assumption, the capital structure

dynamics are such that the debt ratio follows

dXt = µP
XXtdt + σXXtdW P

t . (19)

The pricing of credit derivatives requires risk neutralization. Consistent with the capital structure models of

Section 4.1, the risk premium on the {Xt, t ≥ 0} process is set as a constant, i.e.

µP
X − ξX = µQ

X

and ξX is the risk premium. Consequently, the state equation is

xk = xk−1 +

(
µP

X − 1

2
σ2

X

)
∆t + σ

√
∆tεk (20)

with xk ≡ lnXtk
and ∆t = 1/12.

The theoretical price of each CDS as of a given date and debt ratio Xtk
is computed using the Schönbucher

(2002) tree technique. With this approach, the default payoff is par minus recovery and the survival payoffs

10Similar computations have been performed using the EKF and results are very similar.
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correspond to the quarterly payment of spreads. The recovery payment has been assumed to be a random

fraction Rτ (see equation (4)) of a Treasury bond paid upon default.

Independence in the pricing error between each CDS price has also been assumed so that the matrix ρ is

the identity matrix. This has been done to reduce the number of parameters to be estimated. In summary,
the observation equation is

y
(i)
k = f (i) (xk) + ν

(i)
k , i = 1, 2, . . . , 5

with ν
(i)
k (having variance

(
δ(i)
)2

) independent across maturities and f (i) (xk) ≡ ln
(
g(i) (exp (xk))

)
where g(i)

is the price of a i-year CDS computed with Schönbucher (2002). It is important to note that the dynamics
of the debt ratio implied by the pricing function g(i) have to be under Q i.e. the drift of the debt ratio is

µQ
X . Quasi-MLE has been performed on the available data on a firm-by-firm basis. The parameters of the

UKF technique have been assumed to be κUKF = 2, αUKF = 1 and βUKF = 0 as in Van der Merwe, Doucet,

de Freitas & Wan (2000).

Finally, the initial state value (x̂0|0) has been estimated and its variance (P0|0) has been assumed very
low (i.e. 0.001). Overall, the parameters to be estimated for each company are

µP
X , ξX , σX , α, θ, κ, x̂0|0, δ.

6.2.2 Results

This section shows statistics such as the mean, standard deviation and quantiles of the parameters obtained
with the UKF estimation technique. This is meant to provide an overview of the range of parameters across

companies. More thorough analyses will be conducted in the Analysis section.

Table 2 shows descriptive statistics on the estimated parameters using the UKF filtering technique. There

are interesting differences between IG and HY firms. The drift of the debt ratio is higher for HY firms,

meaning these companies have a tendency to contract more debt or their debt is more expensive (in terms
of interest rate). It could also be that these companies have lower quality assets or simply a combination of

the two. Their debt ratio is more volatile and their initial market debt ratio is greater. The latter results

had to be expected given the nature and the separation of these companies in the two portfolios.

It can be seen in Table 2 that α is greater for HY companies, meaning that a slight change in the debt

ratio will have more impact on the default probability, than for IG companies. Moreover, the critical debt
ratio level (or θ) is lower for HY companies, meaning that investors have a lower tolerance toward the debt

ratio for these companies. The effect is to further increase their default probability.

The standard error of the trading noise is the highest for the one-year CDS since it is more likely to

contain elements not necessarily related to the true default risk of the company. This is by definition a

Table 2: Descriptive statistics on the distribution of parameters across the portfolio of firms of the CDX
indices using the UKF filtering technique (A constant risk premium has been assumed)

µP

X
ξX σX α θ κ bx 0|0 δ(1) δ(2) δ(3) δ(4) δ(5)

Mean 2,84% 2,71% 11,47% 14,0133 1,5139 49,23% 69,61% 24,89% 14,05% 6,61% 3,30% 8,94%
Stdev 8,24% 8,93% 9,14% 12,4408 0,4209 22,76% 32,01% 10,62% 7,47% 4,17% 6,32% 4,24%
10% -1,98% -2,17% 3,34% 4,0599 0,8559 14,23% 31,71% 12,23% 6,36% 0,10% 0,00% 4,79%
25% -0,39% -1,04% 5,29% 5,4141 1,2040 40,35% 45,33% 18,23% 9,49% 3,94% 0,00% 6,15%
50% 1,29% 0,66% 8,68% 9,7095 1,6087 49,97% 61,69% 23,83% 12,93% 6,37% 0,50% 7,86%
75% 3,59% 2,64% 14,39% 19,8965 1,9053 61,76% 87,99% 30,39% 18,13% 9,78% 5,27% 10,38%
90% 8,77% 8,85% 23,50% 29,7071 1,9913 75,34% 112,71% 37,58% 23,37% 11,84% 9,19% 15,25%
IG 2,02% 2,00% 10,46% 12,0145 1,5945 51,86% 64,55% 28,26% 16,10% 8,72% 3,11% 9,98%
HY 3,90% 3,61% 12,76% 16,5627 1,4112 45,87% 76,05% 20,62% 11,31% 3,95% 3,56% 7,62%

