# An Interior-Point $\ell_{1}$-Penalty Method for Nonlinear Optimization 

N. Gould, D. Orban, P. Toint<br>G-2010-38<br>June 2010

# An Interior-Point $\ell_{1}$-Penalty Method for Nonlinear Optimization 

Nicholas I. M. Gould<br>Computational Science and Engineering Department<br>Rutherford Appleton Laboratory<br>Chilton, Oxfordshire, OX11 0QX, England nick.gould@stfc.ac.uk<br>Dominique Orban<br>GERAD $\S$ Département de mathématiques et génie industriel<br>École Polytechnique de Montréal<br>Montréal (Québec) Canada<br>dominique.orban@gerad.ca<br>Philippe L. Toint<br>Department of Mathematics<br>Facultés Universitaires ND de la Paix<br>61, rue de Bruxelles<br>B-5000 Namur, Belgium<br>philippe.toint@fundp.ac.be

June 2010

Les Cahiers du GERAD
G-2010-38


#### Abstract

A mixed interior/exterior-point method for nonlinear programming is described, that handles constraints by way of an $\ell_{1}$-penalty function. A suitable decomposition of the penalty terms and embedding of the problem into a higher-dimensional setting leads to an equivalent, surprisingly regular, reformulation as a smooth penalty problem only involving inequality constraints. The resulting problem may then be tackled using interior-point techniques as finding a strictly feasible initial point is trivial. The reformulation relaxes the shape of the constraints, promoting larger steps and easing the nonlinearity of the strictly feasible set in the neighbourhood of a solution. If finite multipliers exist, exactness of the penalty function eliminates the need to drive the corresponding penalty parameter to infinity. If the penalty parameter needs to increase without bound and if feasibility is ultimately attained, a certificate of degeneracy is delivered. Global and fast local convergence of the proposed scheme are established and practical aspects of the method are discussed.


Key Words: $\quad \ell_{1}$-penalty method, interior-point method, Elastic variables, nonconvex optimization.

## Résumé

Nous proposons une méthode de pénalisation mixte intérieure/extérieure pour l'optimisation nonlinéaire qui traite les contraintes par le biais d'une reformulation élastique de la pénalisation $\ell_{1}$. Celle-ci plonge le problème dans un espace de plus grande dimension mais il en résulte une régularité surprenante. On trouve aisément un point strictement admissible pour le problème reformulé, que l'on traite donc adéquatement via une méthode intérieure. La pénalisation exacte évite au paramètre de pénalisation de diverger s'il existe des multiplicateurs de Lagrange finis. Si ce paramètre diverge et si un point admissible est atteint, la méthode produit un certificat de dégénérescence du problème. La convergence globale ainsi que la convergence locale superlinéaire sont établies et les résultats numériques illustrent la robustesse de la méthode.

Mots clés : pénalisation $\ell_{1}$, méthode intérieure, reformulation élastique.

## Acknowledgments:

Nicholas I. M. Gould: This work was supported in part by the EPSRC grants GR/R46641 and GR/S42170.
Dominique Orban: This work was supported in part by the NSERC Discovery Grant 299010-04.
Philippe L. Toint: This work was supported in part by the EPSRC grant GR/S02969.

## 1 Introduction

A typical nonlinear programming problem is to

$$
\begin{align*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x)  \tag{1a}\\
\text { subject to } & c_{\mathcal{E}}(x)=0  \tag{1b}\\
& c_{\mathcal{I}}(x) \geq 0 \tag{1c}
\end{align*}
$$

involving a mixture of smooth, general, possibly nonlinear and nonconvex, equality and inequality constraints. Here $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, c_{\mathcal{E}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{\mathcal{E}}}$ and $c_{\mathcal{I}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{\mathcal{I}}}$, where $\mathcal{E}=\left\{1, \ldots, n_{\mathcal{E}}\right\}$ and $\mathcal{I}=\left\{n_{\mathcal{E}}+1, \ldots, n_{\mathcal{E}}+n_{\mathcal{I}}\right\}$.

In this paper, we propose an interior-point approach for (1). At first sight, two difficulties emerge. Firstly, since we allow equality constraints, this might appear to preclude a interior approach. Secondly, a feasible initial point is not necessarily easily or efficiently found. To circumvent these difficulties, we embed the set of variables into a higher dimensional space for which the constraints have a nonempty and easily locatable interior. The resulting interior-point method has therefore an infeasible flavour.

A common way of attempting to solve (1) is to build the corresponding $\ell_{1}$-penalty function and to

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \phi^{\mathrm{P}}(x, \nu) \equiv f(x)+\nu \sum_{i \in \mathcal{E}}\left|c_{i}(x)\right|+\nu \sum_{i \in \mathcal{I}} \max \left[-c_{i}(x), 0\right] \tag{2}
\end{equation*}
$$

for some sufficiently-large penalty parameter $\nu>0$. However (2) is not smooth, and it might appear that sophisticated tools are needed to handle the derivative discontinuities in such a minimization. This is not the case for, as we will see in Section 2, (2) is equivalent to the smooth problem

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{n} \mathcal{C}}{\operatorname{minimize}} & \phi^{\mathrm{S}}(x, s ; \nu) \equiv f(x)+\nu \sum_{i \in \mathcal{E}}\left(c_{i}(x)+2 s_{i}\right)+\nu \sum_{i \in \mathcal{I}} s_{i}  \tag{3}\\
\text { subject to } & c_{i}(x)+s_{i} \geq 0 \quad \text { and } \quad s_{i} \geq 0, \quad \text { for all } i \in \mathcal{C},
\end{array}
$$

involving $n_{\mathcal{C}}$ additional elastic variables $s \in \mathbb{R}^{n_{\mathcal{C}}}$, where $\mathcal{C} \equiv \mathcal{E} \cup \mathcal{I}$ and $n_{\mathcal{C}} \equiv n_{\mathcal{E}}+n_{\mathcal{I}}$. This problem only involves inequality constraints, and it is trivial to pick $s$ sufficiently large so that ( $x, s$ ) is strictly feasible for (3). Note also that had (1) been a convex optimization problem, (3) inherits this property. In other words, adding elastic variables preserves convexity. This is at variance with other types of infeasible methods such as those based on the addition of slack variables, e.g., (Byrd et al., 2000; Wächter and Biegler, 2006).

Having embedded (1) in a higher-dimensional space involving only inequalities, an immediate possibility is to apply an interior-point method to the resulting problem (3). Thus, one might (approximately)

$$
\begin{equation*}
\operatorname{minimize}_{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{n} \mathcal{C}} \phi^{\mathrm{B}}(x, s ; \mu, \nu) \equiv \phi^{\mathrm{S}}(x, s ; \nu)-\mu \sum_{i \in \mathcal{C}} \log \left(c_{i}(x)+s_{i}\right)-\mu \sum_{i \in \mathcal{C}} \log s_{i}, \tag{4}
\end{equation*}
$$

for a sequence of barrier parameters, $\left\{\mu^{k}\right\}$, converging to zero from above. A theoretical investigation of the properties of $\phi^{\mathrm{B}}$ and the problem (4) forms the basis of Section 2 and Section 2.3. The global and local convergence properties of two standard trust-region methods for solving (4), for fixed ( $\mu, \nu$ ) are considered in Section 3. Section 4 provides global and local convergence properties of the method. Section 5 describes the changes in the algorithm and results if linear constraints are handled explicitly. Numerical experience is reported in Section 8. Algorithmic variations, improvements, and extensions are described in Section 6 and Section 7, and conclusions drawn in Section 9.

The use of the transformation to the $\ell_{1}$-penalty function to solve (1) is, of course, well known. The equivalence between the optimality conditions for nonconvex nonlinear programming problems and related penalty functions was first reported by Pietrzykowski (1969), and the results subsequently strengthened by Charalambous (1978); Han and Mangasarian (1979); Coleman and Conn (1980); Bazaraa and Goode (1982) and Huang and Ng (1994). See also (Fletcher, 1987, Chapters 12 and 14). In Section 2, we shall see how this equivalence is inherited by the problem (3).

Although a constraint qualification condition is not required to conduct the convergence analysis, degeneracy is indicated by a diverging sequence of penalty parameters in the following sense. If the penalty parameter diverges yet feasibility is attained, our method delivers a certificate of degeneracy by explicitly providing Fritz-John multipliers. The relation satisfied by those multipliers characterizes failure of the Mangasarian and Fromovitz constraint qualification condition.

The approach taken in this paper has its genesis in the work of Mayne and Polak (1976), more recently extended by Herskovits (1986); Lawrence and Tits (1996) and Tits et al. (2003), all of whom also reformulate (1) so as only to involve inequality constraints. Indeed, our basic approach coincides with theirs on setting $s$ to zero. However, we prefer not to do this, as the resulting problem then has no obvious initial feasible point. Armand et al. (2000) investigated the reformulation

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{n_{\mathcal{I}}}}{\operatorname{mimimize}} f(x) \quad \text { subject to } c_{\mathcal{I}}(x)+s \geq 0, s=0 \tag{5}
\end{equation*}
$$

for convex, inequality-constrained problems in which the resulting equality constraints $s=0$ are handled by penalization. This idea was refined by Armand (2003) to give (3) in the convex, inequality-constrained case, which was then solved by minimizing a sequence of (convex) barrier functions like (4).

The present approach is also related to the so-called elastic mode used by Boman (1999) and in the SNOPT package of Gill et al. (2002), where it is used in a sequential quadratic programming framework as a fallback strategy to relax the constraints in case the current quadratic subproblem appears to be infeasible, unbounded or to have unbounded multipliers. In such a case, once the elastic mode has been triggered, it persists until convergence.

A related approach is investigated by Chen and Goldfarb (2006) with an $\ell_{2}$ exact penalty function in a linesearch context. In that approach, a sequence of equality-constrained problems must be solved.

Other methods with an interior-point flavour include the primal-dual filter method of Wächter and Biegler (2006), implemented in the IPOPT package, the primal-dual trust-region and linesearch methods of Byrd et al. (2000) and Waltz et al. (2006), implemented in the commercial package KNITRO, and the primal-dual linesearch method of Vanderbei and Shanno (1999) implemented in the commercial package LOQO. Those methods typically add slack variables to convert general inequality constraints into bound constraints.

## 2 Equivalent Smooth Reformulations of the Exact Penalty Function

### 2.1 Possible Reformulations

As mentioned in Section 1, one way to treat the nonlinear constraints (1b)-(1c) is instead to minimize the non-differentiable $\ell_{1}$-penalty function

$$
\begin{equation*}
\phi^{\mathrm{P}}(x ; \nu)=f(x)+\nu \vartheta^{\mathrm{P}}(x), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\vartheta^{\mathrm{P}}(x) \equiv \sum_{i \in \mathcal{E}}\left|c_{i}(x)\right|+\sum_{i \in \mathcal{I}} \max \left[-c_{i}(x), 0\right] \tag{7}
\end{equation*}
$$

for some sufficiently large penalty parameter $\nu>0$. It is well-known that the minimization of $\phi^{P}$ may be reformulated as a smooth problem (Gill et al., 1981, $\S 4.2 .3$ ). To see this, consider first an equality constraint $c_{i}(x)=0$. The penalty contribution from this constraint, $\nu\left|c_{i}(x)\right|$, may be expressed as

$$
\begin{equation*}
\nu\left[r_{i}+s_{i}\right], \quad \text { where } \quad c_{i}(x)=r_{i}-s_{i} \quad \text { and } \quad\left(r_{i}, s_{i}\right) \geq 0 \tag{8}
\end{equation*}
$$

or alternatively as

$$
\nu\left[c_{i}(x)+2 s_{i}\right], \quad \text { where } \quad c_{i}(x)+s_{i} \geq 0 \quad \text { and } \quad s_{i} \geq 0
$$

Now turning to an inequality constraint $c_{i}(x) \geq 0$, its penalty contribution, $\nu \max \left(-c_{i}(x), 0\right)$, may be expressed as

$$
\nu s_{i}, \quad \text { where } \quad c_{i}(x)=r_{i}-s_{i} \quad \text { and } \quad\left(r_{i}, s_{i}\right) \geq 0
$$

or alternatively as

$$
\nu s_{i}, \quad \text { where } \quad c_{i}(x)+s_{i} \geq 0 \quad \text { and } \quad s_{i} \geq 0
$$

Thus the minimization of $\phi^{\mathrm{P}}$ may be expressed as (3), which we restate here for convenience,

$$
\begin{array}{ll}
\operatorname{minimize}_{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{n} \mathcal{C}} & \phi^{\mathrm{S}}(x, s ; \nu) \equiv f(x)+\nu \sum_{i \in \mathcal{E}}\left(c_{i}(x)+2 s_{i}\right)+\nu \sum_{i \in \mathcal{I}} s_{i} \\
\text { subject to } & c_{i}(x)+s_{i} \geq 0 \quad \text { and } \quad s_{i} \geq 0, \quad \text { for all } i \in \mathcal{C} .
\end{array}
$$

Notice that for given $x$, any set of values $s_{i} \geq \max \left(-c_{i}(x), 0\right)$ provides an initial feasible point for the enlarged feasible region involving $(x, s)$, and that this point lies in the strict interior if $s_{i}>\max \left(-c_{i}(x), 0\right)$ for all $i \in \mathcal{C}$. The central idea of this paper will then be to apply a primal-dual interior-point method to solve (3).

This is not the only possible reformulation of (2). For example (8) might equally have been rewritten as

$$
\nu\left[2 r_{i}-c_{i}(x)\right], \quad \text { where } \quad r_{i}-c_{i}(x) \geq 0 \quad \text { and } \quad r_{i} \geq 0 \quad \text { for all } \quad i \in \mathcal{E}
$$

leading to the equivalent

$$
\begin{array}{cl}
\underset{(x, r, s) \in \mathbb{R}^{n+n_{\mathcal{C}}}}{\operatorname{minimize}} & f(x)+\nu \sum_{i \in \mathcal{E}}\left(2 r_{i}-c_{i}(x)\right)+\nu \sum_{i \in \mathcal{I}} s_{i}  \tag{9}\\
\text { subject to } & \left(r_{i}-c_{i}(x), r_{i}\right) \geq 0 \quad \text { for all } \quad i \in \mathcal{E}, \\
& \left(c_{i}(x)+s_{i}, s_{i}\right) \geq 0 \quad \text { for all } \quad i \in \mathcal{I} .
\end{array}
$$

Which of (3) or (9) is preferable might depend on the initial value of $c_{i}(x)$; a positive initial value might favour (3) since then the added elastic $s_{i}$ need not be (significantly) larger than zero, while a negative initial value might favour (9) for the same reason-of course, a mixture of the two reformulations on a constraint-by-constraint basis is also possible. Finally, it is possible to "average" (3) and (9) to obtain

$$
\begin{array}{cl}
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{n_{\mathcal{C}}}}{\operatorname{mimimize}} & f(x)+\nu \sum_{i \in \mathcal{C}} s_{i} \\
\text { subject to } & -s_{i} \leq c_{i}(x) \leq s_{i}  \tag{10}\\
& c_{i}(x)+s_{i} \geq 0, s_{i} \geq 0 \quad \text { for all } \quad i \in \mathcal{E}, \\
\text { for all } \quad i \in \mathcal{I}
\end{array}
$$

More precisely, this formulation is obtained upon defining $s_{i}=\left|c_{i}(x)\right|=\max \left[-c_{i}(x), c_{i}(x)\right]$ for all $i \in \mathcal{E}$ and noting that this definition is equivalently written $-s_{i} \leq c_{i}(x) \leq s_{i}$, and defining similarly $s_{i}=\max \left[-c_{i}(x), 0\right]$ for $i \in \mathcal{I}$. This symmetric formulation has the advantage that no a priori bias is introduced through the initial value of $x$. Notice also that the constraint functions do not occur in the objective function for (10), but that equality constraints have been replaced by a pair of inequalities. While, for simplicity, we shall concentrate on the formulation (3) in this paper, equivalent algorithms and theory can immediately be developed for the alternatives (9) and (10).

As we have already mentioned, one could go one stage further here and minimize (3) as a function of $s$ to arrive at the equivalent problem

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)+\nu \sum_{i \in \mathcal{E}} c_{i}(x) \quad \text { subject to } c_{i}(x) \geq 0 \quad \text { for all } \quad i \in \mathcal{C} . \tag{11}
\end{equation*}
$$

However, we choose not to since then it is unobvious how to find an initial feasible point for (11).
We now examine the consequences of our reformulation.

### 2.2 Notation and Definitions

Some basic notation has already been introduced in the previous sections. We summarize it here and introduce further notational conventions.

### 2.2.1 Vectors and Sequences

If $q \geq 0$ and $v \in \mathbb{R}^{q}$, we shall denote its $i$-th component by a subscript $v_{i}$. If $\mathcal{S} \subseteq\{1, \ldots, q\}$, we write $v_{\mathcal{S}}$ for the subvector of $v$ whose components are the $v_{i}, i \in \mathcal{S}$. Likewise, if $M \in \mathbb{R}^{q \times p}, M_{\mathcal{S}}$ is the submatrix of $M$ whose rows are indexed by $\mathcal{S}$. In an algorithmic context, the value taken by the vector $v$ at iteration $k$ will be denoted by a superscript $v^{k}$ and its $i$-th component is $v_{i}^{k}$. A sequence indexed by the set $\mathbb{N}$ of nonnegative integers whose general term is $v^{k}$ is denoted $\left\{v^{k}\right\}$ and a subsequence indexed by the infinite index set $\mathcal{K} \subseteq \mathbb{N}$ is denoted $\left\{v^{k}\right\}_{\mathcal{K}}$.

As exceptions to the above, if $e_{\mathcal{E}}$ and $e_{\mathcal{I}}$ are vectors of ones of dimension $n_{\mathcal{E}}$ and $n_{\mathcal{I}}$ respectively, we define two vectors

$$
e_{\mathcal{E}}^{0}=\left[\begin{array}{c}
e_{\mathcal{E}} \\
0
\end{array}\right] \quad \text { and } \quad e_{\mathcal{I}}^{0}=\left[\begin{array}{c}
0 \\
e_{\mathcal{I}}
\end{array}\right]
$$

in $\mathbb{R}^{n_{\mathcal{C}}}$, and let $e=e_{\mathcal{E}}^{0}+e_{\mathcal{I}}^{0}$. Wherever appropriate, the notation $e_{p}$ denotes the vector of all ones in $\mathbb{R}^{p}$ and similarly, $0_{p}$ denotes the zero vector of $\mathbb{R}^{p}$. In addition, $I_{\mathcal{E}}$ and $I_{\mathcal{I}}$ are identity matrices of dimensions $n_{\mathcal{E}}$ and $n_{\mathcal{I}}$ respectively.

