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GERAD & Département de mathématiques et génie industriel
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Montréal (Québec) Canada
dominique.orban@gerad.ca

Philippe L. Toint

Department of Mathematics
Facultés Universitaires ND de la Paix

61, rue de Bruxelles
B-5000 Namur, Belgium
philippe.toint@fundp.ac.be

June 2010

Les Cahiers du GERAD

G–2010–38

Copyright c© 2010 GERAD





Les Cahiers du GERAD G–2010–38 v

Abstract

A mixed interior/exterior-point method for nonlinear programming is described, that handles con-
straints by way of an `1-penalty function. A suitable decomposition of the penalty terms and embedding
of the problem into a higher-dimensional setting leads to an equivalent, surprisingly regular, reformu-
lation as a smooth penalty problem only involving inequality constraints. The resulting problem may
then be tackled using interior-point techniques as finding a strictly feasible initial point is trivial. The
reformulation relaxes the shape of the constraints, promoting larger steps and easing the nonlinearity of
the strictly feasible set in the neighbourhood of a solution. If finite multipliers exist, exactness of the
penalty function eliminates the need to drive the corresponding penalty parameter to infinity. If the
penalty parameter needs to increase without bound and if feasibility is ultimately attained, a certificate
of degeneracy is delivered. Global and fast local convergence of the proposed scheme are established and
practical aspects of the method are discussed.

Key Words: `1-penalty method, interior-point method, Elastic variables, nonconvex optimization.

Résumé

Nous proposons une méthode de pénalisation mixte intérieure/extérieure pour l’optimisation non-
linéaire qui traite les contraintes par le biais d’une reformulation élastique de la pénalisation `1. Celle-ci
plonge le problème dans un espace de plus grande dimension mais il en résulte une régularité surprenante.
On trouve aisément un point strictement admissible pour le problème reformulé, que l’on traite donc
adéquatement via une méthode intérieure. La pénalisation exacte évite au paramètre de pénalisation de
diverger s’il existe des multiplicateurs de Lagrange finis. Si ce paramètre diverge et si un point admissible
est atteint, la méthode produit un certificat de dégénérescence du problème. La convergence globale ainsi
que la convergence locale superlinéaire sont établies et les résultats numériques illustrent la robustesse de
la méthode.

Mots clés : pénalisation `1, méthode intérieure, reformulation élastique.
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1 Introduction

A typical nonlinear programming problem is to

minimize
x∈Rn

f(x) (1a)

subject to cE(x) = 0 (1b)

cI(x) ≥ 0, (1c)

involving a mixture of smooth, general, possibly nonlinear and nonconvex, equality and inequality constraints.
Here f : Rn → R, cE : Rn → RnE and cI : Rn → RnI , where E = {1, . . . , nE} and I = {nE + 1, . . . , nE + nI}.

In this paper, we propose an interior-point approach for (1). At first sight, two difficulties emerge. Firstly,
since we allow equality constraints, this might appear to preclude a interior approach. Secondly, a feasible
initial point is not necessarily easily or efficiently found. To circumvent these difficulties, we embed the set
of variables into a higher dimensional space for which the constraints have a nonempty and easily locatable
interior. The resulting interior-point method has therefore an infeasible flavour.

A common way of attempting to solve (1) is to build the corresponding `1-penalty function and to

minimize
x∈Rn

φP(x, ν) ≡ f(x) + ν
∑
i∈E

|ci(x)|+ ν
∑
i∈I

max[−ci(x), 0] (2)

for some sufficiently-large penalty parameter ν > 0. However (2) is not smooth, and it might appear that
sophisticated tools are needed to handle the derivative discontinuities in such a minimization. This is not
the case for, as we will see in Section 2, (2) is equivalent to the smooth problem

minimize
x∈Rn, s∈RnC

φS(x, s; ν) ≡ f(x) + ν
∑
i∈E

(ci(x) + 2si) + ν
∑
i∈I

si

subject to ci(x) + si ≥ 0 and si ≥ 0, for all i ∈ C,
(3)

involving nC additional elastic variables s ∈ RnC , where C ≡ E ∪ I and nC ≡ nE + nI . This problem only
involves inequality constraints, and it is trivial to pick s sufficiently large so that (x, s) is strictly feasible for
(3). Note also that had (1) been a convex optimization problem, (3) inherits this property. In other words,
adding elastic variables preserves convexity. This is at variance with other types of infeasible methods such
as those based on the addition of slack variables, e.g., (Byrd et al., 2000; Wächter and Biegler, 2006).

Having embedded (1) in a higher-dimensional space involving only inequalities, an immediate possibility
is to apply an interior-point method to the resulting problem (3). Thus, one might (approximately)

minimize
x∈Rn, s∈RnC

φB(x, s;µ, ν) ≡ φS(x, s; ν)− µ
∑
i∈C

log(ci(x) + si)− µ
∑
i∈C

log si, (4)

for a sequence of barrier parameters, {µk}, converging to zero from above. A theoretical investigation of
the properties of φB and the problem (4) forms the basis of Section 2 and Section 2.3. The global and local
convergence properties of two standard trust-region methods for solving (4), for fixed (µ, ν) are considered
in Section 3. Section 4 provides global and local convergence properties of the method. Section 5 describes
the changes in the algorithm and results if linear constraints are handled explicitly. Numerical experience is
reported in Section 8. Algorithmic variations, improvements, and extensions are described in Section 6 and
Section 7, and conclusions drawn in Section 9.

The use of the transformation to the `1-penalty function to solve (1) is, of course, well known. The
equivalence between the optimality conditions for nonconvex nonlinear programming problems and related
penalty functions was first reported by Pietrzykowski (1969), and the results subsequently strengthened by
Charalambous (1978); Han and Mangasarian (1979); Coleman and Conn (1980); Bazaraa and Goode (1982)
and Huang and Ng (1994). See also (Fletcher, 1987, Chapters 12 and 14). In Section 2, we shall see how this
equivalence is inherited by the problem (3).
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Although a constraint qualification condition is not required to conduct the convergence analysis, de-
generacy is indicated by a diverging sequence of penalty parameters in the following sense. If the penalty
parameter diverges yet feasibility is attained, our method delivers a certificate of degeneracy by explicitly
providing Fritz-John multipliers. The relation satisfied by those multipliers characterizes failure of the Man-
gasarian and Fromovitz constraint qualification condition.

The approach taken in this paper has its genesis in the work of Mayne and Polak (1976), more recently
extended by Herskovits (1986); Lawrence and Tits (1996) and Tits et al. (2003), all of whom also reformulate
(1) so as only to involve inequality constraints. Indeed, our basic approach coincides with theirs on setting
s to zero. However, we prefer not to do this, as the resulting problem then has no obvious initial feasible
point. Armand et al. (2000) investigated the reformulation

minimize
x∈Rn, s∈RnI

f(x) subject to cI(x) + s ≥ 0, s = 0, (5)

for convex, inequality-constrained problems in which the resulting equality constraints s = 0 are handled by
penalization. This idea was refined by Armand (2003) to give (3) in the convex, inequality-constrained case,
which was then solved by minimizing a sequence of (convex) barrier functions like (4).

The present approach is also related to the so-called elastic mode used by Boman (1999) and in the
SNOPT package of Gill et al. (2002), where it is used in a sequential quadratic programming framework as a
fallback strategy to relax the constraints in case the current quadratic subproblem appears to be infeasible,
unbounded or to have unbounded multipliers. In such a case, once the elastic mode has been triggered, it
persists until convergence.

A related approach is investigated by Chen and Goldfarb (2006) with an `2 exact penalty function in a
linesearch context. In that approach, a sequence of equality-constrained problems must be solved.

Other methods with an interior-point flavour include the primal-dual filter method of Wächter and Biegler
(2006), implemented in the IPOPT package, the primal-dual trust-region and linesearch methods of Byrd
et al. (2000) and Waltz et al. (2006), implemented in the commercial package KNITRO, and the primal-dual
linesearch method of Vanderbei and Shanno (1999) implemented in the commercial package LOQO. Those
methods typically add slack variables to convert general inequality constraints into bound constraints.

2 Equivalent Smooth Reformulations of the Exact Penalty Func-
tion

2.1 Possible Reformulations

As mentioned in Section 1, one way to treat the nonlinear constraints (1b)–(1c) is instead to minimize the
non-differentiable `1-penalty function

φP(x; ν) = f(x) + νϑP(x), (6)

where
ϑP(x) ≡

∑
i∈E

|ci(x)|+
∑
i∈I

max[−ci(x), 0], (7)

for some sufficiently large penalty parameter ν > 0. It is well-known that the minimization of φP may be
reformulated as a smooth problem (Gill et al., 1981, §4.2.3). To see this, consider first an equality constraint
ci(x) = 0. The penalty contribution from this constraint, ν|ci(x)|, may be expressed as

ν[ri + si], where ci(x) = ri − si and (ri, si) ≥ 0, (8)

or alternatively as
ν[ci(x) + 2si], where ci(x) + si ≥ 0 and si ≥ 0.
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Now turning to an inequality constraint ci(x) ≥ 0, its penalty contribution, νmax(−ci(x), 0), may be ex-
pressed as

νsi, where ci(x) = ri − si and (ri, si) ≥ 0,

or alternatively as
νsi, where ci(x) + si ≥ 0 and si ≥ 0.

Thus the minimization of φP may be expressed as (3), which we restate here for convenience,

minimize
x∈Rn, s∈RnC

φS(x, s; ν) ≡ f(x) + ν
∑
i∈E

(ci(x) + 2si) + ν
∑
i∈I

si

subject to ci(x) + si ≥ 0 and si ≥ 0, for all i ∈ C.

Notice that for given x, any set of values si ≥ max(−ci(x), 0) provides an initial feasible point for the enlarged
feasible region involving (x, s), and that this point lies in the strict interior if si > max(−ci(x), 0) for all
i ∈ C. The central idea of this paper will then be to apply a primal-dual interior-point method to solve (3).

This is not the only possible reformulation of (2). For example (8) might equally have been rewritten as

ν[2ri − ci(x)], where ri − ci(x) ≥ 0 and ri ≥ 0 for all i ∈ E ,

leading to the equivalent

minimize
(x,r,s)∈Rn+nC

f(x) + ν
∑
i∈E

(2ri − ci(x)) + ν
∑
i∈I

si

subject to (ri − ci(x), ri) ≥ 0 for all i ∈ E ,
(ci(x) + si, si) ≥ 0 for all i ∈ I.

(9)

Which of (3) or (9) is preferable might depend on the initial value of ci(x); a positive initial value might
favour (3) since then the added elastic si need not be (significantly) larger than zero, while a negative initial
value might favour (9) for the same reason—of course, a mixture of the two reformulations on a constraint-
by-constraint basis is also possible. Finally, it is possible to “average” (3) and (9) to obtain

minimize
x∈Rn, s∈RnC

f(x) + ν
∑
i∈C

si

subject to −si ≤ ci(x) ≤ si for all i ∈ E ,
ci(x) + si ≥ 0, si ≥ 0 for all i ∈ I.

(10)

More precisely, this formulation is obtained upon defining si = |ci(x)| = max[−ci(x), ci(x)] for all i ∈ E and
noting that this definition is equivalently written −si ≤ ci(x) ≤ si, and defining similarly si = max[−ci(x), 0]
for i ∈ I. This symmetric formulation has the advantage that no a priori bias is introduced through the initial
value of x. Notice also that the constraint functions do not occur in the objective function for (10), but that
equality constraints have been replaced by a pair of inequalities. While, for simplicity, we shall concentrate
on the formulation (3) in this paper, equivalent algorithms and theory can immediately be developed for the
alternatives (9) and (10).

As we have already mentioned, one could go one stage further here and minimize (3) as a function of s
to arrive at the equivalent problem

minimize
x∈Rn

f(x) + ν
∑
i∈E

ci(x) subject to ci(x) ≥ 0 for all i ∈ C. (11)

However, we choose not to since then it is unobvious how to find an initial feasible point for (11).

We now examine the consequences of our reformulation.

2.2 Notation and Definitions

Some basic notation has already been introduced in the previous sections. We summarize it here and introduce
further notational conventions.
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2.2.1 Vectors and Sequences

If q ≥ 0 and v ∈ Rq, we shall denote its i-th component by a subscript vi. If S ⊆ {1, . . . , q}, we write vS for
the subvector of v whose components are the vi, i ∈ S. Likewise, if M ∈ Rq×p, MS is the submatrix of M
whose rows are indexed by S. In an algorithmic context, the value taken by the vector v at iteration k will
be denoted by a superscript vk and its i-th component is vk

i . A sequence indexed by the set N of nonnegative
integers whose general term is vk is denoted {vk} and a subsequence indexed by the infinite index set K ⊆ N
is denoted {vk}K.