For each of the 225 firms, the parameters of the model have been estimated using monthly CDS prices of maturities of one to five years,
using the UKF filtering technique. The data are provided by DATASTREAM and are available from January 2004 to May 2008. For
risk neutralization, a constant risk premium has been assumed on the debt ratio process. This is consistent with the deterministic and
random debts of Section 4.1. The mean, standard deviation and quantiles are computed across firms. The last two rows of each table
computes the mean across firms of the CDX.NA.IG or CDX.NA.HY portfolios.
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trading noise. When these standard deviations are compared with Duan & Fulop (2009), it can be seen that

the ones presented in this paper are higher. This may be because CDS prices are used rather than equity

prices but it is more conceivable that fitting five credit derivatives prices at a time has had an impact on the
quality of the fit to each derivative.

Moreover, the parameters estimated show that the sensitivity function, which translates a debt ratio into

a default intensity, should be increasing and convex, since the very large majority of α obtained in Table 2

are greater than 2.

Finally, Table 3 displays the absolute relative pricing error on the CDS premiums being used in the

estimation procedure. For each firm, a single set of parameters has been estimated for the whole sampling
period. As it contains some financial turmoil, the pricing error varies over time. One way to bypass this

phenomenon is to estimate the model more frequently. The average (across firms and months) absolute

relative pricing error is not a very good measure as it is driven by a single firm having extremely large pricing

errors (around 3000%). The median absolute relative error gives a better picture of the overall behavior of
the model. As noted by other authors, the pricing error is more important for the 1 year maturity as it may

contain other effects than credit risk. For larger maturities, the model generally well performs for most of

the studied firms.

Table 3: Absolute relative pricing errors across the portfolio of firms of the CDX indices

Maturity 1 2 3 4 5

All firms (2004–2008)
Mean 37,7% 28,8% 23,1% 20,7% 23,9%

Median 16,2% 8,3% 4,3% 0,6% 5,3%
nb obs 9490 9192 9490 9192 9490

IG firms (2004–2008)
Mean 23,1% 13,6% 7,9% 2,9% 7,7%

Median 18,2% 9,6% 5,9% 0,4% 5,9%
nb obs 5609 5570 5609 5570 5609

HY firms (2004–2008)
Mean 58,7% 52,0% 45,2% 48,2% 47,3%

Median 13,8% 7,0% 2,5% 1,2% 4,5%
nb. obs 3881 3622 3881 3622 3881

2004 (all firms)
Mean 25,6% 13,0% 7,5% 3,9% 9,6%

Median 21,9% 9,7% 4,3% 0,6% 5,8%
nb obs 1055 1008 1055 1008 1055

2005 (all firms)
Mean 93,7% 84,5% 77,6% 77,9% 77,4%

Median 17,8% 8,7% 4,4% 0,5% 4,9%
nb obs 2158 2085 2158 2085 2158

2006 (all firms)
Mean 19,0% 12,6% 6,7% 3,0% 6,6%

Median 13,9% 7,6% 4,2% 0,5% 4,9%
nb obs 2548 2464 2548 2464 2548

2007 (all firms)
Mean 21,4% 11,8% 6,7% 4,0% 8,0%

Median 15,8% 8,1% 4,1% 0,7% 5,5%
nb obs 2634 2565 2634 2565 2634

For each of the 225 firms, the monthly time series of CDS prices were used to estimate the model parameters using UKF filtering
technique. The data are provided by DATASTREAM and spans the period from January 2004 to May 2008. Using the parameters
obtained with the UKF method, the filtered market debt ratio is computed and the CDS is priced for each available maturity and month.
For each company, year and CDS maturity, the theoretical and observed CDS prices are compared. The absolute relative pricing error
is computed as the absolute pricing error expressed as a percentage of the observed price.
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6.3 Analysis

In this section, the relationship between the parameters of the model and the credit rating of the firm is

analyzed. The stationarity of the parameters over two time intervals is also investigated, along with the

expected recovery rate given.

6.3.1 Relationship with ratings

Table 4 shows the mean (and standard deviation) parameter value across firms having the same credit rating

(S&P) as of May 31st, 2008. The rating of the firm (taken as the rating of the long-term debt) was taken from
COMPUSTAT, as of the end of each year, from 2004 to 2006, and from Markit in 2008 (in both databases, the

credit rating has been evaluated by S&P). Note that some companies were rated as BBB (investment-grade)

but belonged to the HY portfolio which leads to slight differences with Table 2ḟootnoteLiz Claiborne Inc.

belongs to the IG portfolio but is rated BB (which is non investment-grade). Moreover, Allegheny Engy
Supp Co LLC, Freeport McMoran Copper & Gold Inc and Mosaic Co were all rated BBB but belong to the

HY portfolio.

Excluding the AAA class,11 there are obvious trends that can be deduced from this table. Indeed, µP
X ,

σX , α and x̂0|0 (θ) seem to be larger (smaller) with a decreasing credit quality but there is a lot of noise.