### 2.2.2 The Lagrangian and Dual Variables for the Original Problem

A nonlinear problem of the form (1) is said to satisfy the Mangasarian and Fromovitz (1967) constraint qualification (MFCQ) at a feasible point $x^{*}$ if the vectors $\left\{\nabla c_{i}\left(x^{*}\right)\right\}_{i \in \mathcal{E}}$, are linearly independent and if there exists a direction $d \neq 0$ such that

$$
\nabla c_{i}\left(x^{*}\right)^{T} d=0 \quad \text { for } i \in \mathcal{E} \quad \text { and } \quad \nabla c_{i}\left(x^{*}\right)^{T} d<0 \quad \text { for } i \in \mathcal{A}
$$

where $\mathcal{A}=\left\{i \in \mathcal{I} \mid c_{i}\left(x^{*}\right)=0\right\}$ is the set of active indices at $x^{*}$.
We denote the full vector of constraints by $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{\mathcal{C}}}$. The Lagrangian associated with problem (1) is

$$
\begin{equation*}
L(x, \lambda)=f(x)-c_{\mathcal{E}}(x)^{T} \lambda_{\mathcal{E}}-c_{\mathcal{I}}(x)^{T} \lambda_{\mathcal{I}} \tag{12}
\end{equation*}
$$

where $\lambda_{\mathcal{E}} \in \mathbb{R}^{n_{\mathcal{E}}}, \lambda_{\mathcal{I}} \in \mathbb{R}_{+}^{n_{\mathcal{I}}}$ and $\lambda=\left(\lambda_{\mathcal{E}}, \lambda_{\mathcal{I}}\right)$. A vector $z=(x, \lambda)$ is a first-order critical point for (1) if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

$$
\begin{align*}
\nabla f(x)-J_{\mathcal{E}}^{T}(x) \lambda_{\mathcal{E}}-J_{\mathcal{I}}^{T}(x) \lambda_{\mathcal{I}} & =0  \tag{13a}\\
C_{\mathcal{I}}(x) \lambda_{\mathcal{I}} & =0  \tag{13b}\\
c_{\mathcal{E}}(x) & =0  \tag{13c}\\
\text { and } c_{\mathcal{I}}(x), \lambda_{\mathcal{I}} & \geq 0 \tag{13d}
\end{align*}
$$

Here and elsewhere $J_{\mathcal{E}}(x)$ and $J_{\mathcal{I}}(x)$ are the Jacobian matrices of $c_{\mathcal{E}}(x)$ and $c_{\mathcal{I}}(x)$ respectively, while a capitalised (e.g.) $C_{\mathcal{I}}(x)$ denotes the diagonal matrix whose entries are the components of the vector (e.g.) $c_{\mathcal{I}}(x)$. Under a constraint qualifaction condition, and in particular under the MFCQ, conditions (13) are necessary for optimality of $z$.

If $x^{*}$ is a first-order critical point for (1), let $\Lambda^{*}$ be the set of all associated Lagrange multipliers, i.e, the (possibly empty) set of all vectors ( $\lambda_{\mathcal{E}}, \lambda_{\mathcal{I}}$ ) satisfying (13). The MFCQ being satisfied at $x^{*}$ is equivalent to $\Lambda^{*}$ being nonempty and bounded (Gauvin, 1977) .

If $x$ is feasible for (1), we say that it is a Fritz-John point if there exist $\left(\gamma, \lambda_{\mathcal{E}}, \lambda_{\mathcal{I}}\right) \neq(0,0,0)$ with $\gamma \geq 0$ such that $\left(x, \gamma, \lambda_{\mathcal{E}}, \lambda_{\mathcal{I}}\right)$ satisfies (13) with (13a) replaced by

$$
\begin{equation*}
\gamma \nabla f(x)-J_{\mathcal{E}}^{T}(x) \lambda_{\mathcal{E}}-J_{\mathcal{I}}^{T}(x) \lambda_{\mathcal{I}}=0 \tag{14}
\end{equation*}
$$

It is easy to see that if $\gamma>0,\left(x, \lambda_{\mathcal{E}} / \gamma, \lambda_{\mathcal{I}} / \gamma\right)$ is in fact first-order critical. This would occur, e.g., if the MFCQ held at $x$. If on the other hand $\gamma=0, x$ is a feasible point where the MFCQ fails to hold (Mangasarian and Fromovitz, 1967).

### 2.2.3 The Lagrangian and Dual Variables for the Reformulated Problem

It will be convenient in what follows to express the objective function of (3) as

$$
\begin{equation*}
\phi^{\mathrm{S}}(x, s ; \nu)=f(x)+\nu \vartheta(x, s) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\vartheta(x, s)=\sum_{i \in \mathcal{E}}\left[c_{i}(x)+2 s_{i}\right]+\sum_{i \in \mathcal{I}} s_{i} \tag{16}
\end{equation*}
$$

is the measure of infeasibility. The Lagrangian for problem (3) is

$$
\begin{equation*}
\mathcal{L}(x, s, y, u ; \nu)=\phi^{\mathrm{S}}(x, s ; \nu)-(c(x)+s)^{T} y-s^{T} u \tag{17}
\end{equation*}
$$

where the Lagrange multipliers $y=\left(y_{\mathcal{E}}, y_{\mathcal{I}}\right) \in \mathbb{R}_{+}^{n_{\mathcal{C}}}$ and $u=\left(u_{\mathcal{E}}, u_{\mathcal{I}}\right) \in \mathbb{R}_{+}^{n_{\mathcal{C}}}$ are associated with the constraints $c(x)+s \geq 0$ and $s \geq 0$ of (3) respectively. The vectors

$$
v_{\mathrm{P}}=(x, s) \quad \text { and } \quad v_{\mathrm{D}}=(y, u)
$$

contain primal and dual variables/Lagrange multipliers for (3) respectively.
The gradient of (15) may be expressed as

$$
\nabla \phi^{\mathrm{S}}(x, s ; \nu)=\left[\begin{array}{c}
\nabla f(x)  \tag{18}\\
0
\end{array}\right]+\nu \nabla \vartheta(x, s)=\left[\begin{array}{c}
\nabla f(x) \\
0
\end{array}\right]+\nu\left[\begin{array}{c}
J_{\mathcal{E}}^{T}(x) e_{\mathcal{E}} \\
e+e_{\mathcal{E}}^{0}
\end{array}\right]
$$

while the $2 n_{\mathcal{C}} \times\left(n+n_{\mathcal{C}}\right)$ Jacobian of the constraints of (3) with respect to $v_{\mathrm{P}}$ can be written as

$$
J^{\mathrm{S}}\left(v_{\mathrm{P}}\right)=\left[\begin{array}{ccc}
J_{\mathcal{E}}(x) & I_{\mathcal{E}} & 0  \tag{19}\\
J_{\mathcal{I}}(x) & 0 & I_{\mathcal{I}} \\
0 & I_{\mathcal{E}} & 0 \\
0 & 0 & I_{\mathcal{I}}
\end{array}\right]=\left[\begin{array}{cc}
J(x) & I_{\mathcal{C}} \\
0 & I_{\mathcal{C}}
\end{array}\right]
$$

where we have denoted the $n_{\mathcal{C}} \times n$ Jacobian matrix of the full vector of constraint functions $c(x)$ by

$$
J(x)=\left[\begin{array}{c}
J_{\mathcal{E}}(x)  \tag{20}\\
J_{\mathcal{I}}(x)
\end{array}\right]
$$

This derivative structure enables us to express the KKT conditions for (3) as

$$
\begin{align*}
\nabla f(x)-J_{\mathcal{E}}^{T}(x)\left(y_{\mathcal{E}}-\nu e_{\mathcal{E}}\right)-J_{\mathcal{I}}^{T}(x) y_{\mathcal{I}} & =0  \tag{21a}\\
\nu e_{\mathcal{E}}-\left(y_{\mathcal{E}}-\nu e_{\mathcal{E}}\right)-u_{\mathcal{E}} & =0  \tag{21b}\\
\nu e_{\mathcal{I}}-y_{\mathcal{I}}-u_{\mathcal{I}} & =0  \tag{21c}\\
(C(x)+S) y & =0  \tag{21d}\\
S u & =0  \tag{21e}\\
\text { and } c(x)+s, s, y, u & \geq 0 \tag{21f}
\end{align*}
$$

It should now be apparent from (13) and (21) that there is an intimate connection between the Lagrange multipliers $\lambda$ for (1) and the multipliers $y$ for (3). To keep later results concise, we formalise this as follows.

Definition 1 For a given, fixed, value $\nu \geq 0$ of the penalty parameter, and given vectors $x$, $y$ and $\lambda$, we define the shifted multipliers

$$
\begin{align*}
y(\lambda, \nu) & \equiv\left(\lambda_{\mathcal{E}}+\nu e_{\mathcal{E}}, \lambda_{\mathcal{I}}\right)=\lambda+\nu e_{\mathcal{E}}^{0}  \tag{22a}\\
\text { and } \lambda(y, \nu) & \equiv\left(y_{\mathcal{E}}-\nu e_{\mathcal{E}}, y_{\mathcal{I}}\right)=y-\nu e_{\mathcal{E}}^{0} \tag{22b}
\end{align*}
$$

i.e., the vectors where the multipliers corresponding to the nonlinear equality constraints of (1) and (3) have been shifted by $\pm \nu e_{\mathcal{E}}$.

### 2.2.4 Infeasibility Measures

A first-order solution of

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{n} \mathcal{C}}{\operatorname{minimize}} \vartheta(x, s) \quad \text { subject to } c(x)+s \geq 0 \quad \text { and } \quad s \geq 0 \tag{23}
\end{equation*}
$$

is attained at a point $(x, s)$ for which

$$
\begin{align*}
J^{T}(x)\left(\bar{y}-e_{\mathcal{E}}^{0}\right) & =0, \\
e-\left(\bar{y}-e_{\mathcal{E}}^{0}\right)-\bar{u} & =0, \\
(C(x)+S) \bar{y} & =0,  \tag{24}\\
S \bar{u} & =0 \\
\text { and } \quad c(x)+s, s, \bar{y}, \bar{u} & \geq 0,
\end{align*}
$$

where $\bar{y}$ and $\bar{u}$ are Lagrange multipliers associated with the inequality constraints $c(x)+s \geq 0$ and $s \geq 0$ respectively. It is important to recognize that such an $x$ is also a critical point for the infeasibility measure $(7), \vartheta^{\mathrm{P}}(x)$, for the true constraints.

Theorem 1 Suppose that ( $x, s$ ) satisfies (24). Then $x$ is a first-order critical point of (7).

Proof. A first-order critical point for (7) satisfies

$$
\begin{equation*}
J^{T}(x) \lambda=0 \tag{25}
\end{equation*}
$$

where the generalized gradient $\lambda$ satisfies

$$
\lambda_{i} \begin{cases}=-1 & \text { if } c_{i}>0 \text { and } i \in \mathcal{E}  \tag{26}\\ =0 & \text { if } c_{i}>0 \text { and } i \in \mathcal{I} \\ =1 & \text { if } c_{i}<0 \\ \in[-1,1] & \text { if } c_{i}=0 \text { and } i \in \mathcal{E} \\ \in[0,1] & \text { if } c_{i}=0 \text { and } i \in \mathcal{I}\end{cases}
$$

(see, for example, (Conn et al., 2000b, Example 11.4.1).) Let $(\bar{y}, \bar{u})$ satify $(24)$, and define $(\lambda, u)=\left(\bar{y}-e_{\mathcal{E}}^{0}, \bar{u}\right)$ so that (24) becomes

$$
\begin{align*}
J^{T}(x) \lambda & =0  \tag{27a}\\
\lambda+u & =e  \tag{27b}\\
(C(x)+S)\left(\lambda+e_{\mathcal{E}}^{0}\right) & =0  \tag{27c}\\
S u & =0  \tag{27~d}\\
\text { and } \quad c(x)+s, s, \lambda+e_{\mathcal{E}}^{0}, u & \geq 0 \tag{27e}
\end{align*}
$$

The requirement (25) follows directly from (27a), so it remains to show that the given $\lambda$ satisfies (26).
Firstly, then, consider an index $i$ for which $c_{i}(x)+s_{i}>0$. In this case (27c) shows that $\lambda_{i}=-1$ if $i \in \mathcal{E}$ or $\lambda_{i}=0$ if $i \in \mathcal{I}$. In either case, (27b) then ensures that $u_{i}>0$, and hence $c_{i}(x)>0$ since necessarily (27d) shows that $s_{i}=0$. These are the first two possibilites in (26). Since $c_{i}(x)+s_{i} \geq 0$, it remains to consider indices for which $c_{i}(x)+s_{i}=0$. In this case $c_{i}(x)=-s_{i}$ and thus (27d) implies that $c_{i}(x) u_{i}=0$. If $s_{i} \neq 0$, $c_{i}(x)<0$ so that $u_{i}=0$, and hence $\lambda_{i}=1$ from (27b). This is the third possibility in (26). By contrast, if $s_{i}=0$ then immediately $c_{i}=0$. But (27b) and (27e) ensure that $\lambda_{i} \in[-1,1]$ if $i \in \mathcal{E}$ and $\lambda_{i} \in[0,1]$ if $i \in \mathcal{E}$ for any $i$, giving the final two possibilites in (26).

Note that for any $x \in \mathbb{R}^{n}, x$ is feasible for (1) if and only if $(x, 0)$ is feasible for (3) and $c_{\mathcal{E}}(x)=0$.
In the case of (10), we have the stronger equivalence that $x$ is feasible for (1) if and only if $(x, 0)$ is feasible for (10).

### 2.2.5 Regularity

The reformulated problem (3) is surprisingly regular, for we have the following result.
Theorem 2 Suppose that $(x, s)$ is a feasible point for (3) and that $c$ is continuously differentiable in an open neighbourhood of $x$. Then MFCQ is satisfied at $(x, s)$.

Proof. Let $d=\left(0_{n},-e\right)$. There are no equality constraints, and checking the remaining requirement that $J_{\mathcal{A}}(x, s) d<0$ for active constraints is trivial given the form (19) of $J^{\mathrm{S}}\left(v_{\mathrm{P}}\right)$.

As a consequence, all sets of Lagrange multipliers associated with first-order critical points are bounded.
Note that the MFCQ condition is satisfied at every feasible $(x, s)$ and not only at local solutions of (3), regardless of any constraint qualification being satisfied for (1). Of course Theorem 2 may have been anticipated, since the same is true for (2)—for this problem, the set of corresponding sub-gradients of the non-differentiable constraint norms is automatically bounded (Fletcher, 1987, §14.3).

Since any constraint qualification is a property of the algebraic description of a feasible set, Theorem 2 holds true for (23) as well. There thus always exist multipliers satisfying (24).

Some of the results we will establish later require a far stronger assumption, namely the linear independence constraint qualification (LICQ) - that the rows of (19) corresponding to active indices are independentbe satisfied for (3). To obtain LICQ on (3), one may unfortunately need to have as strong an assumption as the active constraint gradients being linearly independent over the whole feasible set.

We wish to stress that in the following, we are taking advantage of MFCQ being satisfied for (3) but for generality, are not tacitly assuming that MFCQ is satisfied for (1).

### 2.3 Assumptions and Basic Results

We start with the following fundamental assumption.

Assumption 1 The functions $f, c_{\mathcal{E}}$ and $c_{\mathcal{I}}$ are continuously differentiable over an open set containing the feasible set of (1).

We now examine the relationships between stationary points of (1) and (3). The following results are adaptations or variations of results of Mayne and Polak (1976). Our first result gives an important property of solutions to (3).

Theorem 3 If Assumption 1 is satisfied, if $\left(v_{P}, v_{D}\right)$ is a first-order critical point for (3) with fixed penalty parameter $\nu>0$ and if $c_{\mathcal{E}}(x)=0$ and $c_{\mathcal{I}}(x) \geq 0$ then $s=0$.

Proof. If $i \in \mathcal{E}, c_{i}(x)=0$ and from (21d), we have $s_{i} y_{i}=0$. It cannot be that $s_{i}>0$ since then $y_{i}=0$ and (21b) would imply $u_{i}=2 \nu$ and consequently (21e) gives that $s_{i}=0$, which is a contradiction. Therefore $s_{\mathcal{E}}=0$. For $i \in \mathcal{I}$, if $c_{i}(x)=0$, as before (21c) and (21e) guarantee that $s_{i}=0$. Otherwise, $c_{i}(x)>0$ and (21f), (21d), (21c) and (21e) successively imply that $c_{i}(x)+s_{i}>0$, that $y_{i}=0$, that $u_{i}=\nu$ and finally that $s_{i}=0$. Hence we also have $s_{\mathcal{I}}=0$, which completes the proof.

This first result confirms intuition about the reformulation that led to (3), namely that all the elastic variables should eventually vanish if a critical point which is also feasible for (1) has been found.

The following result establishes a correspondence between systems (13) and (21) and parallels results from Mayne and Polak (1976) and Proposition 3 of Tits et al. (2003).

Theorem 4 If Assumption 1 is satisfied, if $\left(v_{P}, v_{D}\right)$ is a first-order critical point for (3) with fixed penalty parameter $\nu>0$ and if $c_{\mathcal{E}}(x)=0$ and $c_{\mathcal{I}}(x) \geq 0$, then the shifted vector $(x, \lambda(y, \nu))$ from (22b) is a first-order critical point for (1).

Proof. Primal feasibility with respect to the linear constraints and non-negativity of $x$ follows directly from the assumption. The dual feasibility condition (21a) readily implies that (13a) is satisfied with the given multipliers. The feasibility conditions (13c)-(13d) are satisfied by (21f) and our assumptions. Moreover, Theorem 3 gives that $s=0$, and hence (21d) implies (13b) as $\lambda_{\mathcal{I}}(y, \nu)=y_{\mathcal{I}}$ by definition.

Conversely, we now show that provided there exist finite Lagrange multipliers for (1) and for sufficiently large values of the penalty parameter, every stationary point of (1) is a stationary point of (3).