As exceptions to the above, if eE and eI are vectors of ones of dimension nE and nI respectively, we define
two vectors

e0E =
[
eE
0

]
and e0I =

[
0
eI

]
,

in RnC , and let e = e0E + e0I . Wherever appropriate, the notation ep denotes the vector of all ones in Rp and
similarly, 0p denotes the zero vector of Rp. In addition, IE and II are identity matrices of dimensions nE and
nI respectively.

2.2.2 The Lagrangian and Dual Variables for the Original Problem

A nonlinear problem of the form (1) is said to satisfy the Mangasarian and Fromovitz (1967) constraint
qualification (mfcq) at a feasible point x∗ if the vectors {∇ci(x∗)}i∈E , are linearly independent and if there
exists a direction d 6= 0 such that

∇ci(x∗)T d = 0 for i ∈ E and ∇ci(x∗)T d < 0 for i ∈ A,

where A = {i ∈ I | ci(x∗) = 0} is the set of active indices at x∗.

We denote the full vector of constraints by c : Rn → RnC . The Lagrangian associated with problem (1) is

L(x, λ) = f(x)− cE(x)TλE − cI(x)TλI , (12)

where λE ∈ RnE , λI ∈ RnI
+ and λ = (λE , λI). A vector z = (x, λ) is a first-order critical point for (1) if it

satisfies the Karush-Kuhn-Tucker (KKT) conditions

∇f(x)− JT
E (x)λE − JT

I (x)λI = 0, (13a)

CI(x)λI = 0, (13b)

cE(x) = 0 (13c)

and cI(x), λI ≥ 0. (13d)

Here and elsewhere JE(x) and JI(x) are the Jacobian matrices of cE(x) and cI(x) respectively, while a
capitalised (e.g.) CI(x) denotes the diagonal matrix whose entries are the components of the vector (e.g.)
cI(x). Under a constraint qualifaction condition, and in particular under the mfcq, conditions (13) are
necessary for optimality of z.

If x∗ is a first-order critical point for (1), let Λ∗ be the set of all associated Lagrange multipliers, i.e, the
(possibly empty) set of all vectors (λE , λI) satisfying (13). The mfcq being satisfied at x∗ is equivalent to
Λ∗ being nonempty and bounded (Gauvin, 1977) .

If x is feasible for (1), we say that it is a Fritz-John point if there exist (γ, λE , λI) 6= (0, 0, 0) with γ ≥ 0
such that (x, γ, λE , λI) satisfies (13) with (13a) replaced by

γ∇f(x)− JT
E (x)λE − JT

I (x)λI = 0. (14)

It is easy to see that if γ > 0, (x, λE/γ, λI/γ) is in fact first-order critical. This would occur, e.g., if the
mfcq held at x. If on the other hand γ = 0, x is a feasible point where the mfcq fails to hold (Mangasarian
and Fromovitz, 1967).
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2.2.3 The Lagrangian and Dual Variables for the Reformulated Problem

It will be convenient in what follows to express the objective function of (3) as

φS(x, s; ν) = f(x) + νϑ(x, s), (15)

where
ϑ(x, s) =

∑
i∈E

[ci(x) + 2si] +
∑
i∈I

si (16)

is the measure of infeasibility. The Lagrangian for problem (3) is

L(x, s, y, u; ν) = φS(x, s; ν)− (c(x) + s)T y − sTu, (17)

where the Lagrange multipliers y = (yE , yI) ∈ RnC
+ and u = (uE , uI) ∈ RnC

+ are associated with the constraints
c(x) + s ≥ 0 and s ≥ 0 of (3) respectively. The vectors

vP = (x, s) and vD = (y, u)

contain primal and dual variables/Lagrange multipliers for (3) respectively.

The gradient of (15) may be expressed as

∇φS(x, s; ν) =
[
∇f(x)

0

]
+ ν∇ϑ(x, s) =

[
∇f(x)

0

]
+ ν

[
JT
E (x)eE
e+ e0E

]
, (18)

while the 2nC × (n+ nC) Jacobian of the constraints of (3) with respect to vP can be written as

JS(vP) =


JE(x) IE 0
JI(x) 0 II

0 IE 0
0 0 II

 =
[
J(x) IC

0 IC

]
, (19)

where we have denoted the nC × n Jacobian matrix of the full vector of constraint functions c(x) by

J(x) =
[
JE(x)
JI(x)

]
. (20)

This derivative structure enables us to express the KKT conditions for (3) as

∇f(x)− JT
E (x)(yE − νeE)− JT

I (x)yI = 0, (21a)

νeE − (yE − νeE)− uE = 0, (21b)

νeI − yI − uI = 0, (21c)

(C(x) + S)y = 0, (21d)

Su = 0, (21e)

and c(x) + s, s, y, u ≥ 0. (21f)

It should now be apparent from (13) and (21) that there is an intimate connection between the Lagrange
multipliers λ for (1) and the multipliers y for (3). To keep later results concise, we formalise this as follows.

Definition 1 For a given, fixed, value ν ≥ 0 of the penalty parameter, and given vectors x, y and λ, we
define the shifted multipliers

y(λ, ν) ≡ (λE + νeE , λI) = λ+ νe0E (22a)

and λ(y, ν) ≡ (yE − νeE , yI) = y − νe0E , (22b)

i.e., the vectors where the multipliers corresponding to the nonlinear equality constraints of (1) and (3) have
been shifted by ±νeE .
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2.2.4 Infeasibility Measures

A first-order solution of

minimize
x∈Rn, s∈RnC

ϑ(x, s) subject to c(x) + s ≥ 0 and s ≥ 0 (23)

is attained at a point (x, s) for which

JT (x)(ȳ − e0E) = 0,
e− (ȳ − e0E)− ū = 0,

(C(x) + S)ȳ = 0,
Sū = 0

and c(x) + s, s, ȳ, ū ≥ 0,

(24)

where ȳ and ū are Lagrange multipliers associated with the inequality constraints c(x) + s ≥ 0 and s ≥ 0
respectively. It is important to recognize that such an x is also a critical point for the infeasibility measure
(7), ϑP(x), for the true constraints.

Theorem 1 Suppose that (x, s) satisfies (24). Then x is a first-order critical point of (7).

Proof. A first-order critical point for (7) satisfies

JT (x)λ = 0, (25)

where the generalized gradient λ satisfies

λi



= −1 if ci > 0 and i ∈ E ,
= 0 if ci > 0 and i ∈ I,
= 1 if ci < 0,
∈ [−1, 1] if ci = 0 and i ∈ E ,
∈ [0, 1] if ci = 0 and i ∈ I

(26)

(see, for example, (Conn et al., 2000b, Example 11.4.1).) Let (ȳ, ū) satify (24), and define (λ, u) = (ȳ−e0E , ū)
so that (24) becomes

JT (x)λ = 0, (27a)

λ+ u = e, (27b)

(C(x) + S)(λ+ e0E) = 0, (27c)

Su = 0 (27d)

and c(x) + s, s, λ+ e0E , u ≥ 0, (27e)

The requirement (25) follows directly from (27a), so it remains to show that the given λ satisfies (26).

Firstly, then, consider an index i for which ci(x) + si > 0. In this case (27c) shows that λi = −1 if i ∈ E
or λi = 0 if i ∈ I. In either case, (27b) then ensures that ui > 0, and hence ci(x) > 0 since necessarily (27d)
shows that si = 0. These are the first two possibilites in (26). Since ci(x) + si ≥ 0, it remains to consider
indices for which ci(x) + si = 0. In this case ci(x) = −si and thus (27d) implies that ci(x)ui = 0. If si 6= 0,
ci(x) < 0 so that ui = 0, and hence λi = 1 from (27b). This is the third possibility in (26). By contrast, if
si = 0 then immediately ci = 0. But (27b) and (27e) ensure that λi ∈ [−1, 1] if i ∈ E and λi ∈ [0, 1] if i ∈ E
for any i, giving the final two possibilites in (26).

Note that for any x ∈ Rn, x is feasible for (1) if and only if (x, 0) is feasible for (3) and cE(x) = 0.

In the case of (10), we have the stronger equivalence that x is feasible for (1) if and only if (x, 0) is feasible
for (10).
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2.2.5 Regularity

The reformulated problem (3) is surprisingly regular, for we have the following result.

Theorem 2 Suppose that (x, s) is a feasible point for (3) and that c is continuously differentiable in an open
neighbourhood of x. Then mfcq is satisfied at (x, s).

Proof. Let d = (0n,−e). There are no equality constraints, and checking the remaining requirement that
JA(x, s)d < 0 for active constraints is trivial given the form (19) of JS(vP).

As a consequence, all sets of Lagrange multipliers associated with first-order critical points are bounded.

Note that the mfcq condition is satisfied at every feasible (x, s) and not only at local solutions of
(3), regardless of any constraint qualification being satisfied for (1). Of course Theorem 2 may have been
anticipated, since the same is true for (2)—for this problem, the set of corresponding sub-gradients of the
non-differentiable constraint norms is automatically bounded (Fletcher, 1987, §14.3).

Since any constraint qualification is a property of the algebraic description of a feasible set, Theorem 2
holds true for (23) as well. There thus always exist multipliers satisfying (24).

Some of the results we will establish later require a far stronger assumption, namely the linear indepen-
dence constraint qualification (licq)—that the rows of (19) corresponding to active indices are independent—
be satisfied for (3). To obtain licq on (3), one may unfortunately need to have as strong an assumption as
the active constraint gradients being linearly independent over the whole feasible set.

We wish to stress that in the following, we are taking advantage of mfcq being satisfied for (3) but for
generality, are not tacitly assuming that mfcq is satisfied for (1).

2.3 Assumptions and Basic Results

We start with the following fundamental assumption.

Assumption 1 The functions f , cE and cI are continuously differentiable over an open set containing the
feasible set of (1).

We now examine the relationships between stationary points of (1) and (3). The following results are
adaptations or variations of results of Mayne and Polak (1976). Our first result gives an important property
of solutions to (3).

Theorem 3 If Assumption 1 is satisfied, if (vP, vD) is a first-order critical point for (3) with fixed penalty
parameter ν > 0 and if cE(x) = 0 and cI(x) ≥ 0 then s = 0.

Proof. If i ∈ E , ci(x) = 0 and from (21d), we have siyi = 0. It cannot be that si > 0 since then yi = 0
and (21b) would imply ui = 2ν and consequently (21e) gives that si = 0, which is a contradiction. Therefore
sE = 0. For i ∈ I, if ci(x) = 0, as before (21c) and (21e) guarantee that si = 0. Otherwise, ci(x) > 0 and
(21f), (21d), (21c) and (21e) successively imply that ci(x) + si > 0, that yi = 0, that ui = ν and finally that
si = 0. Hence we also have sI = 0, which completes the proof.

This first result confirms intuition about the reformulation that led to (3), namely that all the elastic
variables should eventually vanish if a critical point which is also feasible for (1) has been found.

The following result establishes a correspondence between systems (13) and (21) and parallels results from
Mayne and Polak (1976) and Proposition 3 of Tits et al. (2003).
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Theorem 4 If Assumption 1 is satisfied, if (vP, vD) is a first-order critical point for (3) with fixed penalty
parameter ν > 0 and if cE(x) = 0 and cI(x) ≥ 0, then the shifted vector (x, λ(y, ν)) from (22b) is a first-order
critical point for (1).

Proof. Primal feasibility with respect to the linear constraints and non-negativity of x follows directly from
the assumption. The dual feasibility condition (21a) readily implies that (13a) is satisfied with the given
multipliers. The feasibility conditions (13c)–(13d) are satisfied by (21f) and our assumptions. Moreover,
Theorem 3 gives that s = 0, and hence (21d) implies (13b) as λI(y, ν) = yI by definition.

Conversely, we now show that provided there exist finite Lagrange multipliers for (1) and for sufficiently
large values of the penalty parameter, every stationary point of (1) is a stationary point of (3).

Theorem 5 If Assumption 1 is satisfied, suppose x∗ is a first-order critical point for (1) for which the
Lagrange multipliers λ∗ are finite. Then for all ν ≥ ‖λ∗‖∞, the shifted primal-dual vector (vP, vD), where
vP = (x∗, 0) and vD = (y(λ∗, ν), νe− λ∗) from (22a), is a first-order critical point for (3).

Proof. Because λ∗ ≥ 0, the smallest value of ν for which λ∗E + νeE ≥ 0, νeE − λ∗E ≥ 0 and νeI − λ∗I ≥ 0 is
given by ‖λ∗‖∞. For any ν ≥ ‖λ∗‖∞, the proof is completed by a straightforward verification that the given
primal-dual vector satisfies (21) using the assumed conditions (13).

Note that Theorem 5 deals with one particular critical point and one particular, possibly out of many,
vector of Lagrange multipliers associated to it. A standard, but stronger, assumption to ensure boundedness
of the multipliers in Theorem 5 is to impose mfcq on (1) (Gauvin, 1977).