Since there are only a few observations for AAA, AA and CCC ratings, groupings of companies into two

categories (investment-grade (IG) and non-investment-grade (Non-IG)) are performed. For this section only,
the designation “IG” means that the S&P rating is either AAA, AA, A or BBB while “Non-IG” represents

a rating of BB, B or CCC. With more data in each category, statistical significances can be computed.

Linear regressions of the form

p̂(i) = β0 + β1

(
1 − I

(i)
IG

)
+ ε(i), i = 1, 2, . . . , 225 (21)

11The three firms of the AAA class are GE Capital, FNMA (Fannie Mae) and FHLMC (Freddie Mac) and the last two
practically defaulted in September 2008 despite their AAA rating. This may explain the discrepancy between this class and the
others.

Table 4: Mean (and standard deviation) parameters across firms for various credit ratings

Averages across firms, over ratings

Rating µP

X
σX α θ κ bx 0|0 Obs.

AAA -3,99% 12,74% 16,4259 1,5853 60,56% 60,26% 3
AA 7,97% 12,83% 10,7647 1,3210 63,57% 42,68% 3

A 2,24% 10,68% 13,6111 1,6409 53,98% 67,95% 47
BBB 1,58% 9,87% 10,8530 1,5645 49,46% 63,67% 73

BB 3,65% 9,81% 16,6866 1,3976 42,97% 76,67% 45
B 5,76% 17,19% 17,6386 1,4504 46,17% 74,11% 36

CCC 0,84% 12,25% 14,6442 1,4101 52,72% 81,71% 16
IG 1,85% 10,31% 12,0124 1,5877 51,74% 64,69% 126

Non-IG 3,98% 13,02% 16,7034 1,4198 45,83% 76,55% 97

Standard deviations across firms, over ratings

Rating µP

X
σX α θ κ bx 0|0 Obs.

AAA 10,16% 8,92% 14,6599 0,6972 20,60% 23,07% 3
AA 6,23% 6,25% 8,9698 0,2536 13,89% 18,88% 3

A 7,54% 8,61% 11,5302 0,3840 18,53% 30,69% 47
BBB 3,10% 4,86% 8,1726 0,3672 19,35% 27,68% 73

BB 11,60% 8,71% 13,4178 0,4481 24,56% 34,41% 45
B 10,98% 13,48% 18,6675 0,4686 27,58% 34,18% 36

CCC 6,16% 11,66% 9,5773 0,4259 30,96% 41,14% 16
IG 5,52% 6,58% 9,7145 0,3792 19,03% 28,61% 126

Non-IG 10,68% 11,61% 15,0296 0,4484 26,79% 35,23% 97

For each of the 225 firms, the monthly time series of CDS prices was used to estimate the model parameters using the UKF technique.
The data are provided by DATASTREAM and spans the period from January 2004 to May 2008. Means and standard deviations are
computed across firms for companies that had the same rating at the aforementioned date. The last column shows the number of
companies in each rating class. The rating for two companies was not available (one in each portfolio).
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are calculated where p̂(i) is the estimated value of some parameter p for company i and I
(i)
IG is an indicator

that checks whether the firm qualifies as investment-grade (IG) (=1) or not (non-IG) (=0). Indicator values
are taken from the S&P rating of the long-term debt in COMPUSTAT for 2004 to 2007 and the credit rating

in 2008 is also according to S&P but comes from Markit. When we reject β1 = 0 in favor of β1 6= 0, then

there is a significant difference in the value of the parameter estimated for IG and non-IG firms. Finally, β0

(β0 + β1) is the mean value of
{
p̂(i), i = 1, 2, . . . , 225

}
for IG (non-IG) firms.

Table 5 shows the result of applying the regression of equation (21) on each of the six parameters µP
X , σX ,

α, θ, κ and x̂0|0. It confirms what has been noticed in Section 6.2.2, that there are significant differences in

the parameter values depending on the credit status (IG or non-IG) of the firm. The difference is statistically

significant for σX , α, θ and x̂0|0 in addition to being in the same direction than in Section 6.2.2. In other
words, the debt ratio is more volatile for non-IG firms, the convexity of the transformation (α) is greater and

the critical default threshold (θ) is lower.

The consequences of these findings are interesting. Suppose two firms have the same leverage dynamics

and a common initial debt ratio, but for other reasons, one firm is rated as an IG and the other is not. Thus,
for the poorly rated firm, two parameters will accelerate its default. First, the tolerance threshold is lower

for the non-IG company, which means that leverage will attain θ faster. Moreover, once the threshold is

attained, a higher value of α means that the default intensity will increase faster, further increasing future

default likelihood.

6.3.2 Non-stationarity

Non-stationarity of the parameters is verified in this section to check how the onset of the credit crisis has

influenced the evolution of CDS prices.