Theorem 5 If Assumption 1 is satisfied, suppose $x^{*}$ is a first-order critical point for (1) for which the Lagrange multipliers $\lambda^{*}$ are finite. Then for all $\nu \geq\left\|\lambda^{*}\right\|_{\infty}$, the shifted primal-dual vector $\left(v_{P}, v_{D}\right)$, where $v_{P}=\left(x^{*}, 0\right)$ and $v_{D}=\left(y\left(\lambda^{*}, \nu\right), \nu e-\lambda^{*}\right)$ from (22a), is a first-order critical point for (3).

Proof. Because $\lambda^{*} \geq 0$, the smallest value of $\nu$ for which $\lambda_{\mathcal{E}}^{*}+\nu e_{\mathcal{E}} \geq 0, \nu e_{\mathcal{E}}-\lambda_{\mathcal{E}}^{*} \geq 0$ and $\nu e_{\mathcal{I}}-\lambda_{\mathcal{I}}^{*} \geq 0$ is given by $\left\|\lambda^{*}\right\|_{\infty}$. For any $\nu \geq\left\|\lambda^{*}\right\|_{\infty}$, the proof is completed by a straightforward verification that the given primal-dual vector satisfies (21) using the assumed conditions (13).

Note that Theorem 5 deals with one particular critical point and one particular, possibly out of many, vector of Lagrange multipliers associated to it. A standard, but stronger, assumption to ensure boundedness of the multipliers in Theorem 5 is to impose MFCQ on (1) (Gauvin, 1977).

## 3 The Full Algorithm

### 3.1 An Interior-Point Method for the Smooth Reformulated Penalty Problem

As we have already suggested, an appealing way to solve the reformulated problem (3) is to (approximately) minimize a sequence of logarithmic barrier functions

$$
\begin{equation*}
\phi^{\mathrm{B}}(x, s ; \mu, \nu) \equiv \phi^{\mathrm{S}}(x, s ; \nu)-\mu \sum_{i \in \mathcal{C}} \log \left(c_{i}(x)+s_{i}\right)-\mu \sum_{i \in \mathcal{C}} \log s_{i}, \tag{28}
\end{equation*}
$$

for a sequence $\left\{\mu^{k}\right\}$ of positive barrier parameters whose limit is zero and, in this case, a possibly increasing sequence $\left\{\nu^{k}\right\}$ of positive penalty parameters. Following the standard practice for mixed interior-exterior penalty methods (see, for instance, Fiacco and McCormick (1968)), a typical iteration involves the approximate minimization of the mixed-penalty function (28), a possible increase in the penalty parameter $\nu$ to compensate for insufficient progress towards feasibility, and a decrease in the barrier parameter $\mu$. Hence we might outline our algorithm as Algorithm 3.1.

```
Algorithm 3.1 Prototype Algorithm—Outer Iteration (preliminary version).
    Step 0. Choose initial points \(s>0\) and \(x\), for which \(c(x)+s>0\), and initial values \(\nu, \mu>0\).
```

Step 1. Inner iteration: Find an approximate unconstrained minimizer of (28) with the current values of $\nu$ and $\mu$ fixed.

Step 2. Decrease the barrier parameter $\mu$ and possibly update the penalty parameter $\nu$. Go back to Step 1 until (3) has been solved to a satisfactory tolerance.

Although both linesearch and trust-region methods might be used in the crucial Step 1 of Algorithm 3.1, we shall concentrate on the latter here.

A number of important details not mentioned in Algorithm 3.1 must be carefully described and analyzed. These include a description of the trust-region approach we wish to use in Step 1, the mechanism used to
promote global convergence, the conditions under which the penalty parameter is updated and the assumptions necessary to guarantee that a critical point identified by this algorithm corresponds to a critical point of the original problem (1). We examine them in turn in the remainder of this section.

### 3.2 Gradients, Lagrange Multipliers and Optimality Conditions

For convenience, we define (primal) first-order Lagrange multiplier estimates

$$
\begin{align*}
y(x, s) & \equiv \mu(C(x)+S)^{-1} e  \tag{29a}\\
u(s) & \equiv \mu S^{-1} e \tag{29b}
\end{align*}
$$

where, as before, a capital letter denotes the diagonal matrix whose diagonal is the vector denoted by the corresponding lowercase letter. Using these multiplier estimates, the gradient of the barrier function with respect to $v_{\mathrm{P}}=(x, s)$ is

$$
\nabla \phi^{\mathrm{B}}\left(v_{\mathrm{P}} ; \mu, \nu\right)=\left[\begin{array}{c}
\nabla f(x)-J^{T}(x)\left(y(x, s)-\nu e_{\mathcal{E}}^{0}\right)  \tag{30}\\
\nu e-\left(y(x, s)-\nu e_{\mathcal{E}}^{0}\right)-u(s)
\end{array}\right]
$$

Given fixed values of the barrier and penalty parameters $\mu, \nu \geq 0$, primal and dual vectors $v_{\mathrm{P}}=(x, s)$ and $v_{\mathrm{D}}=(y, u)$ and primal-dual vector $v=\left(v_{\mathrm{P}}, v_{\mathrm{D}}\right)$, we also define the primal-dual function $\Phi: \mathbb{R}^{n+3 n_{\mathcal{C}}} \rightarrow \mathbb{R}^{n+3 n_{\mathcal{C}}}$ as

$$
\Phi(v ; \mu, \nu) \equiv\left[\begin{array}{c}
\nabla f(x)-J^{T}(x)\left(y-\nu e_{\mathcal{E}}^{0}\right)  \tag{31}\\
\nu e-\left(y-\nu e_{\mathcal{E}}^{0}\right)-u \\
(C(x)+S) y-\mu e \\
S u-\mu e
\end{array}\right]
$$

As is well known, the first-order criticality conditions for (4) are equivalently described by the primal-dual system

$$
\begin{align*}
\Phi(v ; \mu, \nu) & =0  \tag{32a}\\
\text { and }(c(x)+s, s, y, u) & \geq 0 \tag{32b}
\end{align*}
$$

In addition, observe that the KKT conditions (21) for (3) are simply (32) with (32a) replaced by

$$
\begin{equation*}
\Phi(v ; 0, \nu)=0 \tag{33}
\end{equation*}
$$

In the next section, we present the algorithm we plan to use, before turning to global and local convergence analyses in §4.

### 3.3 The Outer Iteration, Revisited

We call $\epsilon(\cdot)$ a forcing function if $\epsilon(\mu)>0$ for all $\mu>0$ and $\epsilon(\mu) \downarrow 0$ as $\mu \downarrow 0$ (Ortega and Rheinboldt, 1970). Since the Hessian of the logarithmic barrier function (28) can be highly ill-conditioned, it is vital that we dynamically (and implicitly) scale the variables to mitigate this effect. At iteration $k$, we shall measure variables using a norm, say $\|\cdot\|_{P^{k}}$, designed to achive this, and gradients in the dual norm, denoted $\|\cdot\|_{\left[P^{k}\right]}$. We shall return to this shortly. We summarize our algorithm as Algorithm 3.2.

A few comments on Algorithm 3.2 are in order. Firstly note that the forcing functions in (34a)-(34c) allow for early termination of the inner iteration which may prove particularly beneficial in the early iterations, when remote from a solution of (1). Step 1 leaves the details of the inner iteration unspecified, emphasizing only the stopping conditions which should be satisfied by any approximate solution it produces. Some details are given in $\S 3.5$ but are not crucial to the analysis of the algorithm. The stopping conditions (34a)-(34c) are directly based on (scalings of) the definition (32a). The required upper bounds on the dual variables $\left(y^{k+1}, u^{k+1}\right)$ in (34e) are simply those ultimately implied by (21b), (21c) and (21f), with a little "elbow room" provided by $\kappa_{\nu}>0$ to allow for finite termination of the inner iteration. Crucially, although the primal multiplier estimates $y^{k+1}=y\left(x^{k+1}, s^{k+1}\right)$ and $u^{k+1}=u\left(s^{k+1}\right)$ might be used in (34), there is no necessity that this be so.

```
Algorithm 3.2 Prototype Algorithm-Outer Iteration (refined version).
    Step 0. Let the forcing functions \(\epsilon^{\mathrm{D}}(\cdot), \epsilon^{\mathrm{C}}(\cdot)\) and \(\epsilon^{\mathrm{U}}(\cdot)\) be given, and let \(\kappa_{\nu}>0\). Choose \(x^{0} \in \mathbb{R}^{n}\),
    \(s^{0} \in \mathbb{R}_{+}^{n_{\mathcal{C}}}\) such that \(c\left(x^{0}\right)+s^{0}>0\), initial dual estimates \(y^{0}, u^{0} \in \mathbb{R}_{+}^{n_{\mathcal{C}}}\), and penalty and barrier
    parameters \(\nu^{0}\) and \(\mu^{0}>0\), and set \(k=0\).
Step 1. Inner Iteration: choose a suitable scaling norm \(\|\cdot\|_{P^{k+1}}\) and find a new primal-dual iterate \(v^{k+1}=\left(x^{k+1}, s^{k+1}, y^{k+1}, u^{k+1}\right)\) satisfying
\[
\begin{align*}
\left\|\left[\begin{array}{c}
\nabla f\left(x^{k+1}\right)-J^{T}\left(x^{k+1}\right)\left(y^{k+1}-\nu^{k} e_{\mathcal{E}}^{0}\right) \\
\nu^{k} e-\left(y^{k+1}-\nu^{k} e_{\mathcal{E}}^{0}\right)-u^{k+1}
\end{array}\right]\right\|_{\left[P^{k+1}\right]} & \leq \epsilon^{\mathrm{D}}\left(\mu^{k}\right)  \tag{34a}\\
\left\|\left(C\left(x^{k+1}\right)+S^{k+1}\right) y^{k+1}-\mu^{k} e\right\| & \leq \epsilon^{\mathrm{C}}\left(\mu^{k}\right)  \tag{34b}\\
\left\|S^{k+1} u^{k+1}-\mu^{k} e\right\| & \leq \epsilon^{\mathrm{U}}\left(\mu^{k}\right)  \tag{34c}\\
\left(c\left(x^{k+1}\right)+s^{k+1}, s^{k+1}\right) & >0  \tag{34d}\\
\text { and } \quad\left(\nu^{k}\left[e+e_{\mathcal{E}}^{0}\right]+\kappa_{\nu} e, \nu^{k}\left[e+e_{\mathcal{E}}^{0}\right]+\kappa_{\nu} e\right) \geq\left(y^{k+1}, u^{k+1}\right) & >0 \tag{34e}
\end{align*}
\]
```

by (for example) approximately minimizing (28).
Step 2. Select a new barrier parameter, $\mu^{k+1} \in\left(0, \mu^{k}\right]$ such that $\lim _{k \rightarrow \infty} \mu^{k}=0$. If necessary, adjust the penalty parameter, $\nu^{k}$. Increment $k$ by one, and return to Step 1.

The update of the barrier parameter in Step 2 may follow traditional rules but should ultimately allow for a superlinear decrease if fast asymptotic convergence is sought. For instance it may be made to decrease linearly in the early iterations but superlinearly once close to a suspected solution. This is essential if an asymptotic superlinear convergence rate of the iterates, such as the local subquadratic componentwise asymptotic convergence discussed by Gould et al. (2001), is required-this issue is addressed in $\S 4.3$.

In the next sections, we examine issues concerning Algorithm 3.2 which deserve further attention, namely the choice of the (possibly iteration-dependent) scaling norm $\|\cdot\|_{\left[P^{k}\right]}$, the update of the penalty parameter $\nu^{k}$ and the choice of dual variables $\left(y^{k}, u^{k}\right)$. The choice of $\|\cdot\|_{\left[P^{k}\right]}$ will follow the guidelines given by Conn et al. (2000a) and Gould et al. (2003). We return to this in Section 3.5. Values of the dual variables suggested by the primal-dual system (32a) might not be sufficiently accurate in the early stages of the iteration and should be properly controlled when convergence occurs to ensure fast asymptotic convergence while preventing desperately ill-conditioned systems on problem with large, or infinite, multipliers. A particular choice towards these goals is discussed in Section 3.6. The penalty parameter update appears in Step 2 of the algorithm for clarity, but a practical implementation might make provision for updates of $\nu^{k}$ inside the inner iteration and possibly to allow occasional decreases of $\nu$. A suitable update for the penalty parameter is less obvious, but we shall discuss alternatives in Section 3.7.

### 3.4 The Trust-Region Inner Iteration

In order to adress concretely the practical aspects of Algorithm 3.2, we use trust-region models that incorporate exact second-order derivative information. In order to be able to do this, we must replace Assumption 1 by the following assumption.

Assumption 2 The functions $f, c_{\mathcal{E}}$ and $c_{\mathcal{I}}$ are twice continuously differentiable over an open set covering all iterates encountered by Algorithm 3.2.

Given a strictly feasible point $v_{\mathrm{P}}$, a typical primal interior-point trust-region method for solving (4) attempts to find an improved point $v_{\mathrm{P}}+d=\left(x+d_{x}, s+d_{s}\right)$, where $d=\left(d_{x}, d_{s}\right)$ is constrained to lie within a trust region

$$
\begin{equation*}
\mathcal{B}(\Delta)=\left\{d \in \mathbb{R}^{n+n_{\mathcal{C}}} \mid\|d\|_{P} \leq \Delta\right\} \tag{35}
\end{equation*}
$$

where $\|\cdot\|_{P}$ is an appropriate scaling norm, and $d$ approximately solves the primal model-subproblem

$$
\underset{d \in \mathcal{B}(\Delta)}{\operatorname{minimize}} \nabla_{v_{\mathrm{P}}} \phi^{\mathrm{B}}\left(v_{\mathrm{P}} ; \mu, \nu\right)^{T} d+\frac{1}{2} d^{T} \nabla_{v_{\mathrm{P}} v_{\mathrm{P}}} \phi^{\mathrm{B}}\left(v_{\mathrm{P}} ; \mu, \nu\right) d
$$

for some appropriate trust-region radius $\Delta>0$ and preconditioning matrix $P$. This model simply gives a Newton approximation to a minimizer of $\phi^{\mathrm{B}}$. However considerable experience with interior-point methods (Andersen et al., 2000; Conn et al., 2000a,b; Wright, 1997) has suggested that a far superior model may be provided by considering the dual variables $u$ and $y$ as independent variables, rather than dependent ones defined by (29). This results in the primal-dual model subproblem

$$
\begin{equation*}
\underset{d \in \mathcal{B}(\Delta)}{\operatorname{minimize}} \nabla_{v \mathrm{P}} \phi^{\mathrm{B}}\left(v_{\mathrm{P}} ; \mu, \nu\right)^{T} d+\frac{1}{2} d^{T} H^{\mathrm{PD}}(v) d, \tag{36}
\end{equation*}
$$

where the primal-dual Hessian is defined by

$$
H^{\mathrm{PD}}(v)=\left[\begin{array}{cc}
H(x, \lambda(y, \nu))+J^{T}(x) \Theta(v) J(x) & J^{T}(x) \Theta(v)  \tag{37}\\
\Theta(v) J(x) & \Theta(v)+U S^{-1}
\end{array}\right]
$$

with

$$
\begin{equation*}
\Theta(v)=Y(C(x)+S)^{-1} \tag{38}
\end{equation*}
$$

for some suitable strictly positive primal-dual multiplier estimates $u$ and $y$, where

$$
\begin{equation*}
H(x, \lambda)=\nabla_{x x} f(x)-\sum_{i \in \mathcal{C}} \lambda_{i} \nabla_{x x} c_{i}(x)=\nabla_{x x} L(x, \lambda) \tag{39}
\end{equation*}
$$

is the Hessian of the Lagrangian (12), and $\lambda(y, \nu)$ is defined by (22b). Under standard assumptions on these estimates and as convergence occurs, the difference between the primal and primal-dual Hessians is insignificant (Conn et al., 2000b, Theorem 13.9.1).

Besides the step-computing procedure, our trust-region algorithm is quite standard. The step $d$ is accepted or rejected based on how much of the reduction in (28) predicted by (36) is actually achieved-a poor prediction results in a reduction in the trust-region radius, $\Delta$, while an accurate one may be rewarded by an increase in $\Delta$. Since the logarithmic barrier function is undefined outside (or on the boundary) of the shifted feasible region $\{(x, s) \mid c(x)+s \geq 0$ and $s \geq 0\}$, any step $v_{\mathrm{P}}+d_{\mathrm{P}}$ outside this region is automatically rejected, and the trust-region radius reduced. See (Conn et al., 2000b, Chapter 13) for more details. Unlike other trust-region interior-point methods such as KNITRO Byrd et al. (2000), no direct attempt is made to enforce feasibility by imposing extra constraints on the trust-region subproblem.

### 3.5 Trust-Region Subproblems, Preconditioning and Scaling Norms

It is not necessary to solve the trust-region subproblem (36) exactly, and it suffices to find an approximate solution $d$ which gives as least as much reduction as the Cauchy point for the subproblem (Conn et al., 2000b). Significantly, suitably preconditioned conjugate-gradient/Lanczos methods automatically generate "Cauchy-improving" iterates, and thus are ideal for approximate subproblem solution.

We may find an approximation to the solution to (36) using the Generalized Lanczos Trust-Region GLTR method of Gould et al. (1999). This method requires that, at each iteration, we solve "preconditioning" systems of the form (now dropping suffices ${ }^{\text {PD }}$ )

$$
K(v) d \equiv\left[\begin{array}{cc}
P+J^{T}(x) \Theta(v) J(x) & J^{T}(x) \Theta(v)  \tag{40}\\
\Theta(v) J(x) & \Theta(v)+U S^{-1}
\end{array}\right]\left[\begin{array}{c}
d_{x} \\
d_{s}
\end{array}\right]=\left[\begin{array}{c}
r_{x} \\
r_{s}
\end{array}\right] \equiv r
$$

for appropriate right-hand sides $r$ and where $\Theta(v)$ is defined in (38). Here $P$ is a suitable "preconditioning" approximation to $H$, and can range from the naive $(P=I)$ to the sophisticated $(P=H)$, but must be chosen so that the coefficient matrix, $K(v)$, of (40) is positive definite. As we explained in Conn et al. (2000a), the preconditioner used defines the scaling norm appropriate for the trust-region in (36) and the dual norm appropriate to measure progress towards dual feasibility. In particular the dual norm satisfies $\|r\|_{[P]}^{2}=d^{T} r$, where $d$ is the solution to (40).