3 The Full Algorithm

3.1 An Interior-Point Method for the Smooth Reformulated Penalty Problem

As we have already suggested, an appealing way to solve the reformulated problem (3) is to (approximately)
minimize a sequence of logarithmic barrier functions

φB(x, s;µ, ν) ≡ φS(x, s; ν)− µ
∑
i∈C

log(ci(x) + si)− µ
∑
i∈C

log si, (28)

for a sequence {µk} of positive barrier parameters whose limit is zero and, in this case, a possibly increasing
sequence {νk} of positive penalty parameters. Following the standard practice for mixed interior-exterior
penalty methods (see, for instance, Fiacco and McCormick (1968)), a typical iteration involves the approx-
imate minimization of the mixed-penalty function (28), a possible increase in the penalty parameter ν to
compensate for insufficient progress towards feasibility, and a decrease in the barrier parameter µ. Hence we
might outline our algorithm as Algorithm 3.1.

Algorithm 3.1 Prototype Algorithm—Outer Iteration (preliminary version).

Step 0. Choose initial points s > 0 and x, for which c(x) + s > 0, and initial values ν, µ > 0.

Step 1. Inner iteration: Find an approximate unconstrained minimizer of (28) with the current values
of ν and µ fixed.

Step 2. Decrease the barrier parameter µ and possibly update the penalty parameter ν. Go back to
Step 1 until (3) has been solved to a satisfactory tolerance.

Although both linesearch and trust-region methods might be used in the crucial Step 1 of Algorithm 3.1,
we shall concentrate on the latter here.

A number of important details not mentioned in Algorithm 3.1 must be carefully described and analyzed.
These include a description of the trust-region approach we wish to use in Step 1, the mechanism used to
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promote global convergence, the conditions under which the penalty parameter is updated and the assump-
tions necessary to guarantee that a critical point identified by this algorithm corresponds to a critical point
of the original problem (1). We examine them in turn in the remainder of this section.

3.2 Gradients, Lagrange Multipliers and Optimality Conditions

For convenience, we define (primal) first-order Lagrange multiplier estimates

y(x, s) ≡ µ(C(x) + S)−1e (29a)

u(s) ≡ µS−1e, (29b)

where, as before, a capital letter denotes the diagonal matrix whose diagonal is the vector denoted by the
corresponding lowercase letter. Using these multiplier estimates, the gradient of the barrier function with
respect to vP = (x, s) is

∇φB(vP;µ, ν) =
[
∇f(x)− JT (x)(y(x, s)− νe0E)
νe− (y(x, s)− νe0E)− u(s)

]
. (30)

Given fixed values of the barrier and penalty parameters µ, ν ≥ 0, primal and dual vectors vP = (x, s) and
vD = (y, u) and primal-dual vector v = (vP, vD), we also define the primal-dual function Φ : Rn+3nC → Rn+3nC

as

Φ(v;µ, ν) ≡


∇f(x)− JT (x)(y − νe0E)
νe− (y − νe0E)− u
(C(x) + S)y − µe

Su− µe

 . (31)

As is well known, the first-order criticality conditions for (4) are equivalently described by the primal-dual
system

Φ(v;µ, ν) = 0 (32a)

and (c(x) + s, s, y, u) ≥ 0. (32b)

In addition, observe that the KKT conditions (21) for (3) are simply (32) with (32a) replaced by

Φ(v; 0, ν) = 0. (33)

In the next section, we present the algorithm we plan to use, before turning to global and local convergence
analyses in §4.

3.3 The Outer Iteration, Revisited

We call ε(·) a forcing function if ε(µ) > 0 for all µ > 0 and ε(µ) ↓ 0 as µ ↓ 0 (Ortega and Rheinboldt,
1970). Since the Hessian of the logarithmic barrier function (28) can be highly ill-conditioned, it is vital that
we dynamically (and implicitly) scale the variables to mitigate this effect. At iteration k, we shall measure
variables using a norm, say ‖ · ‖P k , designed to achive this, and gradients in the dual norm, denoted ‖ · ‖[P k].
We shall return to this shortly. We summarize our algorithm as Algorithm 3.2.

A few comments on Algorithm 3.2 are in order. Firstly note that the forcing functions in (34a)–(34c) allow
for early termination of the inner iteration which may prove particularly beneficial in the early iterations,
when remote from a solution of (1). Step 1 leaves the details of the inner iteration unspecified, emphasizing
only the stopping conditions which should be satisfied by any approximate solution it produces. Some details
are given in §3.5 but are not crucial to the analysis of the algorithm. The stopping conditions (34a)–(34c)
are directly based on (scalings of) the definition (32a). The required upper bounds on the dual variables
(yk+1, uk+1) in (34e) are simply those ultimately implied by (21b), (21c) and (21f), with a little “elbow
room” provided by κν > 0 to allow for finite termination of the inner iteration. Crucially, although the
primal multiplier estimates yk+1 = y(xk+1, sk+1) and uk+1 = u(sk+1) might be used in (34), there is no
necessity that this be so.
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Algorithm 3.2 Prototype Algorithm—Outer Iteration (refined version).

Step 0. Let the forcing functions εD(·), εC(·) and εU(·) be given, and let κν > 0. Choose x0 ∈ Rn,
s0 ∈ RnC

+ such that c(x0) + s0 > 0, initial dual estimates y0, u0 ∈ RnC
+ , and penalty and barrier

parameters ν0 and µ0 > 0, and set k = 0.

Step 1. Inner Iteration: choose a suitable scaling norm ‖.‖P k+1 and find a new primal-dual iterate
vk+1 = (xk+1, sk+1, yk+1, uk+1) satisfying∥∥∥∥[ ∇f(xk+1)− JT (xk+1)(yk+1 − νke0E)

νke− (yk+1 − νke0E)− uk+1

]∥∥∥∥
[P k+1]

≤ εD(µk) (34a)

‖(C(xk+1) + Sk+1)yk+1 − µke‖ ≤ εC(µk) (34b)

‖Sk+1uk+1 − µke‖ ≤ εU(µk) (34c)(
c(xk+1) + sk+1, sk+1

)
> 0 (34d)

and
(
νk[e+ e0E ] + κνe, ν

k[e+ e0E ] + κνe
)
≥
(
yk+1, uk+1

)
> 0 (34e)

by (for example) approximately minimizing (28).

Step 2. Select a new barrier parameter, µk+1 ∈ (0, µk] such that limk→∞ µk = 0. If necessary, adjust
the penalty parameter, νk. Increment k by one, and return to Step 1.

The update of the barrier parameter in Step 2 may follow traditional rules but should ultimately allow
for a superlinear decrease if fast asymptotic convergence is sought. For instance it may be made to decrease
linearly in the early iterations but superlinearly once close to a suspected solution. This is essential if
an asymptotic superlinear convergence rate of the iterates, such as the local subquadratic componentwise
asymptotic convergence discussed by Gould et al. (2001), is required—this issue is addressed in §4.3.

In the next sections, we examine issues concerning Algorithm 3.2 which deserve further attention, namely
the choice of the (possibly iteration-dependent) scaling norm ‖·‖[P k], the update of the penalty parameter νk

and the choice of dual variables (yk, uk). The choice of ‖ · ‖[P k] will follow the guidelines given by Conn et al.
(2000a) and Gould et al. (2003). We return to this in Section 3.5. Values of the dual variables suggested
by the primal-dual system (32a) might not be sufficiently accurate in the early stages of the iteration and
should be properly controlled when convergence occurs to ensure fast asymptotic convergence while preventing
desperately ill-conditioned systems on problem with large, or infinite, multipliers. A particular choice towards
these goals is discussed in Section 3.6. The penalty parameter update appears in Step 2 of the algorithm for
clarity, but a practical implementation might make provision for updates of νk inside the inner iteration and
possibly to allow occasional decreases of ν. A suitable update for the penalty parameter is less obvious, but
we shall discuss alternatives in Section 3.7.

3.4 The Trust-Region Inner Iteration

In order to adress concretely the practical aspects of Algorithm 3.2, we use trust-region models that incorpo-
rate exact second-order derivative information. In order to be able to do this, we must replace Assumption 1
by the following assumption.

Assumption 2 The functions f , cE and cI are twice continuously differentiable over an open set covering
all iterates encountered by Algorithm 3.2.

Given a strictly feasible point vP, a typical primal interior-point trust-region method for solving (4)
attempts to find an improved point vP + d = (x+ dx, s+ ds), where d = (dx, ds) is constrained to lie within
a trust region

B(∆) =
{
d ∈ Rn+nC | ‖d‖P ≤ ∆

}
, (35)
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where ‖ · ‖P is an appropriate scaling norm, and d approximately solves the primal model-subproblem

minimize
d∈B(∆)

∇vPφ
B(vP;µ, ν)T d+ 1

2d
T∇vPvPφ

B(vP;µ, ν)d

for some appropriate trust-region radius ∆ > 0 and preconditioning matrix P . This model simply gives a
Newton approximation to a minimizer of φB. However considerable experience with interior-point methods
(Andersen et al., 2000; Conn et al., 2000a,b; Wright, 1997) has suggested that a far superior model may be
provided by considering the dual variables u and y as independent variables, rather than dependent ones
defined by (29). This results in the primal-dual model subproblem

minimize
d∈B(∆)

∇vPφ
B(vP;µ, ν)T d+ 1

2d
THPD(v)d, (36)

where the primal-dual Hessian is defined by

HPD(v) =
[
H(x, λ(y, ν)) + JT (x)Θ(v)J(x) JT (x)Θ(v)

Θ(v)J(x) Θ(v) + US−1

]
, (37)

with
Θ(v) = Y (C(x) + S)−1, (38)

for some suitable strictly positive primal-dual multiplier estimates u and y, where

H(x, λ) = ∇xxf(x)−
∑
i∈C

λi∇xxci(x) = ∇xxL(x, λ) (39)

is the Hessian of the Lagrangian (12), and λ(y, ν) is defined by (22b). Under standard assumptions on
these estimates and as convergence occurs, the difference between the primal and primal-dual Hessians is
insignificant (Conn et al., 2000b, Theorem 13.9.1).

Besides the step-computing procedure, our trust-region algorithm is quite standard. The step d is accepted
or rejected based on how much of the reduction in (28) predicted by (36) is actually achieved—a poor
prediction results in a reduction in the trust-region radius, ∆, while an accurate one may be rewarded by an
increase in ∆. Since the logarithmic barrier function is undefined outside (or on the boundary) of the shifted
feasible region {(x, s) | c(x) + s ≥ 0 and s ≥ 0}, any step vP + dP outside this region is automatically
rejected, and the trust-region radius reduced. See (Conn et al., 2000b, Chapter 13) for more details. Unlike
other trust-region interior-point methods such as KNITRO Byrd et al. (2000), no direct attempt is made to
enforce feasibility by imposing extra constraints on the trust-region subproblem.

3.5 Trust-Region Subproblems, Preconditioning and Scaling Norms

It is not necessary to solve the trust-region subproblem (36) exactly, and it suffices to find an approximate
solution d which gives as least as much reduction as the Cauchy point for the subproblem (Conn et al.,
2000b). Significantly, suitably preconditioned conjugate-gradient/Lanczos methods automatically generate
“Cauchy-improving” iterates, and thus are ideal for approximate subproblem solution.

We may find an approximation to the solution to (36) using the Generalized Lanczos Trust-Region GLTR
method of Gould et al. (1999). This method requires that, at each iteration, we solve “preconditioning”
systems of the form (now dropping suffices PD)

K(v)d ≡
[
P + JT (x)Θ(v)J(x) JT (x)Θ(v)

Θ(v)J(x) Θ(v) + US−1

] [
dx

ds

]
=
[
rx
rs

]
≡ r (40)

for appropriate right-hand sides r and where Θ(v) is defined in (38). Here P is a suitable “preconditioning”
approximation to H, and can range from the naive (P = I) to the sophisticated (P = H), but must be chosen
so that the coefficient matrix, K(v), of (40) is positive definite. As we explained in Conn et al. (2000a), the
preconditioner used defines the scaling norm appropriate for the trust-region in (36) and the dual norm
appropriate to measure progress towards dual feasibility. In particular the dual norm satisfies ‖r‖2

[P ] = dT r,
where d is the solution to (40).
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Of particular concern, however, is that the matrix JT (x)Θ(v)J(x) in (40) might be rather dense, making
a direct factorization of K(v) unviable. Fortunately, we may be able to avoid this difficulty. To see this,
define new variables

ξ = Θ(v)(J(x)dx + ds).

Then (40) may be rewritten as the larger but potentially sparser P 0 JT (x)
0 US−1 I

J(x) I −Θ−1(v)

 dx

ds

ξ

 =

 rx
rs
0

 . (41)

A further simplification occurs if we eliminate ds to obtain[
P JT (x)
J(x) −Θ−1(v)− U−1S

] [
dx

ξ

]
=
[

rx
−U−1Srs

]
(42)

and then recover
ds = −U−1Sξ + U−1Srs.

Thus we might solve (40) by instead factorizing either of the coefficient matrices M of (41) or N of (42).