The sample of CDS prices from 2004 to 2008 is split in two, so that the first half contains the first 27

months (January 2004 to March 2006) while the second half contains the last 26 months (April 2006 to May

2008). One notes that the second half of the sample contains the onset of the 2007–2009 credit crisis so that

a shift in the parameters should be observed.

Table 6 shows the distribution of the parameters in both halves of the sample along with the distribution

of the difference (2006–2008 minus 2004–2006). The impact of the sudden rise in spreads in 2007–2008 is

primarily seen in µP
X (increase of 2.63%) and σX (increase of 4.60%) who considerably increased from one

sample to the other. On the other hand, α decreased by 4 units, meaning that the debt ratio became less

important in explaining default in this period. Another interpretation is that surprises became more relevant,
so that the steep rise in spreads in 2007–2008 has been read by the model as both a deterioration of the

solvency and an increase in surprises. The value of x̂0|0, which represents the market debt ratio at the

Table 5: Results of the regression of each parameter on the investment grade status of the company

µP

X
Value LB UB θ Value LB UB

bβ0 1,85% 0,42% 3,28% bβ0 1,5877 1,5157 1,6597
bβ1 2,13% -0,05% 4,31% bβ1 -0,1679 -0,2778 -0,0581

σX Value LB UB κ Value LB UB
bβ0 10,31% 8,72% 11,90% bβ0 51,74% 47,76% 55,73%
bβ1 2,71% 0,28% 5,14% bβ1 -5,92% -11,99% 0,16%

α Value LB UB bx 0|0 Value LB UB
bβ0 12,0124 9,8561 14,1687 bβ0 64,69% 59,13% 70,24%
bβ1 4,6910 1,4022 7,9798 bβ1 11,86% 3,39% 20,33%

For each of the 225 firms, the monthly time series of CDS prices was used to estimate the model parameters using the UKF technique.
The data are provided by DATASTREAM and spans the period from January 2004 to May 2008. A regression of each parameter on the
indicator of credit rating (IG or not) has been performed for each of the six parameters. The S&P rating is provided by Markit as of
the date of the composition of the portfolio. The table shows the estimates of the slopes and intercept of this regression. LB (and UB)

are the lower (upper) bounds of the 95% confidence interval for bβ0 or bβ1. When zero does not belong to the confidence interval, then
there is a significant difference in the parameter value for IG and non-IG firms. Estimates that are significantly different than zero at a
5% level are denoted in bold face.
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Table 6: Distribution of the parameters estimated with UKF in two samples: 2004–2006 and 2006–2008

2004–2006 µP

X
σX α θ κ bx 0|0

Mean 0,22% 8,10% 16,2585 1,3538 47,37% 67,46%
Stdev 6,30% 8,34% 15,7140 0,4404 19,05% 26,31%
10% -4,33% 2,60% 4,0985 0,7771 20,30% 35,94%
25% -1,96% 3,62% 6,2976 0,9856 37,58% 51,65%
50% -0,45% 5,41% 12,1742 1,3438 49,82% 59,29%
75% 1,67% 8,67% 20,8080 1,7691 56,69% 84,30%
90% 4,61% 14,33% 30,0152 1,9727 71,40% 101,39%
IG -0,24% 5,83% 15,0919 1,3604 48,11% 65,12%
HY 0,89% 11,48% 17,9939 1,3441 46,28% 70,94%

2006–2008 µP

X
σX α θ κ bx 0|0

Mean 2,84% 12,71% 12,2590 1,5890 47,33% 66,82%
Stdev 7,96% 9,74% 11,8369 0,3709 21,20% 32,42%
10% -3,75% 3,35% 3,4912 1,0404 13,83% 30,83%
25% -0,72% 6,42% 4,7222 1,3141 39,44% 41,25%
50% 1,53% 10,47% 7,0860 1,6732 49,96% 56,75%
75% 4,32% 15,69% 17,1842 1,9295 59,02% 87,03%
90% 9,64% 23,52% 27,5870 1,9991 71,93% 117,94%
IG 2,59% 11,71% 11,4623 1,6882 49,64% 65,43%
HY 3,22% 14,18% 13,4441 1,4415 43,90% 68,89%

Difference µP

X
σX α θ κ bx 0|0

Mean 2,63% 4,60% -3,9995 0,2351 -0,04% -0,64%
Stdev 9,93% 9,59% 18,7842 0,5601 26,98% 36,71%
10% -6,25% -4,20% -20,0337 -0,5346 -30,97% -50,39%
25% -1,67% -0,29% -11,2514 -0,1521 -15,65% -23,93%
50% 2,05% 3,45% -2,9527 0,2345 0,05% -0,02%
75% 6,36% 9,30% 3,4440 0,6486 16,66% 21,95%
90% 11,42% 15,70% 13,5897 0,9642 30,56% 50,54%
IG 2,83% 5,88% -3,6296 0,3278 1,53% 0,31%
HY 2,33% 2,70% -4,5498 0,0974 -2,39% -2,05%