Of particular concern, however, is that the matrix $J^{T}(x) \Theta(v) J(x)$ in (40) might be rather dense, making a direct factorization of $K(v)$ unviable. Fortunately, we may be able to avoid this difficulty. To see this, define new variables

$$
\xi=\Theta(v)\left(J(x) d_{x}+d_{s}\right)
$$

Then (40) may be rewritten as the larger but potentially sparser

$$
\left[\begin{array}{ccc}
P & 0 & J^{T}(x)  \tag{41}\\
0 & U S^{-1} & I \\
J(x) & I & -\Theta^{-1}(v)
\end{array}\right]\left[\begin{array}{c}
d_{x} \\
d_{s} \\
\xi
\end{array}\right]=\left[\begin{array}{c}
r_{x} \\
r_{s} \\
0
\end{array}\right] .
$$

A further simplification occurs if we eliminate $d_{s}$ to obtain

$$
\left[\begin{array}{cc}
P & J^{T}(x)  \tag{42}\\
J(x) & -\Theta^{-1}(v)-U^{-1} S
\end{array}\right]\left[\begin{array}{c}
d_{x} \\
\xi
\end{array}\right]=\left[\begin{array}{c}
r_{x} \\
-U^{-1} S r_{s}
\end{array}\right]
$$

and then recover

$$
d_{s}=-U^{-1} S \xi+U^{-1} S r_{s}
$$

Thus we might solve (40) by instead factorizing either of the coefficient matrices $M$ of (41) or $N$ of (42).
Significantly $K(v)$ is positive definite if and only if $M$ (or equivalently $N$ ) has precisely $n_{\mathcal{C}}$ negative eigenvalues (Gould, 1985), so we can ensure that $P$ is appropriate whenever an inertia-calculating factorization (such as those given by the codes MA27 and MA57 of the Harwell Subroutine Library (2007)) is used.

### 3.6 Updating Dual Variables

There is a wide choice of suitable dual variables. Given newly computed primal values $v_{\mathrm{P}}^{+}$, we follow Conn et al. (2000a) and project candidate dual variables $v_{\mathrm{D}}^{+}$componentwise into the box

$$
\left[\left[\begin{array}{c}
y^{\mathrm{L}}  \tag{43}\\
u^{\mathrm{L}}
\end{array}\right],\left[\begin{array}{l}
y^{\mathrm{U}} \\
u^{\mathrm{U}}
\end{array}\right]\right]
$$

where

$$
y^{\mathrm{L}}=\kappa_{l} \min \left[e, y, \mu^{k}\left(C\left(x^{+}\right)+S^{+}\right)^{-1} e\right], \quad y^{\mathrm{U}}=\max \left[\kappa_{u} e, y, \kappa_{u}\left(\mu^{k}\right)^{-1} e, \kappa_{u} \mu^{k}\left(C\left(x^{+}\right)+S^{+}\right)^{-1} e\right]
$$

and

$$
u^{\mathrm{L}}=\kappa_{l} \min \left[e, u, \mu^{k}\left(S^{+}\right)^{-1} e\right], \quad u^{\mathrm{U}}=\max \left[\kappa_{u} e, u, \kappa_{u}\left(\mu^{k}\right)^{-1} e, \kappa_{u} \mu^{k}\left(S^{+}\right)^{-1} e\right]
$$

in order to ensure that the multipliers remain sufficiently positive and suitably bounded. Here $0<\kappa_{l}<1<$ $\kappa_{u}$, and values $\kappa_{l}=\frac{1}{2}$ and $\kappa_{u}=10^{20}$ have proved to be satisfactory. Notice that the primal estimates (29), $v_{\mathrm{D}}^{+}=v_{\mathrm{D}}\left(v_{\mathrm{P}}^{+}\right)$, naturally lie in the interval. However, as we have just mentioned, we usually prefer to use primal-dual estimates $v_{\mathrm{D}}^{+}=v_{\mathrm{D}}+d_{\mathrm{D}}$ of the dual variables, where $d_{\mathrm{D}}$ is the correction to the dual variable estimates obtained from the trust-region subproblem (36).

Our convergence analysis is actually independent of how this is done, so long as the resulting estimates lie in (43).

There may be some virtue in further projecting $v_{\mathrm{D}}^{+}$so that the optimal upper bounds $\nu^{k}\left(e+e_{\mathcal{E}}^{0}, e+e_{\mathcal{E}}^{0}\right)$ implied by (21b), (21c) and (21f), or perhaps the relaxed requirement in (34e), remain satisfied.

### 3.7 Updating the Penalty Parameter

The purpose of the penalty parameter is to force satisfaction of the equality and inequality constraints for (1) rather than simply having $c(x) \geq-s$ with $s \geq 0$ for (3). Thus, a possible update strategy is to increase $\nu^{k}$ whenever violation of the constraints for (1) has not decreased sufficiently.

Introducing decreasing sequences $\left\{\eta_{\mathcal{E}}^{k}\right\}$ and $\left\{\eta_{\mathcal{I}}^{k}\right\}$ converging to zero, this condition might be stated as

$$
\begin{equation*}
\left\|c_{\mathcal{E}}\left(x^{k}\right)\right\|>\eta_{\mathcal{E}}^{k} \quad \text { or } \quad\left\|c_{\mathcal{I}}^{-}\left(x^{k}\right)\right\|>\eta_{\mathcal{I}}^{k} \tag{44}
\end{equation*}
$$

where $c_{\mathcal{I}}^{-}(x)=\max \left[0,-c_{\mathcal{I}}(x)\right]$ componentwise.
Refining further, we increase $\nu^{k}$ whenever (44) is satisfied or

$$
\begin{equation*}
\left\|y^{k+1}-\nu^{k} e_{\mathcal{E}}^{0}\right\| \leq \gamma \nu^{k} \tag{45}
\end{equation*}
$$

is violated, for some preset $\gamma \in(0,1)$.
Then one possibility is to update $\nu^{k}$ using

$$
\nu^{k+1}= \begin{cases}\max \left[\tau_{1} \nu^{k}, \nu^{k}+\tau_{2}\right] & \text { if }(44) \text { is satisfied or (45) is violated, }  \tag{46}\\ \nu^{k} & \text { otherwise }\end{cases}
$$

for some preset constants $\tau_{1}>1$ and $\tau_{2}>0$, following rules suggested by Mayne and Polak (1976) and Conn et al. (2000b).

Quite remarkably, the convergence results of Section 4.2 are independent of the particular form of the sequences $\left\{\eta_{\mathcal{E}}^{k}\right\}$ and $\left\{\eta_{\mathcal{I}}^{k}\right\}$ besides the fact that they are sequences of positive numbers converging to zero. In practice, any such sequences might not be equally efficient and sequences converging to zero at a reasonable rate should be chosen.

## 4 Convergence Analysis

In this section, we discuss the convergence properties of Algorithm 3.2 for the solution of (1). We consider, in turn, the global convergence of the inner iteration, of the outer iteration, and fast local convergence issues.

In order to derive suitable convergence results for the convergence of our interior-point method, we make the following additional assumptions.

Assumption 3 The logarithmic barrier function $\phi^{B}(x, s ; \mu, \nu)$ for problem (3), defined in (28), is bounded below over the set $\{(x, s) \mid c(x)+s \geq 0, s \geq 0\}$ for all values of $\mu>0$; and

Assumption 4 The iterates remain in a region $\Omega$ over which the first and second derivatives $\nabla f(x)$, $\nabla_{x x} f(x), \nabla c_{i}(x)$ and $\nabla_{x x} c_{i}(x)$ for all $i \in \mathcal{C}$ remain uniformly bounded.

### 4.1 Convergence of the Inner Iteration

Each inner iteration-Step 1 of Algorithm 3.2—proceeds by computing a vector of primal $v_{\mathrm{P}}^{k}=\left(x^{k}, s^{k}\right)$ and dual variables $v_{\mathrm{D}}^{k}=\left(y^{k}, u^{k}\right)$ satisfying (34) by means of the method described in Conn et al. (2000a). We thus devote this section to verifying that the assumptions required by this method are satisfied in the present case, and to recalling the main convergence properties of the resulting inner iteration. We shall only be concerned with the exact gradients and derivatives of the quantities involved here, but wish to stress that the aforementioned inner iteration makes provision for inexact Hessian matrices provided they satisfy appropriate regularity and asymptotic properties.

As we already mentioned, we must require the following condition on the preconditioning matrices $P^{k}$ chosen during Step 1 of Algorithm 3.2.

Assumption 5 Each preconditioning matrix $P^{k}$ is both bounded from above in norm, and such that the smallest eigenvalue of the matrix $K$ from the system (40) is uniformly positive for all iterates encountered.

For simplicity, we consider the matrix $P^{k}$ fixed during an inner iteration, although this need not be the case (Conn et al., 2000a). Let an outer iteration index be denoted by $k$ and the successive values taken by a generic vector $v$ during the inner iterations corresponding to this outer iteration be denoted by $v^{k, j}$, $j=1,2, \ldots$ The following assumption introduces upper bounds on the sequences of multipliers.

Assumption 6 For all $k \geq 0$, there exists a constant $\kappa^{D}(k)$ depending only on $k$ such that

$$
\begin{aligned}
& y_{i}^{k, j} \leq \kappa^{D}(k) \max \left[\frac{1}{c_{i}\left(x^{k, j}\right)+s_{i}^{k, j}}, 1\right], \quad i \in \mathcal{I} \cup \mathcal{E}, \quad \text { and } \\
& u_{i}^{k, j} \leq \kappa^{D}(k) \max \left[\frac{1}{s_{i}^{k, j}}, 1\right], \quad i \in \mathcal{I} \cup \mathcal{E} .
\end{aligned}
$$

In view of MFCQ, requiring that the Lagrange multipliers remain bounded is very reasonable for fixed ( $\mu^{k}, \nu^{k}$ ). Indeed, if (34e) were to be imposed for every inner iteration, 6 would automatically be satisfied.

Armed with the above assumptions, the next result corresponds to (Conn et al., 2000a, Theorem 2).

Theorem 6 Under Assumptions 1-6, the inner iteration procedure corresponding to outer iteration $k$ of Algorithm 3.2 generates a sequence $\left\{\left(x^{k, j}, s^{k, j}\right)\right\}$ satisfying

$$
\lim _{j \rightarrow \infty}\left\|\nabla \phi^{B}\left(v_{P}^{k, j} ; \mu^{k}, \nu^{k}\right)\right\|_{\left[P^{k}\right]}=\lim _{j \rightarrow \infty}\left\|\nabla \phi^{B}\left(v_{P}^{k, j} ; \mu^{k}, \nu^{k}\right)\right\|=0
$$

Proof. It is readily verified that Assumptions 2-6 imply Assumptions A1-A8 of Conn et al. (2000a) and thus global convergence of the inner iteration. Theorem 2 of Conn et al. (2000a) concludes the proof. Thus Theorem 6 shows that the inner-iteration termination test will be satisfied after a finite number of iterations if primal multiplier estimates $y^{k+1}=y\left(x^{k+1}, s^{k+1}\right)$ and $u^{k+1}=u\left(s^{k+1}\right)$ are used.

If we plan to use other dual variables, we require an extra assumption, namely that the primal-dual estimates converge to their ideal, primal, values when convergence takes place.

Assumption 7 The inner iteration produces dual sequences $\left\{u^{k, j}\right\}$ and $\left\{y^{k, j}\right\}$ satisfying

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left\|u^{k, j}-\mu^{k}\left(S^{k, j}\right)^{-1} e\right\| & =0 \\
\lim _{j \rightarrow \infty}\left\|y^{k, j}-\mu^{k}\left(C\left(x^{k, j}\right)+S^{k, j}\right)^{-1} e\right\| & =0
\end{aligned}
$$

whenever

$$
\lim _{j \rightarrow \infty}\left\|\nabla \phi^{B}\left(v_{P}^{k, j} ; \mu^{k}, \nu^{k}\right)\right\|_{\left[P^{k}\right]}=0
$$

With this additional assumption, we obtain the following result.

Theorem 7 Under Assumptions 2-7, the inner iteration procedure corresponding to outer iteration $k$ of Algorithm 3.2 generates a sequence $\left\{\left(v_{P}^{k}, v_{D}^{k}\right)\right\}$ satisfying the stopping conditions (34) after finitely many steps.

Proof. The stated assumptions allow us to use Theorem 4 of Conn et al. (2000a) to deduce that the sequence $\left\{\left(v_{\mathrm{P}}^{k, j}, v_{\mathrm{D}}^{k, j}\right)\right\}$ generated by Algorithm 3.2 ultimately satisfies

$$
\lim _{j \rightarrow \infty} \Phi\left(v^{k, j} ; \mu^{k}, \nu^{k}\right)=0 \quad \text { and } \quad \lim _{j \rightarrow \infty}\left(c\left(x^{k, j}\right)+s^{k, j}, s^{k, j}, y^{k, j}, u^{k, j}\right) \geq 0
$$

and thus indirectly that

$$
\lim _{j \rightarrow \infty}\left(y^{k, j}+\nu^{k} e_{\mathcal{E}}^{0}, u^{k+1}\right) \leq \nu^{k}\left(e+e_{\mathcal{E}}^{0}, e+e_{\mathcal{E}}^{0}\right)
$$

Thus (34) is satisfied after finitely many steps, since Lemma 2 of Conn et al. (2000a) shows that the $\|\cdot\|_{\left[P^{k+1}\right]}$ and Euclidean norms are equivalent for fixed $k$.

The numerical method suggested in Sections 3.4-3.6 to tackle the inner iteration satisfies the assumptions stated here, and thus guarantees global convergence of each inner iteration.

### 4.2 Convergence of the Outer Iteration

We now study the convergence of the outer iteration algorithm. We shall concentrate on the case where the penalty parameter is updated as suggested in Section 3.7. For convenience, we state this as Algorithm 4.1.

Algorithm 4.1 Prototype Algorithm-Outer Iteration (final version).
Step 0. Algorithm 3.2, in which the penalty parameter $\nu^{k}$ is updated in Step 2 according to the rule (46).

Our first task is to show that although we are measuring the violation of dual feasibility in (34a) in the $\|\cdot\|_{\left[P^{k+1}\right]}$ norm, this actually allows us to make deductions in the Euclidean norm. To do this, we need to be slightly more restrictive in the choice of our forcing functions $\epsilon^{\mathrm{D}}, \epsilon^{\mathrm{C}}$ and $\epsilon^{\mathrm{U}}$, and we make the following assumption.

Assumption 8 The forcing functions $\epsilon^{D}, \epsilon^{C}$ and $\epsilon^{U}$ satisfy the bounds

$$
\begin{align*}
\epsilon^{C}(\mu) & \leq \kappa_{c} \mu  \tag{47a}\\
\epsilon^{U}(\mu) & \leq \kappa_{c} \mu \text { and }  \tag{47b}\\
\epsilon^{D}(\mu) & \leq \kappa_{d} \mu^{\frac{1}{2}+\gamma^{k}} \tag{47c}
\end{align*}
$$

for some constants $\kappa_{c} \in(0,1)$ and $\kappa_{d}>0$ and sequence $\left\{\gamma^{k}\right\}>0$.

We then have the following result.
Lemma 1 Suppose that the iterates $v^{k+1}=\left(x^{k+1}, s^{k+1}, y^{k+1}, u^{k+1}\right)$ are generated by Algorithm 3.2, and that Assumptions 4, 5 and 8 hold. Then there exist constants $\mu_{\max }$ and $\kappa>0$ for which

$$
\begin{equation*}
\|v\| \leq \kappa \frac{\nu^{k}+\kappa_{\nu}}{\sqrt{\mu^{k}}}\|v\|_{\left[P^{k+1}\right]} \tag{48}
\end{equation*}
$$

for all $\mu^{k} \leq \mu_{\max }$ and all vectors $v$, and, additionally,

$$
\begin{equation*}
\|v\| \leq \kappa\left(\nu^{k}+\kappa_{\nu}\right)\left(\mu^{k}\right)^{\gamma^{k}} \tag{49}
\end{equation*}
$$

whenever $\|v\|_{\left[P^{k+1}\right]} \leq \epsilon^{D}\left(\mu^{k}\right)$.

Proof. The requirements (34b) and (47a) imply that

$$
\left(c_{i}\left(x^{k+1}\right)+s_{i}^{k+1}\right) y_{i}^{k+1} \geq\left(1-\kappa_{c}\right) \mu^{k} .
$$

Combining this bound with the required upper bound from (34e) reveals

$$
\begin{equation*}
c_{i}\left(x^{k+1}\right)+s_{i}^{k+1} \geq \frac{\left(1-\kappa_{c}\right) \mu^{k}}{y_{i}^{k+1}} \geq \frac{\left(1-\kappa_{c}\right) \mu^{k}}{2 \nu^{k}+\kappa_{\nu}}>\frac{\left(1-\kappa_{c}\right) \mu^{k}}{2\left(\nu^{k}+\kappa_{\nu}\right)} \tag{50}
\end{equation*}
$$

Similarly, (34c) and (34e) and (47b) give that

$$
\begin{equation*}
s_{i}^{k+1} \geq \frac{\left(1-\kappa_{c}\right) \mu^{k}}{2 \nu^{k}+\kappa_{\nu}}>\frac{\left(1-\kappa_{c}\right) \mu^{k}}{2\left(\nu^{k}+\kappa_{\nu}\right)} \tag{51}
\end{equation*}
$$

But the form of the Jacobian in (19) together with Assumptions 4, 5 and 8 are sufficient to allow us to invoke (Conn et al., 2000a, Lemma 4.1) to deduce that

$$
\begin{equation*}
\|v\|_{\left[P^{k+1}\right]} \geq \kappa_{2} \min \left(\min _{i \in \mathcal{C}} \frac{c_{i}\left(x^{k+1}\right)+s_{i}^{k+1}}{\sqrt{\mu^{k}}}, \min _{i \in \mathcal{C}} \frac{s_{i}^{k+1}}{\sqrt{\mu^{k}}}, 1\right)\|v\| \tag{52}
\end{equation*}
$$

for some $\kappa_{2}>0$ and all $v$. Combining (50)-(52), we see that

$$
\|v\|_{\left[P^{k+1}\right]} \geq \kappa_{2} \min \left(\frac{\left(1-\kappa_{c}\right) \sqrt{\mu^{k}}}{2\left(\nu^{k}+\kappa_{\nu}\right)}, 1\right)\|v\| \geq \frac{\kappa_{2}\left(1-\kappa_{c}\right) \sqrt{\mu^{k}}}{2\left(\nu^{k}+\kappa_{\nu}\right)}\|v\|
$$

for all $\mu^{k} \leq \mu_{\max } \equiv\left(2 \kappa_{\nu} /\left(1-\kappa_{c}\right)\right)^{2}$, which is the required result (48) when $\kappa \equiv 2 /\left(\kappa_{2}\left(1-\kappa_{c}\right)\right)$. The remaining bound (49) follows directly from (47c) and (48).