Significantly K(v) is positive definite if and only if M (or equivalently N) has precisely nC negative
eigenvalues (Gould, 1985), so we can ensure that P is appropriate whenever an inertia-calculating factorization
(such as those given by the codes MA27 and MA57 of the Harwell Subroutine Library (2007)) is used.

3.6 Updating Dual Variables

There is a wide choice of suitable dual variables. Given newly computed primal values v+
P , we follow Conn

et al. (2000a) and project candidate dual variables v+
D componentwise into the box[[

yL

uL

]
,

[
yU

uU

]]
, (43)

where

yL = κl min
[
e, y, µk(C(x+) + S+)−1e

]
, yU = max

[
κue, y, κu(µk)−1e, κuµ

k(C(x+) + S+)−1e
]
,

and
uL = κl min

[
e, u, µk(S+)−1e

]
, uU = max

[
κue, u, κu(µk)−1e, κuµ

k(S+)−1e
]
,

in order to ensure that the multipliers remain sufficiently positive and suitably bounded. Here 0 < κl < 1 <
κu, and values κl = 1

2 and κu = 1020 have proved to be satisfactory. Notice that the primal estimates (29),
v+

D = vD(v+
P ), naturally lie in the interval. However, as we have just mentioned, we usually prefer to use

primal-dual estimates v+
D = vD + dD of the dual variables, where dD is the correction to the dual variable

estimates obtained from the trust-region subproblem (36).

Our convergence analysis is actually independent of how this is done, so long as the resulting estimates
lie in (43).

There may be some virtue in further projecting v+
D so that the optimal upper bounds νk

(
e+ e0E , e+ e0E

)
implied by (21b), (21c) and (21f), or perhaps the relaxed requirement in (34e), remain satisfied.

3.7 Updating the Penalty Parameter

The purpose of the penalty parameter is to force satisfaction of the equality and inequality constraints for
(1) rather than simply having c(x) ≥ −s with s ≥ 0 for (3). Thus, a possible update strategy is to increase
νk whenever violation of the constraints for (1) has not decreased sufficiently.

Introducing decreasing sequences {ηk
E} and {ηk

I} converging to zero, this condition might be stated as

‖cE(xk)‖ > ηk
E or ‖c−I (xk)‖ > ηk

I , (44)
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where c−I (x) = max[0,−cI(x)] componentwise.

Refining further, we increase νk whenever (44) is satisfied or

‖yk+1 − νke0E‖ ≤ γνk (45)

is violated, for some preset γ ∈ (0, 1).

Then one possibility is to update νk using

νk+1 =

{
max[τ1νk, νk + τ2] if (44) is satisfied or (45) is violated,
νk otherwise,

(46)

for some preset constants τ1 > 1 and τ2 > 0, following rules suggested by Mayne and Polak (1976) and Conn
et al. (2000b).

Quite remarkably, the convergence results of Section 4.2 are independent of the particular form of the
sequences {ηk

E} and {ηk
I} besides the fact that they are sequences of positive numbers converging to zero. In

practice, any such sequences might not be equally efficient and sequences converging to zero at a reasonable
rate should be chosen.

4 Convergence Analysis

In this section, we discuss the convergence properties of Algorithm 3.2 for the solution of (1). We consider,
in turn, the global convergence of the inner iteration, of the outer iteration, and fast local convergence issues.

In order to derive suitable convergence results for the convergence of our interior-point method, we make
the following additional assumptions.

Assumption 3 The logarithmic barrier function φB(x, s;µ, ν) for problem (3), defined in (28), is bounded
below over the set {(x, s) | c(x) + s ≥ 0, s ≥ 0} for all values of µ > 0; and

Assumption 4 The iterates remain in a region Ω over which the first and second derivatives ∇f(x),
∇xxf(x), ∇ci(x) and ∇xxci(x) for all i ∈ C remain uniformly bounded.

4.1 Convergence of the Inner Iteration

Each inner iteration—Step 1 of Algorithm 3.2—proceeds by computing a vector of primal vk
P = (xk, sk) and

dual variables vk
D = (yk, uk) satisfying (34) by means of the method described in Conn et al. (2000a). We

thus devote this section to verifying that the assumptions required by this method are satisfied in the present
case, and to recalling the main convergence properties of the resulting inner iteration. We shall only be
concerned with the exact gradients and derivatives of the quantities involved here, but wish to stress that the
aforementioned inner iteration makes provision for inexact Hessian matrices provided they satisfy appropriate
regularity and asymptotic properties.

As we already mentioned, we must require the following condition on the preconditioning matrices P k

chosen during Step 1 of Algorithm 3.2.

Assumption 5 Each preconditioning matrix P k is both bounded from above in norm, and such that the
smallest eigenvalue of the matrix K from the system (40) is uniformly positive for all iterates encountered.

For simplicity, we consider the matrix P k fixed during an inner iteration, although this need not be the
case (Conn et al., 2000a). Let an outer iteration index be denoted by k and the successive values taken
by a generic vector v during the inner iterations corresponding to this outer iteration be denoted by vk,j ,
j = 1, 2, . . . The following assumption introduces upper bounds on the sequences of multipliers.
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Assumption 6 For all k ≥ 0, there exists a constant κD(k) depending only on k such that

yk,j
i ≤ κD(k) max

[
1

ci(xk,j) + sk,j
i

, 1

]
, i ∈ I ∪ E , and

uk,j
i ≤ κD(k) max

[
1

sk,j
i

, 1

]
, i ∈ I ∪ E .

In view of mfcq, requiring that the Lagrange multipliers remain bounded is very reasonable for fixed (µk, νk).
Indeed, if (34e) were to be imposed for every inner iteration, 6 would automatically be satisfied.

Armed with the above assumptions, the next result corresponds to (Conn et al., 2000a, Theorem 2).

Theorem 6 Under Assumptions 1–6, the inner iteration procedure corresponding to outer iteration k of
Algorithm 3.2 generates a sequence {(xk,j , sk,j)} satisfying

lim
j→∞

‖∇φB(vk,j
P ;µk, νk)‖[P k] = lim

j→∞
‖∇φB(vk,j

P ;µk, νk)‖ = 0.

Proof. It is readily verified that Assumptions 2–6 imply Assumptions A1–A8 of Conn et al. (2000a) and
thus global convergence of the inner iteration. Theorem 2 of Conn et al. (2000a) concludes the proof.
Thus Theorem 6 shows that the inner-iteration termination test will be satisfied after a finite number of
iterations if primal multiplier estimates yk+1 = y(xk+1, sk+1) and uk+1 = u(sk+1) are used.

If we plan to use other dual variables, we require an extra assumption, namely that the primal-dual
estimates converge to their ideal, primal, values when convergence takes place.

Assumption 7 The inner iteration produces dual sequences {uk,j} and {yk,j} satisfying

lim
j→∞

‖uk,j − µk(Sk,j)−1e‖ = 0

lim
j→∞

‖yk,j − µk(C(xk,j) + Sk,j)−1e‖ = 0,

whenever
lim

j→∞
‖∇φB(vk,j

P ;µk, νk)‖[P k] = 0.

With this additional assumption, we obtain the following result.

Theorem 7 Under Assumptions 2–7, the inner iteration procedure corresponding to outer iteration k of
Algorithm 3.2 generates a sequence {(vk

P , v
k
D)} satisfying the stopping conditions (34) after finitely many

steps.

Proof. The stated assumptions allow us to use Theorem 4 of Conn et al. (2000a) to deduce that the sequence
{(vk,j

P , vk,j
D )} generated by Algorithm 3.2 ultimately satisfies

lim
j→∞

Φ(vk,j ;µk, νk) = 0 and lim
j→∞

(c(xk,j) + sk,j , sk,j , yk,j , uk,j) ≥ 0

and thus indirectly that
lim

j→∞

(
yk,j + νke0E , u

k+1
)
≤ νk

(
e+ e0E , e+ e0E

)
.

Thus (34) is satisfied after finitely many steps, since Lemma 2 of Conn et al. (2000a) shows that the ‖.‖[P k+1]

and Euclidean norms are equivalent for fixed k.

The numerical method suggested in Sections 3.4–3.6 to tackle the inner iteration satisfies the assumptions
stated here, and thus guarantees global convergence of each inner iteration.
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4.2 Convergence of the Outer Iteration

We now study the convergence of the outer iteration algorithm. We shall concentrate on the case where the
penalty parameter is updated as suggested in Section 3.7. For convenience, we state this as Algorithm 4.1.

Algorithm 4.1 Prototype Algorithm—Outer Iteration (final version).

Step 0. Algorithm 3.2, in which the penalty parameter νk is updated in Step 2 according to the rule
(46).

Our first task is to show that although we are measuring the violation of dual feasibility in (34a) in the
‖ · ‖[P k+1] norm, this actually allows us to make deductions in the Euclidean norm. To do this, we need to
be slightly more restrictive in the choice of our forcing functions εD, εC and εU, and we make the following
assumption.

Assumption 8 The forcing functions εD, εC and εU satisfy the bounds

εC(µ) ≤ κcµ, (47a)

εU(µ) ≤ κcµ and (47b)

εD(µ) ≤ κdµ
1
2+γk

(47c)

for some constants κc ∈ (0, 1) and κd > 0 and sequence {γk} > 0.

We then have the following result.

Lemma 1 Suppose that the iterates vk+1 = (xk+1, sk+1, yk+1, uk+1) are generated by Algorithm 3.2, and
that Assumptions 4, 5 and 8 hold. Then there exist constants µmax and κ > 0 for which

‖v‖ ≤ κ
νk + κν√

µk
‖v‖[P k+1] (48)

for all µk ≤ µmax and all vectors v, and, additionally,

‖v‖ ≤ κ(νk + κν)(µk)γk

(49)

whenever ‖v‖[P k+1] ≤ εD(µk).

Proof. The requirements (34b) and (47a) imply that

(ci(xk+1) + sk+1
i )yk+1

i ≥ (1− κc)µk.

Combining this bound with the required upper bound from (34e) reveals

ci(xk+1) + sk+1
i ≥ (1− κc)µk

yk+1
i

≥ (1− κc)µk

2νk + κν
>

(1− κc)µk

2(νk + κν)
. (50)

Similarly, (34c) and (34e) and (47b) give that

sk+1
i ≥ (1− κc)µk

2νk + κν
>

(1− κc)µk

2(νk + κν)
. (51)

But the form of the Jacobian in (19) together with Assumptions 4, 5 and 8 are sufficient to allow us to invoke
(Conn et al., 2000a, Lemma 4.1) to deduce that

‖v‖[P k+1] ≥ κ2 min

(
min
i∈C

ci(xk+1) + sk+1
i√

µk
, min

i∈C

sk+1
i√
µk
, 1

)
‖v‖ (52)
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for some κ2 > 0 and all v. Combining (50)–(52), we see that

‖v‖[P k+1] ≥ κ2 min

(
(1− κc)

√
µk

2(νk + κν)
, 1

)
‖v‖ ≥ κ2(1− κc)

√
µk

2(νk + κν)
‖v‖

for all µk ≤ µmax ≡ (2κν/(1−κc))2, which is the required result (48) when κ ≡ 2/(κ2(1−κc)). The remaining
bound (49) follows directly from (47c) and (48).

We are now in position to derive some properties of the sequences generated by the final Algorithm 4.1.
In the following results, we shall be concerned with limit points v∗P = (x∗, s∗) and v∗D = (y∗, u∗), of the primal
and dual sequences respectively, generated by Algorithm 4.1. As mentioned earlier and in order to easily
make connections with Theorem 4, we shall be using the shifted limit point (x, λ(y∗, ν∗)) as defined in (22b).

We first consider the case where the penalty parameter remains bounded.

Lemma 2 Suppose that Assumptions 2 and 4–8 hold. Assume Algorithm 4.1 generates infinite sequences
{vk

P} and {vk
D} and the penalty parameter νk is updated only finitely many times to eventually reach its final

value ν∗. Then the sequence {(sk, yk, uk)} is bounded. Moreover, if {xk} has a limit point and if (v∗P , v
∗
D) is

any limit point of {vk}, then s∗ = 0 and the shifted limit point (x∗, λ(y∗, ν∗)) is a first-order critical point
for (1).

Proof. By assumption, there exists a positive integer k∗ such that νk = ν∗ for all k ≥ k∗. The updating
rule (46) then implies that

‖cE(xk)‖ ≤ ηk
E and ‖c−I (xk)‖ ≤ ηk

I . (53)

Consequently, lim
k→∞

cE(xk) = 0 and lim
k→∞

cI(xk) ≥ 0.

We first show that {sk} is bounded. Assume by contradiction that sk
i → ∞ for some i ∈ C along some

subsequence. By using the forcing property of the functions εD(·), εU(·) and εC(·), Lemma 1 and the fact
that µk ↓ 0, from (34c), we must have uk

i → 0 and from (34a), {yk
i } must be bounded. Hence, (34b) imposes

ci(xk) → −∞, which is a contradiction. Thus {sk} must be bounded. Moreover, for all k ≥ k∗, (34e) implies
that {(yk, uk)} satisfies the bounds (yk

i , u
k
i ) ∈ [0, κν + 2ν∗] for i ∈ E and (yk

i , u
k
i ) ∈ [0, κν + ν∗] for i ∈ I.