Prop. > 0 65,33% 72,36% 39,20% 64,32% 50,75% 49,25%

For each of the 225 firms, the monthly time series of CDS prices were used to estimate the model parameters using the UKF technique.
The data are provided by DATASTREAM and spans the period from January 2004 to May 2008. The sample is split approximately
in two. The first half contains the first 27 months (January 2004 to March 2006) while the second half contains the last 26 months
(April 2006 to May 2008). Estimation has been applied to both samples and the resulting parameters are compared. Means, standard
deviations and quantiles are computed across firms. The top (middle) panel shows the parameters in the first (second) half. The bottom
part of the table computes the variation in the parameter, i.e. the difference is taken as the parameter in the second sample (2006–2008)
minus the parameter in the first (2004–2006). “Prop. > 0” is the proportion of companies for which the difference is positive.

beginning of the sample, did not change a lot since the conditions in April 2006 were similar to the ones
observed in January 2004 (at the beginning of each sample). However, the filtered debt ratios increased

during the time covered in the second sample so that θ increased accordingly. Consequently, this example

shows that the parameters of the model may shift over time when important events occur on the markets.

It is also interesting to note that distinctions between the companies of the IG and HY portfolios still

hold in both samples. Indeed, the drift, the volatility of the debt ratio and its initial value are higher for HY
firms. Moreover, the sensitivity parameter α is also higher and the default threshold is lower for the riskiest

companies. However, the differences look less important and regressions on the credit ratings (investment

grade or not) are computed to check if those are statistically significant or not. The results are shown in

Table 7. Note that because of transitions from IG to non-IG (and vice versa) between the two samples, there

are slight differences between estimates shown in Table 7 and the ones shown in Table 6.

Table 7 shows that even though the direction of the relationships between the parameters and the credit

status of the firm holds for the large majority of the cases, the differences (as noted in Section 6.3.2) are not

large enough to be significant in many cases. The volatility of the debt ratio in both samples and the default

threshold in the second sample are the exception, being significant at a 5% level.

Table 8 presents descriptive statistics about the absolute relative pricing errors for CDS prices for the
two subsamples. For each firm and for each subperiod, the model’s parameters have been estimated using

UKF filtering technique. The theoretical CDS prices have been computed and compared to their market

counterpart. A slight improvement is observed in terms of medians. However, the mean absolute relative
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Table 7: Results of the regression of each parameter on the investment grade status of the company before
and after the onset of the credit crisis

2004–2006 2006–2008

µP

X
Value LB UB Value LB UB

bβ0 -0,16% -1,57% 1,25% 2,59% 1,14% 4,03%
bβ1 0,52% -1,36% 2,39% 0,72% -1,56% 3,01%

σX Value LB UB Value LB UB
bβ0 5,97% 4,17% 7,77% 11,54% 9,80% 13,29%
bβ1 3,52% 1,12% 5,92% 2,76% > 0,00% 5,53%

α Value LB UB Value LB UB
bβ0 16,3951 13,0946 19,6955 11,4695 9,3297 13,6093
bβ1 -0,8723 -5,2623 3,5177 2,0895 -1,2981 5,4771

θ Value LB UB Value LB UB
bβ0 1,3862 1,2891 1,4834 1,6814 1,6175 1,7453
bβ1 -0,0622 -0,1915 0,0670 -0,2353 -0,3365 -0,1341

κ Value LB UB Value LB UB
bβ0 49,90% 45,75% 54,04% 49,62% 45,81% 53,44%
bβ1 -3,57% -9,08% 1,94% -5,86% -11,90% 0,17%

bx 0|0 Value LB UB Value LB UB
bβ0 64,92% 59,08% 70,76% 65,56% 59,69% 71,42%
bβ1 4,09% -3,67% 11,86% 3,62% -5,66% 12,91%

For each of the 225 firms, the monthly time series of CDS prices was used to estimate the model parameters using the UKF technique.
The data are provided by DATASTREAM and spans the period from January 2004 to May 2008. The sample is split approximately
in two. The first half contains the first 27 months (January 2004 to March 2006) while the second half contains the last 26 months
(April 2006 to May 2008). A regression of each parameter on the indicator of credit rating (IG or not) has been performed for each of
the six parameters for both halves of the sample. For the first sample, the S&P rating is the rating of the long-term debt provided by
COMPUSTAT in 2006. For the second sample, the S&P rating is provided by Markit as of the date of the composition of the portfolio.
The table shows the estimates of the slopes and intercept of this regression. LB (and UB) are the lower (upper) bounds of the 95%

confidence interval for bβ0 or bβ1. When zero does not belong to the confidence interval, then there is a significant difference in the
parameter value for IG and non-IG firms. Estimates that are significantly different than zero at a 5% level are denoted in bold face.