We are now in position to derive some properties of the sequences generated by the final Algorithm 4.1. In the following results, we shall be concerned with limit points $v_{\mathrm{P}}^{*}=\left(x^{*}, s^{*}\right)$ and $v_{\mathrm{D}}^{*}=\left(y^{*}, u^{*}\right)$, of the primal and dual sequences respectively, generated by Algorithm 4.1. As mentioned earlier and in order to easily make connections with Theorem 4 , we shall be using the shifted limit point ( $x, \lambda\left(y^{*}, \nu^{*}\right)$ ) as defined in (22b).

We first consider the case where the penalty parameter remains bounded.

Lemma 2 Suppose that Assumptions 2 and 4-8 hold. Assume Algorithm 4.1 generates infinite sequences $\left\{v_{P}^{k}\right\}$ and $\left\{v_{D}^{k}\right\}$ and the penalty parameter $\nu^{k}$ is updated only finitely many times to eventually reach its final value $\nu^{*}$. Then the sequence $\left\{\left(s^{k}, y^{k}, u^{k}\right)\right\}$ is bounded. Moreover, if $\left\{x^{k}\right\}$ has a limit point and if $\left(v_{P}^{*}, v_{D}^{*}\right)$ is any limit point of $\left\{v^{k}\right\}$, then $s^{*}=0$ and the shifted limit point $\left(x^{*}, \lambda\left(y^{*}, \nu^{*}\right)\right)$ is a first-order critical point for (1).

Proof. By assumption, there exists a positive integer $k^{*}$ such that $\nu^{k}=\nu^{*}$ for all $k \geq k^{*}$. The updating rule (46) then implies that

$$
\begin{equation*}
\left\|c_{\mathcal{E}}\left(x^{k}\right)\right\| \leq \eta_{\mathcal{E}}^{k} \quad \text { and } \quad\left\|c_{\mathcal{I}}^{-}\left(x^{k}\right)\right\| \leq \eta_{\mathcal{I}}^{k} \tag{53}
\end{equation*}
$$

Consequently, $\lim _{k \rightarrow \infty} c_{\mathcal{E}}\left(x^{k}\right)=0$ and $\lim _{k \rightarrow \infty} c_{\mathcal{I}}\left(x^{k}\right) \geq 0$.
We first show that $\left\{s^{k}\right\}$ is bounded. Assume by contradiction that $s_{i}^{k} \rightarrow \infty$ for some $i \in \mathcal{C}$ along some subsequence. By using the forcing property of the functions $\epsilon^{\mathrm{D}}(\cdot), \epsilon^{\mathrm{U}}(\cdot)$ and $\epsilon^{\mathrm{C}}(\cdot)$, Lemma 1 and the fact that $\mu^{k} \downarrow 0$, from (34c), we must have $u_{i}^{k} \rightarrow 0$ and from (34a), $\left\{y_{i}^{k}\right\}$ must be bounded. Hence, (34b) imposes $c_{i}\left(x^{k}\right) \rightarrow-\infty$, which is a contradiction. Thus $\left\{s^{k}\right\}$ must be bounded. Moreover, for all $k \geq k^{*}$, (34e) implies that $\left\{\left(y^{k}, u^{k}\right)\right\}$ satisfies the bounds $\left(y_{i}^{k}, u_{i}^{k}\right) \in\left[0, \kappa_{\nu}+2 \nu^{*}\right]$ for $i \in \mathcal{E}$ and $\left(y_{i}^{k}, u_{i}^{k}\right) \in\left[0, \kappa_{\nu}+\nu^{*}\right]$ for $i \in \mathcal{I}$.

Suppose that $\lim _{k \in \mathcal{K}} v^{k}=\left(v_{\mathrm{P}}^{*}, v_{\mathrm{D}}^{*}\right)$. Along the subsequence defined by $\mathcal{K},(34 \mathrm{~b})-(34 \mathrm{~d})$, the forcing property of the function $\epsilon^{\mathrm{D}}(\cdot)$, Lemma 1 and the fact that $\mu^{k} \downarrow 0$ together guarantee that

$$
\lim _{k \in \mathcal{K}}\left\|\left[\begin{array}{c}
\nabla f\left(x^{k+1}\right)-J^{T}\left(x^{k+1}\right)\left(y^{k+1}-\nu^{k} e_{\mathcal{E}}^{0}\right) \\
\nu^{k} e-\left(y^{k+1}-\nu^{k} e_{\mathcal{E}}^{0}\right)-u^{k+1}
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
\nabla f\left(x^{*}\right)-J^{T}\left(x^{k+1}\right)\left(y^{*}-\nu^{*} e_{\mathcal{E}}^{0}\right) \\
\nu^{k} e-\left(y^{*}-\nu^{*} e_{\mathcal{E}}^{0}\right)-u^{*}
\end{array}\right]\right\|=0
$$

as well as $\left(C\left(x^{*}\right)+S^{*}\right) y^{*}=0$ and $S^{*} u^{*}=0$. Thus $\left(v_{\mathrm{P}}^{*}, v_{\mathrm{D}}^{*}\right)$ satisfies (32b) and (33) and the assumptions of Theorem 3 and Theorem 4.

Next, we consider the consequences of an unbounded penalty parameter.
Lemma 3 Suppose that Assumptions 2 and 4-8 hold. Let $\left\{v_{P}^{k}\right\}$ and $\left\{v_{D}^{k}\right\}$ be sequences generated by Algorithm 4.1. Assume the penalty parameter $\nu^{k}$ is updated infinitely many times at iterations $k \in \mathcal{K}$. Then the subsequence $\left\{\left(y^{k}, u^{k}\right)\right\}_{\mathcal{K}}$ is unbounded. If, in addition the sequence $\left\{v_{P}^{k}\right\}$ has a limit point $v_{P}^{*}$, $v_{P}^{*}$ is a first-order critical point of (24) subject to $c(s)+s \geq 0$ and $s \geq 0$, and $x^{*}$ is a first-order critical point of (7).

Proof. Along $\mathcal{K}$, (46) implies $\nu^{k+1} \geq \nu^{k}+\tau_{2}$ with $\tau_{2}>0$ and thus $\left\{\nu^{k}\right\}_{\mathcal{K}} \rightarrow \infty$. Since $\nu^{k}$ is nondecreasing, the whole sequence $\left\{\nu^{k}\right\} \rightarrow \infty$.

Now suppose that $\left\{v_{\mathrm{D}}^{k}\right\}_{\mathcal{K}}$ is bounded and thus has a limit point $v_{\mathrm{D}}^{*}$. In particular, there are vectors $y^{*}$ and $u^{*}$ such that $\left\{y_{\mathcal{E}}^{k}\right\}_{\mathcal{K}^{\prime}} \rightarrow y^{*}$ and $\left\{u^{k}\right\}_{\mathcal{K}^{\prime}} \rightarrow u^{*}$ for some $\mathcal{K}^{\prime} \subseteq \mathcal{K}$, and thus both $\left\|y^{k}\right\| \leq 2\left\|y^{*}\right\|$ and $\left\|u^{k}\right\| \leq 2\left\|u^{*}\right\|$ for all sufficiently large $k \in \mathcal{K}^{\prime}$. But then the triangle inequality, the stopping condition (34a) and Lemma 1 give that

$$
\sqrt{n_{\mathcal{C}}} \nu^{k-1}-\left(\left\|y^{k}\right\|+\left\|u^{k}\right\|\right) \leq\left\|\nu^{k-1} e-y_{\mathcal{E}}^{k}-u_{\mathcal{E}}^{k}\right\| \leq \kappa\left(\nu^{k-1}+\kappa_{\nu}\right)\left(\mu^{k-1}\right)^{\gamma^{k}}
$$

and this combines with the bounds on $\left\|y^{k}\right\|$ and $\left\|u^{k}\right\|$ to give

$$
\begin{equation*}
\left(\sqrt{n_{\mathcal{C}}}-\kappa\left(\mu^{k-1}\right)^{\gamma^{k}}\right) \nu^{k-1} \leq\left(\left\|y^{k}\right\|+\left\|u^{k}\right\|\right)+\kappa \kappa_{\nu}\left(\mu^{k-1}\right)^{\gamma^{k}} \leq 2\left(\left\|y^{*}\right\|+\left\|u^{*}\right\|\right)+\kappa \kappa_{\nu}\left(\mu^{k-1}\right)^{\gamma^{k}} \tag{54}
\end{equation*}
$$

for all sufficiently large $k \in \mathcal{K}^{\prime}$. Taking the limit of (54) as $k \rightarrow \infty$ then contradicts the unboundedness of $\left\{\nu^{k-1}\right\}$. Thus $\left\{v_{\mathrm{D}}^{k}\right\}_{\mathcal{K}}$ is unbounded.

To prove the second part of the lemma, we now suppose that $\left\{v_{\mathrm{P}}^{k}\right\}$ has a limit point $v_{\mathrm{P}}^{*}$. Define

$$
\bar{y}^{k+1}=\frac{y^{k+1}}{\nu^{k}} \quad \text { and } \quad \bar{u}^{k+1}=\frac{u^{k+1}}{\nu^{k}}
$$

Then the stopping rules (34) and Lemma 1 give that

$$
\begin{align*}
\left\|\left[\begin{array}{r}
\frac{1}{\nu^{k}} \nabla f\left(x^{k+1}\right)-J^{T}\left(x^{k+1}\right)\left(\bar{y}^{k+1}-e_{\mathcal{E}}^{0}\right) \\
e-\left(\bar{y}^{k+1}-e_{\mathcal{E}}^{0}\right)-\bar{u}^{k+1}
\end{array}\right]\right\| & \leq \kappa_{p}\left(\mu^{k}\right) \gamma^{k}  \tag{55a}\\
\left\|\left(C\left(x^{k+1}\right)+S^{k+1}\right) \bar{y}^{k+1}-\frac{\mu^{k}}{\nu^{k}} e\right\| & \leq \frac{\epsilon^{\mathrm{C}}\left(\mu^{k}\right)}{\nu^{k}}  \tag{55b}\\
\left\|S^{k+1} \bar{u}^{k+1}-\frac{\mu^{k}}{\nu^{k}} e\right\| & \leq \frac{\epsilon^{\mathrm{U}}\left(\mu^{k}\right)}{\nu^{k}}  \tag{55c}\\
\left(c\left(x^{k+1}\right)+s^{k+1}, s^{k+1}\right) & >0  \tag{55~d}\\
\text { and } \quad\left(\left[1+\frac{\kappa_{\nu}}{\nu^{0}}\right] e+e_{\mathcal{E}}^{0},\left[1+\frac{\kappa_{\nu}}{\nu^{0}}\right] e+e_{\mathcal{E}}^{0}\right) \geq\left(\bar{y}^{k+1}, \bar{u}^{k+1}\right) & >0 \tag{55e}
\end{align*}
$$

where $\kappa_{p} \equiv \kappa\left(1+\kappa_{\nu} / \nu^{0}\right)$. Since (55e) implies that ( $\bar{y}^{k+1}, \bar{u}^{k+1}$ ) is bounded, there is a subsequence $\mathcal{K}^{\prime} \subseteq \mathcal{K}$ for which $\lim _{k \in \mathcal{K}^{\prime} \rightarrow \infty}\left(\bar{y}^{k+1}, \bar{u}^{k+1}\right)=\left(y^{*}, u^{*}\right)$. Taking limits of (55) as $k \in \mathcal{K}^{\prime} \rightarrow \infty$ (and thus $\mu^{k} \rightarrow 0$ and $\nu^{k} \rightarrow \infty$ ) shows that $\left(x^{*}, s^{*}, y^{*}, u^{*}\right)$ satisfies (24), and hence $\left(x^{*}, s^{*}\right)$ is a first-order critical point of (16) subject to $c(s)+s \geq 0$ and $s \geq 0$. The remaining result then follows directly from Theorem 1 .

Finally, the additional criterion (45) yields a certificate of failure of the MFCQ whenever the penalty parameter explodes and yet the iterates approach a feasible point.

Lemma 4 Suppose that Assumptions 2 and 4-8 hold. Let $\left\{v_{P}^{k}\right\}$ and $\left\{v_{D}^{k}\right\}$ be sequences generated by Algorithm 4.1. Assume (44) holds for only a finite number of iterations but the penalty parameter $\nu^{k}$ is updated infinitely many times at iterations $k \in \mathcal{K}$. If, in addition the sequence $\left\{v_{P}^{k}\right\}$ has a limit point $v_{P}^{*}, x^{*}$ is a feasible Fritz-John point of (1) and therefore the MFCQ fails to hold at $x^{*}$.

Proof. As in Lemma 3, the sequences $\left\{y^{k}\right\}_{\mathcal{K}}$ and $\left\{u^{k}\right\}_{\mathcal{K}}$ are unbounded, and from our assumptions, $\left\|c_{\mathcal{E}}\left(x^{k}\right)\right\| \leq \eta_{\mathcal{E}}^{k}$ and $\left\|c_{\mathcal{I}}\left(x^{k}\right)^{-}\right\| \leq \eta_{\mathcal{I}}^{k}$ for infinitely many $k \in \mathcal{K}$. By taking limits, we see that $x^{*}$ is feasible.

Since $\left\{\nu^{k}\right\} \rightarrow+\infty$ but increases in $\nu^{k}$ are not due to lack of progress towards feasibility, (45) must be violated infinitely many times. Let

$$
\begin{equation*}
\alpha^{k+1}=\max \left\{\left\|y_{\mathcal{E}}^{k+1}-\nu^{k} e_{\mathcal{E}}\right\|,\left\|y_{\mathcal{I}}^{k+1}\right\|\right\} \tag{56}
\end{equation*}
$$

We have from (45) that $\alpha^{k+1}=\Omega\left(\nu^{k}\right)$ for all $k \in \mathcal{K}$. We now define

$$
\bar{y}_{\mathcal{E}}^{k+1}=\frac{y_{\mathcal{E}}^{k+1}-\nu^{k} e_{\mathcal{E}}}{\alpha^{k+1}}, \quad \bar{y}_{\mathcal{I}}^{k+1}=\frac{y_{\mathcal{I}}^{k+1}}{\alpha^{k+1}}, \quad \text { and } \quad \bar{u}^{k+1}=\frac{u^{k+1}}{\alpha^{k+1}}
$$

By construction, $\left\|\left(\bar{y}_{\mathcal{E}}^{k+1}, \bar{y}_{\mathcal{I}}^{k+1}\right)\right\|_{\infty}=1$ for all $k \in \mathcal{K}$. Let $\bar{y}^{*}=\left(\bar{y}_{\mathcal{E}}^{*}, \bar{y}_{\mathcal{I}}^{*}\right)$ be a limit point of the latter sequence. Upon scaling the stopping conditions (34) by $\alpha^{k+1}$ and taking limits as $k \rightarrow \infty$, we see that $\left\{\bar{u}^{k+1}\right\}$ must also remain bounded so that, reducing to a further subsequence if necessary,

$$
J^{T}\left(x^{*}\right) \bar{y}^{*}=0, \quad C_{\mathcal{I}}\left(x^{*}\right) \bar{y}_{\mathcal{I}}^{*}=0, \quad c_{\mathcal{E}}\left(x^{*}\right)=0, \quad \text { and } \quad\left(c_{\mathcal{I}}\left(x^{*}\right), \bar{y}_{\mathcal{I}}^{*}\right) \geq 0
$$

Moreover, since $\left\|\bar{y}^{*}\right\|_{\infty}=1$ by construction, there is at least one nonzero multiplier, which proves that $x^{*}$ is a feasible Fritz-John point of (1). Combining the first two conditions above, we obtain

$$
\sum_{i \in \mathcal{E}} \bar{y}_{i}^{*} \nabla c_{i}\left(x^{*}\right)+\sum_{i \in \mathcal{A}\left(x^{*}\right)} \bar{y}_{i}^{*} \nabla c_{i}\left(x^{*}\right)=0
$$

where $\mathcal{A}\left(x^{*}\right)$ is the set of active inequality constraints at $x^{*}$. It is well known that, by application of Motzkin's transposition theorem (Mangasarian and Fromovitz, 1967), the latter condition is equivalent to failure of the MFCQ at $x^{*}$.

To summarize, Lemmas 2-4 lead to the following global convergence result.

Theorem 8 Suppose that Assumptions 2 and 4-8 hold. Let $\left\{v_{P}^{k}\right\}$ and $\left\{v_{D}^{k}\right\}$ be sequences generated by Algorithm 4.1, and that $x^{*}$ is a limit point of $\left\{x^{k}\right\}$. Then either $\left\{\nu^{k}\right\}$ remains bounded, and $x^{*}$ is a first-order critical point for the nonlinear programming problem (1), or $\left\{\nu^{k}\right\}$ diverges, and $x^{*}$ is a first-order critical point of the infeasibility (7).

### 4.3 Fast Asymptotic Convergence

We examine in this section the superlinear convergence properties of iterates generated by Algorithm 4.1 in the regular case where LICQ is satisfied for simplicity, although past research suggests that similar convergence properties could be derived under MFCQ (Wright and Orban, 2002).