Suppose that limk∈K v
k = (v∗P, v

∗
D). Along the subsequence defined by K, (34b)–(34d), the forcing property

of the function εD(·), Lemma 1 and the fact that µk ↓ 0 together guarantee that

lim
k∈K

∥∥∥∥[ ∇f(xk+1)− JT (xk+1)(yk+1 − νke0E)
νke− (yk+1 − νke0E)− uk+1

]∥∥∥∥ =
∥∥∥∥[ ∇f(x∗)− JT (xk+1)(y∗ − ν∗e0E)

νke− (y∗ − ν∗e0E)− u∗

]∥∥∥∥ = 0

as well as (C(x∗) + S∗)y∗ = 0 and S∗u∗ = 0. Thus (v∗P, v
∗
D) satisfies (32b) and (33) and the assumptions of

Theorem 3 and Theorem 4.

Next, we consider the consequences of an unbounded penalty parameter.

Lemma 3 Suppose that Assumptions 2 and 4–8 hold. Let {vk
P} and {vk

D} be sequences generated by Algo-
rithm 4.1. Assume the penalty parameter νk is updated infinitely many times at iterations k ∈ K. Then
the subsequence {(yk, uk)}K is unbounded. If, in addition the sequence {vk

P} has a limit point v∗P , v
∗
P is a

first-order critical point of (24) subject to c(s) + s ≥ 0 and s ≥ 0, and x∗ is a first-order critical point of (7).

Proof. Along K, (46) implies νk+1 ≥ νk + τ2 with τ2 > 0 and thus {νk}K →∞. Since νk is nondecreasing,
the whole sequence {νk} → ∞.

Now suppose that {vk
D}K is bounded and thus has a limit point v∗D. In particular, there are vectors y∗ and

u∗ such that {yk
E}K′ → y∗ and {uk}K′ → u∗ for some K′ ⊆ K, and thus both ‖yk‖ ≤ 2‖y∗‖ and ‖uk‖ ≤ 2‖u∗‖

for all sufficiently large k ∈ K′. But then the triangle inequality, the stopping condition (34a) and Lemma 1
give that √

nCν
k−1 − (‖yk‖+ ‖uk‖) ≤ ‖νk−1e− yk

E − uk
E‖ ≤ κ(νk−1 + κν)(µk−1)γk
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and this combines with the bounds on ‖yk‖ and ‖uk‖ to give

(
√
nC − κ(µk−1)γk

)νk−1 ≤ (‖yk‖+ ‖uk‖) + κκν(µk−1)γk

≤ 2(‖y∗‖+ ‖u∗‖) + κκν(µk−1)γk

(54)

for all sufficiently large k ∈ K′. Taking the limit of (54) as k → ∞ then contradicts the unboundedness of
{νk−1}. Thus {vk

D}K is unbounded.

To prove the second part of the lemma, we now suppose that {vk
P} has a limit point v∗P. Define

ȳk+1 =
yk+1

νk
and ūk+1 =

uk+1

νk
.

Then the stopping rules (34) and Lemma 1 give that∥∥∥∥∥
[ 1
νk
∇f(xk+1)− JT (xk+1)(ȳk+1 − e0E)

e− (ȳk+1 − e0E)− ūk+1

]∥∥∥∥∥ ≤ κp(µk)γk

(55a)∥∥∥∥(C(xk+1) + Sk+1)ȳk+1 − µk

νk
e

∥∥∥∥ ≤ εC(µk)
νk

. (55b)∥∥∥∥Sk+1ūk+1 − µk

νk
e

∥∥∥∥ ≤ εU(µk)
νk

(55c)(
c(xk+1) + sk+1, sk+1

)
> 0 (55d)

and
([

1 +
κν

ν0

]
e+ e0E ,

[
1 +

κν

ν0

]
e+ e0E

)
≥
(
ȳk+1, ūk+1

)
> 0 (55e)

where κp ≡ κ(1 + κν/ν
0). Since (55e) implies that (ȳk+1, ūk+1) is bounded, there is a subsequence K′ ⊆ K

for which limk∈K′→∞(ȳk+1, ūk+1) = (y∗, u∗). Taking limits of (55) as k ∈ K′ → ∞ (and thus µk → 0 and
νk → ∞) shows that (x∗, s∗, y∗, u∗) satisfies (24), and hence (x∗, s∗) is a first-order critical point of (16)
subject to c(s) + s ≥ 0 and s ≥ 0. The remaining result then follows directly from Theorem 1.

Finally, the additional criterion (45) yields a certificate of failure of the mfcq whenever the penalty
parameter explodes and yet the iterates approach a feasible point.

Lemma 4 Suppose that Assumptions 2 and 4–8 hold. Let {vk
P} and {vk

D} be sequences generated by Algo-
rithm 4.1. Assume (44) holds for only a finite number of iterations but the penalty parameter νk is updated
infinitely many times at iterations k ∈ K. If, in addition the sequence {vk

P} has a limit point v∗P , x
∗ is a

feasible Fritz-John point of (1) and therefore the mfcq fails to hold at x∗.

Proof. As in Lemma 3, the sequences {yk}K and {uk}K are unbounded, and from our assumptions,
‖cE(xk)‖ ≤ ηk

E and ‖cI(xk)−‖ ≤ ηk
I for infinitely many k ∈ K. By taking limits, we see that x∗ is fea-

sible.

Since {νk} → +∞ but increases in νk are not due to lack of progress towards feasibility, (45) must be
violated infinitely many times. Let

αk+1 = max{‖yk+1
E − νkeE‖, ‖yk+1

I ‖}. (56)

We have from (45) that αk+1 = Ω(νk) for all k ∈ K. We now define

ȳk+1
E =

yk+1
E − νkeE
αk+1

, ȳk+1
I =

yk+1
I
αk+1

, and ūk+1 =
uk+1

αk+1
.

By construction, ‖(ȳk+1
E , ȳk+1

I )‖∞ = 1 for all k ∈ K. Let ȳ∗ = (ȳ∗E , ȳ
∗
I) be a limit point of the latter sequence.

Upon scaling the stopping conditions (34) by αk+1 and taking limits as k → ∞, we see that {ūk+1} must
also remain bounded so that, reducing to a further subsequence if necessary,

JT (x∗)ȳ∗ = 0, CI(x∗)ȳ∗I = 0, cE(x∗) = 0, and (cI(x∗), ȳ∗I) ≥ 0.
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Moreover, since ‖ȳ∗‖∞ = 1 by construction, there is at least one nonzero multiplier, which proves that x∗ is
a feasible Fritz-John point of (1). Combining the first two conditions above, we obtain∑

i∈E
ȳ∗i∇ci(x∗) +

∑
i∈A(x∗)

ȳ∗i∇ci(x∗) = 0,

where A(x∗) is the set of active inequality constraints at x∗. It is well known that, by application of Motzkin’s
transposition theorem (Mangasarian and Fromovitz, 1967), the latter condition is equivalent to failure of the
mfcq at x∗.

To summarize, Lemmas 2–4 lead to the following global convergence result.

Theorem 8 Suppose that Assumptions 2 and 4–8 hold. Let {vk
P} and {vk

D} be sequences generated by Algo-
rithm 4.1, and that x∗ is a limit point of {xk}. Then either {νk} remains bounded, and x∗ is a first-order
critical point for the nonlinear programming problem (1), or {νk} diverges, and x∗ is a first-order critical
point of the infeasibility (7).

4.3 Fast Asymptotic Convergence

We examine in this section the superlinear convergence properties of iterates generated by Algorithm 4.1 in
the regular case where licq is satisfied for simplicity, although past research suggests that similar convergence
properties could be derived under mfcq (Wright and Orban, 2002).

The framework is that of Gould et al. (2001) and Gould et al. (2002). From Theorem 8, we assume that
Algorithm 4.1 generates a sequence {vk} from which a convergent subsequence {vk}K may be extracted,
where K is an infinite index set, whose limit point v∗ = (v∗P, v

∗
D) is feasible, and hence for which the penalty

parameter νk is only updated finitely many times. We denote its final value by ν∗ > 0, and let λ∗ = λ(y∗, ν∗)
We consider indices k ∈ K sufficiently large that νk = ν∗ and for related positive quantities α and β, we
write α = O(β) if there is a constant κ > 0 such that α ≤ κβ for all β sufficiently small. We write α = o(β)
if α/β → 0 as β → 0. We also write α = Θ(β) if α = O(β) and β = O(α).

¿From Lemma 2, we have that s∗ = 0, which enables us to conveniently formulate our assumptions in
term of (1) instead of (3). In particular, all the bound constraints on s in (3) are active and we may thus
define the set of active indices in the nonlinear constraints of (3) as A ∪ E where

A = {i ∈ I | ci(x∗) = 0} . (57)

Note thatA is also the set of active inequality constraints for (1). We make the following standard assumptions
on (1).

Assumption 9 The gradients {∇ci(x∗) | i ∈ A ∪ E} form a linearly independent set of vectors;

Assumption 10 The strong second-order sufficiency conditions for (1) are satisfied at (x∗, λ∗), i.e.,
dT∇xxL(x∗, λ∗)d > 0 for all nonzero vector d such that ∇ci(x∗)T d = 0 for all i ∈ A ∪ E;

Assumption 11 ‖λ∗‖∞ < ν∗ and λ∗i > 0 for all i ∈ A;

Assumption 12 The functions f , cE(x) and cI(x) are three times continuously differentiable over the in-
tersection of an open neighbourhood of x∗ with the feasible set of (1).

Lemma 5 The penalty problem (3) satisfies licq, the strong second-order sufficient condition and strict
complementarity at v∗ with a value of the penalty parameter equal to ν∗ if and only if 9–11 are satisfied.
Moreover, if 12 holds, the objective and constraint functions for (3) are three times continuously differentiable
in an open neighbourhood of v∗P .
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Proof. Upon defining the |A| × n matrices JA(x∗) and EA as the rows of the matrices JI(x∗) and II
corresponding to indices in A respectively, the active part of the Jacobian JS(v∗) defined in (19) is

JS
A(x∗, 0) =


JE(x∗) IE 0
JA(x∗) 0 EA

0 IE 0
0 0 II

 . (58)

The matrix (58) has full row rank if and only if the matrix[
JE(x∗)
JA(x∗)

]
, (59)

has full row rank. This latter condition is equivalent to 9.

Because the variables s appear linearly in the Lagrangian (17), its Hessian with respect to primal variables
vP = (x, s) is

∇vPvPL(v; ν) =
[
∇xxL(v; ν) 0

0 0

]
=
[
∇xxL(x, λ(y, ν)) 0

0 0

]
,

where L(x, λ) is the Lagrangian (12) and λ(y, ν) is defined by (22b), hence imposing the strong second-order
sufficient condition on (3) at v∗ amounts to 10. The requirement on d follows from (58).

Since cE(x∗) = 0 and s∗ = 0, strict complementarity on (3) imposes y∗i > 0 for all i ∈ A∪E and u∗i > 0 for
all i ∈ C. Eliminating u∗i using the identities (21b)–(21c) gives y∗ < ν∗(e + eE), which is in turn equivalent
to the bound ‖λ∗‖∞ < ν∗ on the multipliers λ∗ ≡ λ(y∗, ν∗) = y∗ − ν∗e0E associated to (1). The final part of
the proof is immediate.

Under 11, the central trajectory approaches its end point non-tangentially to active constraints (Wright,
1992). Differentiating the primal-dual system with respect to µ yields an explicit expression of the tangent
vector v̇(µ)

∇vΦ(v;µ, ν)v̇(µ) =

 0
0

−e2nC

 . (60)

As µ ↓ 0, this tangent vector converges to a nonzero limit vector v̇(0). As will appear in Theorem 4.3, the
individual components of v̇(0) are relevant to fast local convergence issues.

Slightly strengthening (47), we assume in this section that the forcing functions in Algorithm 4.1 have
the following asymptotic form

Assumption 13 εD(µk) = Θ((µk)γk+1) and εC,U(µk) = Θ(µk), where 0 < γk < 1 for all sufficiently large
k ∈ K.

For the purpose of demonstrating the fast local convergence properties of Algorithm 4.1, we first rephrase
it as Algorithm 4.2.

Note that from Assumptions 9–11, the Jacobian matrix on the left-hand side of (61) remains uniformly
nonsingular.

Upon defining the set of nonzero components of the tangent vector (60) to the primal-dual central path
at v∗,

J = {i = 1, . . . , n+ 2nC | v̇(0)i 6= 0}, (63)

and under the above assumptions, Algorithm 4.2 fits in the framework of Gould et al. (2001) and Gould et al.
(2002) and we obtain the following results, simple modifications of the main results of the aforementioned
papers, which we state without proof.