Table 8: Absolute relative pricing errors across the portfolio of firms of the CDX indices for 2004–2006 and
2006–2008 subsamples

2004–2006

Maturity 1 2 3 4 5

All firms (2004–2006)
Mean 20,9% 12,3% 7,7% 3,9% 7,5%

Median 15,4% 7,6% 4,2% 0,7% 4,1%
nb obs 3981 3857 3981 3857 3981

IG firms (2004–2006)
Mean 21,9% 13,1% 7,5% 2,7% 6,6%

Median 17,5% 8,8% 5,0% 0,5% 4,5%

HY firms (2004–2006)
Mean 19,3% 10,8% 8,0% 5,9% 9,0%

Median 12,7% 6,1% 3,1% 1,2% 3,2%

2006–2008

1 2 3 4 5

All firms (2006–2008)
15,6% 9,4% 5,6% 3,9% 8,0%
11,5% 5,8% 3,4% 1,4% 5,9%
2178 4769 4919 4769 4919

IG firms (2006–2008)
16,7% 10,3% 6,8% 4,0% 9,2%
12,0% 6,1% 4,9% 1,2% 7,1%

HY firms (2006–2008)
13,9% 7,9% 3,8% 3,9% 6,3%
10,7% 5,5% 1,8% 1,6% 4,6%

The CDS sample is divided in two subsamples, the first one, labeled 2004–2006, covers the period January 2004 to March 2006 (27
months) and the second one, labeled 2006–2008, goes from April 2006 to May 2008 (26 months). For each of the 225 firms and each
subsample, the monthly time series of CDS prices were used to estimate the model parameters using UKF filtering technique. Using
the parameters obtained with the UKF method, the filtered market debt ratio is computed and the CDS is priced for each available
maturity and month. For each company, year and CDS maturity, the theoretical and observed CDS prices are compared. The absolute
relative pricing error is computed as the absolute pricing error expressed as a percentage of the observed price.
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error is much smaller, especially for HY firms. This is due to a few firms that have benefit of the sample

split.

6.3.3 Recovery rate term structure

The value of the assets and liabilities at default can be used to provide a recovery rate that is consistent with

the capital structure of the firm (see equation (4)). This approach is in line with Altman et al. (2004) and

Altman (2006) who strongly suggest to represent recovery rates as being inversely proportional to default
probabilities. In this section, the behavior of observed recovery rates at default are investigated with the

model.

Given the parameters obtained in both samples (2004–2006 and 2006–2008), one million paths of the

debt ratio have been generated under the real-world probability measure. When a default was generated, the

result of equation (4) was computed. Defaults have then been sorted according to their moment of occurrence
to measure the time-varying characteristics of the recovery rate. Thus, values of Rτ | (k ≤ τ < k + 1) , k =

0, 1, 2, . . . , 9 have been generated.

Figure 3 shows the term structure of expected recovery rates given default for companies of the CDX

indices. The firms are grouped by their credit rating in the corresponding time period. It can be seen that

recovery rates clearly vary over time and this is due to their time-varying solvency. The shape of the recovery
rate term structure is explained by a reasoning similar to the one used for credit spread curves. Conditional

upon survival, a highly-rated firm will only worsen so that its credit spread increases and its recovery rate

should decrease over time. Similarly, given survival, a poorly-rated firm will improve its financial status, so

that its credit spread will increase and its recovery rate will decrease.

As it is discussed in Altman (2006), recovery rates go down during economic crises. Figure 3 shows that
in the second sample, comprising the recent credit crisis and current recession, recovery rates dropped down

significantly. The drop has been more important for highly-rated firms as documented in Table 9. This is

consistent with the important rise in CDS spreads of the IG portfolio compared with the spreads of the HY

portfolio (see Figure 2).

Figure 3 supports the fact that recovery rates are higher for highly-rated firms. This is especially obvious
from the upper graph which depicts the term structure of recovery rates in the sample 2004–2006. Including

the credit crisis in the second sample has the effect to reduce recovery rates, as discussed earlier. The AA

class had a very important drop but there are few companies and among the three, two needed support from

the U.S. government (TARP). In the four classes A, BBB, BB and B, the average drop is approximately

Table 9: Drop in the mean recovery rates from the first sample (2004–2006) to the second sample (2006–2008)

Time / Rating AA A BBB BB B CCC
1 27.11% 14.56% 11.68% 15.56% 12.05% 4.63%
2 32.52% 16.96% 14.39% 16.57% 13.82% 2.56%
3 35.05% 18.45% 15.85% 16.61% 14.30% 1.81%
4 35.74% 19.06% 16.36% 16.20% 14.21% 1.38%
5 35.76% 19.34% 16.30% 15.63% 13.89% 1.10%
6 35.35% 19.37% 15.94% 15.08% 13.52% 0.88%
7 35.12% 19.32% 15.46% 14.66% 12.97% 0.61%
8 34.47% 19.29% 14.94% 14.18% 12.57% 0.41%
9 34.38% 19.12% 14.50% 13.67% 12.03% 0.05%
10 33.89% 18.87% 13.86% 13.13% 12.11% -0.01%