The framework is that of Gould et al. (2001) and Gould et al. (2002). From Theorem 8, we assume that Algorithm 4.1 generates a sequence $\left\{v^{k}\right\}$ from which a convergent subsequence $\left\{v^{k}\right\}_{\mathcal{K}}$ may be extracted, where $\mathcal{K}$ is an infinite index set, whose limit point $v^{*}=\left(v_{\mathrm{P}}^{*}, v_{\mathrm{D}}^{*}\right)$ is feasible, and hence for which the penalty parameter $\nu^{k}$ is only updated finitely many times. We denote its final value by $\nu^{*}>0$, and let $\lambda^{*}=\lambda\left(y^{*}, \nu^{*}\right)$ We consider indices $k \in \mathcal{K}$ sufficiently large that $\nu^{k}=\nu^{*}$ and for related positive quantities $\alpha$ and $\beta$, we write $\alpha=O(\beta)$ if there is a constant $\kappa>0$ such that $\alpha \leq \kappa \beta$ for all $\beta$ sufficiently small. We write $\alpha=o(\beta)$ if $\alpha / \beta \rightarrow 0$ as $\beta \rightarrow 0$. We also write $\alpha=\Theta(\beta)$ if $\alpha=O(\beta)$ and $\beta=O(\alpha)$.
¿From Lemma 2, we have that $s^{*}=0$, which enables us to conveniently formulate our assumptions in term of (1) instead of (3). In particular, all the bound constraints on $s$ in (3) are active and we may thus define the set of active indices in the nonlinear constraints of (3) as $\mathcal{A} \cup \mathcal{E}$ where

$$
\begin{equation*}
\mathcal{A}=\left\{i \in \mathcal{I} \mid c_{i}\left(x^{*}\right)=0\right\} \tag{57}
\end{equation*}
$$

Note that $\mathcal{A}$ is also the set of active inequality constraints for (1). We make the following standard assumptions on (1).

Assumption 9 The gradients $\left\{\nabla c_{i}\left(x^{*}\right) \mid i \in \mathcal{A} \cup \mathcal{E}\right\}$ form a linearly independent set of vectors;

Assumption 10 The strong second-order sufficiency conditions for (1) are satisfied at $\left(x^{*}, \lambda^{*}\right)$, i.e., $d^{T} \nabla_{x x} L\left(x^{*}, \lambda^{*}\right) d>0$ for all nonzero vector $d$ such that $\nabla c_{i}\left(x^{*}\right)^{T} d=0$ for all $i \in \mathcal{A} \cup \mathcal{E}$;

Assumption $11\left\|\lambda^{*}\right\|_{\infty}<\nu^{*}$ and $\lambda_{i}^{*}>0$ for all $i \in \mathcal{A}$;

Assumption 12 The functions $f, c_{\mathcal{E}}(x)$ and $c_{\mathcal{I}}(x)$ are three times continuously differentiable over the intersection of an open neighbourhood of $x^{*}$ with the feasible set of (1).

Lemma 5 The penalty problem (3) satisfies LICQ, the strong second-order sufficient condition and strict complementarity at $v^{*}$ with a value of the penalty parameter equal to $\nu^{*}$ if and only if 9-11 are satisfied. Moreover, if 12 holds, the objective and constraint functions for (3) are three times continuously differentiable in an open neighbourhood of $v_{P}^{*}$.

Proof. Upon defining the $|\mathcal{A}| \times n$ matrices $J_{\mathcal{A}}\left(x^{*}\right)$ and $E_{\mathcal{A}}$ as the rows of the matrices $J_{\mathcal{I}}\left(x^{*}\right)$ and $I_{\mathcal{I}}$ corresponding to indices in $\mathcal{A}$ respectively, the active part of the Jacobian $J^{\mathrm{s}}\left(v^{*}\right)$ defined in (19) is

$$
J_{\mathcal{A}}^{\mathrm{S}}\left(x^{*}, 0\right)=\left[\begin{array}{ccc}
J_{\mathcal{E}}\left(x^{*}\right) & I_{\mathcal{E}} & 0  \tag{58}\\
J_{\mathcal{A}}\left(x^{*}\right) & 0 & E_{\mathcal{A}} \\
0 & I_{\mathcal{E}} & 0 \\
0 & 0 & I_{\mathcal{I}}
\end{array}\right] .
$$

The matrix (58) has full row rank if and only if the matrix

$$
\left[\begin{array}{l}
J_{\mathcal{E}}\left(x^{*}\right)  \tag{59}\\
J_{\mathcal{A}}\left(x^{*}\right)
\end{array}\right],
$$

has full row rank. This latter condition is equivalent to 9 .
Because the variables $s$ appear linearly in the Lagrangian (17), its Hessian with respect to primal variables $v_{\mathrm{P}}=(x, s)$ is

$$
\nabla_{v_{\mathrm{P}} v_{\mathrm{P}}} \mathcal{L}(v ; \nu)=\left[\begin{array}{cc}
\nabla_{x x} \mathcal{L}(v ; \nu) & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\nabla_{x x} L(x, \lambda(y, \nu)) & 0 \\
0 & 0
\end{array}\right]
$$

where $L(x, \lambda)$ is the Lagrangian (12) and $\lambda(y, \nu)$ is defined by (22b), hence imposing the strong second-order sufficient condition on (3) at $v^{*}$ amounts to 10 . The requirement on $d$ follows from (58).

Since $c_{\mathcal{E}}\left(x^{*}\right)=0$ and $s^{*}=0$, strict complementarity on (3) imposes $y_{i}^{*}>0$ for all $i \in \mathcal{A} \cup \mathcal{E}$ and $u_{i}^{*}>0$ for all $i \in \mathcal{C}$. Eliminating $u_{i}^{*}$ using the identities (21b)-(21c) gives $y^{*}<\nu^{*}\left(e+e_{\mathcal{E}}\right)$, which is in turn equivalent to the bound $\left\|\lambda^{*}\right\|_{\infty}<\nu^{*}$ on the multipliers $\lambda^{*} \equiv \lambda\left(y^{*}, \nu^{*}\right)=y^{*}-\nu^{*} e_{\mathcal{E}}^{0}$ associated to (1). The final part of the proof is immediate.

Under 11, the central trajectory approaches its end point non-tangentially to active constraints (Wright, 1992). Differentiating the primal-dual system with respect to $\mu$ yields an explicit expression of the tangent vector $\dot{v}(\mu)$

$$
\nabla_{v} \Phi(v ; \mu, \nu) \dot{v}(\mu)=\left[\begin{array}{c}
0  \tag{60}\\
0 \\
-e_{2 n_{\mathcal{C}}}
\end{array}\right] .
$$

As $\mu \downarrow 0$, this tangent vector converges to a nonzero limit vector $\dot{v}(0)$. As will appear in Theorem 4.3 , the individual components of $\dot{v}(0)$ are relevant to fast local convergence issues.

Slightly strengthening (47), we assume in this section that the forcing functions in Algorithm 4.1 have the following asymptotic form

Assumption $13 \epsilon^{D}\left(\mu^{k}\right)=\Theta\left(\left(\mu^{k}\right)^{\gamma^{k}+1}\right)$ and $\epsilon^{C, U}\left(\mu^{k}\right)=\Theta\left(\mu^{k}\right)$, where $0<\gamma^{k}<1$ for all sufficiently large $k \in \mathcal{K}$.

For the purpose of demonstrating the fast local convergence properties of Algorithm 4.1, we first rephrase it as Algorithm 4.2.

Note that from Assumptions 9-11, the Jacobian matrix on the left-hand side of (61) remains uniformly nonsingular.

Upon defining the set of nonzero components of the tangent vector (60) to the primal-dual central path at $v^{*}$,

$$
\begin{equation*}
\mathcal{J}=\left\{i=1, \ldots, n+2 n_{\mathcal{C}} \mid \dot{v}(0)_{i} \neq 0\right\} \tag{63}
\end{equation*}
$$

and under the above assumptions, Algorithm 4.2 fits in the framework of Gould et al. (2001) and Gould et al. (2002) and we obtain the following results, simple modifications of the main results of the aforementioned papers, which we state without proof.

The first result states that the Newton step $d^{\mathrm{N}}$ defined in (61) is strictly feasible and $v^{k}+d^{\mathrm{N}}$ satisfies the stopping conditions (34) with barrier parameter $\mu^{k}$.

## Algorithm 4.2 Prototype Algorithm - Outer Iteration (local version).

Step 0. Let the forcing functions $\epsilon^{\mathrm{D}}(\cdot), \epsilon^{\mathrm{C}}(\cdot)$ and $\epsilon^{\mathrm{U}}(\cdot)$ satisfy 13 , and let $0<\epsilon_{\tau}<1 / 2$. Choose $x^{0} \in \mathbb{R}^{n}, s^{0} \in \mathbb{R}_{+}^{n_{\mathcal{C}}}$ such that $c\left(x^{0}\right)+s^{0}>0$, initial dual estimates $y^{0}, u^{0} \in \mathbb{R}_{+}^{n_{\mathcal{C}}}$, and penalty and barrier parameters $\nu^{0}$ and $\mu^{0}>0$, and set $k=0$.
Step 1. Inner Iteration: Obtain the primal-dual Newton step $d_{k}^{\mathbb{N}}$ as a solution to the linear system

$$
\begin{equation*}
\nabla_{v} \Phi\left(v^{k} ; \mu^{k}, \nu^{*}\right) d^{\mathbb{N}}=-\Phi\left(v^{k} ; \mu^{k}, \nu^{*}\right) \tag{61}
\end{equation*}
$$

where the function $\Phi(v ; \mu, \nu)$ is defined in (31), and set $v^{k+1}=v^{k}+d_{k}^{\mathrm{N}}$.
Step 2. Select a new barrier parameter according to

$$
\begin{equation*}
\mu^{k+1}=\Theta\left(\left(\mu^{k}\right)^{\tau^{k}}\right) \quad \text { where } \quad 1+\epsilon_{\tau} \leq \tau^{k} \leq \frac{2}{1+\gamma^{k+1}}-\epsilon_{\tau} \tag{62}
\end{equation*}
$$

Increment $k$ by one, and return to Step 1.

Theorem 9 ((Gould et al. (2001), Theorem 6.2)) Under Assumptions $9-13$ for $k \in \mathcal{K}$ sufficiently large, the stopping conditions (34) are satisfied at $v^{k+1}$ with $\mu=\mu^{k}$, and

$$
\begin{equation*}
\left\|\Phi\left(v^{k+1} ; \mu^{k}, \nu^{*}\right)\right\|=o\left(\mu^{k}\right) \tag{64}
\end{equation*}
$$

The next result states the precise rate of convergence, not only in the error in norm, but in some individual components, defined by (63), of the error. It states that the same rate takes place in individual components of the residuals in complementarity. More precisely, let

$$
\Phi^{\mathrm{C}}(v ; \mu, \nu)=\left[\begin{array}{c}
(C(x)+S) y-\mu e  \tag{65}\\
S u-\mu e
\end{array}\right]
$$

represent the $2 n_{\mathcal{C}}$-dimensional subsystem of (31) containing only the perturbed complementarity components. If $\dot{\Phi}$ denotes the vector on the right-hand side of (60), we have the following nonsingular relationship

$$
\nabla_{v} \Phi\left(v^{*} ; 0, \nu^{*}\right) \dot{v}(0)=\dot{\Phi}
$$

Note that the components of $\Phi^{\mathrm{C}}(v ; \mu, \nu)$ correspond precisely to the nonzero components of $\dot{\Phi}$. Following Gould et al. (2002), an interpretation of $\dot{\Phi}$ is as a tangent vector at the end point of a trajectory approximately tracked by the sequence $\left\{\Phi\left(v^{k+1} ; \mu^{k}, \nu^{k}\right)\right\}$.

Theorem 10 ((Armand et al. (2008), Theorem 5.3, Gould et al. (2001), Theorem 6.5, and Gould et al. (2002), Theorem 3.2)) Under Assumptions 9-13, assume that the complete sequence $\left\{v^{k}\right\}$ converges to $v^{*}$, then the sequence $\left\{\Phi\left(v^{k+1} ; \mu^{k}, \nu^{k}\right)\right\}$ converges to zero and we have the asymptotic expansions

$$
\begin{equation*}
v^{k+1}=v^{*}+\mu^{k} \dot{v}(0)+o\left(\mu^{k}\right) \quad \text { and } \quad \Phi^{c}\left(v^{k+1} ; \mu^{k}, \nu^{*}\right)=-\mu^{k} e+o\left(\mu^{k}\right) \tag{66}
\end{equation*}
$$

As a consequence, the asymptotic convergence rate is described by

$$
\begin{equation*}
\frac{\left|v_{i}^{k+2}-v_{i}^{*}\right|}{\mid v_{i}^{k+1}-v_{i}^{*} \tau^{k}}=\Theta(1) \quad i \in \mathcal{J} \quad \text { and } \quad \frac{\left|\Phi_{i}^{C}\left(v^{k+2} ; \mu^{k+1}, \nu^{*}\right)\right|}{\left|\Phi_{i}^{C}\left(v^{k+1} ; \mu^{k}, \nu^{*}\right)\right|^{\tau^{k}}}=\Theta(1) \quad i=1, \ldots, 2 n_{\mathcal{C}}, \tag{67}
\end{equation*}
$$

for $k$ sufficiently large, where $\tau^{k}$ is as in (62), which implies that the iterates $v^{k+1}$ and the residuals in complementarity converge componentwise $Q$-superlinearly to their limit, along the given components. The remaining components $i \notin \mathcal{J}$ satisfy

$$
\left|v_{i}^{k+1}-v_{i}^{*}\right|=o\left(\mu^{k}\right) \quad \text { and } \quad \Phi_{i}\left(v^{k+1} ; \mu^{k}, \nu^{*}\right)=o\left(\mu^{k}\right)
$$

As a consequence of Theorem 4.3, a Q-rate of convergence which is as close to quadratic as desired, and which takes place not only in norm but in all the indicated components, is achievable by constructing the sequence $\left\{\gamma^{k}\right\}$ so it converges to zero, by choosing $\epsilon_{\tau} \simeq 0$ in Algorithm 4.2 and by selecting $\tau^{k}$ equal to its upper bound in (62).

Note that in the asymptotics, Algorithm 4.2 branches into Algorithm 6.1 with little modification.

## 5 Treatment of Linear Constraints

We briefly digress in this section on the possibility of treating linear constraints explicitly, if any are present, rather than penalizing them. We might distinguish linear equations from the remaining constraints by including the constraints

$$
\begin{equation*}
A_{E} x=b_{E}, \tag{68}
\end{equation*}
$$

where $A_{E}$ has full row rank, in the general statement (1). We consider this case since in practice we may aim to find and maintain feasible points for simple constraints such as (68) before treating the nonlinear ones, and also to reflect the generality which must be addressed by a practical implementation.

The reformulation given in $\S 2.1$ results, after placing the inequality constraints into a logarithmic barrier, in a linearly-constrained mixed interior-exterior penalty problem. The Jacobian (19) now takes the form

$$
J^{\mathrm{S}}\left(v_{\mathrm{P}}\right)=\left[\begin{array}{ccc}
J_{\mathcal{E}}(x) & I_{\mathcal{E}} & 0  \tag{69}\\
J_{\mathcal{I}}(x) & 0 & I_{\mathcal{I}} \\
A_{E} & 0 & 0 \\
0 & I_{\mathcal{E}} & 0 \\
0 & 0 & I_{\mathcal{I}}
\end{array}\right]
$$

Note that explicit treatment of the linear equations (68) preserves the MFCQ.
Explicit linear inequality constraints

$$
\begin{equation*}
A_{I} x \geq b_{I} \tag{70}
\end{equation*}
$$

including the special case of simple bounds such as

$$
\begin{equation*}
x \geq 0 \tag{71}
\end{equation*}
$$

might also be treated directly instead of being penalized. In this case, the objective function of the barrier problem will incorporates logarithmic terms to treat the linear inequalities (70). The Jacobian of the constraints including both (68) and (70) is then given by

$$
J^{\mathrm{S}}\left(v_{\mathrm{P}}\right)=\left[\begin{array}{ccc}
J_{\mathcal{E}}(x) & I_{\mathcal{E}} & 0  \tag{72}\\
J_{\mathcal{I}}(x) & 0 & I_{\mathcal{I}} \\
A_{E} & 0 & 0 \\
A_{I} & 0 & 0 \\
0 & I_{\mathcal{E}} & 0 \\
0 & 0 & I_{\mathcal{I}}
\end{array}\right] .
$$

Unfortunately, MFCQ is no longer automatically satisfied even in the special case of simple bounds (71), as it requires that there is a vector $d$ in the nullspace of $A_{E}$ such that $a_{i}^{T} d_{i}<0$ for each active inequality $a_{i}^{T} x \geq b_{i}$. A condition such as LICQ on (1) is sufficient for this, and provides a consistent context with $\S 4.3$.

The convergence theory remains essentially unaltered upon adding the linear constraints (68) and (70). However, the preconditioning matrices $P^{k}$ used in (34a) and in the trust region (35) must this time be uniformly second-order sufficient, which essentially amounts to uniform positive definiteness on the nullspace of the matrix $A_{E}$ (Conn et al., 2000a), on which they define uniformly equivalent norms. Again, the seminorms used in (34a) and (35) are dual of each other and allow for efficient treatment of the linear constraints.
¿From the practical point of view, the GALAHAD code LSQP (Gould et al., 2003) may be used to find an approximation to the analytic center for the constraints (68) and (70). The constraints are preprocessed using
the GALAHAD package PRESOLVE (Gould and Toint, 2004) to remove fixed variables and (some) redundant constraints, and to simplify the remaining constraints if possible. Provided that the linear constraints have a feasible (interior) point, we use the resulting point $x^{0}$, for which

$$
A_{E} x^{0}=b_{E} \text { and } A_{I} x^{0}>b_{I}
$$

as a starting point for the remainder of our calculation. We may safely assume that $A_{E}$ is of full rank, since any rank-deficiency will have been identified and removed by PRESOLVE.

A practical implementation might offer the choice to penalize all constraints altogether or to keep nonredundant linear constraints explicit. Extensive numerical tests are required before we can make firm recommendations.

## 6 Enhanced and Alternative Inner Iterations

Whilst the inner-iteration algorithm outlined in Section 3.4-3.6 is certainly suitable for our purposes, it is by no means the only possibility. In this section we consider both a simple enhancement to the basic method and a complete alternative based on this enhancement.