The first result states that the Newton step dN defined in (61) is strictly feasible and vk + dN satisfies the
stopping conditions (34) with barrier parameter µk.
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Algorithm 4.2 Prototype Algorithm—Outer Iteration (local version).

Step 0. Let the forcing functions εD(·), εC(·) and εU(·) satisfy 13, and let 0 < ετ < 1/2. Choose
x0 ∈ Rn, s0 ∈ RnC

+ such that c(x0)+s0 > 0, initial dual estimates y0, u0 ∈ RnC
+ , and penalty and barrier

parameters ν0 and µ0 > 0, and set k = 0.

Step 1. Inner Iteration: Obtain the primal-dual Newton step dN
k as a solution to the linear system

∇vΦ(vk;µk, ν∗)dN = −Φ(vk;µk, ν∗), (61)

where the function Φ(v;µ, ν) is defined in (31), and set vk+1 = vk + dN
k .

Step 2. Select a new barrier parameter according to

µk+1 = Θ
(
(µk)τk

)
where 1 + ετ ≤ τk ≤ 2

1 + γk+1
− ετ . (62)

Increment k by one, and return to Step 1.

Theorem 9 ((Gould et al. (2001), Theorem 6.2)) Under Assumptions 9–13 for k ∈ K sufficiently
large, the stopping conditions (34) are satisfied at vk+1 with µ = µk, and

‖Φ(vk+1;µk, ν∗)‖ = o(µk). (64)

The next result states the precise rate of convergence, not only in the error in norm, but in some individual
components, defined by (63), of the error. It states that the same rate takes place in individual components
of the residuals in complementarity. More precisely, let

ΦC(v;µ, ν) =
[

(C(x) + S)y − µe
Su− µe

]
, (65)

represent the 2nC-dimensional subsystem of (31) containing only the perturbed complementarity components.
If Φ̇ denotes the vector on the right-hand side of (60), we have the following nonsingular relationship

∇vΦ(v∗; 0, ν∗)v̇(0) = Φ̇.

Note that the components of ΦC(v;µ, ν) correspond precisely to the nonzero components of Φ̇. Following
Gould et al. (2002), an interpretation of Φ̇ is as a tangent vector at the end point of a trajectory approximately
tracked by the sequence {Φ(vk+1;µk, νk)}.

Theorem 10 ((Armand et al. (2008), Theorem 5.3, Gould et al. (2001), Theorem 6.5, and Gould
et al. (2002), Theorem 3.2)) Under Assumptions 9–13, assume that the complete sequence {vk} converges
to v∗, then the sequence {Φ(vk+1;µk, νk)} converges to zero and we have the asymptotic expansions

vk+1 = v∗ + µkv̇(0) + o(µk) and ΦC(vk+1;µk, ν∗) = −µke+ o(µk). (66)

As a consequence, the asymptotic convergence rate is described by

|vk+2
i − v∗i |

|vk+1
i − v∗i |τ

k
= Θ(1) i ∈ J and

|ΦC
i (v

k+2;µk+1, ν∗)|
|ΦC

i (vk+1;µk, ν∗)|τk = Θ(1) i = 1, . . . , 2nC , (67)

for k sufficiently large, where τk is as in (62), which implies that the iterates vk+1 and the residuals in
complementarity converge componentwise Q-superlinearly to their limit, along the given components. The
remaining components i 6∈ J satisfy

|vk+1
i − v∗i | = o(µk) and Φi(vk+1;µk, ν∗) = o(µk).
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As a consequence of Theorem 4.3, a Q-rate of convergence which is as close to quadratic as desired, and
which takes place not only in norm but in all the indicated components, is achievable by constructing the
sequence {γk} so it converges to zero, by choosing ετ ' 0 in Algorithm 4.2 and by selecting τk equal to its
upper bound in (62).

Note that in the asymptotics, Algorithm 4.2 branches into Algorithm 6.1 with little modification.

5 Treatment of Linear Constraints

We briefly digress in this section on the possibility of treating linear constraints explicitly, if any are present,
rather than penalizing them. We might distinguish linear equations from the remaining constraints by
including the constraints

AEx = bE , (68)

where AE has full row rank, in the general statement (1). We consider this case since in practice we may aim
to find and maintain feasible points for simple constraints such as (68) before treating the nonlinear ones,
and also to reflect the generality which must be addressed by a practical implementation.

The reformulation given in §2.1 results, after placing the inequality constraints into a logarithmic barrier,
in a linearly-constrained mixed interior-exterior penalty problem. The Jacobian (19) now takes the form

JS(vP) =


JE(x) IE 0
JI(x) 0 II
AE 0 0
0 IE 0
0 0 II

 . (69)

Note that explicit treatment of the linear equations (68) preserves the mfcq.

Explicit linear inequality constraints
AIx ≥ bI , (70)

including the special case of simple bounds such as

x ≥ 0, (71)

might also be treated directly instead of being penalized. In this case, the objective function of the bar-
rier problem will incorporates logarithmic terms to treat the linear inequalities (70). The Jacobian of the
constraints including both (68) and (70) is then given by

JS(vP) =


JE(x) IE 0
JI(x) 0 II
AE 0 0
AI 0 0
0 IE 0
0 0 II

 . (72)

Unfortunately, mfcq is no longer automatically satisfied even in the special case of simple bounds (71), as it
requires that there is a vector d in the nullspace of AE such that aT

i di < 0 for each active inequality aT
i x ≥ bi.

A condition such as licq on (1) is sufficient for this, and provides a consistent context with §4.3.

The convergence theory remains essentially unaltered upon adding the linear constraints (68) and (70).
However, the preconditioning matrices P k used in (34a) and in the trust region (35) must this time be
uniformly second-order sufficient, which essentially amounts to uniform positive definiteness on the nullspace
of the matrix AE (Conn et al., 2000a), on which they define uniformly equivalent norms. Again, the seminorms
used in (34a) and (35) are dual of each other and allow for efficient treatment of the linear constraints.

¿From the practical point of view, the GALAHAD code LSQP (Gould et al., 2003) may be used to find an
approximation to the analytic center for the constraints (68) and (70). The constraints are preprocessed using
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the GALAHAD package PRESOLVE (Gould and Toint, 2004) to remove fixed variables and (some) redundant
constraints, and to simplify the remaining constraints if possible. Provided that the linear constraints have
a feasible (interior) point, we use the resulting point x0, for which

AEx
0 = bE and AIx

0 > bI ,

as a starting point for the remainder of our calculation. We may safely assume that AE is of full rank, since
any rank-deficiency will have been identified and removed by PRESOLVE.

A practical implementation might offer the choice to penalize all constraints altogether or to keep non-
redundant linear constraints explicit. Extensive numerical tests are required before we can make firm recom-
mendations.

6 Enhanced and Alternative Inner Iterations

Whilst the inner-iteration algorithm outlined in Section 3.4–3.6 is certainly suitable for our purposes, it is by
no means the only possibility. In this section we consider both a simple enhancement to the basic method
and a complete alternative based on this enhancement.

6.1 Magical Steps

Suppose that our inner-iteration trust-region algorithm has produced a new approximation (xk,j , sk,j) to
the minimizer of the barrier function φB(x, s;µk, νk). Since φB(x, s;µ, ν) is a separable function of s, we
might then aim to improve on (xk,j , sk,j) by finding the (global) minimizer s(x) of φB(x, s;µ, ν) for the
given x = xk,j . Replacing (xk,j , sk,j) by the improvement (xk,j , s(xk,j)) is an example of what is known
as a magical step, and fortunately the use of such steps does not interfere with global convergence of the
underlying algorithm—see, for example, (Conn et al., 2000b, §10.4.1).

To compute the elastics s(x), note that s(x) necessarily satisfies (componentwise) the equations

r(s(x)) ≡ ∇sφ
B(x, s(x);µ, ν) = ν(e+ e0E)− y(x, s(x);µ)− u(s(x);µ) = 0, (73)

for a given x. We may summarize the properties of (73) as follows.

Lemma 6 Let Assumption 2 be satisfied, the function r(s(x)) be defined by (73) where x is fixed and the
multiplier estimates be given by (29). We then have the following properties:

1. r(s) is a separable function of s,
2. r(s(x)) has a unique root, s(x), for which (x, s(x)) lies in the interior of the feasible set of (3),
3. s(x) is twice continuously differentiable for max(0,−ci(x)) < s(x) <∞.

Proof. The first and last points are straightforward, given (73) and the implicit function theorem. For the
second point, notice that r(s) has poles at s = −c(x) and s = 0, that ∇ss(x)e > 0, and that lims→+∞ r(s) =
ν(e+ e0E) > 0.

In our case, a simple calculation reveals that the magical correction for s is given (componentwise) by

sk,j
i =



µk

2νk
− ci(xk,j)

2
+

√(
ci(xk,j)

2

)2

+
(
µk

2νk

)2

for i ∈ E

µk

νk
− ci(xk,j)

2
+

√(
ci(xk,j)

2

)2

+
(
µk

νk

)2

for i ∈ I.
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6.2 Alternative Algorithm Using Implicit Elastics

As we have just suggested, we may improve upon a given (x, s) by replacing it by the “magical” (x, s(x)).
However, this is somewhat inefficient as x is chosen without regard to what s(x) might result. This suggests
a better approach might be to treat the elastic variables as implicitly dependent on x throughout the inner
iteration.

With this in mind, in this section we present an implicit elastics alternative to Algorithm 3.2. Since we
know from Lemma 6 that s(x) is (at least) twice continuously differentiable, we might instead minimize

ψ(x) ≡ φB(x, s(x);µ, ν) (74)

solely as a function of the variables x. Here φB(·) is as defined by (4), and we have hidden the dependency of
ψ(·) on µ and ν for brevity. In practice, in addition to the reduction in dimension this suggests, the definition
of s(x) should help to keep the constraints a comfortable distance from their boundaries, preventing steps
from being repeatedly cut back. We now show that a classical trust-region algorithm for the minimization
of ψ(x) is well defined.

For future reference, we give the derivatives of (74) in the following result.

Lemma 7 Under Assumption 4, the first and second derivatives of (74) are given by

∇xψ(x) = ∇f(x)− JT (x)σ(x) and (75a)

∇xxψ(x) = H(x, σ(x)) + µJT (x)
[
(C(x) + S(x))2 + S(x)2

]−1
J(x), (75b)

≡ H(x, σ(x)) + JT (x)
[
(C(x) + S(x))Y −1(x) + S(x)U−1(x)

]−1
J(x) (75c)

where we have defined the Lagrange multiplier estimates

y(x) ≡ y(x, s(x)) = µ(C(x) + S(x))−1e, (76a)

u(x) ≡ u(s(x)) = µS−1(x)e and (76b)

σ(x) = y(x)− νe0E , (76c)

and H(x, σ) is given by (39).

Proof. Elementary calculations with (73) prove (75a). We note from (73) that ∇xr(s(x)) = 0, implying
(C(x) + S(x))−2(J(x) +∇xs(x)) = −S−2(x)∇xs(x). Extracting ∇xs(x) from this identity gives

∇xs(x) = −
[
I + (C(x) + S(x))2S−2(x)

]−1
J(x),

which combines with (76c) to yield

∇xσ(x) = −µ(C(x) + S(x))−2(J(x) +∇xs(x)) = µS−2(x)∇xs(x)

and finally, (75b). The alternative (75c) follows by simple manipulation. Note that the second term in
the right-hand side of (75b) is positive semi-definite.

A typical primal-dual trust-region method for minimizing ψ(x) computes a correction d to the current
solution estimate x so as to (approximately)

minimize
d

∇ψ(x)T d+ 1
2d

TB(x, σ)d subject to ‖d‖M ≤ ∆, (77)

where the trust-region radius ∆ > 0. The approximation B(x, σ) might be the primal Hessian ∇xxψ(x) but,
as in Section 3.4, there are advantages in instead using the primal-dual approximation

BPD(x, σ) = H(x, σ) + JT (x)
[
Θ−1(x) + S(x)U−1

]−1
J(x), (78)
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where

Θ(x) = Y (C(x) + S(x))−1, (79a)

u ≈ u(x) > 0, (79b)

y ≈ y(x) > 0 and (79c)

σ ≈ σ(x) (79d)

(c.f. (38) and (79a)). Note also that Θ−1(x) + S(x)U−1 is a diagonal matrix.

As in Section 3.4, lengths of steps and gradients should be measured in norms that reflect curvature. The
trust-region norm ‖w‖2

M ≡ 〈w,Mw〉 depends on a suitable symmetric, positive-definite approximation M to
B(x, σ), and we shall use

M = P + JT (x)
[
Θ−1(x) + S(x)U−1

]−1
J(x), (80)

where as before, P can range from simple (P = I) to sophisticated (P = H(x, σ)). To be specific, we shall
assume that, at the termination of the k-th inner-iteration, the following assumption is satisfied.

Assumption 14 Each matrix Mk is defined by (80), where P = P k satisfies 5.