Nb (2004–2006) 2* 10 55 39 30 9
Nb (2006–2008) 3** 43 62 29 22 5

For each of the 225 firms, the monthly time series of CDS prices was used to estimate the model parameters using the UKF technique.
The data are provided by DATASTREAM and spans the period from January 2004 to May 2008. The sample is split approximately in
two. The first half contains the first 27 months (January 2004 to March 2006) while the second half contains the last 26 months (April
2006 to May 2008). For each of the companies, one million paths of the debt ratio over 30 years were simulated. The mean recovery
rate given default is the average value of Rτ over the paths of default that occurred in a specific year. The results shown in this table
computes the difference in the mean recovery rate from the sample 2004–2006 to 2006–2008, sorted by credit rating. The last two rows
shows the number of companies considered in the analysis in each credit rating class and sample. There were no company rated AAA
in the first sample. * The firms are GE Capital and FHLMC (Freddie Mac). ** The companies are AIG, Wal-Mart and Wells Fargo.
Freddie Mac, AIG and Wells Fargo needed government support to get out of the financial crisis in September 2008.
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Figure 3: Term structure of the mean recovery rate for all credit ratings in both samples (2004–2006 (top)
and 2006–2008 (bottom))

The mean recovery rate given default has been computed for each company of the CDX indices. Recovery rates have been sorted by
time of default to provide a term structure. Means are further computed over firms having a common credit rating. Parameters are
estimated using maximum likelihood along with UKF to filter for trading noises. The rating is provided by S&P as of 2008.

15%. Moreover, the recovery rates in 2004–2006 are higher than the ones presented in Altman & Kishore

(1998)12 but the period 2004–2006 is one of exceptional growth. The level of the curves depicted in the
sample 2006–2008 are closer to the ones presented in Altman & Kishore (1998) which is a blend of economic

growth and severe turmoil.

In conclusion, recovery rates vary over time because the solvency of the firm changes and economic

conditions as well. A CDS or a corporate bond should incorporate a different recovery rate for every period a

default payment is due. Finally, as a consequence of the current recession, the mean recovery rates dropped
significantly (by approximately 15%), especially for highly-rated firms.

12Their sample covered the time period 1971–1999.
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7 Conclusion

The approach presented in this paper allows many structural models to become hybrid with a simple trans-
formation of leverage to define the default intensity of the company. This transformation can be interpreted

as the sensitivity of the credit risk of the company with respect to changes in leverage. As the default trigger

is not purely specified by an exogenous barrier, the model produces endogenous random recovery rates that

are negatively correlated to the default probabilities, which is consistent with the empirical findings. Thus

the framework can be used to simultaneously model the two sources of credit risk i.e. the moment of default
and the amount of loss at default, for risk management and pricing purposes.

The non-linearity between default intensity and leverage has been investigated empirically. To do so, the

term structure of CDS premiums has been used to estimate the parameters of each company in the sample of

225 firms of the CDX NA IG and CDX NA HY indices. It was found that the credit risk of investment-grade

firms is less sensitive to changes in their leverage than for non investment-grade firms. Moreover, the critical
level of leverage is lower for the latter firms. These two effects work together to increase default probabilities

of these companies. It was also found that the drift, the volatility and the initial level of the debt ratio are

greater for riskier companies.

Estimating the model on two subsamples of CDS data, i.e. 2004–2006 and 2006–2008, it was discussed

that parameters may be sensitive to major events such as the occurrence of the credit crisis in 2007. Many
parameters shifted from one period to the other, leading to an increase in the credit risk of the companies.

The credit crisis has been explained by the model as a general weakening of the solvency of companies (debt

ratio grows faster and riskier) and an increase in the proportion of surprises in explaining defaults.

The expected recovery rates given default have been computed for each company in the sample over the

two periods. Since recovery rates are inversely proportional to default probabilities, they show a decreas-
ing (increasing) pattern for highly-(poorly-) rated firms. Due to the credit crisis, recovery rates dropped

significantly and curves became steeper.

Based on the analysis conducted on the 225 firms of the CDX indices, it can be deduced there is a

significant non-linear relationship between the default intensity and the leverage of the company. Moreover,

this non-linearity may change over time and is more important for non investment-grade firms. Finally, a
term structure of recovery rates can be deduced from the model and the curves have shifted down due to the

credit crisis.

A Proofs

A.1 Survival probability

To compute the survival probability of the firm, one needs to evaluate the conditional expectation given by

equation (5) where Hu is lognormal. It is possible to relate this expectation to a PDE, which in turn has

been solved in a (quasi) closed-form solution in Dothan (1978). Since

Zt ≡ St (T ) exp

(
−
∫ t

0

Hudu

)
= E

[
exp

(
−
∫ T

0

Hudu

)∣∣∣∣∣Gt

]

is the conditional expectation of a GT−measurable bounded random variable with respect to an element of
the filtration, it results that {Zt : 0 ≤ t ≤ T } is a {Gt : 0 ≤ t ≤ T }−martingale. Now, assume that St (T ) is a

doubly continuously differentiable function in H and t, that is, St (T ) = S (t, Ht; T ). Applying Itô’s lemma,

one gets

dZt = exp

(
−
∫ t

0

Hudu

)
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∂2S
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)
dt

+σH (t)Ht
∂S
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 .
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The drift term of any martingale should be zero, meaning that the survival probability has to satisfy the

partial differential equation

−HtS +
∂S

∂t
+ µ

(H)
t Ht

∂S

∂H
+

1

2

(
σ

(H)
t

)2

H2
t

∂2S

∂H2
= 0

with the boundary conditions

S (T, HT ; T ) = ST (T ) = 1

lim
Ht→0

S (t, Ht; T ) = 1

lim
Ht→∞

S (t, Ht; T ) = 0.