### 6.1 Magical Steps

Suppose that our inner-iteration trust-region algorithm has produced a new approximation $\left(x^{k, j}, s^{k, j}\right)$ to the minimizer of the barrier function $\phi^{\mathrm{B}}\left(x, s ; \mu^{k}, \nu^{k}\right)$. Since $\phi^{\mathrm{B}}(x, s ; \mu, \nu)$ is a separable function of $s$, we might then aim to improve on $\left(x^{k, j}, s^{k, j}\right)$ by finding the (global) minimizer $s(x)$ of $\phi^{\mathrm{B}}(x, s ; \mu, \nu)$ for the given $x=x^{k, j}$. Replacing $\left(x^{k, j}, s^{k, j}\right)$ by the improvement $\left(x^{k, j}, s\left(x^{k, j}\right)\right.$ ) is an example of what is known as a magical step, and fortunately the use of such steps does not interfere with global convergence of the underlying algorithm - see, for example, (Conn et al., 2000b, §10.4.1).

To compute the elastics $s(x)$, note that $s(x)$ necessarily satisfies (componentwise) the equations

$$
\begin{equation*}
r(s(x)) \equiv \nabla_{s} \phi^{\mathrm{B}}(x, s(x) ; \mu, \nu)=\nu\left(e+e_{\mathcal{E}}^{0}\right)-y(x, s(x) ; \mu)-u(s(x) ; \mu)=0 \tag{73}
\end{equation*}
$$

for a given $x$. We may summarize the properties of (73) as follows.

Lemma 6 Let Assumption 2 be satisfied, the function $r(s(x))$ be defined by (73) where $x$ is fixed and the multiplier estimates be given by (29). We then have the following properties:

1. $r(s)$ is a separable function of $s$,
2. $r(s(x))$ has a unique root, $s(x)$, for which $(x, s(x))$ lies in the interior of the feasible set of (3),
3. $s(x)$ is twice continuously differentiable for $\max \left(0,-c_{i}(x)\right)<s(x)<\infty$.

Proof. The first and last points are straightforward, given (73) and the implicit function theorem. For the second point, notice that $r(s)$ has poles at $s=-c(x)$ and $s=0$, that $\nabla_{s} s(x) e>0$, and that $\lim _{s \rightarrow+\infty} r(s)=$ $\nu\left(e+e_{\mathcal{E}}^{0}\right)>0$.

In our case, a simple calculation reveals that the magical correction for $s$ is given (componentwise) by

$$
s_{i}^{k, j}= \begin{cases}\frac{\mu^{k}}{2 \nu^{k}}-\frac{c_{i}\left(x^{k, j}\right)}{2}+\sqrt{\left(\frac{c_{i}\left(x^{k, j}\right)}{2}\right)^{2}+\left(\frac{\mu^{k}}{2 \nu^{k}}\right)^{2}} & \text { for } i \in \mathcal{E} \\ \frac{\mu^{k}}{\nu^{k}}-\frac{c_{i}\left(x^{k, j}\right)}{2}+\sqrt{\left(\frac{c_{i}\left(x^{k, j}\right)}{2}\right)^{2}+\left(\frac{\mu^{k}}{\nu^{k}}\right)^{2}} & \text { for } i \in \mathcal{I}\end{cases}
$$

### 6.2 Alternative Algorithm Using Implicit Elastics

As we have just suggested, we may improve upon a given $(x, s)$ by replacing it by the "magical" $(x, s(x))$. However, this is somewhat inefficient as $x$ is chosen without regard to what $s(x)$ might result. This suggests a better approach might be to treat the elastic variables as implicitly dependent on $x$ throughout the inner iteration.

With this in mind, in this section we present an implicit elastics alternative to Algorithm 3.2. Since we know from Lemma 6 that $s(x)$ is (at least) twice continuously differentiable, we might instead minimize

$$
\begin{equation*}
\psi(x) \equiv \phi^{\mathrm{B}}(x, s(x) ; \mu, \nu) \tag{74}
\end{equation*}
$$

solely as a function of the variables $x$. Here $\phi^{\mathrm{B}}(\cdot)$ is as defined by (4), and we have hidden the dependency of $\psi(\cdot)$ on $\mu$ and $\nu$ for brevity. In practice, in addition to the reduction in dimension this suggests, the definition of $s(x)$ should help to keep the constraints a comfortable distance from their boundaries, preventing steps from being repeatedly cut back. We now show that a classical trust-region algorithm for the minimization of $\psi(x)$ is well defined.

For future reference, we give the derivatives of (74) in the following result.

Lemma 7 Under Assumption 4, the first and second derivatives of (74) are given by

$$
\begin{align*}
\nabla_{x} \psi(x) & =\nabla f(x)-J^{T}(x) \sigma(x) \quad \text { and }  \tag{75a}\\
\nabla_{x x} \psi(x) & =H(x, \sigma(x))+\mu J^{T}(x)\left[(C(x)+S(x))^{2}+S(x)^{2}\right]^{-1} J(x)  \tag{75b}\\
& \equiv H(x, \sigma(x))+J^{T}(x)\left[(C(x)+S(x)) Y^{-1}(x)+S(x) U^{-1}(x)\right]^{-1} J(x) \tag{75c}
\end{align*}
$$

where we have defined the Lagrange multiplier estimates

$$
\begin{align*}
y(x) & \equiv y(x, s(x))=\mu(C(x)+S(x))^{-1} e  \tag{76a}\\
u(x) & \equiv u(s(x))=\mu S^{-1}(x) e \quad \text { and }  \tag{76b}\\
\sigma(x) & =y(x)-\nu e_{\mathcal{E}}^{0} \tag{76c}
\end{align*}
$$

and $H(x, \sigma)$ is given by (39).

Proof. Elementary calculations with (73) prove (75a). We note from (73) that $\nabla_{x} r(s(x))=0$, implying $(C(x)+S(x))^{-2}\left(J(x)+\nabla_{x} s(x)\right)=-S^{-2}(x) \nabla_{x} s(x)$. Extracting $\nabla_{x} s(x)$ from this identity gives

$$
\nabla_{x} s(x)=-\left[I+(C(x)+S(x))^{2} S^{-2}(x)\right]^{-1} J(x)
$$

which combines with (76c) to yield

$$
\nabla_{x} \sigma(x)=-\mu(C(x)+S(x))^{-2}\left(J(x)+\nabla_{x} s(x)\right)=\mu S^{-2}(x) \nabla_{x} s(x)
$$

and finally, (75b). The alternative (75c) follows by simple manipulation.
Note that the second term in the right-hand side of $(75 \mathrm{~b})$ is positive semi-definite.

A typical primal-dual trust-region method for minimizing $\psi(x)$ computes a correction $d$ to the current solution estimate $x$ so as to (approximately)

$$
\begin{equation*}
\underset{d}{\operatorname{minimize}} \nabla \psi(x)^{T} d+\frac{1}{2} d^{T} B(x, \sigma) d \quad \text { subject to }\|d\|_{M} \leq \Delta \tag{77}
\end{equation*}
$$

where the trust-region radius $\Delta>0$. The approximation $B(x, \sigma)$ might be the primal Hessian $\nabla_{x x} \psi(x)$ but, as in Section 3.4, there are advantages in instead using the primal-dual approximation

$$
\begin{equation*}
B^{\mathrm{PD}}(x, \sigma)=H(x, \sigma)+J^{T}(x)\left[\Theta^{-1}(x)+S(x) U^{-1}\right]^{-1} J(x) \tag{78}
\end{equation*}
$$

where

$$
\begin{align*}
\Theta(x) & =Y(C(x)+S(x))^{-1}  \tag{79a}\\
u & \approx u(x)>0  \tag{79b}\\
y & \approx y(x)>0 \text { and }  \tag{79c}\\
\sigma & \approx \sigma(x) \tag{79~d}
\end{align*}
$$

(c.f. (38) and (79a)). Note also that $\Theta^{-1}(x)+S(x) U^{-1}$ is a diagonal matrix.

As in Section 3.4, lengths of steps and gradients should be measured in norms that reflect curvature. The trust-region norm $\|w\|_{M}^{2} \equiv\langle w, M w\rangle$ depends on a suitable symmetric, positive-definite approximation $M$ to $B(x, \sigma)$, and we shall use

$$
\begin{equation*}
M=P+J^{T}(x)\left[\Theta^{-1}(x)+S(x) U^{-1}\right]^{-1} J(x) \tag{80}
\end{equation*}
$$

where as before, $P$ can range from simple $(P=I)$ to sophisticated $(P=H(x, \sigma))$. To be specific, we shall assume that, at the termination of the $k$-th inner-iteration, the following assumption is satisfied.

Assumption 14 Each matrix $M_{k}$ is defined by (80), where $P=P^{k}$ satisfies 5.

The counterpart of the preconditioning system (40) is here that

$$
\begin{equation*}
M d_{x}=r_{x} \tag{81}
\end{equation*}
$$

for some given $r_{x}$. Significantly, upon introducing auxiliary $d_{s}=-\left[\Theta(x)+U S^{-1}(x)\right]^{-1} J(x) \Theta(x) d_{x}$, we see that (81) is equivalent to (40) in the case that $r_{s}=0$. In particular, since

$$
\nabla_{v_{\mathrm{P}}} \phi^{\mathrm{B}}(x, s(x) ; \mu, \nu)=\left[\begin{array}{c}
\nabla_{x} \psi(x) \\
0
\end{array}\right]
$$

when $s=s(x)$, we may replace (34a) with

$$
\left\|\nabla \psi\left(x^{k+1}\right)\right\|_{M_{k+1}^{-1}} \leq \epsilon^{\mathrm{D}}\left(\mu^{k}\right)
$$

The resulting trust-region method is entirely standard, except that any trial value $x$ for which $s(x)$ is undefined or infeasible will be rejected and the trust-region radius retracted.

In order to show that the resulting method is globally convergent, we must make sure that the Hessian matrix of the model, $B^{\mathrm{PD}}(x, \sigma)$, is bounded.

Lemma 8 The Lagrange multiplier estimates satisfy the bounds

$$
\begin{equation*}
0<y(x)<\nu\left(e+e_{\mathcal{E}}^{0}\right) \quad \text { and } \quad 0<u(x)<\nu\left(e+e_{\mathcal{E}}^{0}\right) \tag{82}
\end{equation*}
$$

and

$$
\begin{equation*}
-\nu e_{\mathcal{E}}^{0}<\sigma(x)<\nu e \tag{83}
\end{equation*}
$$

Proof. Identities (73) and (79) combine to give the bounds (82). In turn, these bounds an (76c) together imply (83).

In view of the required approximations (79b)-(79d) and Lemma 8, we make the further reasonable assumption.

Assumption 15 For given $\nu$, the Lagrange multiplier estimates $y$, $u$ and $\sigma$ are bounded.
Given this assumption, we now show that our model Hessian remains bounded. To this end, let $\delta_{i}=1$ if $i \in \mathcal{E}$ and 0 otherwise.

Lemma 9 Under Assumptions 4 and 15, the primal-dual Hessian approximation (78) remains bounded for fixed values of $\mu>0$ and $\nu>0$.

Proof. Since (78) implies that

$$
\left\|B^{\mathrm{PD}}(x, \sigma)\right\| \leq\|H(x, \sigma)\|+\|J(x)\|\left\|J^{T}(x)\right\|\left\|\left[Y^{-1}(C(x)+S(x))+U^{-1} S(x)\right]^{-1}\right\|
$$

and as Assumptions 4 and 15 ensure that $\|H(x, \sigma)\|,\|J(x)\|$ and $\left\|J^{T}(x)\right\|$ are bounded, it remains to show that the (diagonal) entries

$$
\begin{equation*}
s_{i}(x) / u_{i}+\left(c_{i}(x)+s_{i}(x)\right) / y_{i} \tag{84}
\end{equation*}
$$

of the diagonal matrix $Y^{-1}(C(x)+S(x))+U^{-1} S(x)$ are bounded away from zero. But combining (76a) and (76b) with (82) shows that

$$
c_{i}(x)+s_{i}(x)>\frac{\mu}{\nu\left(1+\delta_{i}\right)} \quad \text { and } \quad s_{i}(x)>\frac{\mu}{\nu\left(1+\delta_{i}\right)} \quad \text { and }
$$

and this together with 15 gives the required lower bound on (84).
We summarize the results of this section by stating Algorithm 6.1.

## Algorithm 6.1 Prototype Algorithm - Outer Iteration (Implicit Elastics).

Step 0. Let the forcing functions $\epsilon^{\mathrm{D}}(\cdot), \epsilon^{\mathrm{C}}(\cdot)$ and $\epsilon^{\mathrm{U}}(\cdot)$ be given, and let $\kappa_{\nu}>0$. Choose $x^{0} \in \mathbb{R}^{n}$, $s^{0} \in \mathbb{R}_{+}^{n_{\mathcal{C}}}$ such that $c\left(x^{0}\right)+s^{0}>0$, initial dual estimates $y^{0}, u^{0} \in \mathbb{R}_{+}^{n_{\mathcal{C}}}$, and penalty and barrier parameters $\nu^{0}$ and $\mu^{0}>0$, and set $k=0$.

Step 1. Inner Iteration: find a new primal-dual iterate $\left(x^{k+1}, s\left(x^{k+1}\right), y^{k+1}, u^{k+1}\right)$ satisfying

$$
\begin{align*}
\left\|\nabla f\left(x^{k+1}\right)-J^{T}\left(x^{k+1}\right)\left(y^{k+1}-\nu^{k} e_{\mathcal{E}}^{0}\right)\right\|_{M_{k+1}^{-1}} & \leq \epsilon^{\mathrm{D}}\left(\mu^{k}\right)  \tag{85a}\\
\left\|\left(C\left(x^{k+1}\right)+S\left(x^{k+1}\right)\right) y^{k+1}-\mu^{k} e\right\| & \leq \epsilon^{\mathrm{C}}\left(\mu^{k}\right) .  \tag{85b}\\
\left\|S\left(x^{k+1}\right) u^{k+1}-\mu^{k} e\right\| & \leq \epsilon^{\mathrm{U}}\left(\mu^{k}\right)  \tag{85c}\\
\left(c\left(x^{k+1}\right)+s\left(x^{k+1}\right), s\left(x^{k+1}\right)\right) & >0  \tag{85d}\\
\text { and } \quad\left(\nu^{k}\left[e+e_{\mathcal{E}}^{0}\right]+\kappa_{\nu} e, \nu^{k}\left[e+e_{\mathcal{E}}^{0}\right]+\kappa_{\nu} e\right) \geq\left(y^{k+1}, u^{k+1}\right) & >0 \tag{85e}
\end{align*}
$$

for some suitable scaling norm $\|\cdot\|_{M_{k+1}}$ by (for example) approximately minimizing (74).
Step 2. Select a new barrier parameter, $\mu^{k+1} \in\left(0, \mu^{k}\right]$ such that $\lim _{k \rightarrow \infty} \mu^{k}=0$. Update the penalty parameter $\nu^{k}$ according to the rule (46). Increment $k$ by one, and return to Step 1.

The convergence properties of Algorithm 6.1 are summarized in Theorem 11, which we state without proof since this result is a direct parallel of Theorem 8 .

Theorem 11 Suppose that Assumptions 2, 4, 6-8 and 14 hold. Suppose that $x^{*}$ is a limit point of the sequence $\left\{x^{k}\right\}$ generated by Algorithm 6.1. Then either $\left\{\nu^{k}\right\}$ remains bounded, and $x^{*}$ is a first-order critical point for the nonlinear programming problem (1), or $\left\{\nu^{k}\right\}$ diverges, and $x^{*}$ is a first-order critical point of the infeasibility (7). In the first case, the multipliers $\left\{\sigma\left(x^{k}\right)\right\}$ generated converge to $\lambda\left(y^{*}, \nu^{*}\right)$ defined in (22). If additionally $\nu^{k}$ is updated whenever (45) is violated, if (44) holds only for a finite number of iterations and if $\left\{\nu^{k}\right\}$ diverges, $x^{*}$ is a feasible Fritz-John point for (1) and the MFCQ fails to hold at $x^{*}$.

In addition to the reasons mentioned earlier in this section, this alternative is attractive in that it empirically stabilizes the algorithm. In contrast with Algorithm 3.2, it also helps prevent infeasible steps from being generated and repeatedly cut. Indeed, it is easy to see from (79) and (82) that

$$
c_{i}(x)+s_{i}(x)>\frac{\mu}{\nu\left(1+\delta_{i}\right)} \geq \frac{\mu}{2 \nu}, \quad \text { and } \quad s_{i}(x)>\frac{\mu}{\nu\left(1+\delta_{i}\right)} \geq \frac{\mu}{2 \nu}
$$

so long as $s(x)$ exists.
For completeness, in view of Lemma 9 and (Conn et al., 2000a, Theorem 4), it is straightforward to show the following result, which again we state without proof.

Theorem 12 Under Assumptions 2, 4, 6-8 and 14, the implicit-elastic inner iteration procedure outlined in this section generates a sequence $\left\{\left(x^{k+1}, s\left(x^{k+1}\right), y^{k+1}, u^{k+1}\right)\right\}$ satisfying the inner-iteration stopping conditions (85) for iteration $k$ of Algorithm 6.1 after finitely many steps.

Fast convergence properties of Algorithm 6.1 may be derived in a similar manner to $\S 4.3$.

## 7 Practical Considerations, Enhancements and Refinements

Here we mention a number of other important practical considerations.

### 7.1 Initial Elastics

As mentioned earlier, finding an initial strictly feasible estimate $\left(x^{0}, s^{0}\right)$ for (3) is trivial. Any value $s^{0}>$ $\max \left[0,-c\left(x^{0}\right)\right]$ is acceptable. In practice, only those $s_{i}$ (or $r_{i}$, depending on the formulation chosen) that are required to be positive because of the initial $x$ need be retained, although it is actually prudent to keep those for which $s_{i}$ (or $r_{i}$ ) needs to be larger than some "small" positive value (say, 0.1 ). More generally, it may be beneficial to track each $s_{i}^{k, j}$ as the iteration progresses and to remove it as soon as the corresponding $c_{i}\left(x^{k, j}\right)$ is sufficiently positive. Doing so does not affect the convergence results described in this paper, as there can only be a finite number of these removals.