The counterpart of the preconditioning system (40) is here that

Mdx = rx (81)

for some given rx. Significantly, upon introducing auxiliary ds = −
[
Θ(x) + US−1(x)

]−1
J(x)Θ(x)dx, we see

that (81) is equivalent to (40) in the case that rs = 0. In particular, since

∇vPφ
B(x, s(x);µ, ν) =

[
∇xψ(x)

0

]
when s = s(x), we may replace (34a) with

‖∇ψ(xk+1)‖M−1
k+1

≤ εD(µk).

The resulting trust-region method is entirely standard, except that any trial value x for which s(x) is
undefined or infeasible will be rejected and the trust-region radius retracted.

In order to show that the resulting method is globally convergent, we must make sure that the Hessian
matrix of the model, BPD(x, σ), is bounded.

Lemma 8 The Lagrange multiplier estimates satisfy the bounds

0 < y(x) < ν(e+ e0E) and 0 < u(x) < ν(e+ e0E), (82)

and
−νe0E < σ(x) < νe. (83)

Proof. Identities (73) and (79) combine to give the bounds (82). In turn, these bounds an (76c) together
imply (83).

In view of the required approximations (79b)–(79d) and Lemma 8, we make the further reasonable as-
sumption.

Assumption 15 For given ν, the Lagrange multiplier estimates y, u and σ are bounded.

Given this assumption, we now show that our model Hessian remains bounded. To this end, let δi = 1 if
i ∈ E and 0 otherwise.
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Lemma 9 Under Assumptions 4 and 15, the primal-dual Hessian approximation (78) remains bounded for
fixed values of µ > 0 and ν > 0.

Proof. Since (78) implies that

‖BPD(x, σ)‖ ≤ ‖H(x, σ)‖+ ‖J(x)‖‖JT (x)‖‖
[
Y −1(C(x) + S(x)) + U−1S(x)

]−1 ‖,

and as Assumptions 4 and 15 ensure that ‖H(x, σ)‖, ‖J(x)‖ and ‖JT (x)‖ are bounded, it remains to show
that the (diagonal) entries

si(x)/ui + (ci(x) + si(x))/yi (84)

of the diagonal matrix Y −1(C(x) +S(x)) +U−1S(x) are bounded away from zero. But combining (76a) and
(76b) with (82) shows that

ci(x) + si(x) >
µ

ν(1 + δi)
and si(x) >

µ

ν(1 + δi)
and

and this together with 15 gives the required lower bound on (84).

We summarize the results of this section by stating Algorithm 6.1.

Algorithm 6.1 Prototype Algorithm—Outer Iteration (Implicit Elastics).

Step 0. Let the forcing functions εD(·), εC(·) and εU(·) be given, and let κν > 0. Choose x0 ∈ Rn,
s0 ∈ RnC

+ such that c(x0) + s0 > 0, initial dual estimates y0, u0 ∈ RnC
+ , and penalty and barrier

parameters ν0 and µ0 > 0, and set k = 0.

Step 1. Inner Iteration: find a new primal-dual iterate (xk+1, s(xk+1), yk+1, uk+1) satisfying∥∥∇f(xk+1)− JT (xk+1)(yk+1 − νke0E)
∥∥

M−1
k+1

≤ εD(µk) (85a)

‖(C(xk+1) + S(xk+1))yk+1 − µke‖ ≤ εC(µk). (85b)

‖S(xk+1)uk+1 − µke‖ ≤ εU(µk) (85c)(
c(xk+1) + s(xk+1), s(xk+1)

)
> 0 (85d)

and
(
νk[e+ e0E ] + κνe, ν

k[e+ e0E ] + κνe
)
≥
(
yk+1, uk+1

)
> 0 (85e)

for some suitable scaling norm ‖.‖Mk+1 by (for example) approximately minimizing (74).

Step 2. Select a new barrier parameter, µk+1 ∈ (0, µk] such that limk→∞ µk = 0. Update the penalty
parameter νk according to the rule (46). Increment k by one, and return to Step 1.

The convergence properties of Algorithm 6.1 are summarized in Theorem 11, which we state without
proof since this result is a direct parallel of Theorem 8.

Theorem 11 Suppose that Assumptions 2, 4, 6–8 and 14 hold. Suppose that x∗ is a limit point of the
sequence {xk} generated by Algorithm 6.1. Then either {νk} remains bounded, and x∗ is a first-order critical
point for the nonlinear programming problem (1), or {νk} diverges, and x∗ is a first-order critical point of
the infeasibility (7). In the first case, the multipliers {σ(xk)} generated converge to λ(y∗, ν∗) defined in (22).
If additionally νk is updated whenever (45) is violated, if (44) holds only for a finite number of iterations and
if {νk} diverges, x∗ is a feasible Fritz-John point for (1) and the mfcq fails to hold at x∗.

In addition to the reasons mentioned earlier in this section, this alternative is attractive in that it em-
pirically stabilizes the algorithm. In contrast with Algorithm 3.2, it also helps prevent infeasible steps from
being generated and repeatedly cut. Indeed, it is easy to see from (79) and (82) that

ci(x) + si(x) >
µ

ν(1 + δi)
≥ µ

2ν
, and si(x) >

µ

ν(1 + δi)
≥ µ

2ν
.
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so long as s(x) exists.

For completeness, in view of Lemma 9 and (Conn et al., 2000a, Theorem 4), it is straightforward to show
the following result, which again we state without proof.

Theorem 12 Under Assumptions 2, 4, 6–8 and 14, the implicit-elastic inner iteration procedure outlined in
this section generates a sequence {(xk+1, s(xk+1), yk+1, uk+1)} satisfying the inner-iteration stopping condi-
tions (85) for iteration k of Algorithm 6.1 after finitely many steps.

Fast convergence properties of Algorithm 6.1 may be derived in a similar manner to §4.3.

7 Practical Considerations, Enhancements and Refinements

Here we mention a number of other important practical considerations.

7.1 Initial Elastics

As mentioned earlier, finding an initial strictly feasible estimate (x0, s0) for (3) is trivial. Any value s0 >
max[0,−c(x0)] is acceptable. In practice, only those si (or ri, depending on the formulation chosen) that are
required to be positive because of the initial x need be retained, although it is actually prudent to keep those
for which si (or ri) needs to be larger than some “small” positive value (say, 0.1). More generally, it may be
beneficial to track each sk,j

i as the iteration progresses and to remove it as soon as the corresponding ci(xk,j)
is sufficiently positive. Doing so does not affect the convergence results described in this paper, as there can
only be a finite number of these removals.

7.2 Two-Sided Inequalities

In the presence of two-sided inequality constraints

cLi ≤ ci(x) ≤ cUi

the obvious penalty term νmax(cLi − ci(x), ci(x) − cUi , 0) may be replaced by νsi, where si is required to
satisfy

si + cUi − ci(x) ≥ 0, si + ci(x)− cLi ≥ 0 and si ≥ 0.

Thus a single elastic variable suffices, rather than the pair that might have been anticipated if ci(x) ≥ cLi and
ci(x) ≤ cUi had been considered separately.

If we wish to improve the value of φB(vP;µ, ν) using a magical step as described in Section 6.1 or to use
the implicit-elastic approach of Section 6.2, the defining equation

r(x) ≡ ν(e+ e0E)− µ[C(x)− CL + S(x)]−1e− µ[CU − C(x) + S(x)]−1e− µS−1(x)e = 0

for the s(x) for a two-sided inequality may be reduced to a cubic equation. While it is possible to give an
explicit formula for the required root, in practice it is just as easy to use a safeguarded univariate Newton
method to find it.

7.3 Imposing Upper Bounds on the Elastics

There may be some virtue in adding an upper bound sU on the elastic variables in order to prevent c(x)
and s simultaneously diverging to infinity. Of course it is far from obvious what globally a good value for
sU might be, but the a simple choice of max(10, 2s0) has proved to be sufficient in early experiments. The
resulting two-sided bound

0 ≤ s ≤ sU

may then be handled exactly as in Section 7.2.
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8 Numerical Experience

Algorithm 6.1 has been implemented as a prototype Fortran 95 module in the GALAHAD optimization library
of Gould, Orban, and Toint (2003). The inner iteration stopping tolerances are chosen as εD(µ) = εC(µ) =
µ1.01.

The outer iterations stop as soon as the residuals of (34a)–(34c) with µk = 0 fall under 1.0e−5. The
initial barrier parameter is set to µ0 = 1 and is updated by simply dividing it by 10 at each outer iteration.
The initial penalty parameter is set to ν0 = 1 and we choose τ1 = 10 and τ2 = 1 in (46). The initial guess
x0 specified in the model is honored and initial elastic variables are chosen so that r(s(x0)) = 0 in (73) and
all multipliers are initialized to their primal values. The parameters in the updating rule for the penalty
parameter (44)–(45) are ηk

E = ηk
I = (µk)1.1.

Trust-region subproblems (36) are solved by means of the Generalized Lanczos Trust-Region method
GLTR of Gould et al. (1999) with a preconditioner of the form (40). The block P in (42) is chosen as a
band of semi-bandwidth 5 of the Hessian H(x, λ(y, ν)). A Cholesky factorization of the coefficient matrix of
(42) is then attempted. If it fails, P is replaced by P + δI for increasing values of δ > 0. On unsuccessful
trust-region steps, a backtracking linesearch is performed along the trust-region step as described by Conn
et al. (2000b).

Prior to solution, problem variables are scaled so they are all O(1) initially, i.e., assuming non-negativity
bounds only on the variables for simplicity, the initial (x0, s0) is replaced with (x̄0, s̄0) where x̄0

i = x0
i /

max(1, x0
i ) and s̄0i = s0i /max(1, s0i ) for all i. Similary, problem functions are scaled so changes in function

value are commensurate with changes in the variables, i.e., ci(x) is replaced with ci(x̄)/max(1, ‖∇ci(x̄0)‖∞)
for all i and f(x) is replaced with f(x̄)/max(1, ‖∇f(x̄0)‖∞).

Numerical results on the Hock and Schittkowski (1981) collection are reported in Table 1. The table
headers are, from left to right, the problem name, final objective function value, final primal feasibility, final
dual feasibility, final complementarity measure, total number of iterations and running time. The tests were
run under OSX on a dual-core Intel Core2 Duo processor and GALAHAD was compiled with the Intel Fortran
Compiler version 10.1. A maximum number of 1000 inner iterations was imposed. Residuals are measured
as in Algorithm 6.1.

The only failure, on HS87, is indicated by a trailing ‘F’ and is due to the objective function being
discontinuous.

the algorithm stops at a critical point of the `1 infeasibility measure in the sense of Lemma 3, which is
indicated by a trailing ‘I’ in the table. While the results in terms of number of iterations are overall not
directly competitive with those of polished production software such as IPOPT (Wächter and Biegler, 2006)
or KNITRO (Byrd et al., 2000, 2006), they are promising in terms of robustness. Though it is not our goal
to conduct a complete comparison here, we note that KNITRO 6.0.0 also terminates at an infeasible point on
HS89.

IPOPT 3.3 is able to solve HS89 to optimality. Both IPOPT and KNITRO were run with all default
settings.

Our method takes a rather large number of iterations on a few problems. This behavior is consistently due
to difficulties in reducing dual infeasibility, presumably because of inadequate Lagrange multiplier estimates
rather than to degeneracy since the final penalty parameter is never large.

We delay extensive benchmarking until we have explored the benefits of all options mentions in Sections
5, 6 and 7.

Figure 1 shows a performance profile comparing the number of iterations using a banded approximation
to the Hessian in the preconditioner as opposed to choosing P = H in (80). As is apparent from the figure,
there is not much to gain on this problem collection in choosing a full Hessian factorization.
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Table 1: Results on the Hock and Schittkowski test set.