Applying the change of variable t∗ = T − t to the PDE, one obtains

HT−t∗S (T − t∗, HT−t∗ ; T ) = − ∂S

∂t∗
(T − t∗, HT−t∗ ; T ) + µ

(H)
T−t∗HT−t∗

∂S

∂H
(T − t∗, HT − t∗; T )

+
1

2

(
σ

(H)
T−t∗

)2

H2
T−t∗

∂2S

∂H2
(T − t∗, HT−t∗ ; T ) .

Letting H∗
t∗ = HT−t∗ and S∗ (t∗, H∗

t∗ ; T ) = S (T − t∗, H∗
t∗ ; T ), the PDE to solve becomes

−∂S∗

∂t∗
+ µ

(H)
T−t∗H

∗
t∗

∂S∗

∂H∗
+

1

2

(
σ

(H)
T−t∗

)2

(H∗
t∗)

2 ∂2S∗

∂ (H∗)
2 = H∗

t∗S
∗

with the boundary conditions

S∗ (0, H∗
t∗ ; T ) = 1

lim
H∗

t∗
→∞

S∗ (t∗, H∗
t∗ ; T ) = 0

lim
H∗

t∗
→0

S∗ (t∗, H∗
t∗ ; T ) = 1.

The solution to this PDE is provided in Dothan (1978) when µ
(H)
t and σ

(H)
t are constants.

A.2 Zero-coupon debt, random interest rates

A.2.1 Framework where the money market account is the numéraire

Recall the framework presented in Section 4.2. To price derivatives in such an environment, one must find an

alternative probability measure Q, equivalent to P, where the prices of all assets, discounted by the money

market account, are martingales. Denote the time t value of the money market account by Dt = exp
(∫ t

0 rudu
)

and define B
Q
t ≡ BP

t +
∫ t

0
λudu, where {λt : t ≥ 0} is a K + 1 dimensional predictable process. Using Itô’s

lemma, the dynamics of AtD
−1
t and pt (T )D−1

t are

d

(
At

Dt

)
=

(
σ

(A)
t

)⊤
AtdB

Q
t

d

(
pt (T )

Dt

)
= pt (T )

(
mt (T )− rt − Σ⊤

t (T )λt

)
+ pt (T )Σt (T )dBQ

t .

To obtain a probability measure Q such that
{
pt (T )D−1

t : t ≥ 0
}

and
{
AtD

−1
t : t ≥ 0

}
are Q− martingales,

the drifts of these processes should be 0 under Q. Because of the choice of drift for the asset process (recall

equation (16)), one immediately gets

dAt = rtAtdt + σ
⊤(A)
t AtdB

Q
t (22a)

dpt (T ) = rtpt (T ) + pt (T )Σ⊤
t (T )dBQ

t . (22b)
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A.2.2 Framework where the T -year zero-coupon bond is the numéraire

To compute the price of a defaultable zero-coupon bond, the dynamic of the default intensity under the

T−forward measure QT is required.

Under the T−forward measure QT , all assets, discounted by a zero-coupon bond with maturity T years,

behave as martingales. Recall that under Q, the dynamics of the risky asset and of the bond are given by

the equations in (22a) and (22b). Applying Itô’s lemma gives

d

(
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At
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dBQ
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Letting B
QT

t ≡ B
Q
t +

∫ t

0 γudu, one gets
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Since
{
Atp

−1
t (T ) : 0 ≤ t ≤ T

}
should be a QT−martingale, its drift term is null:

Σ⊤
t (T )Σt (T ) − σ

⊤(A)
t Σt (T )−

(
σ

(A)
t − Σt (T )

)⊤
γt = 0,

implying that γt = −Σt (T ). Since each element of γt is finite and deterministic, then the Novikov’s condition
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[
exp
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(
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< ∞, k = 1, 2, . . . , K + 1

holds and, according to Cameron-Martin-Girsanov’s theorem, Q and QT are equivalent and B
QT

t ≡ B
Q
t +∫ t

0 γudu is a QT−Brownian motion. Consequently,
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and, the dynamic of the debt ratio Xt = pt

(
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A−1

t is
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The final step is to find the behavior of the default intensity. Using the transformation given by (6) and

Itô’s lemma, one gets

dHt = Ht
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