### 7.2 Two-Sided Inequalities

In the presence of two-sided inequality constraints

$$
c_{i}^{\mathrm{L}} \leq c_{i}(x) \leq c_{i}^{\mathrm{U}}
$$

the obvious penalty term $\nu \max \left(c_{i}^{\mathrm{L}}-c_{i}(x), c_{i}(x)-c_{i}^{\mathrm{U}}, 0\right)$ may be replaced by $\nu s_{i}$, where $s_{i}$ is required to satisfy

$$
s_{i}+c_{i}^{\mathrm{U}}-c_{i}(x) \geq 0, \quad s_{i}+c_{i}(x)-c_{i}^{\mathrm{L}} \geq 0 \quad \text { and } \quad s_{i} \geq 0
$$

Thus a single elastic variable suffices, rather than the pair that might have been anticipated if $c_{i}(x) \geq c_{i}^{\mathrm{L}}$ and $c_{i}(x) \leq c_{i}^{\mathrm{U}}$ had been considered separately.

If we wish to improve the value of $\phi^{\mathrm{B}}\left(v_{\mathrm{P}} ; \mu, \nu\right)$ using a magical step as described in Section 6.1 or to use the implicit-elastic approach of Section 6.2, the defining equation

$$
r(x) \equiv \nu\left(e+e_{\mathcal{E}}^{0}\right)-\mu\left[C(x)-C^{\mathrm{L}}+S(x)\right]^{-1} e-\mu\left[C^{\mathrm{U}}-C(x)+S(x)\right]^{-1} e-\mu S^{-1}(x) e=0
$$

for the $s(x)$ for a two-sided inequality may be reduced to a cubic equation. While it is possible to give an explicit formula for the required root, in practice it is just as easy to use a safeguarded univariate Newton method to find it.

### 7.3 Imposing Upper Bounds on the Elastics

There may be some virtue in adding an upper bound $s^{U}$ on the elastic variables in order to prevent $c(x)$ and $s$ simultaneously diverging to infinity. Of course it is far from obvious what globally a good value for $s^{U}$ might be, but the a simple choice of $\max \left(10,2 s^{0}\right)$ has proved to be sufficient in early experiments. The resulting two-sided bound

$$
0 \leq s \leq s^{\mathrm{U}}
$$

may then be handled exactly as in Section 7.2.

## 8 Numerical Experience

Algorithm 6.1 has been implemented as a prototype Fortran 95 module in the GALAHAD optimization library of Gould, Orban, and Toint (2003). The inner iteration stopping tolerances are chosen as $\epsilon^{\mathrm{D}}(\mu)=\epsilon^{\mathrm{C}}(\mu)=$ $\mu^{1.01}$.

The outer iterations stop as soon as the residuals of (34a)-(34c) with $\mu^{k}=0$ fall under $1.0 \mathrm{e}-5$. The initial barrier parameter is set to $\mu^{0}=1$ and is updated by simply dividing it by 10 at each outer iteration. The initial penalty parameter is set to $\nu^{0}=1$ and we choose $\tau_{1}=10$ and $\tau_{2}=1$ in (46). The initial guess $x_{0}$ specified in the model is honored and initial elastic variables are chosen so that $r\left(s\left(x^{0}\right)\right)=0$ in (73) and all multipliers are initialized to their primal values. The parameters in the updating rule for the penalty parameter $(44)-(45)$ are $\eta_{\mathcal{E}}^{k}=\eta_{\mathcal{I}}^{k}=\left(\mu^{k}\right)^{1.1}$.

Trust-region subproblems (36) are solved by means of the Generalized Lanczos Trust-Region method GLTR of Gould et al. (1999) with a preconditioner of the form (40). The block $P$ in (42) is chosen as a band of semi-bandwidth 5 of the Hessian $H(x, \lambda(y, \nu))$. A Cholesky factorization of the coefficient matrix of (42) is then attempted. If it fails, $P$ is replaced by $P+\delta I$ for increasing values of $\delta>0$. On unsuccessful trust-region steps, a backtracking linesearch is performed along the trust-region step as described by Conn et al. (2000b).

Prior to solution, problem variables are scaled so they are all $O(1)$ initially, i.e., assuming non-negativity bounds only on the variables for simplicity, the initial $\left(x^{0}, s^{0}\right)$ is replaced with $\left(\bar{x}^{0}, \bar{s}^{0}\right)$ where $\bar{x}_{i}^{0}=x_{i}^{0} /$ $\max \left(1, x_{i}^{0}\right)$ and $\bar{s}_{i}^{0}=s_{i}^{0} / \max \left(1, s_{i}^{0}\right)$ for all $i$. Similary, problem functions are scaled so changes in function value are commensurate with changes in the variables, i.e., $c_{i}(x)$ is replaced with $c_{i}(\bar{x}) / \max \left(1,\left\|\nabla c_{i}\left(\bar{x}^{0}\right)\right\|_{\infty}\right)$ for all $i$ and $f(x)$ is replaced with $f(\bar{x}) / \max \left(1,\left\|\nabla f\left(\bar{x}^{0}\right)\right\|_{\infty}\right)$.

Numerical results on the Hock and Schittkowski (1981) collection are reported in Table 1. The table headers are, from left to right, the problem name, final objective function value, final primal feasibility, final dual feasibility, final complementarity measure, total number of iterations and running time. The tests were run under OSX on a dual-core Intel Core2 Duo processor and GALAHAD was compiled with the Intel Fortran Compiler version 10.1. A maximum number of 1000 inner iterations was imposed. Residuals are measured as in Algorithm 6.1.

The only failure, on HS87, is indicated by a trailing ' $F$ ' and is due to the objective function being discontinuous.
the algorithm stops at a critical point of the $\ell_{1}$ infeasibility measure in the sense of Lemma 3, which is indicated by a trailing ' I ' in the table. While the results in terms of number of iterations are overall not directly competitive with those of polished production software such as IPOPT (Wächter and Biegler, 2006) or KNITRO (Byrd et al., 2000, 2006), they are promising in terms of robustness. Though it is not our goal to conduct a complete comparison here, we note that KNITRO 6.0.0 also terminates at an infeasible point on HS89.

IPOPT 3.3 is able to solve HS89 to optimality. Both IPOPT and KNITRO were run with all default settings.

Our method takes a rather large number of iterations on a few problems. This behavior is consistently due to difficulties in reducing dual infeasibility, presumably because of inadequate Lagrange multiplier estimates rather than to degeneracy since the final penalty parameter is never large.

We delay extensive benchmarking until we have explored the benefits of all options mentions in Sections 5,6 and 7 .

Figure 1 shows a performance profile comparing the number of iterations using a banded approximation to the Hessian in the preconditioner as opposed to choosing $P=H$ in (80). As is apparent from the figure, there is not much to gain on this problem collection in choosing a full Hessian factorization.

Table 1: Results on the Hock and Schittkowski test set.
$\left.\begin{array}{lrrrrrr}\text { Name } & & \text { Obj } & \text { Pfeas } & \text { Dfeas } & \text { Comp } & \text { Its }\end{array}\right]$

Table 1: Results on the Hock and Schittkowski test set (cont.)

| Name |  | Obj | Pfeas | Dfeas | Comp | Its |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | t

Table 1: Results on the Hock and Schittkowski test set (cont.)

| Name |  | Obj | Pfeas | Dfeas | Comp | Its |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  | $t$ |
| HS104 | $3.95116607 \mathrm{E}+00$ | $0.0 \mathrm{E}+00$ | $1.9 \mathrm{E}-08$ | $1.8 \mathrm{E}-07$ | 24 | 0.01 |
| HS105 | $1.04461181 \mathrm{E}+03$ | $0.0 \mathrm{E}+00$ | $7.8 \mathrm{E}-07$ | $1.8 \mathrm{E}-07$ | 16 | 0.03 |
| HS106 | $7.04925296 \mathrm{E}+03$ | $0.0 \mathrm{E}+00$ | $1.7 \mathrm{E}-07$ | $2.4 \mathrm{E}-07$ | 28 | 0.01 |
| HS107 | $5.05501425 \mathrm{E}+03$ | $6.1 \mathrm{E}-09$ | $4.5 \mathrm{E}-09$ | $2.6 \mathrm{E}-07$ | 24 | 0.01 |
| HS108 | $-8.66024626 \mathrm{E}-01$ | $0.0 \mathrm{E}+00$ | $8.5 \mathrm{E}-07$ | $1.8 \mathrm{E}-07$ | 21 | 0.01 |
| HS109 | $5.36206919 \mathrm{E}+03$ | $6.2 \mathrm{E}-12$ | $4.1 \mathrm{E}-07$ | $1.8 \mathrm{E}-07$ | 68 | 0.01 |
| HS110 | $-4.57784755 \mathrm{E}+01$ | $0.0 \mathrm{E}+00$ | $2.2 \mathrm{E}-06$ | $1.8 \mathrm{E}-07$ | 10 | 0.00 |
| HS111 | $-4.77610906 \mathrm{E}+01$ | $3.4 \mathrm{E}-11$ | $8.8 \mathrm{E}-06$ | $1.8 \mathrm{E}-07$ | 483 | 0.07 |
| HS112 | $-4.77610910 \mathrm{E}+01$ | $3.0 \mathrm{E}-09$ | $3.8 \mathrm{E}-07$ | $1.8 \mathrm{E}-07$ | 24 | 0.01 |
| HS113 | $2.43064004 \mathrm{E}+01$ | $0.0 \mathrm{E}+00$ | $3.6 \mathrm{E}-07$ | $7.9 \mathrm{E}-07$ | 14 | 0.00 |
| HS114 | $-1.76879148 \mathrm{E}+03$ | $9.7 \mathrm{E}-09$ | $3.0 \mathrm{E}-06$ | $1.8 \mathrm{E}-07$ | 235 | 0.04 |
| HS116 | $9.75876722 \mathrm{E}+01$ | $0.0 \mathrm{E}+00$ | $1.8 \mathrm{E}-07$ | $1.8 \mathrm{E}-07$ | 31 | 0.01 |
| HS117 | $3.23554835 \mathrm{E}+01$ | $0.0 \mathrm{E}+00$ | $2.4 \mathrm{E}-06$ | $1.8 \mathrm{E}-06$ | 21 | 0.01 |
| HS118 | $6.64820712 \mathrm{E}+02$ | $0.0 \mathrm{E}+00$ | $8.4 \mathrm{E}-15$ | $1.8 \mathrm{E}-07$ | 25 | 0.01 |
| HS119 | $2.44903051 \mathrm{E}+02$ | $2.2 \mathrm{E}-10$ | $7.2 \mathrm{E}-06$ | $2.3 \mathrm{E}-07$ | 23 | 0.01 |
|  |  |  |  |  |  |  |



Figure 1: Performance profile in terms of number of iterations comparing $P=\operatorname{band}(H)$ with $P=H$ in (80).

## 9 Conclusions and Alternatives

In this paper we have presented a mixed interior-exterior penalty method for the general nonlinear programming problem (1). The problem undergoes a change of variables whose benefit is to yield a continuously differentiable, exact, merit function as well as to ensure that the new feasible set has a nonempty strict interior. Noticeably, the problem turns out to also be surprisingly regular in that it satisfies MFCQ without any regularity assumption on (1). Additionally, there is much freedom and ease in choosing a starting point.

The reformulated problem turns out to be well suited for a primal-dual interior-point method, and global and local convergence results from Conn et al. (2000a), Gould et al. (2001) and Mayne and Polak (1976) combine to ensure general and robust properties for the method, under mild assumptions. While the inneriteration subproblem may be solved in terms of both the original and added elastic variables, an alternative in which the elastics depend implicitly on the original ones has also been considered.

Clearly, we recognize that the particular approach adopted in this paper is not the only possible one. Another possibility is to use the $\ell_{\infty}$ penalty function

$$
\begin{equation*}
\phi(x, \nu)=f(x)+\nu \max _{i \in \mathcal{E}}\left|c_{i}(x)\right|+\nu \max _{i \in \mathcal{I}}\left(-c_{i}(x), 0\right) \tag{86}
\end{equation*}
$$

instead of (6). As before, it is easy to show that this may be reformulated as

$$
\begin{aligned}
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}}{\operatorname{minimize}} & f(x)+\nu s \\
\text { subject to } & c_{i}(x)+s \geq 0, \quad(i \in \mathcal{E} \cup \mathcal{I}) \\
& s-c_{i}(x) \geq 0, \quad(i \in \mathcal{E}) \\
& s \geq 0
\end{aligned}
$$

involving a single "elastic" variable $s$. Once again one might apply an interior-point algorithm to such a problem, and again it is trivial to find an initial interior point. The advantage now is clearly this formulation involves significantly fewer surplus variables. The $\ell_{\infty}$ approach is also examined in the framework of so-called elastic mode in Boman (1999).

We believe the method presented in the present paper is appropriate for a variety of degenerate nonlinear programs, and in particular problems for which the MFCQ fails to hold at a solution. At variance with some other methods, the method proposed here is not only able to identify such a solution, but it also delivers a certificate of failure of the MFCQ. This is in line with, e.g., the method proposed in Chen and Goldfarb (2006).

A substantial advantage of the present approach is that it specializes adequately to the solution of structured degenerate problems, such as mathematical programs with complementarity constraints and mathematical programs with vanishing constraints. Extension of our algorithm to such cases is the subject of current research (Coulibaly and Orban, 2009; Curatolo and Orban, 2010).

## References

K. D. Andersen, E. Christiansen, A. R. Conn, and M. L. Overton. An efficient primal-dual interior-point method for minimizing a sum of euclidean norms. SIAM Journal on Scientific Computing, 22(1):243-262, 2000. doi: 10.1137/S1064827598343954. URL http://link.aip.org/link/?SCE/22/243/1.
P. Armand. A quasi-Newton penalty barrier method for convex minimization problems. Computational Optimization and Applications, 26(1):5-34, 2003.
P. Armand, J.-Ch. Gilbert, and S. Jan-Jégou. A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach. Mathematical Programming, 92(3):393-424, 2000.
P. Armand, J. Benoist, and D. Orban. Dynamic Updates of the Barrier Parameter in Primal-Dual Methods for Nonlinear Programming. Computational Optimization and Applications, 41(1):1-25, 2008.
M. S. Bazaraa and J. J. Goode. Sufficient conditions for a globally exact penalty-function without convexity. Mathematical Programming Studies, 19:1-15, 1982.
E. G. Boman. Infeasibility and negative curvature in optimization. Ph.d. thesis, Stanford University, Stanford, USA, 1999.
R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal. A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, Series A, 89(1):149-185, 2000. doi: 10.1007/s101070000189.
R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An integrated package for nonlinear optimization. In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, pages 35-59. Springer-Verlag, 2006.
C. Charalambous. A lower bound for the controlling parameters of the exact penalty functions. Mathematical Programming, 15(3):278-290, 1978.
L. Chen and D. Goldfarb. Interior-point $\ell_{2}$-penalty mehods for nonlinear programming with strong global convergence properties. Mathematical Programming, 108:1-36, 2006.
T. F. Coleman and A. R. Conn. Second-order conditions for an exact penalty function. Mathematical Programming, 19(2):178-185, 1980.
A. R. Conn, N. I. M. Gould, D. Orban, and Ph.L. Toint. A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87(2):215-249, 2000a.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia, USA, 2000b.
Z. Coulibaly and D. Orban. An $\ell_{1}$ elastic interior-point methods for mathematical programs with complementarity constraints. Cahier du GERAD G-2009-74, GERAD, Montréal, Québec, Canada, 2009.
P.-R. Curatolo and D. Orban. An elastic penalty method for mathematical programs with vanishing constraints with application to structural optimization. Cahier du GERAD G-2010-xx, GERAD, Montréal, Québec, Canada, 2010. In preparation.
A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons, Chichester, England, 1968. Reprinted as Classics in Applied Mathematics 4, SIAM, Philadelphia, USA, 1990.
R. Fletcher. Practical Methods of Optimization: Unconstrained Optimization. J. Wiley and Sons, Chichester, England, second edition, 1987.
J. Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Mathematical Programming, 12:136-138, 1977.
P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1981.
P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Journal on Optimization, 12(4):979-1006, 2002.
N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions to the general equality quadraticprogramming problem. Mathematical Programming, 32(1):90-99, 1985.
N. I. M. Gould and Ph. L. Toint. Preprocessing for quadratic programming. Mathematical Programming, 100(1): 95-132, 2004.
N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem using the Lanczos method. SIAM Journal on Optimization, 9(2):504-525, 1999.
N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming. SIAM Journal on Optimization, 11(4):974-1002, 2001.
N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Componentwise fast convergence in the solution of full-rank systems of nonlinear equation. Mathematical Programming, Series B, 92(3):481-508, 2002.
N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD-a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. Transactions of the ACM on Mathematical Software, 29(4):353-372, December 2003.
S.-P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear programming. Mathematical Programming, 17(3):251-269, 1979.

Harwell Subroutine Library. A collection of Fortran codes for large-scale scientific computation. AERE Harwell Laboratory, www.cse.clrc.ac.uk/nag/hsl, 2007.
J. Herskovits. A two-stage feasible directions algorithm for nonlinear constrained optimization. Mathematical Programming, 36(1):19-38, 1986.
W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes, volume 187, chapter Lectures Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 1981.
L. R. Huang and K. F. Ng. 2nd-order necessary and sufficient conditions in nonsmooth optimization. Mathematical Programming, 66(3):379-402, 1994.
C. T. Lawrence and A. L. Tits. Nonlinear equality constraints in feasible sequential quadratic programming. Optimization Methods and Software, 6(4):265-282, 1996.
O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. Journal of Mathematical Analysis and Applications, 17:37-47, 1967.
D. Q. Mayne and E. Polak. Feasible directions algorithms for optimisation problems with equality and inequality constraints. Mathematical Programming, 11(1):67-80, 1976.
J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1970.
T. Pietrzykowski. An exact penalty method for constrained maxima. SIAM Journal on Numerical Analysis, 6:299-304, 1969.
A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban, and C. T. Lawrence. A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM Journal on Optimization, 14 (1):173-199, 2003. doi: 10.1137/S1052623401392123. URL http://link.aip.org/link/?SJE/14/173/1.
R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications, 13:231-252, 1999.
A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, Series A, 106(1):25-57, 2006. ISSN 0025-5610.
R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, Series A, 107(3, Ser. A):391-408, 2006. ISSN 0025-5610.
M. H. Wright. Interior methods for constrained optimization. Acta Numerica, 1:341-407, 1992.
S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.
S. J. Wright and D. Orban. Local Convergence of the Newton/Log-Barrier Method for Degenerate Problems. Mathematics of Operations Research, 27(3):585-613, 2002.