Name Obj Pfeas Dfeas Comp Its t

HS1 5.18251682E−08 0.0E+00 6.1E−08 1.8E−07 39 0.01
HS2 4.94140018E+00 0.0E+00 1.3E−09 1.4E−07 18 0.00
HS3 1.77827941E−07 0.0E+00 0.0E+00 1.8E−07 6 0.00
HS4 2.66666989E+00 0.0E+00 6.6E−10 1.8E−07 8 0.00
HS5 −1.91322295E+00 0.0E+00 9.4E−09 1.9E−07 8 0.00
HS6 0.00000000E+00 2.9E−08 1.8E−15 6.4E−06 8 0.00
HS7 −1.73205166E+00 7.4E−08 2.3E−10 3.2E−06 15 0.00
HS8 −1.00000000E+00 2.2E−11 2.2E−11 1.8E−07 8 0.00
HS9 −5.00000000E−01 0.0E+00 7.8E−07 1.8E−08 13 0.00
HS10 −9.99989415E−01 0.0E+00 1.0E−07 1.9E−06 10 0.00
HS11 −8.49844412E+00 0.0E+00 1.2E−06 3.2E−06 11 0.00
HS12 −2.99999988E+01 0.0E+00 1.3E−10 1.8E−07 11 0.00
HS13 9.64143746E−01 5.9E−06 2.6E−09 1.8E−07 57 0.01
HS14 1.39352827E+00 1.0E−08 1.2E−06 8.9E−06 15 0.00
HS15 3.06502241E+02 0.0E+00 7.5E−08 2.0E−07 15 0.00
HS16 2.50000186E−01 0.0E+00 1.9E−07 1.9E−07 14 0.00
HS17 1.00000159E+00 0.0E+00 5.9E−12 2.9E−06 18 0.00
HS18 5.00001401E+00 0.0E+00 5.9E−07 2.0E−07 14 0.00
HS19 −6.96180603E+03 0.0E+00 5.4E−07 1.8E−07 61 0.01
HS20 3.81988024E+01 0.0E+00 6.0E−09 1.8E−07 15 0.00
HS21 −9.99599867E+01 0.0E+00 1.2E−18 1.8E−07 13 0.00
HS22 1.00000066E+00 0.0E+00 2.4E−09 1.9E−07 11 0.00
HS23 2.00010537E+00 0.0E+00 2.7E−07 1.8E−07 31 0.00
HS24 −9.99999745E−01 0.0E+00 6.6E−10 1.8E−07 16 0.00
HS25 4.31299441E−12 0.0E+00 1.5E−08 1.8E−07 30 0.01
HS26 1.40576436E−07 6.6E−06 3.2E−06 6.7E−06 11 0.00
HS27 3.99999999E−02 9.2E−10 1.3E−09 6.3E−06 15 0.00
HS28 0.00000000E+00 1.5E−16 2.5E−13 1.8E−07 6 0.00
HS29 −2.26273854E+01 0.0E+00 1.1E−14 5.6E−06 18 0.00
HS30 1.00000621E+00 0.0E+00 7.4E−09 2.1E−07 9 0.00
HS31 6.00002401E+00 0.0E+00 5.5E−07 2.5E−07 20 0.00
HS32 1.00000801E+00 2.4E−10 9.9E−13 1.8E−07 14 0.00
HS33 −4.58578522E+00 0.0E+00 1.3E−08 1.8E−07 19 0.00
HS34 −8.33948206E−01 0.0E+00 9.8E−06 1.1E−06 21 0.00
HS35 1.11111148E−01 0.0E+00 5.0E−16 1.8E−07 8 0.00
HS36 −3.29999888E+03 0.0E+00 1.9E−08 2.1E−07 21 0.00
HS37 −3.45599964E+03 0.0E+00 6.0E−12 1.8E−07 25 0.00
HS38 7.87695230E+00 0.0E+00 1.0E−07 1.8E−07 9 0.00
HS39 −1.00000103E+00 7.7E−08 1.3E−08 3.2E−06 18 0.00
HS40 −2.50000010E−01 6.1E−09 2.6E−10 3.2E−06 101 0.01
HS41 1.92592610E+00 4.0E−10 4.5E−09 2.1E−07 11 0.00
HS42 1.38578580E+01 1.2E−06 1.2E−08 2.0E−07 11 0.00
HS43 −4.39999933E+01 0.0E+00 2.4E−08 2.4E−07 14 0.00
HS44 −1.49999993E+01 0.0E+00 1.8E−15 1.8E−07 13 0.00
HS45 1.00000088E+00 0.0E+00 2.5E−09 1.8E−07 10 0.00
HS46 3.74671627E−08 1.9E−11 6.9E−06 1.8E−08 897 0.08
HS47 5.34182405E−08 4.5E−06 1.2E−06 9.4E−06 23 0.00
HS48 0.00000000E+00 0.0E+00 1.7E−16 1.8E−07 6 0.00
HS49 2.31520581E−05 1.1E−16 5.2E−06 1.8E−07 10 0.00
HS50 9.09494702E−13 5.3E−15 2.3E−09 1.8E−07 8 0.00
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Table 1: Results on the Hock and Schittkowski test set (cont.)

Name Obj Pfeas Dfeas Comp Its t

HS51 0.00000000E+00 0.0E+00 8.0E−17 1.8E−07 6 0.00
HS52 5.32664505E+00 1.3E−07 1.8E−15 6.5E−06 8 0.00
HS53 4.09302325E+00 5.5E−11 1.9E−12 1.8E−07 15 0.00
HS54 −9.08074762E−01 2.2E−09 2.6E−08 2.1E−07 11 0.00
HS55 6.33333476E+00 3.0E−11 4.5E−07 1.8E−07 27 0.01
HS56 −2.36250001E+00 6.6E−10 2.6E−06 3.2E−06 560 0.05
HS57 3.06476285E−02 0.0E+00 3.6E−06 2.6E−07 15 0.00
HS59 −6.74950472E+00 0.0E+00 3.7E−08 1.8E−07 10 0.00
HS60 2.18966059E+00 5.9E−13 1.0E−11 1.8E−07 18 0.00
HS61 −1.43646143E+02 7.8E−08 2.8E−12 1.8E−07 9 0.00
HS62 −2.62725147E+04 9.0E−09 2.4E−08 1.8E−07 16 0.00
HS63 9.61715172E+02 2.7E−09 2.5E−09 1.8E−07 22 0.00
HS64 6.30351248E+03 1.3E−07 6.6E−06 3.2E−06 18 0.00
HS65 9.53534363E−01 0.0E+00 5.5E−08 3.1E−07 14 0.00
HS66 5.18174874E−01 0.0E+00 7.8E−10 1.8E−07 22 0.00
HS67 −1.16211846E+03 0.0E+00 6.8E−09 2.0E−07 9 0.00
HS68 4.65063625E−05 3.1E−08 7.5E−07 1.1E−06 10 0.00
HS69 7.92307283E−03 3.1E−09 1.3E−07 4.7E−07 13 0.00
HS70 1.87059998E−01 0.0E+00 7.7E−06 2.0E−07 82 0.01
HS71 1.70140287E+01 2.1E−07 1.6E−07 4.1E−07 434 0.03
HS72 1.83175979E+01 6.2E−06 4.5E−07 1.8E−07 30 0.00
HS73 2.98944392E+01 1.6E−09 9.9E−09 1.1E−06 18 0.00
HS74 5.12649810E+03 1.5E−09 1.4E−08 2.2E−07 20 0.00
HS75 5.17441306E+03 4.0E−10 9.4E−09 1.8E−07 20 0.00
HS76 −4.68181733E+00 0.0E+00 2.8E−16 2.0E−07 8 0.00
HS77 2.41505040E−01 1.0E−07 1.7E−06 3.2E−06 19 0.00
HS78 −2.91970232E+00 3.2E−07 1.3E−09 1.8E−07 9 0.00
HS79 7.87767793E−02 8.8E−08 9.2E−10 1.8E−07 7 0.00
HS80 5.39498466E−02 1.6E−09 8.8E−09 1.8E−07 85 0.01
HS81 5.39496909E−02 2.2E−07 1.1E−06 4.4E−07 29 0.01
HS83 −3.06655363E+04 0.0E+00 2.5E−10 1.9E−07 14 0.00
HS84 −5.27996691E+06 0.0E+00 6.1E−09 1.8E−07 42 0.01
HS85 −2.21560127E+00 0.0E+00 2.8E−08 1.9E−07 23 0.01
HS86 −3.23485992E+01 0.0E+00 4.0E−09 1.1E−06 16 0.00
HS87 4.77841969E−03 1.0E−09 1.0E+02 1.3E−07 584 0.01 F
HS88 1.36268469E+00 0.0E+00 9.5E−10 3.2E−06 31 0.01
HS89 0.00000000E+00 1.3E−01 0.0E+00 1.3E−16 25 0.01 I
HS90 1.36268469E+00 0.0E+00 7.0E−10 3.2E−06 43 0.02
HS91 1.36268840E+00 0.0E+00 3.2E−06 3.2E−06 83 0.05
HS92 1.36268469E+00 0.0E+00 7.5E−10 3.2E−06 44 0.03
HS93 1.35076025E+02 0.0E+00 5.1E−08 2.4E−07 20 0.00
HS95 1.56237806E−02 0.0E+00 9.3E−07 1.1E−06 13 0.00
HS96 1.56237791E−02 0.0E+00 9.3E−07 1.1E−06 13 0.00
HS97 4.07124864E+00 0.0E+00 3.1E−08 1.9E−07 18 0.00
HS98 3.13581160E+00 0.0E+00 4.5E−08 2.6E−07 22 0.00
HS99 −8.31079911E+08 1.9E−07 7.3E−07 1.8E−07 9 0.00
HS100 6.80630092E+02 0.0E+00 3.7E−09 1.9E−07 36 0.01
HS101 1.80976586E+03 0.0E+00 3.1E−07 1.8E−07 36 0.01
HS102 9.11882394E+02 0.0E+00 1.5E−07 1.8E−07 41 0.01
HS103 5.43670401E+02 0.0E+00 2.3E−06 1.8E−07 42 0.01
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Table 1: Results on the Hock and Schittkowski test set (cont.)

Name Obj Pfeas Dfeas Comp Its t

HS104 3.95116607E+00 0.0E+00 1.9E−08 1.8E−07 24 0.01
HS105 1.04461181E+03 0.0E+00 7.8E−07 1.8E−07 16 0.03
HS106 7.04925296E+03 0.0E+00 1.7E−07 2.4E−07 28 0.01
HS107 5.05501425E+03 6.1E−09 4.5E−09 2.6E−07 24 0.01
HS108 −8.66024626E−01 0.0E+00 8.5E−07 1.8E−07 21 0.01
HS109 5.36206919E+03 6.2E−12 4.1E−07 1.8E−07 68 0.01
HS110 −4.57784755E+01 0.0E+00 2.2E−06 1.8E−07 10 0.00
HS111 −4.77610906E+01 3.4E−11 8.8E−06 1.8E−07 483 0.07
HS112 −4.77610910E+01 3.0E−09 3.8E−07 1.8E−07 24 0.01
HS113 2.43064004E+01 0.0E+00 3.6E−07 7.9E−07 14 0.00
HS114 −1.76879148E+03 9.7E−09 3.0E−06 1.8E−07 235 0.04
HS116 9.75876722E+01 0.0E+00 1.8E−07 1.8E−07 31 0.01
HS117 3.23554835E+01 0.0E+00 2.4E−06 1.8E−06 21 0.01
HS118 6.64820712E+02 0.0E+00 8.4E−15 1.8E−07 25 0.01
HS119 2.44903051E+02 2.2E−10 7.2E−06 2.3E−07 23 0.01
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Figure 1: Performance profile in terms of number of iterations comparing P = band(H) with P = H in (80).

9 Conclusions and Alternatives

In this paper we have presented a mixed interior-exterior penalty method for the general nonlinear program-
ming problem (1). The problem undergoes a change of variables whose benefit is to yield a continuously
differentiable, exact, merit function as well as to ensure that the new feasible set has a nonempty strict
interior. Noticeably, the problem turns out to also be surprisingly regular in that it satisfies mfcq without
any regularity assumption on (1). Additionally, there is much freedom and ease in choosing a starting point.
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The reformulated problem turns out to be well suited for a primal-dual interior-point method, and global
and local convergence results from Conn et al. (2000a), Gould et al. (2001) and Mayne and Polak (1976)
combine to ensure general and robust properties for the method, under mild assumptions. While the inner-
iteration subproblem may be solved in terms of both the original and added elastic variables, an alternative
in which the elastics depend implicitly on the original ones has also been considered.

Clearly, we recognize that the particular approach adopted in this paper is not the only possible one.
Another possibility is to use the `∞ penalty function

φ(x, ν) = f(x) + νmax
i∈E

|ci(x)|+ νmax
i∈I

(−ci(x), 0) (86)

instead of (6). As before, it is easy to show that this may be reformulated as

minimize
x∈Rn, s∈R

f(x) + νs

subject to ci(x) + s ≥ 0, (i ∈ E ∪ I)
s− ci(x) ≥ 0, (i ∈ E)
s ≥ 0

involving a single “elastic” variable s. Once again one might apply an interior-point algorithm to such a
problem, and again it is trivial to find an initial interior point. The advantage now is clearly this formulation
involves significantly fewer surplus variables. The `∞ approach is also examined in the framework of so-called
elastic mode in Boman (1999).

We believe the method presented in the present paper is appropriate for a variety of degenerate nonlinear
programs, and in particular problems for which the mfcq fails to hold at a solution. At variance with some
other methods, the method proposed here is not only able to identify such a solution, but it also delivers
a certificate of failure of the mfcq. This is in line with, e.g., the method proposed in Chen and Goldfarb
(2006).

A substantial advantage of the present approach is that it specializes adequately to the solution of struc-
tured degenerate problems, such as mathematical programs with complementarity constraints and mathe-
matical programs with vanishing constraints. Extension of our algorithm to such cases is the subject of
current research (Coulibaly and Orban, 2009; Curatolo and Orban, 2010).
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